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Calibration of the torsional spring constant of atomic force microscopy cantilevers is fundamental to
a range of applications, from nanoscale friction and lubrication measurements to the characterization
of micro-electromechanical systems and the response of biomolecules to external stimuli. Existing
calibration methods are either time consuming and destructive (ex situ static approaches), or rely on
models using the frequency and quality factor (Q-factor) of the cantilever torsional resonance as
input parameters (in situ dynamical approaches). While in situ approaches are usually preferred for
their easy implementation and preservation of the cantilever, their dependence on the torsional reso-
nance Q-factor renders calibration in highly viscous environments challenging. This is problematic,
for example, in many nanoscale tribological applications. Here, we propose a calibration method
that does not depend on the cantilever torsional Q-factor and show how the cantilever deflection can
be converted into a lateral force. The method is tested with six cantilevers of different shapes and
material composition and in six fluid media. The derived spring constants are compared with predic-
tions from existing methods, demonstrating a higher precision, in particular, for highly viscous
liquids. © 2018 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5046648

INTRODUCTION

Atomic force microscopy (AFM) is a widely used tool
for surface characterization, allowing both imaging at nano-
meter scales and measuring forces in the nano- to piconew-
ton range.1–3 While the most common AFM operation relies
on measuring the flexural bending of a rectangular cantile-
ver4,5 that quantifies forces normal to a sample, torsional
measurements are becoming increasingly popular for their
ability to extract in-plane forces such as the frictional force
with nanoscale lateral precision.6–8 In torsional measurement,
the sample is moved laterally with respect to the main axis of
the cantilever, making the cantilever twist as the AFM tip
rubs against the sample’s surface. The shear force between
the tip and the sample can be accurately determined from the
twisting angle of the cantilever, provided that the torsional
spring constant and the inverse optical lever sensitivity
(InvOLS) of the system are known. The InvOLS is a constant
depending on the geometry of the system and allows conver-
sion of the raw photodiode measurement, taken in volts, into
nanometer of lateral torsion at the tip.

While the flexural calibration of the cantilever is rela-
tively straightforward (see, e.g., comprehensive reviews9,10),
the torsional calibration is usually more complex and often
cannot be achieved in situ, or without specialist, homebuilt
equipment.11–13 Methods for the calibration of torsional
forces can be broadly classified into three main categories:14

(i) theoretical,15–17 (ii) static,12,18–31 and (iii) dynamic.14,32,33

Theoretical methods typically calculate the spring constant
analytically from parameters characterizing the cantilever’s
geometry and its mechanical properties.15–17 Such methods
are particularly sensitive to errors originating from manufac-
turing variations in the cantilevers’ dimensions and material
properties. Static methods, in contrast, offer a direct measure
of the lateral spring constant. They rely on a well-defined
lateral force or displacement being applied to the AFM tip
which generates torsional bending, thereby allowing the cal-
culation of the torsional spring constant.12,18–20 While static
methods do not require many assumptions about the cantile-
ver’s geometry or material properties, they often require extra
equipment and hard mechanical contact with a sample
surface, leading to tip damage. These techniques are consid-
ered ex situ and hence more time consuming. Finally,
dynamic calibration methods usually rely on the torsional
resonance frequency of the cantilever to find its spring
constant.11,32,33

Arguably, the best known torsional dynamic calibration
methods are the so-called Cleveland method32 and Sader
method.32–34 The Cleveland method measures the torsional
frequency changes of the cantilever induced by the on-axis
loading of added masses in order to deduce its torsional
spring constant. In contrast, the Sader method determines the
cantilever’s torsional spring constant from its interaction with
the surrounding medium, as quantified by the cantilever
hydrodynamic function. The Sader method is particularly
straightforward because it only requires the frequency and
associated quality factor (Q-factor) of the cantilever torsional
resonance as input parameters. As a result, the Sader method
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has become one of the most popular approaches in the scien-
tific community to calibrate microcantilevers. While highly
successful in most common conditions, the dependence of the
Sader method on the cantilever’s hydrodynamic function can
become problematic in viscous environments. Practically, this
difficulty comes from the need to know the Q-factor of the
cantilever, a quantity difficult to measure accurately in highly
viscous liquids where the resonance can significantly broaden
in the frequency domain. Additionally, the method assumes
a Q-factor significantly larger than unity. This assumption,
although commonly verified in air, tends to fail in liquids,
especially for those with high viscosity.33 As a result, the cal-
culated torsional spring constant can vary significantly when
derived in different viscous media, despite being an intrinsic
property of the cantilever.33 An alternative method that does
not rely on the Q-factor is therefore highly desirable.

Here, we propose an alternative torsional calibration
method that requires knowledge of four easily accessible
parameters: the fundamental torsional resonance frequencies
of a cantilever in air and in the medium of interest, and the
cantilever width and length. Significantly, the method is
independent of the cantilever Q-factor, non-destructive, and
can be carried out on commercial AFMs without any further
modifications. Since in most cases, the spring constant is
only useful if the InvOLS is known, we adapt an existing
InvOLS calibration methodology described elsewhere
(Ref. 33) to also derive the system’s InvOLS. The InvOLS
calculation is based on the same four aforementioned param-
eters, on the Q-factor, and on the power spectrum density of
the cantilever torsional motion at DC (PDC), obtained from
the cantilever’s thermal torsional vibration spectrum. This
allows for a more accurate value of the InvOLS because the
quantity now depends on the inverse of the square root of the
Q-factor, as opposed to the inverse of the Q-factor with the
Sader formula. To validate our approach, we compare results
derived with our method and the Sader method using differ-
ent cantilevers in several media.

EXPERIMENTAL

The experimental section first derives expressions for the
cantilever’s torsional spring constant and InvOLS based on
suitable observables. Secondly, all the details about the mate-
rials and methods of the experimental measurements are
presented.

Theory

Let us consider a cantilever of length L, width b, and
thickness h. Assuming that L is much greater than b and h,
the torsional spring torque at the cantilever end is given by32

kf ¼ 1
3π2

ρchb
3Lω2

t,a, (1)

where ρc is the cantilever density and ωt,a is the torsional res-
onance frequency of the cantilever in air. While it is possible
to directly use Eq. (1) to calculate the torsional spring cons-
tant of the cantilever, there are in practice several important
limitations. First, Eq. (1) requires knowledge of the cantilever
thickness, a parameter that often carries a large variability

with respect to the nominal value (see Fig. S1 in the supple-
mentary material for a representative example). Second, this
equation relies on the assumption of the cantilever’s density
being homogeneous. This is not always valid, with local
inhomogeneities potentially affecting both the geometry and
the density of the cantilever. We hence use the areal mass
density in order to derive an effective cantilever density.

We assume, then, that the cantilever dynamics in a dense
fluid can be described by a simplified hydrodynamic function
of torsional motion Γtors(ω) characterized by two real (a1, a2)
and one imaginary (b1) regression coefficients as35,36

Γtors(ω) � a1 þ a2ffiffiffiffiffiffi
Re

p
� �

þ j
b1ffiffiffiffiffiffi
Re

p
� �

, (2)

where a1, a2, and b1 are the regression coefficients of the
hydrodynamic function for the torsional motion of a rectan-
gular cantilever in fluid environments. The values of a1, a2,
and b1 are 0.0634, 0.388, and 0.4, respectively.35,36 Here, the
fluid parameters are encapsulated by the Reynolds number,
Re ¼ ρlωb

2=4η, where ρl and η are the fluid density and vis-
cosity, respectively. Using Eq. (2), we can relate the torsional
resonance frequency of the cantilever in air, ωt,an, with that
in liquid, ωt,fn, for any given vibration eigenmode, n:32,37

ω2
t,fn

3πa1ρf b

2ρch
þ 1

� �
þ ω

3
2
t,fn

6πa2
ffiffiffi
η

p ffiffiffiffiffi
ρf

p
2ρch

� �
¼ ω2

t,an: (3)

Using Eq. (3), the areal mass density of the cantilever, ρch,
can be calculated as follows:

cρch ¼
3ω2

t,f1πa1ρf bþ 6πa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω3
t,f1ρf η

q
2(ω2

t,a1 � ω2
t,f1)

: (4)

Equation (4) can be used along with Eq. (1) to acquire the
torsional torque constant (in Newton per radian) of the canti-
lever:

kf ¼
3ω2

t,f1πa1ρf b
4 þ 6πa2b3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω3
t,f1ρf η

q
6π2(ω2

t,a1 � ω2
t,f1)

Lω2
t,a1, (5)

which requires the beam width and length and the torsional
resonance frequencies in air and liquid as input parameters,
alongside the density and viscosity of the fluid. The torsional
spring constant (in N/m) of the cantilever can then be
obtained from the torsional torque constant using the follow-
ing equation:33

kt ¼ kfL

(L� ΔL)h2t
, (6)

where ΔL is the distance between the position of the tip and
the end of cantilever and ht is the tip height.

The spring constant can be used alongside the torsional
InvOLS, γ, as formulated in Ref. 33, so as to multiply the
cantilever deflection in volts and obtain the lateral force:

γ ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

πkffoPDCQ

s
, (7)

where kB is Boltzmann’s constant, T is the temperature, and
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PDC is the power spectrum density of the cantilever torsional
motion at DC, measured on the cantilever’s thermal torsional
vibration spectrum.

Materials and methods

The frequency response of six commercially available
cantilevers was investigated, each in six different media. The
cantilevers were OMCL-RC800PSA (4 different cantilevers
on the same chip, Olympus, Tokyo, Japan), AD-2.8AS
(Adama Innovations LTD, Dublin, Ireland), and HQ-NSC18/
HARD AL-BS (Windsor Scientific, Slough, UK). For clarity,
the nominal geometrical and physical characteristics of the
different cantilevers (hereafter referred to as C1–C6) are sum-
marized in Table I.

Figure 1(a) highlights the different geometrical charac-
teristics of the cantilevers used: C1-4 have a rectangular
shape; C5 and C6 are a combination of a rectangle at the
chip end and a triangle at the tip end.

As measurement media, we used air, ultrapure water,
isopropanol, methanol, dimethyl sulfoxide (DMSO), hexade-
cane, and squalane. The ultrapure water (AnalaR Normapur)
was purchased from VWR International Ltd (Lutterworth,
UK). All other chemicals were purchased from Sigma-
Aldrich (Dorset, UK) with a purity >99% and used without
any further purification. The tabulated density and viscosity
values of each fluid at the experimental temperature are
shown in Table II.

The measurements were conducted on commercial
Cypher ES AFM (Asylum Research, Santa Barbara, CA)
equipped with a temperature-controlled sample stage. For
each medium and for each cantilever, thermal spectra were
recorded at 25 °C. To minimize any errors associated with
changes in the laser alignment in different fluids, all the
media were explored in the same session for each cantilever.
When exchanging fluids within a given series, the tip was
thoroughly washed with isopropanol (20 times with 100 μl)
and then with the new solution of interest (40 times with
100 μl).

The frequency response of the cantilevers in the different
media was investigated by recording the thermal spectrum of
each cantilever in each medium. The Brownian motion of the
fluid surrounding the cantilever results in naturally exciting
the cantilever itself and determining a flexural and a torsional

motion. The two different types of motion can be selectively
detected using the AFM laser. Figure 1(b) schematically
shows the different dynamics between flexural and torsional
motion of the cantilever. The two motions result in different
thermal spectra, as shown in Fig. 1(c). Tables S1–S6 in the

TABLE I. Summary of the characteristics of the cantilevers (C1–C6) used
for this study.

Cantilever Commercial name
Length
(μm)

Width
(μm)

Tip

height
(μm) Material

C1 OMCL-RC800PSA 100.0 20.0 2.9 Silicon nitride
C2 OMCL-RC800PSA 100.0 40.0 2.9 Silicon nitride

C3 OMCL-RC800PSA 200.0 20.0 2.9 Silicon nitride
C4 OMCL-RC800PSA 200.0 40.0 2.9 Silicon nitride
C5 AD-2.8-AS 225.0 35.0 12.5 Diamond
C6 HQ-NSC18/HARD

AL-BS
225.0 27.5 15.0 Diamond-like

carbon

FIG 1. Cantilever types and calibration details for flexural vs torsional
modes. (a) Geometry of the cantilevers used in the study. (b) Pictorial repre-
sentation of the different motion of the cantilever in flexural and torsional
modes. (c) Representative example of flexural (blue) and torsional (red)
thermal spectra for a given cantilever. In each case, the resonance frequency,
fres, of the first eigenmode is shown. Cross coupling between the two modes
is negligible for our purposes.

TABLE II. Density and viscosity values for all the media38–40 at 25 °C.

Medium Density (kg/m3) Viscosity (Pa s)

Air 1.18 1.83 × 10−5

Methanol 787.00 5.43 × 10−4

Water 998.00 8.90 × 10−4

DMSO 1095.00 1.99 × 10−3

Isopropanol 785.00 2.10 × 10−3

Hexadecane 769.00 3.08 × 10−3

Squalane 805.00 2.80 × 10−2
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supplementary material provide a detailed summary of the
frequency responses of the cantilevers in the different media.

RESULTS AND DISCUSSION

Figure 2 compares the new method proposed here with
the Sader method. Representative results are given for the
spring constant of cantilever C3 in all the six fluids.

For all the cantilevers studied, we found our method to
be significantly less sensitive to viscosity in determining the
spring constant. The robustness of our approach is particu-
larly obvious in highly viscous media [Fig. 2(a)] where the
dependence of the Sader method on the cantilever Q-factor
hinders predictions. Accurate determination of the Q-factor is
strongly dependent on the fitting interval selected in the
thermal spectrum, especially since Q may be close to unity33

[Fig. 2(b)]. In the case of C2 and C6 (see supplementary
material, Figs. S2 and S5), our method appears more robust
than the Sader method also in low viscous media. This is not
surprising since the Sader method relies on the assumption

of a Q-factor much greater than unity, a condition which is
typically met for stiff cantilevers in air.32,33,44 However,
applying the method can be challenging even in media with
viscosity as low as water.33

As illustrated in Fig. 2(a) and Figs. S2–S6 and
Tables S1–S6 (supplementary material), the proposed
approach shows also greater precision in comparison with the
Sader method: for highly viscous media, the error is signifi-
cantly smaller and, in some cases, reduced up to four times.
For cantilevers C5-6 (Figs. S5 and S6 and Tables S5 and S6
in the supplementary material), the uncertainty is smaller in
all the media considered.

In order to quantitatively assess the robustness of our
method, we calculated the relative variability of predictions
for each cantilever across the different media (Fig. 3). Here,
the relative variability is defined as the difference between
the maximum and the minimum spring constant normalized
by the average value. The results clearly confirm the robust-
ness of our method against the impact of the surrounding
fluid’s viscosity with the normalized variability range being,
in some cases, even more than 4 times smaller with the pro-
posed method. In Fig. 3(b), we consider a reduced set
excluding the highest viscosity data point (squalane) given
its possible biasing of the results. Again, our method remains
significantly less sensitive to viscosity changes in comparison
with the Sader method. Further statistical data analysis on the
spring constant variability is available in the supplementary
material (Fig. S7).

FIG 2. (a) Comparison of predictions derived with the proposed method and
the Sader method in fluids of varying viscosity for cantilever C3 used as an
example. The dashed lines represent the average spring constant for each
method. The proposed method appears more precise considering its smaller
deviation from the mean value. Predictions from the Sader method are signifi-
cantly more dependent on viscosity variations between media. See Figs. S2–S6
in the supplementary material for the results obtained with the other cantile-
vers. (b) Representative thermal spectra in low and high viscosity media
(water and squalane, respectively). In both cases, the first eigenmode is fitted
with the thermal noise method.4,5,33,41–44 In high viscosity media, the
Q-factor significantly decreases and approaches unity, rendering the fitting
procedure prone to large variations in the derived Q value depending on the
fitting interval. Error bars in (a) are calculated using standard formulae for
error propagation (see supplementary material, Sec. 3). The data points and
error bars relative to the Sader method have been shadowed and enlarged so
as to enhance graph readability. The thermal spectrum of squalane in (b) has
been offset vertically for clarity.

FIG 3. Quantification of the variability across media for each cantilever’s
torsional spring constant for the proposed and the Sader methods. In (a), the
variability is calculated using the data in all the media, whereas in (b) we
have excluded the data relative to the highest viscosity medium (squalane).
For each cantilever, the variability of the spring constant across media is cal-
culated as the difference between the maximum and the minimum spring
constant normalized by the average value.
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Our method could, in principle, be extended to the cali-
bration of arbitrarily shaped cantilevers, but this would
require a prior determination of an effective cantilever width
from a torsional perspective. This task is non-trivial with, to
the best of our knowledge, no simple existing approach for
calculating the effective width. Attempts to calibrate the tor-
sional spring constant of a triangular cantilever confirmed
that our method tends to be more robust against the influence
of viscosity variability, but the values derived are partly spec-
ulative for the lack of a reliable input (effective width)
and the absence of independent comparative measurements
(see Sec. 5 of the supplementary material).

Combining Eqs. (5) and (7), it is possible to calculate
easily the torsional InvOLS of the cantilevers, thereby allow-
ing a straightforward derivation of the lateral shear force
experienced by the AFM tip. Our method would hence also
potentially increase the accuracy of the torsional InvOLS
calculation. This is because in our method the torsional
InvOLS depends on the inverse of the square root of
the Q-factor, whereas in currently used models there is a
linear dependence of the InvOLS on the inverse of the
Q-factor.33 We note that our method relies on knowledge of
PDC from the thermal spectrum of the cantilever. While the
value of PDC can be readily obtained in most commercial
AFMs, it is worth mentioning that additional gains and filters
are often applied to the lateral deflection signal by commer-
cial software in default settings. This may lead to an unex-
pectedly high or low InvOLS due to the PDC value being
incorrect.

CONCLUSIONS

In this paper, we present a non-destructive and non-
invasive method to determine the torsional spring constant of
a cantilever and to calculate the lateral shear force experi-
enced by the AFM tip from the raw deflection as obtained
from the photodetector. The method requires the following
input parameters: the fundamental torsional resonance fre-
quencies of the cantilever in air and in the medium of inter-
est, and the cantilever width and length. Significantly, the
method is independent of the cantilever Q-factor which
renders our method particularly effective in high viscosity
media. We validate our approach with cantilevers exhibiting
different geometries and in six different media. Our method
can be carried out on commercial AFMs without the need for
any extra equipment. We believe that the proposed method
could be particularly useful for quantitative high-resolution
torsional imaging in solution45 and in the field of nanoscale
friction and tribology, for example, when investigating ionic
liquids,46 organic lubricants,6 surfactants layers,47 and func-
tional nano-interfaces.48 In order to facilitate the use of our
method, the script of a Python code capable of calculating
the torsional spring constant, its uncertainty, and the torsional
InvOLS using the proposed method is given in the last
section of the supplementary material.

SUPPLEMENTARY MATERIAL

See supplementary material for the EM analysis of the
tips, the frequency response of each cantilever in the different

media including a fully triangular cantilever, and detailed
error calculations and statistical analysis of the results. The
Python code used to calculate the torsional spring constants
is also presented in full.
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