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We argue that if the elastic proton–proton cross section increases with energy, the Froissart-like high 
energy behaviour of the elastic amplitude (which corresponds to a ‘black disk’ of radius R(s) = c ln s −
β ln(ln s)) is the only possibility to satisfy the unitarity equation at each value of the impact parameter, b. 
Otherwise the cross section of events with Large Rapidity Gaps grows faster than the total cross section 
at the same b. That is, these ‘gap’ events require maximal growth of the high-energy (asymptotic) cross 
section and of the interaction radius R(s) in order to be consistent with unitarity.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

It was shown long ago [1] that in the so-called ‘strong coupling’ 
regime (where the cross section increases with energy) the high 
energy, 

√
s, dependence of the total and elastic cross sections takes 

the form

σtot = Ct(ln s)η,
dσel

dt
= Cel(ln s)2η F (B(s)t) , (1)

with the function F chosen to describe the t dependence of the 
elastic cross section, with the “slope”

B(s) = B0(ln s)γ , (2)

where the parameters η and γ are limited to the intervals 0 ≤
η ≤ γ and 0 ≤ γ ≤ 2.

Note that processes with Large Rapidity Gaps (LRG) were not 
considered specially in [1]. In a recent paper [2] we argued that 
when we account for events with LRG the only possibility to satisfy 
unitarity is to make the disk completely black. That is, in terms of 
(1), (2) to put η = γ . Moreover, when we consider the contribution 
of LRG events at the edge of disk (where the disk is not black but 
‘grey’, i.e. partly transparent) we find that the radius of the disk 
must grow as

R(s) ∝ (ln s)γ /2 ∝ ln s. (3)

That is the only solution is η = γ = 2.
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In section 2 we recall the main arguments of [2] in favour of 
black disk asymptotics. In section 3 we study LRG events at large 
impact parameter b. There we show that only in the case of γ = 2
(that is R(s) ∝ ln s) does there exist a possibility of screening an 
increasing LRG cross section in such a way that it does not exceed 
the total cross section at the same partial wave, that is at the same 
value of b.

2. Finkelstein–Kajantie problem

We first explain the problem. Then we present the solution of 
the problem and its implications for high-energy proton–proton 
scattering. Further implications are discussed in Section 3 when 
we study the behaviour at the edge of the disk.

2.1. Growth of inelastic cross section with large rapidity gaps

It was recognised already in the 1960s [3,4] that multi-Reggeon 
reactions,

pp → p + X1 + X2 + ... + Xn + p, (4)

where small groups of particles (Xi ), are separated from each other 
by Large Rapidity Gaps (denoted by + signs), may cause a prob-
lem with unitarity. Indeed, being summed over n and integrated 
over the rapidities of each group, the cross section of such quasi-
diffractive production increases faster than a power of s. This was 
termed as the Finkelstein–Kajantie disease (FK) in the literature, 
see [5] for a review.

Let us explain the problem using the simple example of Central 
Exclusive Production (CEP) of a proton–antiproton pair, as shown 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Central Exclusive Production of a pp̄ pair.

in Fig. 1. Since the proton–proton elastic cross section does not 
vanish, but increases with energy as σel ∝ (ln s)2η−γ , the corre-
sponding contribution to the inelastic cross section reads

σ CEP = N

Y∫

0

dy1

∫
dt1dt2 |A(y1, t1) · V · A(Y − y1, t2)|2

∝
∫

dy1σel(y1)σel(Y − y1) , (5)

where the elastic amplitude A(y, t) is normalised in such a way 
that 

∫
dt|A(y, t)|2 = σel(y), and the upper rapidity Y = ln s/m2

p
where mp is the proton mass. The vertex V describes the central 
production of a pp̄-pair. In other words we find

σ CEP ∝ (ln s)4η−2γ +1. (6)

In the case of a black (or grey) disk of increasing radius when 
η = γ this leads to

σ CEP ∝ (ln s)2η+1 � σtot ∝ (ln s)η (7)

The same result can be obtained in impact parameter, b, space 
(see [2] for details). Moreover working in b space we have a 
stronger constraint since for each value of b, that is for each partial 
wave l = b

√
s/2 of the incoming proton pair, we have the unitarity 

equation

2ImA(Y ,b) = |A(Y ,b)|2 + G inel(Y ,b) (8)

and the ‘total’ cross section, σ(b)tot must be less than the corre-
sponding CEP contribution (here G inel denotes the total contribu-
tion of all the inelastic channels). Actually one will face this FK 
problem in any model where the elastic cross section does not de-
crease with energy.

At first sight the simplest way to avoid the FK problem is to 
say that the production vertex (V in Fig. 1) vanishes. However 
this cannot be fulfilled. Indeed, as far as we have a non-vanishing 
high-energy elastic proton–proton cross section we can build dia-
gram Fig. 1 in such a way that the lower part is just the elastic 
pp-scattering while the upper part corresponds to the proton–
antiproton elastic interaction. Such a diagram is generated by the 
t-channel unitarity equation

disct A12 =
∑

j

A∗
1 j| j〉〈 j|A j2 , (9)

where in our case 〈 j| is the t-channel p state.
Note that this contribution is singular at t = m2

p (where mp is 
the proton mass). There are no other similar terms correspond-
ing to central exclusive production of pp̄ pair with the same pole 
singularity. That is, the vertex V contains at least one subprocess 
(pp̄ CEP) which cannot be cancelled identically. See [2] for more 
details why this establishes that V 
= 0.
Fig. 2. Diagram a shows the amplitude of pp̄ exclusive production screened by an 
additional inelastic interaction given by the double dotted line. Diagram b shows 
the central vertex V screened in some rapidity interval between y1 and y2.

2.2. Black disk solution of the FK problem

The only known solution of this multi-Reggeon problem comes 
from ‘black disk’ asymptotics of the high-energy cross sections. In 
such a case the (gap) survival probability, S2, of the events with 
LRGs tends to zero as s → ∞ and the value of σ CEP does not ex-
ceed σtot. In other words besides the contribution of Fig. 1 we have 
to consider the diagram of Fig. 2a where the double dotted line 
denotes an additional (incoming) proton–proton interaction. This 
diagram describes the absorptive correction to the original CEP 
process and has a negative sign with respect to the amplitude A(1)

of Fig. 1. Therefore to calculate the CEP cross section we have to 
square the full amplitude

|Afull(b)|2 = |A(1)(b) − A(2a)(b)|2 = S2(b) · |A(1)(b)|2 , (10)

where the survival factor

S2(b) = |e−�(b)| , with Re� ≥ 0 , (11)

and �(b) is the opacity of the incoming protons.
Indeed, in terms of S-matrix, the elastic component for a par-

tial wave l = b
√

s/2 has the form Sl = 1 + i A(b), and the unitarity 
equation (8) reflects the probability conservation condition

∑
n

S∗
l |n〉〈n|Sl = 1 , (12)

where Sl is the component of the S-matrix corresponding to partial 
wave l. The solution of unitarity equation (8) reads

A(b) = i(1 − e−�(b)/2) . (13)

In terms of the partial wave amplitude al with orbital moment 
l = b

√
s/2 the solution is

al = i(1 − e2iδl ) = i
(

1 − ηle
2iReδl

)
, (14)

where

ηl = e−2Imδl with 0 ≤ ηl ≤ 1. (15)

The above discussion shows that −�(b)/2 plays the role of 2iδl . 
The elastic component of S matrix

Sl = exp(2iδl) = ηl exp(2iReδl). (16)

The gap survival factor S2 is the probability to observe a pure 
CEP event where the LRG is not populated by secondaries produced 
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in an additional inelastic interaction shown by the dotted line in 
Fig. 2a. That is according to (15)

|S(b)|2 = 1 − G inel(b) = η2 = e−Re�(b) . (17)

Equation (17) can be rewritten as (see (13), (15))

|S(b)|2 = |1 + i A(b)|2 = |Sl|2 . (18)

In the case of black disk asymptotics1

Re�(b) → ∞ and A(b) → i, (19)

for b < R . That is, we get S2(b) → 0. The decrease of the gap sur-
vival probability S2 overcompensates the growth of the original 
CEP cross section (Fig. 1), so that finally we have no problem with 
unitarity.

Recall that this solution of the FK problem was actually realised
by Cardy [6], where the reggeon diagrams (generated by Pomerons 
with intercept αP (0) > 1) were considered by assuming analytic-
ity in the number of Pomerons in a multi-Pomeron vertex. It was 
shown that the corresponding absorptive corrections (analogous to 
that shown in Fig. 2a) suppress not only the growth of a simplest, 
diagram Fig. 1, contribution but the growth of cross sections of 
processes with an arbitrary number of LRGs.

Note that at the moment we deal with a one-channel eikonal. 
In other words in Fig. 2 and in the unitarity equation (8) we only 
account for the pure elastic intermediate states (that is the proton, 
for the case of pp collisions). In general, there may be p → N∗
excitations shown by the black blobs in Fig. 2a. The possibility of 
such excitations can be included via the Good–Walker [7] formal-
ism in terms of G-W eigenstates, |φi〉, which diagonalise the high 
energy scattering process; that is 〈φk|A|φi〉 = Akδki . In this case we 
encounter the FK problem for each state |φi〉 and we then solve it 
for the individual eigenstates.2

At first sight it looks sufficient to screen not the whole CEP am-
plitude, as in Fig. 2a, but just the central vertex V as in Fig. 2b. Let 
us consider this so-called enhanced diagram Fig. 2b in more de-
tail. Note that we have to integrate over the rapidity-positions y1
and y2 of the ‘effective’ triple-Pomeron vertices. Since the ampli-
tude (shown by the double dotted line) increases with energy, that 
is with the size of |y2 − y1| interval, the main contribution comes 
from the configurations where y1 → 0 and y2 → Y . In other words 
the enhanced, Fig. 2b, diagram acts as the non-enhanced Fig. 2a 
graph considered above.

Moreover, the physical sense of the correction Fig. 2b is that si-
multaneously with an exclusive process some inelastic interaction 
occurs between the partons placed at y1 and the partons placed 
at y2.3 This interaction violates the ‘exclusivity’ of the process 

1 Recall that the word ‘black’ means the complete absorption of the incoming 
state (up to power of s suppressed corrections). That is Re�(s, b) → ∞. ‘Black disk’ 
means that in some region of impact parameter space, b < R , the whole initial wave 
function is absorbed. That is, the value of S(b) = 1 + i A(b) = Sl → 0, i.e. A(b) → i.

2 For pedagogical purposes it may be helpful to elaborate what would happen if 
the proton wave function |p〉 = ∑

i ai |φi〉 were to include a ‘sterile’ state |φs〉 which 
has zero cross section, that is As = 0. In such a case we would have black disk 
asymptotic behaviour for all G-W components except that for |φs〉. However, due 
to the presence of the |φs〉 state, then for the whole proton the disk becomes not 
black but grey. Correspondingly we get a proton elastic cross section σel < σtot/2. 
We emphasise that such a sterile eigenstate must be completely sterile. It is not 
sufficient to say that its cross section decreases as a power of the energy. Having a 
non-zero cross section at low energies, we can consider the diagram Fig. 1 in the 
region of small y1 but very large Y . This contribution immediately leads to some 
non-vanishing amplitude As at asymptotically high energies. Thus the presence of a 
sterile eigenstate appears to be a very extreme hypothesis.

3 The relation between the absorptive correction and the contribution of the 
processes with larger multiplicities is given by the AGK cutting rules [8]. The prob-
abilistic interpretation of these AGK rules can be found, for example, in [9].
and in this way decreases the cross section of pure CEP events. 
If the central vertex is screened more or less ‘locally’ (i.e. within 
a limited |y1 − y2| interval) then, by cutting the corresponding 
Pomerons with the help of the AGK rules [8], we get another LRG 
process with some more complicated central multiparticle pro-
duction instead of pp̄ production. That is, we will get the same 
FK problem, σ CEP > σtot but generated by another group of CEP 
events.

Recall that the inelastic processes generated via the AGK rules 
by these screening diagrams at any rapidity interval must be in-
cluded in the whole G inel contribution which describes the correc-
tion shown in Fig. 2a. That is, anyway, we get very large probability 
of inelastic interactions (ηl → 0, i.e. G inel(b) → 1) and finally arrive 
in the black disk regime.

3. Edge of the disk

While the survival factor S2 solves the FK problem for the cen-
tral part of the black disk, we still have to address the question 
of what happens at the edge of the disk where the optical density 
is not large? That is, when Re�(b) ∼ O (1). For the large partial 
waves which occur in this domain we still may have CEP (and 
other diffractive LRG) cross sections larger than the total cross sec-
tion corresponding to such l-waves.

The solution is provided by the condition that actually the in-
teraction radius corresponding to a screening amplitude must be 
larger than the sum of the radii of amplitudes which describe the 
interactions across the gaps (i.e., the large rapidity intervals). In 
particular, in the case of Fig. 1 the energy/rapidity dependence of 
interaction radius must satisfy the inequality

R(Y ) > R(y1) + R(Y − y1) . (20)

Using the parametrisation given in (2), that is R = R0(ln s)γ /2, we 
see that in order to satisfy (20) we have to choose γ ≥ 2. On the 
other hand we must satisfy the Froissart limit γ ≤ 2 [10]. That is 
the only solution is γ = 2; which gives R ∝ ln s.

To be more precise and to provide the inequality (20) we have 
to add the ln ln s correction to R

R = c ln s − β ln ln s . (21)

Such a correction was obtained for example in [11] and [12]. In 
the latter paper the factor ln s was replaced by ln(s/σel) which in 
the case of σel ∝ ln2 s generates the ln ln s correction in (21).

Thanks to the fact that (for a large y1 ∼ O (Y )) the value of 
ln Y = ln ln s < ln y1 + ln(Y − y1) we get now

R(Y ) > R(y1) + R(Y − y1) . (22)

That is even taking the intermediate amplitudes A(y1) and 
A(Y − y1) at the largest possible impact parameters (at the edge of 
their disks) we get the total CEP amplitude, like Fig. 1, inside the 
completely black disk of the screening amplitude. Thus the bare 
LRG multi-Reggeon contribution will be totally suppressed by the 
absorptive corrections.

The mechanism which generates the ln ln s correction during 
the development of the parton cascade (after accounting for pro-
cesses of diffraction dissociation) was considered in [13]. It was 
shown in [13,14] that the same condition (20), (21) provides the 
possibility to satisfy the t-channel unitarity.

4. Summary

We emphasise that when high-energy pp cross sections grow 
with energy, black disk absorption is the only cure of the FK dis-
ease. Thus any asymptotic behaviour of a high energy increasing 
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cross section which does not lead to complete absorption is not 
consistent with multi-particle unitarity. Moreover, in order not to 
violate the unitarity equation at the edge of disk, where the opac-
ity is not large (Re�(b) ∼ O (1)), the interaction radius should in-
crease linearly with ln s

R = c ln s − β ln ln s , (23)

with a small correction of the order of ln ln s.
The R ∝ (ln s)δ behaviour with δ < 1 is rejected since in such a 

case the cross section of central exclusive events, σ CEP(b), at large 
impact parameters b (that is for large partial waves l = b

√
s/2 oc-

curring at the edge of black disk) grows faster than the total cross 
section, σtot(b), in the same partial wave.

The remarkable conclusion is that LRG events require maximal
growth of the high-energy (asymptotic) cross section and an in-
teraction radius R(s) of the form of (23) in order to be consistent 
with unitarity.

Finally recall that when we say ‘black disk’ asymptotics we ac-
tually refer to the area covered by an ‘almost’ black disk; that 
is the area where the amplitude A(b) � i is close to black disk 
limit. Clearly this area should be larger than the area covered 
by the disk-edge. At present in pp scattering at the LHC we are 
close to black disk saturation only for b < b0 = 0.2–0.3 fm while 
the width of disk-edge is about 1 fm [15]. That is the black disk 
asymptopia that we refer to should start when b0 becomes much 
larger than 1 fm; say, at b0 > 2–3 fm. This will correspond to 
σtot(pp) = 2πb2

0 > 300–1000 mb.
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