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Abstract

Elevated dissolved methane (CH4) concentrations in groundwater are an environmental concern 

associated with hydraulic fracturing for shale gas. Therefore, determining dissolved CH4 baselines is 

important for detecting and understanding any potential environmental impacts. Such baselines 

should change in time and space to reflect ongoing environmental change and should be able to 

predict the probability that a change in dissolved CH4 concentration has occurred. We considered 

four dissolved CH4 concentration datasets of English groundwater using a Bayesian approach: two 

national datasets and two local datasets from shale gas exploration sites. The most sensitive national 

dataset (the previously published British Geological Survey CH4 baseline) was used as a strong prior 

for a larger (2153 measurements compared to 439) but less sensitive (detection limit 1000 times 

higher) Environment Agency dataset. The use of the strong prior over a weak prior improved the 

precision of the Environment Agency dataset by 75%. The expected mean dissolved CH4 

concentration in English groundwater based on the Bayesian approach is 0.24 mg/l, with a 95% 

credible interval of 0.11 to 0.45 mg/l, and a Weibull distribution of W(0.35±0.01, 0.34±0.16). This 

indicates the amount of CH4 degassing from English groundwater to the atmosphere equates to 

between 0.7 to 3.1 kt CH4/year, with an expected value of 1.65 kt CH4/year and a greenhouse gas 
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warming potential of 40.3 kt CO2eq/year. The two local monitoring datasets from shale gas exploration 

sites, in combination with the national datasets, show that dissolved CH4 concentrations in English 

groundwater are generally low, but locations with concentrations greater than or equal to the widely 

used risk action level of 10.0 mg/l do exist. Statistical analyses of groundwater redox conditions at 

these locations suggest that it may be possible to identify other locations with dissolved CH4 

concentrations ≥10.0 mg/l using redox parameters such as Fe concentration.
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1. Introduction

Methane (CH4) dissolved in groundwater has no known health effects to humans or animals when 

consumed. However, gaseous CH4 is known to be a potent greenhouse gas [IPCC, 2013], can pose 

as an asphyxiation hazard in confined spaces, and can create an explosion hazard when concentrations 

reach 5% by volume in air [Hooker and Bannon, 1993]. Because of these hazards and climate change 

effects, the degassing of CH4 from groundwater, and therefore elevated dissolved CH4 concentrations, 

have become a topic of environmental concern associated with the hydraulic fracturing (fracking) of 

unconventional reservoirs, such as shale, to extract commercial quantities of CH4 [Vengosh et al., 

2013]. Concerns primarily stem from the United States of America (USA) where there has been 

considerable debate on whether elevated dissolved CH4 concentrations, widely publicized by the 

“Gaslands” film, are naturally occurring or the result of stray gas from fracking operations [Llewellyn 

et al., 2015; Molofsky et al., 2013; 2016; Osborn et al., 2011]. Further concerns may arise from 

historic industry-related incidents such as the CH4 explosions at Abbeystead (in 1984) and Loscoe 

(in 1986) as a result of water pumping and landfill waste, respectively [Exploration Consultants Ltd., 

1986; Williams and Aitkenhead, 1991]. To assess and demonstrate that an industry has impacted an 
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environment it is necessary to show, within a reasonable level of certainty, that an indicator of concern 

has changed environmental state over and above that which was true without the industrial activity 

present. Alternatively, that the industrial activity has changed an environmental state beyond some 

accepted minimum level of harm. Experience from the USA shale gas industry has highlighted that 

demonstrating the impact, or the ability to confirm the absence of an impact, of fracking on dissolved 

CH4 concentrations in groundwater requires that a baseline, or pre-intervention control, needs to be 

established for subsequent observations. 

England has a nascent shale gas industry and although a number of companies are developing 

plans to exploit shale gas reserves, only two sites have been hydraulically fractured to date. In 2012 

the Royal Society and the Royal Academy of Engineering recognized the need to develop a dissolved 

CH4 baseline prior to shale gas development [Mair et al., 2012]. In 2017 the British Geological 

Survey (BGS) contributed to establishing this baseline by publishing dissolved CH4 concentrations 

from a range of aquifers across England, Scotland and Wales [Bell et al., 2017]. Bell et al. [2017] 

built on previous dissolved CH4 sampling results [Ó Dochartaigh et al., 2001; Gooddy and Darling, 

2005; Darling and Gooddy, 2006] to increase the number of BGS sampling locations across Great 

Britain to 343 sites. Approximately 30% of the 343 sites comprised of private and Environment 

Agency of England (EA) monitoring sites. However, the EA have numerous other monitoring sites 

where dissolved CH4 concentrations in groundwater have been measured and these data are publically 

available online from the year 2000. These additional dissolved CH4 concentration measurements 

were not included in the BGS baseline because of their limited geographical coverage and 

considerably higher detection limit; and the subsequent difficulty in combining them with the newly 

acquired BGS CH4 concentration data [Rob Ward, personal communication, 2018]. Therefore, there 

is a need to create methods which can bring together dissolved CH4 datasets with different detection 

limits into a single coherent and consistent framework to make maximum use of all the data available 

while providing a probabilistic, and thus risk-based, assessment of any impact. 
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In this study generalised linear modeling within a Bayesian framework [Gelman et al., 2004] 

is used to combine the BGS and EA dissolved CH4 concentration data and develop a dynamic baseline 

for English groundwater. We also collate and incorporate dissolved CH4 concentrations from local 

baseline monitoring at two shale gas exploration sites. This approach is entirely data driven without 

the need for the parameterisation required in physical models; it is flexible with respect to the 

distribution chosen to represent the data and can include factors (e.g. location) and covariate 

information. The Bayesian framework allows differing data sources to be used; one dataset being the 

prior information to inform the analysis of the next, with the result (the posterior) becoming the prior 

information for the subsequent dataset. In this way the data are brought together in one framework 

that can be updated and improved with time, i.e. it provides a dynamic baseline in time and space. 

Equally, it means that historic data, derived for a variety of purposes, or data from other locations, 

can be used to strengthen the current monitoring at the current locations of interest: in a Bayesian 

framework all information has value. Furthermore, all the outputs from a Bayesian analysis come as 

a probability distribution which means that risk can be assessed. Such a baseline can generate a time 

series of expected dissolved CH4 concentrations and indicate the likelihood of an unusually elevated 

dissolved CH4 concentration occurring. To further extend our analysis we also investigate whether 

groundwater redox conditions can be used to predict locations in England with elevated dissolved 

CH4 concentrations. These redox conditions may be easier and less expensive to monitor than 

dissolved CH4 and may thus better inform where and when more expensive dissolved CH4 analysis 

is required.   

2. Approach and Methodology

To combine four datasets of dissolved CH4 concentrations in groundwater with differing detection 

limits a Bayesian generalised linear modeling approach was taken [Gelman et al., 2004]. This 

approach uses the concentration distribution of one dataset to inform the sub-detection limit 
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distribution of the other datasets. The output is also probabilistic and can therefore be used as a 

predictor of likely dissolved CH4 concentrations. To investigate if groundwater redox conditions 

could be used to predict locations in England with elevated dissolved CH4 concentrations, statistical 

analyses of binomial probability modeling and analysis of variance (ANOVA) were carried out on 

locations observed to have elevated dissolved CH4 concentrations.           

      

2.1.  Dissolved CH4 concentration datasets

2.1.1. BGS dataset

The BGS dissolved CH4 concentration data (herein termed the BGS dataset) were downloaded from 

the supplementary material of Bell et al. [2017]. The dataset contains 439 dissolved CH4 

concentration measurements across 336 unique locations in Great Britain (Fig. 1, Table S1). The 

detection limit for the dataset was ~0.5 μg/l, although in some cases measured dissolved CH4 

concentrations were lower due to favourable gas chromatography conditions during batch analysis 

[Bell et al., 2017]. 

2.1.2. EA dataset

Dissolved CH4 concentrations (in mg/l) in English groundwater were downloaded from the EA Water 

Quality Archive [EA, 2019a] for the years 2000-2017, inclusive. Only those entries with identifiable 

grid references and location names were used - this dataset is hereafter referred to as the EA dataset 

(Table S2). Groundwater monitoring was undertaken by the EA for a range of purposes, most 

commonly as planned investigations and routine monitoring (Table S3). Measurements taken for 

statutory failures and unplanned reactive monitoring (pollution incidents) were not removed from the 

dataset because although certain water quality determinands would be expected to be elevated after a 

pollution incident, CH4 is not classified as a groundwater pollutant and therefore dissolved CH4 



6

measurements may simply have been taken opportunistically when investigating the cause of the 

incident (we cannot prove otherwise given the available information). Waste monitoring 

measurements, which might show elevated CH4 concentrations due to the biogenic breakdown of 

anthropogenic waste, were also retained in the dataset because these are still important for defining 

the current status of dissolved CH4 in groundwater prior to potential widespread shale gas 

exploitation. The EA dataset contains 2153 dissolved CH4 concentration measurements from 571 

unique locations in England (Fig. 1; Table S2). Approximately 87% of the dissolved CH4 

concentration measurements and ~92% of the unique locations are located in the northwest of 

England (Cumbria, Lancashire, Greater Manchester, Merseyside and Cheshire) (Fig. 1; Table S4). 

This geographically focussed sampling is a result of increased dissolved CH4 sampling in response 

to the 1984 Abbeystead explosion [Rob Ward, personal communication, 2018]. The source of the 

CH4 at Abbeystead was attributed to the thermally-mature, organic-rich Bowland Shale [Exploration 

Consultants Ltd., 1986] and a large area of northwest England is underlain by the Bowland Shale, 

which is the United Kingdom’s (UK) largest prospective shale gas resource [Andrews, 2013].

2.1.3. Preston New Road and Kirby Misperton datasets

The law in the UK requires that 12 months of baseline monitoring of dissolved CH4 concentrations 

in groundwater must occur at a shale gas exploration site prior to fracking [Infrastructure Act, 2015]. 

In England, at the time of this study, there are two sites (Preston New Road, Lancashire, and Kirby 

Misperton, North Yorkshire – Fig. 1) where groundwater has been monitored as local baselines prior 

to fracking. Dissolved CH4 concentrations for the Preston New Road (PNR) site were compiled from 

the Cuadrilla Resources Ltd. ePortal [Cuadrilla Resources Ltd., 2019]. This dataset, referred to 

hereafter as the PNR dataset, consisted of four boreholes at the well pad with monthly dissolved CH4 

concentration measurements in groundwater from two superficial formations (Glacial Till and Middle 

Sands) within each borehole (Table S5). Where multiple concentration measurements were taken 
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within a month the mean concentration was used. The same approach was used for the Kirby 

Misperton (KM) site using the monitoring reports submitted to the EA [EA, 2019b]. The KM dataset 

consisted of 11 boreholes (five at the well pad and six at distances 1.7-3.1 km from the well pad) with 

monthly dissolved CH4 concentration measurements in single formations: six within the Superficial 

Deposits/weathered Kimmeridge Clay, two within the un-weathered Kimmeridge Clay, two within 

the weathered/un-weathered Kimmeridge Clay/Corallian Group, and one within the Corallian Group 

(Table S6).

2.2.  Bayesian generalised linear modeling

To create a dynamic baseline generalised linear modeling within a Bayesian framework [Gelman et 

al., 2004] was used. Each data point (i.e. a dissolved CH4 concentration measurement) was assumed 

to be generated from a particular distribution in the exponential family. A priori, four distributions 

were considered: normal, log-normal, gamma and Weibull. The latter three distributions are only 

defined for positive numbers and so there is no possibility that physically impossible negative 

concentrations would be predicted, as would be the case with a normal distribution. For the BGS and 

EA datasets only one factor was considered; the difference between all the monitoring locations from 

which dissolved CH4 concentration data were available – this factor is henceforward known as the 

“Location factor”. Specific environmental conditions at each location were unknown and the dates of 

the sampling were not even or consistent within and between the datasets and so no further factors 

could be included in the analysis. Note that the inclusion of a spatially varying location factor does 

incorporate unknown spatial variation in environmental conditions across the datasets. For the PNR 

and KM datasets the sampling at each location within the datasets was sufficient that the difference 

between the months of sampling could be tested – this factor had 12 levels, one for each month, and 

is henceforward referred to as “Month factor”. Location factor was also considered for the PNR and 

KM datasets. 
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Model fit was tested using four approaches. Firstly, that the 95% credible interval (CI) for any 

factor did not include zero. This is henceforward referred to as being significantly different from zero 

at a probability of 95%. Secondly, that inclusion of the factor caused the total model deviance to 

decrease. Thirdly, that the inclusion of an additional factor, interaction or covariate decreased the 

deviance information criterion (DIC). It is generally true that inclusion of factors, interactions or 

covariates will decrease the total deviance of a model because inclusion allows greater degrees of 

freedom for fitting, and so the DIC accounts for the inclusion of more fitting parameters against the 

additional fit of the model. Fourthly, the fit of the generalised linear model was compared with the 

original datasets and the fit assessed using the root mean square error (RMSE).

Given the available datasets the analysis was constructed sequentially. Firstly, the four 

exponential family distributions were fitted to the BGS dataset. Because this was the first of the four 

datasets to be considered there were no prior datasets to inform this model. Therefore, a weak 

uninformative prior distribution was used. A Jeffreys prior [Jeffreys, 1946] was chosen as the form 

of the uninformative prior whereby the expected value was set as the mean of all the dissolved CH4 

concentrations in the BGS dataset. For the Jeffrey prior the standard deviation was set as 100 times 

the coefficient of variation of the dataset. In this way the Jeffrey prior distribution was centred on the 

expected value of the data and was almost uniform in distribution. The best-fit model for the BGS 

dataset was used as the prior distribution for the analysis of the EA dataset – this would represent a 

strong prior. Because sampling locations differed between the BGS and EA datasets it was not 

possible to use the BGS dataset as a prior for each location within the EA dataset. To demonstrate the 

effect of a strong versus weak prior the EA dataset was also analyzed using a Jeffrey prior and the 

result compared to that when the BGS dataset was used as a strong prior. The best-fit model for the 

EA dataset was then used as strong prior information for the PNR and KM datasets. In all the datasets 

those values which were below the analytical detection limit were treated as censored data; the exact 

value of the dissolved CH4 concentration was not known but the observation could still provide 
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information. Therefore, censored data were included in the analysis even with varying detection limits 

within and between the study datasets.

The Bayesian generalised linear modeling was achieved by Markov Chain Monte Carlo 

(MCMC) simulation to estimate the posterior distribution of the dissolved CH4 concentrations using 

WinBUGS (Version 1.4) [Lunn et al., 2000]. The length of the MCMC chain was 30000 cycles after 

10000 burn in cycles with samples saved every 10 cycles and with one chain.

2.3.  Dissolved CH4 concentrations ≥10.0 mg/l

In the UK there are no regulatory limits regarding dissolved CH4 concentrations in groundwater. 

However, the US Department of the Interior risk action level of 10.0 mg/l [Eltschlager et al., 2001] 

provides a reference that may assist decision making in other countries [e.g. Bell et al., 2019; Humez 

et al., 2016; Schloemer et al., 2016]. Consistent with previous studies we adopt 10.0 mg/l as an 

indicative risk action level in this study and accordingly identify locations with dissolved CH4 

concentrations ≥10.0 mg/l. 

2.4.  Groundwater redox conditions

Dissolved CH4 concentrations are expected to show relationships with groundwater redox conditions. 

Reducing conditions (i.e. a lack of oxygen) can promote CH4 production by methanogenic bacteria 

and preserve pre-existing biogenic and thermogenic CH4 [Molofsky et al., 2016]. Conversely, aerobic 

conditions may permit rapid consumption of CH4 by methanotrophic bacteria [Whittenbury et al., 

1970]. Therefore, information on groundwater redox conditions could help predict locations with 

elevated dissolved CH4 concentrations. For example, in the Appalachian Basin, USA, low nitrate 

(NO3
-) and sulfate (SO4

2-) concentrations were associated with higher dissolved CH4 concentrations 

and offered strong predictive power when combined with other factors such as sodium (Na)-rich 
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water and upland topography [Molofsky et al., 2016]. To investigate if relationships between redox 

conditions and dissolved CH4 concentrations exist in English groundwater, locations in the EA dataset 

with dissolved CH4 concentrations ≥10.0 mg/l (henceforward referred to as elevated CH4 locations) 

were paired with their nearest neighbouring location where dissolved CH4 concentrations were <10.0 

mg/l (henceforward referred to as low CH4 locations). The following redox-linked groundwater 

parameters (henceforward termed “indicators”) were extracted from the EA Water Quality Archive 

for the paired sites: ammonium (NH4) concentration; biochemical oxygen demand (BOD) as 5 day 

Allylthiourea (ATU); chemical oxygen demand (COD) as O2; dissolved oxygen (DO); iron (Fe) 

concentration; manganese (Mn) concentration; NO3
-
 concentration; and SO4

2-
 concentration. 

Additionally, calcium (Ca), magnesium (Mg), and Na concentrations were extracted to provide an 

indication of groundwater type and subsequently determine if the boreholes within a pair sampled the 

same groundwater body. As a further constraint on groundwater bodies at paired locations, boreholes 

from the EA dataset were manually matched with boreholes from the BGS Onshore GeoIndex [BGS, 

2019] using geographic coordinates and location names. The borehole depths and aquifer 

designations recorded in the BGS Onshore GeoIndex were used as proxies for groundwater bodies 

sampled by the EA for dissolved CH4 concentrations.

Two statistical methods were employed to investigate relationships between groundwater 

redox conditions and dissolved CH4 concentrations. Firstly, binomial probability modeling was used 

to predict the probability of association between elevated CH4 locations and levels of indicators. 

Dissolved CH4 concentrations were classified using two levels, either “one or more CH4 samples 

≥10.0 mg/l” or “all CH4 samples <10.0 mg/l”, that is elevated or low, respectively. Multiple measured 

values for the different indicators at each location were mean-averaged to average out irregular 

timings between groundwater samples and any seasonal variations in groundwater chemistry. The 

mean-averaged indicators at each elevated CH4 location were compared to the mean-averaged 

indicators at the corresponding paired low CH4 location. A success was recorded when concentrations 

of NH4, BOD, COD, Fe and Mn at locations with elevated CH4 concentrations were higher than their 
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concentration in the corresponding low CH4 location. Successes for DO, NO3
- and SO4

2-
 were 

recorded when concentrations at elevated CH4 locations were lower than their concentration in the 

comparative location. If indicator values were equal in a comparative location pair, this was not 

counted as a success. The binomial distribution was then used to assess the probability of the 

proportion of observed successes and failures. In effect the distribution of indicators between pairs of 

elevated and low CH4 locations was treated as modeling a coin toss (binomial distribution). For 

example, if DO was always lower in the elevated CH4 locations compared to the paired low CH4 

locations then this would have low probability of occurring by random chance and it could be 

reasonably concluded that elevated dissolved CH4 was associated with low DO. By analogy tossing 

a coin and always coming up heads would be unlikely unless it was a biased coin. 

The second statistical method used to investigate any relationships between dissolved CH4 

concentrations and indicators was ANOVA. One-way ANOVA was used where the single factor was 

the dissolved CH4 concentration. The dissolved CH4 concentrations were classified as for the 

binomial probability modeling, either elevated (≥10.0 mg/l) or low (<10.0 mg/l). Three types of one-

way ANOVA were performed: indicators without covariates; indicators with single covariates; and 

indicators with multiple covariates. The covariates used were the remaining indicators. In this way 

the ANOVA was used to judge whether or not indicators were significantly different between 

locations with elevated or low dissolved CH4 concentrations and, by including or not including 

covariates, to assess whether differences in indicators could be explained by the behaviour of other 

indicators. Prior to the ANOVA the normality of each indicator was tested using the Anderson-

Darling test and indicator values were log-transformed if necessary and re-tested to confirm improved 

normality. Statistical significance was judged at the 95% probability of an indicator not having zero 

effect. 

3. Results

3.1.  Dissolved CH4 concentrations in England
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The BGS, EA, PNR and KM datasets are provided in the supplementary material (Tables S1, S2, S5 

and S6). The EA dataset has approximately five times more dissolved CH4 concentration 

measurements than the BGS dataset and on average there are approximately four measurements per 

unique location in the EA dataset, compared to mostly one measurement per unique location in the 

BGS dataset (Table 1). The spatial distributions of dissolved CH4 concentrations from the four 

datasets are shown in Figure 2. The general detection limit for the BGS dataset (<0.5 μg/l) is three 

orders of magnitude lower than the EA dataset (<0.5 mg/l) (Fig. 3) and the detection limits for the 

PNR and KM datasets were <0.01 mg/l and <0.001 mg/l, respectively. The maximum dissolved CH4 

concentration measurement in the EA dataset was 25.9 mg/l, compared to 4.72 mg/l in the BGS 

dataset, and 36 concentration measurements (over 11 unique locations) were ≥10.0 mg/l (1.7% of the 

EA dataset) (Table 1). Nine of the 11 locations with a dissolved CH4 concentration measurement 

≥10.0 mg/l are located in the prospective area of the Bowland Shale, although no directional spatial 

trend is readily observable across England using the currently available data. Both national datasets 

indicate that dissolved CH4 concentrations in English groundwater are generally below the risk action 

level of 10.0 mg/l. 

The PNR dataset contains no dissolved CH4 concentrations ≥10.0 mg/l in either the Glacial 

Till or Middle Sands across all four monitoring boreholes (Fig. 4a). The maximum concentration 

recorded at PNR was 5.75 mg/l in the Middles Sands of Borehole 1 in March 2018 (Table S5). 

Dissolved CH4 concentrations at KM were more varied than at PNR but predominantly ranged from 

below detection limit (<0.001 mg/l) to 0.1 mg/l (Fig. 4b), although the maximum concentration 

recorded at KM was 67.1 mg/l in the Corallian Group of Borehole E in June 2016 (Table S6). 

However, this maximum concentration should not necessarily be considered exact because it lies 

outside the calibration limits of the analytical equipment, i.e. it should be considered as an indicative 

concentration only [Envireau Water, 2017]. Nevertheless, all monthly concentration results from 

Borehole E were ≥10.0 mg/l (Table S6). The higher dissolved CH4 concentrations detected at KM 

compared to PNR may reflect the greater sampling depths at KM, for example samples from Borehole 
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E are from ~200 m below ground level and CH4 solubility increases with depth. With the exception 

of Borehole E at KM, dissolved CH4 concentrations at PNR and KM are not unusual compared to the 

BGS and EA datasets.

3.2.  Bayesian generalised linear modeling

3.2.1. BGS and EA datasets

For the BGS dataset the deviances of the distributions were: normal (4242); log-normal (2527); 

gamma (2087); and Weibull (2076). The Weibull distribution had the lowest deviance and the 

generalised linear modeling was therefore taken forward using this distribution. The best-fit Weibull 

distribution was W(0.35±0.01, 0.34±0.16), where the Weibull function has the form W(r, b) where r 

is the shape factor and b is:

                                      (i)𝑏 =  𝜆 ―𝑟 𝑓𝑜𝑟 𝑥 > 0

where  is the scale factor. The expected mean, , and variance, , were:𝜆 𝐸(𝑥) 𝑉𝑎𝑟(𝑥)

                          (ii)𝐸(𝑥) = 𝑏
―1

𝑟 Γ(1 +
1
𝑟) = 0.23 𝑚𝑔/𝑙

                               (iii)𝑉𝑎𝑟(𝑥) =  𝜆2[Γ(1 +
2
𝑟) ― (Γ(1 +

1
𝑟))2] = 0.7 𝑚𝑔/𝑙

The analysis of the BGS dataset provided the strong prior information for the EA dataset.  

When the strong prior was used for the EA dataset the deviance of the generalised linear model was 

1601, compared to 1727 when the weak Jeffrey prior was used. When the predicted values from the 

weak and strong priors were compared the estimated values from the weak prior were 54% smaller 

than those predicted from the strong prior. The CI for each location was compared between the weak 

and strong priors; the CI for the strong prior was on average 58% of the CI for the weak prior (Fig. 

5) – and this equates to an increase in equivalent sample size of 75%. With the strong prior the 

Location factor was significant and this could be used to calculate the expected value (the “average”) 
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for each location within the dataset (Figure 6). The distribution of observed and predicted dissolved 

CH4 concentrations are plotted in Figure 7. Based upon the EA dataset with the strong prior, then 𝐸

 = 0.24 mg/l and  = 0.83 mg/l, with the 95% CI at 0.11 to 0.45 mg/l.(𝑥) 𝑉𝑎𝑟(𝑥)

3.2.2. PNR and KM datasets

When using the weak Jeffreys prior for the PNR dataset the deviance was 661, which improved to 

643 on use of the strong prior (the EA dataset with the BGS dataset used as a strong prior). The 

expected mean dissolved CH4 concentration for the PNR dataset was 0.033 mg/l, with the 95% CI at 

0.025 to 0.044 mg/l. The Month factor and its interaction with Location factor proved insignificant, 

indicating no significant seasonal cycle in the dissolved CH4. The distribution of the data confirmed 

that the dissolved CH4 concentrations of the Middle Sands in Borehole 1 were indeed significantly 

different from all the other boreholes (Fig. 8a). For the KM dataset the Month factor and its 

interactions also proved insignificant. Use of a strong prior made only a small difference to the 

deviance of the model fit, decreasing from 822 to 820. The expected mean dissolved CH4 

concentration for the KM dataset was 0.060 mg/l, with the 95% CI at 0.035 to 0.103 mg/l. The 

distribution of the data for the boreholes in the KM dataset showed that seven of the 11 boreholes 

were not significantly different from each other, but four boreholes (D, E, G1, and G3) did have 

significantly higher dissolved CH4 concentrations (Fig. 8b). However, in this study we can give no 

particular explanation for this.

3.3.  Relationships between elevated CH4 concentrations and redox conditions

Thirty six dissolved CH4 concentration measurements in the EA dataset had concentrations greater 

than or equal to the risk action level of 10.0 mg/l (Table 2). These 36 concentrations occurred across 

11 unique locations and nine of these locations were situated in the prospective area of the Bowland 
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Shale, although no link to thermogenic gas migration from the Bowland Shale can be demonstrated 

based upon the available data. The percentage of dissolved CH4 concentration measurements ≥10.0 

mg/l from the total number of dissolved CH4 concentration measurements taken at the 11 locations 

ranged from 4-100%.

3.3.1. Groundwater body sampling

Three of the 11 locations with dissolved CH4 concentrations ≥10.0 mg/l showed clear similar relative 

concentrations of Ca, Mg and Na to their paired low CH4 location, indicating the corresponding 

boreholes sampled the same groundwater bodies (Table S7). A further four paired locations also 

showed similar, although less distinct, relative proportions. However, sampling of the same 

groundwater body at three of these four paired locations was further supported by the BGS aquifer 

designations (i.e. aquifer designations were the same for both boreholes in a corresponding pair). We 

assumed that seven of the 11 pairs sample the same groundwater body within their pairs and therefore 

ran binomial probability modeling for both the seven and 11 pairs.

3.3.2. Binomial probability modeling

When all 11 paired locations were considered all eight indicators showed probabilities greater than 

50% (Table 3), i.e. the observed proportion of successes to failures was more likely than not. 

However, taking a 95% probability as the significant probability then only NH4, BOD, DO and Fe 

showed significant ratios for the elevated and low CH4 locations. For BOD and DO the probability 

of success was 100.0%. However, BOD and DO had only one and four trials, respectively, reducing 

confidence in their results. For those redox indicators present at all 11 paired locations, NH4 and Fe 

were the best predictors, both with probabilities of 96.7% (Table 3). When only the seven pairs that 

likely sampled the same groundwater bodies were considered all eight indicators again showed 
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probabilities greater than 50% (Table 4). Only BOD and DO showed significant ratios for the elevated 

and low CH4 locations (100.0%) but had only one and three trials, respectively, again reducing 

confidence in their results. For those redox indicators present at all seven paired locations Fe, Mn, 

and SO4
2- were the best predictors, all with probabilities of 93.8% (Table 4).

3.3.3. Analysis of variance

Prior to ANOVA the Anderson-Darling test suggested that all indicator values should be log-

transformed before subsequent analysis – no further transformation was necessary. One-way 

ANOVA without covariates showed that NH4, COD, Fe, Mn, and NO3
- showed statistically 

significant differences between elevated and low CH4 locations (Table 5). All statistically significant 

factors, except NO3
-, had probabilities <0.0005 of having zero effect. COD explained the highest 

variation in the data (R2 = 15.6%) and Mn explained the least variation (R2 = 6.3%). A priori it would 

be expected that NH4, BOD, COD, Fe and Mn would be at higher concentrations in boreholes with 

elevated dissolved CH4 concentrations, and conversely, that DO, NO3
- and SO4

2- would all be lower. 

When the change in mean indicator values going from low to elevated CH4 locations were considered, 

COD, Fe and Mn followed the expected pattern (i.e. values increased in elevated CH4 locations) but 

NH4 and NO3
- did not, despite showing the largest percentage change. This may mean that NH4 and 

NO3
- may not be useful indicators of elevated dissolved CH4 concentrations. When covariates were 

considered only one combination improved the fit of the ANOVA and that was when NH4 was 

considered with BOD and COD as covariates (R2 = 45.0%).

4. Discussion

4.1.  Comparison of EA dataset to other studies



17

Since 2012 a number of published studies related to oil and gas industrial activities have provided 

measurements of dissolved CH4 concentrations in groundwater (Table 6). These range spatially from 

those covering the 5180 km2 Wattenberg oil and gas field, Colorado [Li and Carlson, 2014], to those 

which cover whole states and nations [e.g. Bell et al., 2017]. Comparison of the EA dataset to other 

studies shows that there is little evidence that the EA data were biased towards locations with higher 

dissolved CH4 concentrations (Table 6). The EA dataset contains the largest number of dissolved CH4 

concentration measurements of any of the published datasets to date and is also one of the largest in 

terms of unique sampling locations (Table 6). Despite having one of the highest detection limits (<0.5 

mg/l) of the published dissolved CH4 datasets, the EA dataset has one of the lowest mean dissolved 

CH4 concentrations (0.24 mg/l using the Bayesian generalised linear modeling approach) and  

maximum CH4 concentrations (25.9 mg/l) (Table 6). Furthermore, the percentage of dissolved CH4 

concentration measurements greater than or equal to the US Department of the Interior risk action 

level of 10.0 mg/l was also one of the lowest (1.7%); only surpassed by the datasets for Sullivan 

County (0.8%) [Reese et al., 2014], New York State (0.0%) [McPhillips et al., 2014] and Great Britain 

(0.0%) [Bell et al., 2017]. These comparisons suggest that although dissolved CH4 is ubiquitous in 

English groundwater, including areas with prospective shale gas resources, concentrations are 

generally low compared to other geographical areas and very rarely above concentrations requiring 

further investigation. This observation is in agreement with the conclusions of Bell et al. [2017]. 

However, the data presented in this study do also highlight that dissolved CH4 concentrations in 

English groundwater can exceed 10.0 mg/l.

4.2.  Dissolved CH4 flux to atmosphere

The results of the Bayesian generalised linear modeling for the EA dataset suggest an average 

dissolved CH4 concentration of 0.24 mg/l in English groundwater. The solubility of CH4 in water is 

31.0 mg/l at atmospheric pressure and 283 K, with solubility doubling for every 10 m increase in 
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depth [Bordeleau et al., 2018; Humez et al., 2016]. However, the Henry’s constant of CH4 means that 

in equilibrium with the atmosphere a far lower concentration of dissolved CH4 would be expected in 

groundwater: 

                                                         (iv)   [𝐶𝐻4] = 𝑃𝐶𝐻4
×  𝐾𝐻𝑇

                                                 (v)𝐾𝐻𝑇 = 𝐾𝐻298𝑒𝑥𝑝(𝐴(1
𝑇 ―

1
298))

where T is temperature of the water (K),  is Henry’s law constant (mol/m3/Pa),  is Henry’s 𝐾𝐻𝑇 𝐾𝐻298

law constant at 298 K (mol/m3/Pa),  is dissolved concentration of CH4 in water (mol/l),  is [𝐶𝐻4] 𝑃𝐶𝐻4

the partial pressure of CH4 in the atmosphere (Pa) and A is a constant. 

Given ,  and  [Sander, 𝑃𝐶𝐻4 = 1.81 × 10 ―6𝑃𝑎 𝐾𝐻298 = 1.4 × 10 ―5𝑚𝑜𝑙/𝑚3/𝑃𝑎 𝐴 = 1600

2015] then the  at equilibrium with air is  at 274 K to [𝐶𝐻4] 4.0 × 10 ―9 𝑚𝑜𝑙/𝑙 (6.4 × 10 ―5 𝑚𝑔/𝑙)

 at 293 K. Therefore, the expected mean concentration for 2.8 × 10 ―9 𝑚𝑜𝑙/𝑙 (4.4 × 10 ―5 𝑚𝑔/𝑙)

dissolved CH4 in English groundwater, based on this study, is in excess of that expected at equilibrium 

with the atmosphere. As a result we would expect almost complete degassing of the CH4 to the 

atmosphere upon emergence of groundwater at the surface. The average annual recharge to the main 

aquifers in England is estimated to be  [EA, 2007]. If it is assumed that groundwater 7 × 109 𝑚3/𝑑𝑎𝑦

levels are not changing substantially across England then this same volume must be discharged to 

surface waters. If it is also assumed that the CH4 degasses as it emerges to the atmosphere, rather than 

degassing from the soil profile where it could readily be oxidised, then given the 95% CI of dissolved 

CH4 concentrations predicted from this study (0.11 to 0.45 mg/l), then the amount of CH4 degassing 

from groundwater would be 0.7 to 3.1 kt CH4/year with an expected value of 1.65 kt CH4/yr. This 

equates to greenhouse gas warming potential (GWP) of 17 to 74 kt CO2eq/yr with an expected value 

of 40.3 kt CO2eq/yr. The UK greenhouse gas inventory estimates a total UK CH4 flux of 53500 kt 

CO2eq/yr [DECC, 2016]. Therefore, CH4 degassing from groundwater in England potentially 

contributes ~0.01% to the estimated CH4 flux in the UK. This estimate is in good agreement with 
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Gooddy and Darling [2005] who estimated groundwater contributes a maximum of 0.05% to all UK 

CH4 emissions.

4.3.  A dynamic baseline and predicting dissolved CH4 concentrations 

This study has developed a coherent and transparent approach for combining dissolved CH4 datasets 

with different detection limits. The Bayesian approach employed uses all available data to predict 

distributions of dissolved CH4 concentrations at national and local scales (e.g. around shale gas sites). 

Such distributions represent a baseline against which future observations, and especially in this case 

observations made after fracking operations and shale gas extraction have commenced, can be judged. 

An advantage of using the Bayesian approach is that the tool automatically updates with new data 

and so contributes to the development of a dynamic baseline in time and space. In addition, the 

approach gains value from the whole monitoring network, i.e. maximum information is gained from 

past and ongoing monitoring. Therefore, this approach gives good value for the money invested in 

environmental monitoring and can be used to assess information content and informational efficiency 

of the current monitoring network.

For groundwater determinands with defined environmental quality standards [e.g. EC, 2000], 

individual results from monitoring will be viewed relative to these standards and the probability that 

the standard is being exceeded assessed. For determinands such as dissolved CH4 concentrations, no 

legal standard exists and such comparisons may not occur. Furthermore, the review period for 

environmental monitoring is not always clear. Under an operator’s permit the operator should review 

continuously, i.e. dissolved CH4 concentration data reviewed each time new data are obtained and 

the regulator informed if there is an issue. The environmental regulator in the UK (the EA in England) 

may be asked to report at any time to the Secretary of State. However, no fixed review period has 

currently been set for the UK. In the approach used in this study each new datum can be viewed 

against a prediction that is based upon all available data, Furthermore, a probability (with uncertainty) 
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is calculated that a new observation is exceptional and not what should be expected, even for locations 

sampled only once. In the case used here a measurement of dissolved CH4 concentration would be 

judged against the predicted distribution as a means of testing whether a CH4 leak to groundwater has 

or has not occurred at a shale gas site.

In effect this study has built up a method to improve groundwater baseline assessment at any 

one site. At the simplest level one could examine the distribution of observed data at any site and 

compare the latest observation with that distribution. However, this would not be a fair comparison 

because a local variation might mean that comparing one observation with data from all years would 

be inappropriate, for example if there was an interannual trend at the site where values in the current 

year tend to be lower than those in a previous year. Under such circumstances a distribution for the 

given year would be better than comparing with data from all years. Of course it is unlikely that there 

will be sufficient observations at a site to give such a reasonable distribution for any month for any 

year. Therefore, it is preferable if information from other sites could be drawn upon, which is what 

this Bayesian approach has achieved. An analogous, non-Bayesian approach might be that of 

weighted regression analysis [Hirsch et al., 2010; 2015]. 

Our approach could be improved with the use of covariates. This study has considered a range 

of possible groundwater redox parameters as potential indicators of elevated concentrations of 

dissolved CH4. Using binomial probability modeling and ANOVA it was shown that high Fe 

concentration was a consistently successful indicator of elevated dissolved CH4 concentrations in 

English groundwater. This contrasts with research in the Appalachian Basin, USA, which concluded 

no significant relationship existed between Fe and elevated CH4 [Molofsky et al., 2016]. Alternatively, 

Molofsky et al. [2016] found that low NO3
- and SO4

2- concentrations were associated with elevated 

CH4 concentrations and offered strong predictive power when combined with other factors of Na-

rich water and upland topography. Although our analysis has suggested high Fe concentration may 

be a good indicator of elevated CH4 concentrations in English groundwater, more extensive studies 
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using historic data and ongoing groundwater monitoring programmes are needed to investigate this 

and provide a relationship between concentrations of Fe and dissolved CH4. Importantly, the redox 

parameters considered in this study do suggest the possibility that in the future, rather than directly 

monitoring dissolved CH4 concentrations, areas with elevated dissolved CH4 concentrations may be 

initially identified for further investigation by surveying more readily available and cheaper 

determinands such as Fe and NH4. More expensive analysis measuring dissolved CH4 concentrations 

and stable carbon isotopes could then be targeted to confirm elevated CH4 concentrations and 

discriminate potential sources [e.g. Teasdale et al., 2019].   

5. Conclusions

This study has developed a dynamic baseline for dissolved CH4 concentrations in English 

groundwater, from which the potential environmental impact of anthropogenic activities, such as 

shale gas exploitation, can be assessed. The Bayesian approach used can systematically and 

transparently bring together multiple monitoring datasets, including those with differing detection 

limits, and provide all results within a probabilistic framework with uncertainty. Furthermore, the 

results from previous analysis can be used as prior information for future analysis, leading to results 

that develop over time and space. This study used four different datasets of dissolved CH4 

concentrations in groundwater: two nationwide datasets and two local baseline monitoring datasets. 

By building on the most sensitive national dataset (the previously published British Geological 

Survey CH4 baseline for Great Britain) a strong prior distribution was developed. This strong prior 

was used for the subsequent national dataset (that of the Environment Agency of England), which 

had approximately five times more dissolved CH4 concentration measurements but a detection limit 

three orders of magnitude higher. When the strong prior was used over a weak prior for the subsequent 

dataset the precision improved by 75%. The expected mean dissolved CH4 concentration in English 

groundwater based on the Bayesian approach is 0.24 mg/l, with a variance of 0.83 mg/l, a 95% 
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credible interval of 0.11 to 0.45 mg/l, and a Weibull distribution of W(0.35±0.01, 0.34±0.16). These 

results indicate that the amount of CH4 degassing from English groundwater to the atmosphere 

equates to between 0.7 to 3.1 kt CH4/year, with an expected value of 1.65 kt CH4/year and a 

greenhouse gas warming potential of 40.3 kt CO2eq/year. The two local baseline monitoring datasets 

were from the two current shale gas exploration sites in England. These sites, in combination with 

the national datasets, indicate that dissolved CH4 concentrations in English groundwater are generally 

low, but locations with concentrations greater than or equal to the widely used risk action level of 

10.0 mg/l do exist. Analyses of groundwater redox conditions at locations with dissolved CH4 

concentrations ≥10.0 mg/l suggest that it may be possible to identify other locations with elevated 

dissolved CH4 concentrations using redox parameters such as Fe concentration.
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Figure 1: Map of Great Britain showing the dissolved CH4 concentration sampling locations of the 

BGS and EA datasets. Current shale gas exploration sites with local baseline monitoring of dissolved 

CH4 concentrations and the prospective area of the Bowland Shale [Andrews, 2013] are also shown. 

Figure 2: Dissolved CH4 concentrations for the BGS, EA PNR and KM datasets (note prospective 

Bowland Shale is not shown in either inset map for data point clarity). Where more than one dissolved 

CH4 concentration measurement is present at a single location, the maximum dissolved CH4 

concentration measured is presented. Monitoring borehole names at shale gas exploration sites 

correspond to names given in formal site documentation. Prospective area of the Bowland Shale from 

Andrews [2013]. 

Figure 3: Frequency distributions of dissolved CH4 concentrations in the BGS and EA datasets. 

Dissolved CH4 concentrations in the EA dataset below the general detection limit of 0.5 mg/l are 

assigned to the 0.1≤[CH4]<1.0 mg/l category, although their concentrations may be lower.

Figure 4: Dissolved CH4 concentrations in groundwater from local baseline monitoring at the (a) 

Preston New Road and (b) Kirby Misperton shale gas exploration sites. Gaps show missing data. 

Figure 5: Comparison of the credible intervals for the EA dataset using the strong and weak priors.

Figure 6: Predicted dissolved CH4 concentrations for the EA dataset using the strong prior. Inset map 

shows an enlarged view of northwest England. Prospective area of the Bowland Shale from Andrews 

[2013]. 

Figure 7: Distributions of the modeled and observed dissolved CH4 concentrations for the EA dataset. 

Note the x-axis has been limited to 4.0 mg/l even though the observed results extend beyond this. 
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Figure 8: Predicted dissolved CH4 concentrations for groundwater monitoring boreholes at the (a) 

Preston New Road, and (b) Kirby Misperton shale gas exploration sites. Error bars show 95% credible 

intervals.  
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Tables

Table 1: Descriptive statistics of dissolved CH4 concentration measurements in the BGS and EA 

datasets. 

BGS dataset EA dataset

Number of dissolved CH4 concentration measurements 439 2153

Number of unique sampling locations 336 571

Mean number of dissolved CH4 measurements per unique location 1.3 3.8

Detection limit (mg/l) <0.0005 <0.5

Maximum dissolved CH4 concentration (mg/l) 4.72 25.9

Number of dissolved CH4 measurements ≥10.0 mg/l 0 36

mailto:miles.wilson@durham.ac.uk
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Table 2: Descriptive statistics of unique locations in the EA dataset where dissolved CH4 concentrations have been measured ≥10.0 mg/l. 

EA location name Geographical areaa Number of 

dissolved CH4 

measurements 

Number of 

dissolved CH4 

measurements 

≥10.0 mg/l

Maximum dissolved 

CH4 concentration 

(mg/l)

30006 ad-hoc @ Holiday Moss, Reeds Brow GMMC 18 12 25.9

30335 ad-hoc @ Bromborough Dock North GMMC 9 2 12.0

60301 ad-hoc @ Moss Side Farm, Rixton GMMC 25 1 11.1

60565 ad-hoc @ Arpley Landfill Site, Arpley Meadows GMMC 37 5 13.6

Blackburn Yarn Dyers ABH CL 11 3 21.5

Blackpool Pleasure Beach No.1 borehole CL 3 1 13.9

Brentwood Moss Nurseries Borehole GMMC 10 4 13.5

Indigo Yarn Company Ltd. borehole CL 1 1 10.0

Lower Stumble groundwater borehole SSD 4 3 11.4

Sawston Inv.Spikefields BGS SCO4A 35M BH CB 2 1 12.4

Whitegate Farm borehole GMMC 3 3 14.3

Total 123 36
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a Geographical area codes are given in Table S4. 
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Table 3: Results of the binomial probability modeling for the 11 paired locations.

Indicator Number of 

independent trials

Number of successes 

(N)

Probability at most 

N successes (%)

NH4 11 8 96.7

BOD 1 1 100.0

COD 9 6 91.0

DO 4 4 100.0

Fe 11 8 96.7

Mn 11 7 88.7

NO3
- 5 3 81.3

SO4
2- 11 7 88.7
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Table 4: Results of the binomial probability modeling for the seven paired locations sampling the 

inferred same groundwater bodies.

Indicator Number of 

independent trials

Number of successes 

(N)

Probability at most 

N successes (%)

NH4 7 4 77.3

BOD 1 1 100.0

COD 5 3 81.3

DO 3 3 100.0

Fe 7 5 93.8

Mn 7 5 93.8

NO3
- 4 3 93.8

SO4
2- 7 5 93.8
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Table 5: Results of the ANOVA without covariates and values of the percentage change in mean 

dissolved CH4 concentration when going from the low to elevated CH4 locations (only given for those 

indicators where a significant difference has been demonstrated). P-values and R2 values underlined 

in italics are those found to be significantly different from zero at the 95% probability. 

Indicator P-value R2 (%) % increase to 

elevated CH4 location

NH4 <0.0005 14.8 -90

BOD 0.414 0.6

COD <0.0005 15.6 28

DO 0.720 0.1

Fe <0.0005 13.0 22

Mn <0.0005 6.3 17

NO3
- 0.003 11.0 99

SO4
2- 0.620 0.1

Table 6: Comparison of published baselines for dissolved CH4 concentrations in groundwater. 

Region and 

study

Number 

of 

dissolved 

CH4 

concentr

ation 

measure

ments

Num

ber of 

uniqu

e 

locati

ons

Detection 

limit (mg/l)

Minimum 

dissolved 

CH4 

concentra

tion 

(mg/l)

Median 

dissolved 

CH4 

concentr

ation 

(mg/l)a

Mean 

dissolved 

CH4 

concentr

ation 

(mg/l)a

Maximu

m 

dissolved 

CH4 

concentr

ation 

(mg/l)

Number 

and 

percentage 

of dissolved 

CH4 

concentrati

on 

measureme

nts ≥10.0 

mg/l
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New York 

State, USA

[Kappel and 

Nystrom, 

2012]

239 239 0.001 <0.001 <1.0 Unknown 41.0 21

(8.8%)

Susquehann

a County, 

USA

[Molofsky et 

al., 2013]

1701 1701 0.00005-

0.026

<0.00005 0.00076 0.705 43.0 50

(2.9%)

Marcellus 

Shale, USA

[Darrah et 

al., 2014]

113 113 Unknown <Detection 

limit

0.585b 8.040b 102.164b 32

(28.3%)

Barnett 

Shale, USA

[Darrah et 

al., 2014]

59 20 Unknown 0.716b 5.519b 13.242b 46.962b 23

(39.0%)

Sullivan 

County, 

USA

[Reese et al., 

2014]

1882 1882 0.005-0.026 <0.005 0.149 Unknown 16.5 ≤15c

(0.8%)

Wattenberg 

field, 

Colorado, 

USA

[Li and 

Carlson, 

2014]

223 176 Unknown <Detection 

limit

Unknown 4.0 37.1 36

(16.1%)
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New York 

State, USA

[McPhillips 

et al., 2014]

113 113 0.01 0.002 0.007 0.464 8.26 0

(0.0%)

Southwester

n Ontario, 

Canada

[McIntosh et 

al., 2014]

1010 862 1 0 Unknown Unknown 248 150

(14.9%)

St. 

Lawrence 

Lowlands, 

Quebec, 

Canada

[Moritz et 

al., 2015]

138 130 0.0006 <0.0006 0.1 3.8 45.9 17

(12.3%)

Chaudière-

Appalaches, 

Canada

[Lefebrve et 

al., 2015]

Unknown 74 Unknown Unknown 0.2 5.1 31.2 Unknown

Lower 

Saxony, 

Germany

[Schloemer 

et al., 2016]

1043 1043 0.0000178d 0.0000178

d

0.00183d Unknown 44.0188d 60

(5.8%)

Alberta, 

Canada

[Humez et 

al., 2016]

179 186 3.333 <3.333 <3.333 5.232 42.9 28

(15.6%)
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Great 

Britain, UK

[Bell et al., 

2017]

439 336 0.00005-

0.005

<0.00005 0.0012 0.0463 4.72 0

(0.0%)

Saint-

Édouard, 

Quebec, 

Canada

[Bordeleau 

et al., 2018]

Unknown 48 0.006 <0.006 4.9 10.4 82.0 Unknown

EA dataset, 

England

This study

2153 571 0.1-0.5 <0.1 <0.5 0.24e 25.9 36

(1.7%)

a May include concentrations below detection limit taken as the detection limit concentration, i.e. 

“<0.5 mg/l” was taken as “0.5 mg/l”. b Calculated using a CH4 density of 0.657 mg/cm3 at 1 atm and 

298 K. c Fifteen wells with CH4 concentrations ≥7.0 mg/l. d Calculated using 0.71 mg/l = 1.0 ml/l at 

293 K and 101325 Pa [Schloemer et al., 2016]. e Expected mean from the Bayesian generalised linear 

modeling.
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