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The performance of three methods for developing new coarse-grained models for molecular
simulation is critically assessed. Two bottom-up approaches are employed: iterative Boltzmann
inversion (IBI) and the multiscale coarse-graining method (MS-CG), using an atomistic n-octane-
benzene reference system. Results are compared to a top-down coarse-graining approach em-
ploying the SAFT-γ Mie equation of state. The performance of each methodology is assessed
against the twin criteria of local structure prediction and accurate free energy representation. In
addition, the transferability of the generated potentials is compared across state points. We exam-
ine the extent to which the IBI methodology can be improved by using a multi-reference approach
(MS-IBI), and demonstrate how a pressure correction can be employed to improve the results for
the MS-CG approach. Additionally, we look at the effect of including angle-terms in the SAFT-
γ Mie model. Finally, we discuss in detail the strengths and weaknesses of each method and
suggest possible ways forward for coarse-graining, which may eventually address the problems
of structure prediction, thermodynamic consistency and improved transferability within a single
model.

1 Introduction
Modern computational chemistry is carried out over many time
and length scales, ranging from quantum chemical studies of rela-
tively small systems to atomistic force field-based studies of rather
larger systems, to coarse-grained models representing many thou-
sands of molecules.1,2 As ever, the trade-off between computa-
tional cost and accuracy determines the level of theory appropri-
ate for the problem at hand. Over the last few years, considerable
progress has been made in improving both the accuracy and speed
of models in each of these areas. In addition, progress has been
made in linking together models of different resolution at both
QM/MM3,4 and atomistic/coarse-grained levels.5–8

Despite recent progress, the area of coarse-grained modelling
remains somewhat problematic. Here, two big issues arise: the
representability9 and transferability problems.10 The former is
concerned with the ability of a coarse-grained model to represent
physical properties at the thermodynamic state point at which it
is parametrised, the latter is concerned with the ability of the
same model to be predictive at different state points, i.e. under
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conditions where parametrisation data was not available. Both is-
sues are problematic (and often a source of contention) and exist
whether or not the coarse-grained model is developed by refer-
ence to experimental data (top-down coarse-graining)11,12 or by
reference to an underlying atomistic model (bottom-up coarse-
graining).13,14

The problem of representability arises from the fact that a
coarse-grained model parametrised to reproduce one observable
will not necessarily be able to reproduce other observables of the
system at the same state-point.15,16 Representability is discussed
in depth by Wagner et al.9 They emphasise that it is only reason-
able for a coarse-grained model to represent observables which
are compatible with the resolution of the model, and do not sig-
nificantly depend on the degrees of freedom which were removed
from the all-atom representation. In some cases, the expression
for calculating a particular observable in an all-atom representa-
tion may not be valid for a coarse-grained representation. For ex-
ample, the standard virial expression for the pressure is invalid
if the coarse-grained potentials are volume-dependent.9 Some
representability issues are subtle. For example, coarse-graining
through the elimination of degrees of freedom typically changes
the balance of enthalpic and entropic contributions to free energy
within a model of a molecular system.17,18 However, the coarse-
grained model might still capture the correct phase behaviour,
provided free energy changes are well-represented.
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Representability and transferability both have similar origins:
the state-dependence of effective pair potentials.19,20 However,
it is noticeable that transferability differs significantly between
different types of coarse-grained models and the coarse-grained
systems they represent. In the early days of systematic coarse-
graining from reference atomistic models, it was noted that ap-
proaches such as iterative Boltzmann inversion (IBI)21 could be
used to provide coarse-grained models of homopolymers that
were (sometimes) transferable across a range of temperatures
and molecular weights.22–24 However, it is now recognised that
for mixtures containing many types of interaction sites, where
chemical environment often changes with concentration and/or
temperature, transferability (and representability) becomes far
more problematic. Also, as polymer melts are usually isotropic, it
was initially hoped that simple time-scale scaling could be used
to link dynamic properties between atomistic and coarse-grained
levels.13 However, for systems with anisotropy or inhomogeneity,
or simply with different activation barriers for different processes,
there is no guarantee that different dynamic quantities are not ac-
celerated by different amounts in moving from an atomistic to a
coarse-grained model.

From a chemical perspective, two key areas where more accu-
rate (both representative and transferable) coarse-grained models
are most needed are in: i) the prediction of local structure and ii)
the prediction of free energy changes as a function of changing
temperature and/or concentration. The former underpins the use
of coarse-grained models to predict complex supramolecular or
self-organised structures. This is vital in many areas of biochem-
ical modelling, including prediction of membrane structure and
stability25–27 and protein/nucleic acid interactions.28 Structure
prediction also underpins many important areas of soft matter
chemistry, such as micelle formation29,30 and the formation of
the microphase-separated structures seen in lyotropic liquid crys-
tal18,31–33 and block copolymer phase diagrams.34–36 An accu-
rate representation of free energy changes (as a function of tem-
perature and/or concentration) underpins the prediction of ther-
motropic liquid crystal phase diagrams,37,38 liquid-liquid misci-
bility and the phase boundaries in many industrially important
soft matter systems formed from polymers and/or surfactants.
Hence, there is considerable interest in methods that can auto-
matically generate a coarse-grained model (either from a bottom-
up or top-down perspective) and are representative in terms of lo-
cal structure and free energy changes; and are (in the best cases)
sufficiently transferable to be used over a range of temperatures
and concentrations.

In the current paper, we consider three methods that can be
used to develop new coarse-grained molecular models: IBI, the
multiscale coarse-graining method (MS-CG), and coarse-graining
via molecular theory (in this case SAFT-γ Mie). The first two of
these are bottom-up approaches that rely on a reference atomistic
model. The third is a top-down approach, which relies on the
fitting of coarse-grained potentials to experimental data. Each
methodology is able to be semi-automated to generate a coarse-
grained model by reference to its underlying input data, without
requiring a more traditional (and highly time-consuming) trial
and error approach.

We test the models on a molecular mixture of benzene and oc-
tane: chosen because it forms a miscible mixture across the full
composition range, has molecular flexibility (within the octane),
has different coarse-grained bead types, and has a distinct local
structure represented by differing bead-bead partial radial distri-
bution functions (RDFs). We critically assess the performance of
each approach against the twin criteria of local structure predic-
tion and accurate free energy representation; and, in addition,
look at how transferable the generated potentials are to differ-
ent state points. We demonstrate also how the IBI approach can
be improved by using a multi-reference approach (MS-IBI), how
pressure corrections can be employed to improve the MS-CG ap-
proach, and look at the effect of the addition of angle-terms to
the SAFT-γ Mie model.

2 Computational details

2.1 Assessing the representability and transferability

Coarse-grained effective pair potentials are generally state-point
dependent, and this will affect the expressions for a range of sys-
tem observables. However, in this paper, we test to what extent
coarse-grained models based only on pair potentials are able to
achieve transferability. The comparisons made between atomistic
and coarse-grained models are all based on calculations using the
standard atomistic expressions for the relevant observables; how-
ever, we do note that in some cases these comparisons may not
be strictly valid when the coarse-grained model is state-point de-
pendent.39

2.2 Atomistic simulations

The IBI and MS-CG coarse-graining methods both require a ref-
erence atomistic model. For this work we use an all-atom model,
employing a modified version of the GAFF40 force field. The mod-
ified force field, GAFF-LCFF, was parametrised by Boyd and Wil-
son to accurately capture the experimental densities and heats of
vaporization of a range of molecules, including medium chain
alkanes.41,42 All simulations were performed using the GRO-
MACS 4.6 package.43 We used a leap-frog algorithm, with a time
step of 2 fs. A Nosé-Hoover44,45 thermostat was used to keep
the temperature constant, at 298 K unless stated otherwise, and a
Parrinello-Rahman46 barostat was used to keep the pressure con-
stant at 1 bar for const-NpT simulations. A Particle Mesh Ewald47

(PME) was used to calculate electrostatic interactions, employing
a short-range cutoff of 1.2 nm. A 1.2 nm cut-off was used for
Lennard-Jones interactions, and a long-range dispersion correc-
tion was applied. All bonds were constrained using the Linear
Constraints Solver48 (LINCS) algorithm within GROMACS.

A series of binary mixtures of octane and benzene were simu-
lated with octane mole fractions (xoct) of 0.0, 0.2, 0.3, 0.5, 0.7,
0.8 and 1.0. For each system, a total of 1600 molecules was sim-
ulated. Initially, for each system, a short const-NVT equilibration
run was carried out, followed by equilibration at const-NpT to
allow the density to reach equilibrium. The reference data for
coarse-graining was then obtained from a 2 ns production run at
const-NpT, at 298 K and 1 bar.
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2.3 Parametrisation of bottom-up models

2.3.1 Coarse-grained mapping

Coarse-grained mapping was carried out by assigning two heavy
atoms and their associated hydrogens to a coarse-grained bead,
and setting the interaction site for that bead as the centre of mass
of those atoms.

RI =
n

∑
i

rimi

∑
n
i mi

, (1)

where RI is the positions of coarse-grained bead I, ri is the po-
sition of an atom i which is included in the coarse-grained bead,
mi is the mass of atom i and n is the number of atoms which are
mapped to the bead I.

The coarse-grained mapping schemes used are shown in Fig-
ure 1. For octane, a 4-site representation was used, with an outer
bead type (A) and an inner bead type (B). This gives rise to 3
bonds, 2 angles and 1 dihedral. For benzene, a 3-site representa-
tion, with only one bead type (R) and three bonds, was used. This
gives rise to a number of nonbonded interactions to parametrise:
3 for pure octane (A-A, A-B and B-B), 1 for pure benzene (R-
R), and 2 additional cross interactions (A-R and B-R) for the oc-
tane/benzene mixtures. It should be noted that for our bottom-up
models, this CG representation does not include intramolecular 1-
3 or 1-4 nonbonded interactions.

Fig. 1 Coarse-grained mapping scheme for octane and benzene. Each
coarse-grained bead represents two carbon atoms and their associated
hydrogens.

2.3.2 Iterative Boltzmann inversion (IBI)

IBI (and MS-CG) coarse graining was carried out using the
VOTCA-CSG package, versions 1.2.449,50 and 1.3.51 Multi-
reference IBI (MS-IBI) was carried out using a modified version
of VOTCA 1.3 (as discussed below). Specific values for the pa-
rameters used during the fitting are given in the ESI.

Bonded potentials, U(q), were obtained from the equilibrated
reference atomistic simulations by simple Boltzmann inversion

U(q) =−kBT lnP(q), (2)

where q is a particular coarse-grained degree of freedom (e.g. a
distance, angle or dihedral) and P(q) is the normalised proba-
bility distribution of q. Final potentials were extrapolated into
poorly sampled regions. For these simple systems, the assump-
tion that bonded interactions are not correlated with other in-
teractions is a good one. As bond stretching potentials for the
coarse-grained benzene were very steep (see Supporting Informa-
tion), the LINCS algorithm was used instead to constrain bonds
for that molecule, with the bond length taken as the minimum of

the Boltzmann inverted potential at 0.2203 nm. The bonded in-
teractions parametrised from pure octane and benzene were used
in coarse-grained simulations for all concentrations. Bonded po-
tentials and distributions are included in the Supporting Informa-
tion.

For the (softer) nonbonded potentials, where multi-body ef-
fects are important, the potentials from Boltzmann inversion are
unable to reproduce the structure of the reference system. For
these interactions, an iterative Boltzmann inversion method was
required.52 Here, for each system, separate reference RDFs were
calculated for each nonbonded interaction. The RDFs for pure
octane and benzene were calculated from trajectories containing
1000 snapshots. For the mixtures, it was found that 5000 snap-
shots were required for a smooth RDF, due to the decreased sam-
pling of each interaction. These RDFs were used as targets for the
IBI procedure.

At each stage of IBI, a coarse-grained simulation was run using
a set of test potentials. The first stage used potentials from direct
Boltzmann inversion. After each simulation, an update was ap-
plied to one of the potentials, according to Equation 3, with each
interaction being updated in turn

Un+1(r) =Un(r)+αkBT ln
gn(r)

gtarget(r)
, (3)

where r is the inter-site distance, g(r) is the radial distribution
function and α is a scaling factor on the potential update, which is
chosen so that the scheme converges. This procedure was carried
out iteratively until the reference and test system RDFs matched
to an acceptable degree. Once each interaction had been updated
another simulation was run, and a linear pressure correction was
applied to all of the potentials simultaneously

∆U(r) = A
(

1− r
rcut

)
, (4)

where
A = sgn(∆P)0.1kBT min(1, | f ∆P|). (5)

In these expressions, rcut is the cut-off distance for the interaction,
∆P is the difference in pressure between the reference and the
coarse-grained system and f is a scaling factor, which is chosen
to prevent the pressure from oscillating around the desired value.
Since the magnitude of the pressure correction depends on ∆P,
the correction can be iteratively applied until the pressure of a
coarse-grained system is correct.49,52

This procedure was repeated until the coarse-grained and tar-
get RDFs matched, and the pressure of the system was close to
1 bar. For the 70% and 80% octane systems, the R-R (benzene-
benzene) interaction was very difficult to converge compared to
the other interactions. For these systems, the procedure was
adapted to allow several steps in which only the R-R potential
was updated, with care taken to ensure that the other interac-
tions and pressure remained converged.

2.3.3 Multistate IBI (MS-IBI)

MS-IBI was proposed by Moore et al.53,54 to improve transfer-
ability of IBI potentials. The idea behind MS-IBI is to use multiple
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reference simulations to parametrise a single CG model, allowing
a model to be transferable between the state points used for the
reference simulations. In the current work, two multi-state IBI
(MS-IBI) models were created to test concentration transferabil-
ity. Each of these models used pure benzene and pure octane as
reference systems for the like-like nonbonded interactions, and
in addition, simultaneously fitted like-like and unlike interactions
with data obtained for mixtures. Model MS-3c, used a mixture of
octane and benzene, with xoct = 0.5; and Model MS-4c used two
mixtures, with xoct = 0.3 and xoct = 0.7, in addition to the pure oc-
tane and pure benzene data. The temperature transferability of
MS-IBI models was also tested by constructing models using two
reference systems of pure octane at 238 K and 378 K. This model
is referred to as MS-2t.

For the MS-IBI fitting, initial guesses for nonbonded potentials
were obtained by taking the mean of the Boltzmann inverted po-
tentials of the reference systems included in the fits. At each MS-
IBI step, a single potential was updated using Equation 6, with
each potential being updated in turn

∆U(r) =
1
N

N

∑
i=1

ηi∆Ui(r). (6)

Here, N is the number of reference systems, and ηi is a scaling
factor chosen to reflect the relative importance of each reference
system i. Once the RDFs had converged as much as possible, fur-
ther iterations were carried out, in which only pressure correction
was applied. Here, ∆U(r) was again calculated using Equation 6,
where in this case, ∆Ui(r) is the linear pressure correction for ref-
erence system i.

2.3.4 Multiscale coarse-graining method (MS-CG): force
matching of nonbonded interactions

In the MS-CG method, developed by Izvekov and Voth55 coarse-
grained potentials can be constructed by attempting to match the
forces acting between CG beads with those from an atomistic ref-
erence system that has been mapped onto the CG representation.
The method has subsequently been refined and given a strong
theoretical basis.56–58 It is based on a variational principle (see
Equation 7), which states that, by minimising the objective func-
tion (χ2), which is related to the difference between the poten-
tials of mean force (PMFs) of the reference and CG systems, one
approaches the true effective PMF for the system.55 The varia-
tional principle was rigorously derived from statistical thermody-
namics by Noid et al..57

χ
2 =

1
3LN

L

∑
l=1

N

∑
i=1
|Fref

il −Fp
il(g1, ...,gM)|2, (7)

where Fp
il and Fref

il are the total force on bead i in snapshot l,
for the coarse-grained and reference systems, respectively, and
g1, ...,gM are coefficients of the function(s) to which the coarse-
grained forces are fitted.

The objective of force matching is to minimise χ2. However, in
practice, force matching can be done by solving a series of linear

equations in a least-squares manner:49

Fp
il(g1, ...,gM) = Fref

il , i = 1, ...,N, l = 1, ...,L. (8)

The coarse-grained force function is constructed from a series of
spline functions, the coefficients of which are obtained by solving
Equation 8, with the additional constraint that the first deriva-
tives of the spline functions are continuous. Since the procedure
involves matching the total forces in the system, it is vital to select
a set of coarse-grained interactions that fully describe the interac-
tions in the system.49,55

In the current work, we have implemented the Hybrid Force
Matching (HFM) scheme, which allows the combination of two
different coarse-graining methods for one system. In this case,
the bonded potentials are obtained, as above, through Boltzmann
inversion, while the nonbonded potentials are obtained through
force matching.50,59 The use of easily obtainable intramolecular
potential functions guarantees sensible molecular geometries and
helps eliminate some of the problems that can be associated with
a lack of sampling of higher energy conformations in the atomistic
reference system. The latter can cause problems if the coarse-
grained model is able to sample areas of phase space that the
atomistic model does not.49,60 A number of studies using this
hybrid approach have found that is able to give good structural
accuracy when applied to a range of soft matter systems.50,61,62

The reference non-bonded forces, excluding all intramolecu-
lar interactions, were calculated by passing through the reference
trajectory and outputting only the forces resulting from inter-
molecular interactions. The trajectories obtained contained 1000
snapshots; force matching was carried out on blocks of 25 frames
each, and the coarse-grained force functions were obtained by av-
eraging over all of the blocks. The resulting force functions were
integrated and extrapolated to low inter-site distances to give the
HFM coarse-grained potentials for that system.

While our reference simulation were carried out in the const-
N pT ensemble, it should be noted that, strictly speaking, the MS-
CG method is only valid at constant NV T . A version of the method
consistent with the const-N pT ensemble, which includes a volume
dependent part, was suggested by Das and Andersen.63 This was
later extended to a volume matching method, which can act as
a pressure correction.64,65 However, this requires including an
additional terms (volume) in the pair potential. To avoid these
additional terms, we applied a pressure correction to the force-
matched potentials using the iterative ramp correction described
in Equation 4 (noting that this does not strictly address the state-
point dependence). This was applied to each system to give a
pressure of close to 1 bar at the experimental density of the sys-
tem. At each iteration of the pressure correction, a 250 ps simula-
tion was run, and the pressure of the system was calculated based
on the final 200 ps of the trajectory. Each of the non-bonded po-
tentials was updated at each iteration, with a small scaling factor
to ensure that the pressure converged.
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2.4 Parametrisation of top-down models

2.4.1 SAFT calculations

The top-down method used in this work is based on the Sta-
tistical Associating Fluid Theory (SAFT), which is an equation
of state forming an algebraic link between macroscopic thermo-
dynamic properties such as densities and free energies, and a
molecular bead model. As SAFT can return macroscopic prop-
erties within milliseconds, this algebraic link potentially allows a
fast parametrisation of CG models from many experimental state
points at the same time. Some of the recent extensions to SAFT
are based on molecular models with smooth interaction potential
functions. This provides the possibility of automatically capturing
accurate thermodynamic data within the parametrisation process
of a coarse-grained model that is suitable for MD.66

SAFT is a perturbation approach, and the SAFT equations are
typically expressed in terms of Helmholtz free energies A. As no
associating interactions such as hydrogen bonding are expected
in this work, we used the non-associating form of SAFT-γ Mie67

ASAFT = Aideal +Amonomer +Achain, (9)

where Aideal accounts for the ideal kinetic and translational en-
ergy contributions, Amonomer for the change in free energy due
to attractive and repulsive interactions between CG beads and
Achain for the free energy contribution from forming chains. The
monomer contribution term makes use of the Barker–Henderson
high temperature perturbation expansion.68 Perturbation contri-
butions accounting for attractive interactions of up to 3rd order
are added to a purely-repulsive hard-sphere reference description
Ahard−sphere,

Amonomer = RTAhard−sphere +(RT )2A1 +(RT )3A2 +(RT )4A3. (10)

The chain contribution term Achain originates from Wertheim’s
first order thermodynamic perturbation theory.69–74 The chain
forming polymerisation is described as infinitely strong associa-
tion, which has the same basis as the description of (weaker) as-
sociation interactions used to capture hydrogen bonding effects
(not applied in this work). The free energy change due to the for-
mation of chains is a function of the number of beads per chain ms

and the magnitude of the pair correlation function for the bond
length distance g(σ),

Achain =−RT (ms−1) ln(g(σ)). (11)

Using SAFT, predictions can be made for any homogeneous
bulk property that can be expressed in terms of Helmholtz free
energies, temperature, volume and number of particles. Exam-
ples are density, pressure, enthalpy, entropy, Gibbs free energies,
heat capacity, thermal expansion and compressibility. Such prop-
erties are accessible for both pure components and mixtures, also
allowing one to obtain quantities such as free energies of mix-
ing. For example, for a given pressure p0, the volume V0 can be
optimised to satisfy −∂A/∂V |V0 = p0.

Within the SAFT-γ Mie equation of state (EoS), a molecule is
represented by a chain of tangentially connected beads interact-

ing with the Mie potential UMie
i j

UMie =Cε

[(
σ

r

)λr
−
(

σ

r

)λa
]
, (12)

with

C =
λr

λr−λa

(
λr

λa

) λa
λr−λa

, (13)

where ε and σ are the well depth and the segment diameter, re-
spectively. λr and λa are the repulsive and attractive exponents,
for which λr = 12 and λa = 6 is the usual Lennard–Jones potential.
Fitting of the parameters, ε, σ , λa and λr to reproduce the avail-
able experimental data (which could include temperature and
concentration-dependent data) leads directly to a coarse-grained
molecular model.75,76

The Mie parameters for the cross-interactions can be obtained
from the following mixing rules:

σi j =
σii +σ j j

2
, (14)

λi j−3 =
√

(λii−3)(λ j j−3), (15)

εi j = (1− ki j)

√
σ3

ii σ
3
j j

σ3
i j

√
εiiε j j. (16)

The ki j parameter allows the well-depth of the cross-
interaction, εi j, to be adjusted (if necessary) to fit experimental
mixture data.

SAFT-γ Mie includes no parameters for the intramolecular in-
teractions apart from the Mie potential for non-bonded interac-
tions and σ as a bond length. Therefore chains are effectively
modelled as semi-flexible without angle or dihedrals interactions
but including 1-3 and 1-4 nonbonded interactions. However, in
this work, we also investigated the effect of introducing angle po-
tentials to the coarse-grained models produced by the SAFT-γ Mie
EoS.

The SAFT calculations were performed with our own imple-
mentation of the SAFT-γ Mie expressions, based on the recent
publication by Papaioannou et al.77 The SAFT-γ Mie model used
the same mapping as the bottom-up models, with the one excep-
tion that the same interaction potentials were used for beads A
and B. The Mie potential parameters of the benzene model were
taken from Lafitte et al.,78 who parametrised the Mie potential
parameters to match the vapour pressure and liquid density of
benzene over a range of temperatures (300–562 K). For octane,
Mie potentials were developed using the corresponding state cor-
relation by Mejia et al.,79 in which Mie potential parameters are
determined from just three experimental data points: the acen-
tric factor, the critical temperature and the liquid density. The
cross-interaction parameters were calculated using Equations 14-
16, with ki j = 0. The Mie potential parameters are given in Table
1. The interaction potentials were cut at short distances (around
0.5σ , where the value of UMie is at least 10000× kT ) and extrap-
olated quadratically to lower distances using the same procedure
used for bottom-up potentials. This results in a slightly softer
interaction potential than a pure Mie potential, which is help-
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ful when carrying out free energy calculations. Because SAFT
is based on tangentially bonded spheres, bond lengths were con-
strained at σ for MD simulations models.

Table 1 Mie potential parameters obtained for benzene and n-octane

Interaction σ/nm ε/K λr λa
R-R 0.3490 258.28 11.58 6.0
A/B-A/B 0.3768 255.92 12.70 6.0
A/B-R 0.3629 256.53 12.13 6.0

2.5 Coarse-grained simulations
The equations of motion were integrated using the leap-frog al-
gorithm of GROMACS with a time step of 2 fs. A Nosé-Hoover
thermostat was used to keep the temperature constant at 298 K,
and, for constant pressure simulations, a Parrinello-Rahman baro-
stat was used to keep the pressure constant at 1 bar.

For bottom-up models, a 1.5 nm cut-off was used for non-
bonded interactions. We note that the parametrisation of the non-
bonded interactions guarantees a potential which goes to 0 at the
cut-off. For each coarse-grained model, a 1 ns constant-NpT pro-
duction run was carried out, with coordinates output every 0.2 ps.
At temperatures other than 298 K, a 500 ps constant-NpT equili-
bration run was carried out before the production run. Starting
structures were obtained from atomistic snapshots, after imple-
menting the mapping shown in figure 1.

For the SAFT-γ Mie model, a 2.0 nm cut-off was used, and all
CG bonds were constrained using LINCS. Since the molecular ge-
ometry (tangentially bonded spheres) in these models is slightly
different to the atomistic structure mapped onto a CG represen-
tation, starting structures were constructed by randomly placing
1600 molecules into a box, carrying out a steepest-descent en-
ergy minimisation and a 200 ps equilibration run. Production
runs were then carried out as for the bottom-up models.

2.6 Free energy calculations
We used the Bennett acceptance ratio (BAR) method, which is
a commonly used method for calculating the free energy dif-
ference (∆FBA) between two states. For each state, A and B,
a separate simulation is run. At regular intervals in the sim-
ulation, the Hamiltonian, H, is calculated separately using the
force fields for states A and B, and the difference between these
two values is determined. The value of a constant, C, for which
〈 f (HA−HB +C)〉B = 〈 f (HB−HA−C)〉A is then calculated numer-
ically, which gives an estimate of the free energy difference be-
tween A and B,80

∆FBA = RT ln
〈 f (HA−HB +C)〉B
〈 f (HB−HA−C)〉A

+C, (17)

where
f (x) =

1
1+ ex (18)

The free energy estimate is only accurate if there is sufficient
overlap between the energy distributions of the two states. There-
fore, for most real cases, it is necessary to consider a series of
alchemical states between A and B, so that each neighbouring

state has a large energy overlap. The total free energy difference
is then calculated as the sum of all the intermediate free energy
differences

∆FBA =
n−1

∑
i=1

∆Fi+1,i (19)

Linear decoupling of van der Waals interactions can result in
singularities close to the end points of the decoupling. When the
interaction is almost fully decoupled, U will be close to zero at
all distances except very close to r = 0, where U jumps to a high
value. This can be solved by using soft-core potentials for the
intermediate states

Usc(r) = (1−λ )UA(rA)+λUB(rB) (20)

rA =
(
ασ

6
Aλ

p + r6) 1
6 (21)

rB =
(
ασ

6
B(1−λ )p + r6) 1

6 (22)

where λ is the coupling parameter, α is the soft-core parameter
and p is a positive integer, with α and p chosen to be 0.5 and 1,
respectively.

Free energies of solvation were calculated by decoupling the
intermolecular interactions of one molecule of octane or benzene
with the surrounding solvent, while leaving all intramolecular in-
teractions intact; the solvation free energy is the negative value
of the free energy calculated from the decoupling process. All
simulations using atomistic and pressure corrected coarse-grained
models were run in the const-NpT ensemble, so the energies cal-
culated are Gibbs free energies. Simulations of coarse-grained
models without pressure correction were run in the const-NVT
ensemble, at the equilibrium density of the atomistic system; the
energies from these systems are therefore Helmholtz free ener-
gies.

For atomistic systems, Coulombic interactions were decoupled
linearly, then van der Waals interactions were decoupled using
soft-core potentials with α = 0.5 and p= 1. Nineteen intermediate
λ values were chosen between 0 and 1, with a λ spacing of 0.05.

For coarse-grained systems, van der Waals interactions were
decoupled linearly. Between λ = 0 and λ = 0.9, a λ spacing of
0.05 was used. In order to prevent singularities just as the inter-
actions were about to disappear, a much higher concentration of
λ points was used for λ > 0.9: typically a spacing of 0.01 up to
λ = 0.99, 0.002 up to λ = 0.998 and then progressively smaller
spacings down to 0.0001 between λ = 0.9999 and λ = 1.0. Er-
rors were calculated for each λ spacing to check where additional
λ points were required.

Free energies of mixing were also calculated as a further com-
parison between the atomistic and coarse-grained models. Com-
putational details and results are included in the Supporting In-
formation.

3 Results

3.1 Potentials

The intra- and intermolecular potentials obtained from IBI, HFM
and MS-IBI are given in the ESI. Mie potential parameters used in
the SAFT-γ Mie model simulations are given in Table 1.
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Fig. 2 Comparison of densities calculated using atomistic and coarse-
grained simulation models. The IBI and HFM models were parametrised
and run at the specified concentration, 298 K and 1 bar. The green line
shows results from HFM potentials derived without the benefit of a pres-
sure correction term.

3.2 Densities of single-state models

With a pressure correction applied, the density of each atomistic
reference system was reproduced well by both bottom-up coarse-
grained models parametrised for that concentration, with errors
of less than 0.6%, as shown in Figure 2. The accuracy is highly de-
pendent on applications of the pressure correction. Without pres-
sure correction, constant-NV T simulations of the IBI and HFM
models at the correct density give pressures of up to 2000 bar,
leading to significant errors in density if the same potentials are
run at constant-N pT . After the application of pressure correction,
all of the models gave pressures of 1 ± 3 bar. Within a force
matching methodology, it is usually accepted that the pressure
will not be predicted correctly and that these simulations should
be run at constant volume, although pressure correction based
on a volume-dependent term has been proposed.63,64 However,
Figure 2 shows that a simple linear pressure correction can suc-
cessfully be applied to force matched potentials within the hybrid
scheme employed here.

3.3 Densities from the SAFT-γ Mie model

The densities obtained from molecular dynamics simulations us-
ing the potentials developed via SAFT-γ Mie are shown in Figure
3. The results are good with respect to transferability across con-
centration and temperature ranges, and are indicative of the ac-
curacy of SAFT-γ Mie model as a theory. Here the good quality
predictions across changing concentrations rely on the reliability
of mixing rules and the corresponding state correlation of Mejia et
al.79 We note that SAFT is very versatile in terms of the nature of
experimental data that can be fitted and so could be directly fitted
to experimental densities to reproduce density data for mixtures.
However, these data will not generally be available for many prac-
tical coarse-graining applications.

0.0 0.2 0.4 0.6 0.8 1.0
xoct

650

700

750

800

850

900

ρ
 / 
kg

 m
−3

Experiment
SAFT

280 300 320 340 360 380 400
T / K

660

680

700

720

740

760

780

ρ
 / 
kg

 m
−3

Experiment
SAFT

a)

b)

Fig. 3 a) Concentration dependence of mixture densities at 1 bar and
298 K, b) temperature dependence of density at xoct = 0.5 and 1 bar.
Results obtained from simulations of SAFT-γ Mie derived potentials and
experiment. 81,82

3.4 Structural accuracy of bottom-up and top-down models
Figure 4 gives site-site radial distribution functions for the xoct =

0.3 octane system. Unsurprisingly, given the RDF fitting proce-
dure used, the models created using IBI were able to match the
radial distribution functions (RDFs) of the atomistic references
almost exactly. Although not as good as IBI, HFM is also able to
reproduce atomistic RDFs with good accuracy. Similar levels of
accuracy have been seen for many systems using full force match-
ing55,56 (where the bonded interactions are also determined us-
ing force matching), and for pure liquid hexane using HFM.50

However, the results for octane/benzene mixtures confirm that
the separation of bonded and non-bonded terms, which is the ba-
sis of HFM is also valid for multicomponent systems with a greater
number of interactions.

Interestingly, the use of a pressure correction did not signifi-
cantly affect the RDFs in either the pure components or the mix-
tures. The linear pressure correction has the greatest effect on the
long-range tail of the potential, which has significant effects on
thermodynamic properties such as pressure. While the absolute
value of ∆U is larger at smaller r (see Equation 4), the attractive
well and short-range repulsion are still preserved by the pressure
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correction, indicating that these are most important parts of the
potential for determining the local molecular packing in the sys-
tem.

The SAFT-γ Mie RDFs are particularly poor, with high first and
second peaks of the RDFs appearing at distances that are too
short. The more complex peak shapes present in the atomistic
and bottom-up coarse-grained RDFs are also absent in the SAFT-γ
Mie RDFs. Here, the constraint of using tangential spheres leads
to a very different local site-site packing behaviour to the case
where neighbouring coarse-grained sites in a molecule are over-
lapped. This has been noted in recent work which attempted to
develop coarse-grained models for a chromonic liquid crystal.17

In the chromonic study, the tangential constraint directly gave
rise to unphysical molecular stacking, which in turn can promote
phase separation within a simulation. Such effects are less im-
portant at higher levels of coarse-graining, where local structure
prediction is not expected, and it is more important to capture the
average thermodynamic properties of the fluid.

The inclusion of angle potentials in the SAFT-γ Mie simulations
slightly perturbs the local structure of the fluid, as seen from RDFs
involving octane sites (Figure 4a,b) but does not improve agree-
ment with RDFs from the atomistic reference simulations.

We also investigate the ability of the models to reproduce three-
body structural correlations, which is essential to the ability of a
coarse-grained model to represent the underlying atomistic model
well.83 The quantity G3(r,r′), given by:

G3(r,r′) =

〈
∑

i
∑

j 6=i,k
∑

k 6=i, j
(cos(ûi j · ûik)δ (ri j− r)δ (rik− r′)

〉
, (23)

where ûi j is the unit vector between sites i and j and ri j is the
distance between the two sites, is a useful measure of how well
a model describes three-body correlations, as described by Noid
et al.83 G3(r,r′) is a measure of the average angle between the
vectors ûi j and ûik, as a function of the distances between the
sites. This quantity was calculated for the RRR and RAA triplets
from simulations of the xoct = 0.5 mixture, using the IBI, HFM and
SAFT-γ Mie models, and also for the atomistic trajectory mapped
to a coarse-grained representation. These results are shown in
Figure 5 for r′ = 0.5 nm. The IBI and HFM models both compare
well to the atomistic reference in both cases. However, the HFM
results are slightly less accurate; this is expected, given that HFM
performs slightly worse than IBI in reproducing RDFs. These re-
sults are encouraging given that the target of both methods is
to match two-body correlations. The negative peaks at around
r = 0.6 nm indicate the exclusion of particle j from the immedi-
ate surroundings of particle k, while the positive peaks at around
r = 0.9 nm represent the strong probability of finding particle
j at a distance corresponding to the second peak on the RDF.
The SAFT-γ Mie model does not represent three-body correlations
well, which is not surprising given its poor representation of the
site-site RDFs.

3.5 Transferability

The potentials obtained from both IBI and HFM bottom-up meth-
ods differ somewhat when obtained from different reference sys-
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Fig. 4 Intermolecular radial distribution functions, at 298 K and 1 bar, for
the xoct = 0.3 system from atomistic reference simulations, IBI and HFM
models parametrised at this concentration and the SAFT-γ Mie model,
both with and without angle potentials: a) A-A, b) A-R and c) R-R inter-
actions.
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tem concentrations. This is illustrated in Figure 6 for the A-A in-
teraction using IBI and HFM. Here, particularly for the HFM case,
there is considerable variation in the overall shape of the effective
pair potential across the concentration range. The A-A potential
varies most with concentration and there is a smaller change for
other pair potentials, particularly the R-R potential (see ESI).

This immediately suggests that the models will not be par-
ticularly transferable, and this turns out to be the case. Fig-
ure 7 shows a comparison with the A-A partial RDF obtained
from atomistic simulations at xoct = 0.2, using HFM models
parametrised at xoct = 0.2 and xoct = 0.5. The HFM results are
significantly worse for the higher octane concentration. More-
over, the HFM potential parametrised at xoct = 0.5, is unable to
reproduce the correct density for any other concentration.

In contrast to the results for standard IBI, MS-IBI was success-
ful in constructing a concentration transferable model. After the
application of pressure correction during the MS-IBI process, the
MS-3c and MS-4c models both gave pressures of close to 1 bar at
the atomistic density for all of the reference concentrations used

in the parametrisation, as shown for MS-4c in Figure 8. Although
we have not plotted the results here, the density/concentration
relationship of the MS-3c model is indistinguishable from that of
MS-4c. The MS-3c model reproduced all of the RDFs quite well at
xoct = 0.0, 0.5 and 1.0. However, it should be noted that, at low oc-
tane concentrations (xoct = 0.2 and 0.3), the RDFs involving ben-
zene were reproduced slightly better than those involving octane
and this was reversed at higher octane concentrations (xoct = 0.7
and 0.8). This is not surprising as the model works best at concen-
trations at which it was parametrised, and the performance gets
progressively worse as the concentration moves away from the
reference state points. The MS-4c model encompasses a wider
concentration range for all of the interactions, and as such, the
structural accuracy is better across the range. Non-bonded distri-
butions across the concentration range for the MS-3c and MS-4c
are included in the ESI.

Both single-state bottom-up models show poor temperature
transferability when compared to the atomistic reference system.
For pure octane, the densities of the coarse-grained systems di-
verged from the atomistic density on increasing or decreasing the
temperature from 298 K, as shown in Figure 8b. The poor temper-
ature transferability of IBI potentials for simple liquids has been
shown in the past.84 These results show that HFM suffers from
exactly the same problem. The similarity of the results from the
two methods likely comes from the fact that the same method
was used for pressure correction in each case. The ad hoc nature
of the linear pressure correction means that there is no guarantee
of transferability to different state points.

The MS-2t model was not able to reproduce the atomistic den-
sities across the range of temperatures any better than the IBI
model. This was expected given that, during the parametrisa-
tion process, the pressures of the two coarse-grained systems con-
verged respectively to slightly above and slightly below the target
pressure of 1 bar. As discussed above, this is in contrast to the
excellent thermal expansion behaviour seen for simple Mie po-
tentials fitted via the SAFT-γ Mie EoS (Figure 3).

Non-bonded distributions for all three MS-IBI models are in-
cluded in the ESI. Despite the differences between the models
described above, the structural accuracy of all of the MS-IBI mod-
els is generally better than HFM, and particularly SAFT-γ Mie. It
should, however, be noted that the differences between the RDFs
at each state-point are relatively small, which perhaps makes the
job of simultaneously matching all of them easier. It would in-
teresting to investigate the performance of the MS-IBI method
if the differences between the reference systems were more pro-
nounced; for example, if the temperature or concentration range
considered spanned one or more phase boundaries. In this case,
convergence of the MS-IBI iterations may be more difficult.

3.6 Solvation free energies

The solvation free energies of octane and benzene are consistently
overestimated by pressure-corrected HFM for all of the systems
studied. However, as can be seen in Figure 9, there is no sys-
tematic relationship between the atomistic and HFM solvation
free energies, with the difference between the two varying sig-
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Fig. 6 Coarse-grained intermolecular potentials for a) A-A IBI and b)
A-A HFM, parametrised at 298 K. Each potential in each plot is from a
different octane concentration: 20% (blue), 30% (green), 50% (red), 70%
(cyan), 80% (purple) and 100% (yellow).

nificantly over the concentration range.
HFM without pressure correction performed extremely poorly,

as shown in Figure 9. All of the solvation free energies from these
models are very far off the atomistic values; most notably, ben-
zene is predicted to be insoluble in pure benzene.

The difference between the pressure corrected and non-
pressure corrected HFM models highlights the problem of coarse-
grained models properly representing thermodynamic properties.
It is known that the state-dependence of coarse-grained poten-
tials affects the ability of coarse-grained models to reproduce the
pressure, since the virial formula does not take into account the
volume dependence of the potentials.9 This has ramifications for
the calculation of free energies for coarse-grained models. The in-
correct representation of the pressure of the coarse-grained model
leads to an incorrect representation of free energy changes (since
(∂A/∂V )T =−P); this explains the poor performance of the non-
pressure corrected models. The application of pressure correc-
tion also improves the accuracy of free energy changes at a single
state-point. However, because the linear pressure correction we
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Fig. 7 Radial distribution function for the A-A interaction for simulations
of xoct = 0.2 at 298 K and 1 bar: atomistic reference, HFM parametrised
for xoct = 0.2, and HFM parametrised for xoct = 0.5

have applied does not properly address the volume dependence
of the coarse-grained potentials, this is unlikely to be transferable
to other state-points.

For all systems, the IBI model predicts the solvation free energy
of both benzene and octane more accurately than the HFM model.
This could be attributed to the way in which the pressure correc-
tion is carried out for each method. In the IBI procedure, the
pressure correction is carried out in conjunction with structure
matching, and so the resulting model is guaranteed to reproduce
both the structure and the pressure. This is only possible due to
the iterative nature of IBI; it is trivial to add extra steps to the
structure matching procedure to introduce the extra constraints.
For force matching, on the other hand, the pressure correction is
applied after the force matching procedure, and so there is less of
a guarantee that both the forces and the pressure will be correct.
Matching the pressure at the same time as the forces would re-
quire either the introduction of another set of equations or terms
to the force matching equations (as shown, for example, by Das
and Andersen)63 or adapting the iterative force matching method
suggested by Lu et al. to self-consistently match the pressure.85

The MS-4c model shows a marked improvement over the IBI
models in the calculation of solvation free energies, in terms of
both representability and transferability. It was shown in Figure 8
that the MS-4c model is able to reproduce the atomistic pressure
right across the concentration range; this translates to an accu-
rate reproduction of the trend in solvation free energy across the
same concentration range, as seen in Figure 9. This is in contrast
to the IBI models, where a single model will not be thermody-
namically transferable across the concentration range, and so ac-
curate representation of the pressure and solvation free energy at
a given concentration requires the use of a model parametrised
specifically for that concentration. The necessity of using a sepa-
rate coarse-grained model for each state-point impacts the ability
of IBI to replicate the trend in solvation free energy across the
concentration range; this is shown by the differing line-shapes

10 | 1–17Journal Name, [year], [vol.],



0.0 0.2 0.4 0.6 0.8 1.0
xoct

650

700

750

800

850

900

950
ρ
 / 
kg

 m
−3

Atomistic
IBI (0.5)
HFM (0.5)
MS-4c

220 240 260 280 300 320 340 360 380
T / K

600

650

700

750

800

ρ
 / 
kg

 m
−3

Atomistic
IBI (298 K)
HFM (298 K)
MS-2t

a)

b)

Fig. 8 Transferability of densities calculated by different coarse-grained
models. The IBI and HFM models were: a) parametrised at xoct = 0.5,
298 K and 1 bar, and b) parametrised for pure octane at 298 K and 1 bar,
and run at the specified temperature.

produced by the IBI models in Figure 9, compared to those of the
atomistic and MS-4c models.

The SAFT-γ Mie model is also able to predict solvation free en-
ergies, and their trend with respect to concentration, with fairly
good accuracy. The SAFT equation of state is designed to accu-
rately calculate free energies, so it is encouraging that a CG force
field based on it performs reasonably well on such quantities. The
introduction of angle potentials to the SAFT-γ Mie model does not
affect the value of ∆Gsol within our calculated errors, despite the
small changes seen in the shape of the radial distribution function
in Figure 4.

4 Discussion
The Henderson uniqueness theorem86 states that a pair poten-
tial which is able to reproduce the RDF of a simple liquid will
be unique. This unique potential is the target of IBI and other
structure-based coarse-graining methods. However, we know
from previous studies of IBI potentials that, even if a coarse-
grained model exactly matches the RDFs from an atomistic sys-
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Fig. 9 Free energies of solvation of a) octane and b) benzene as a func-
tion of solvent concentration, for atomistic, IBI, MS-IBI, HFM with pres-
sure correction, HFM without pressure correction, and SAFT-γ Mie sim-
ulations. (The IBI and HFM bottom-up potentials are parametrised for
each independent state point.)

tem, this provides no guarantees that the thermodynamic prop-
erties will be reasonable.87 Moreover, as seen in some previ-
ous work84 potentials generated with IBI method tend to have
limited transferability, both in terms of concentration and tem-
perature (though the degree of transferability is clearly system-
dependent). The form of the effective pair potential differs signif-
icantly with concentration. This seems to be exaggerated by the
presence of physically undesirable oscillations in the potential as
a function of distance; so that the concentration-dependent pair
potential changes even at large separations.

The MS-IBI approach clearly improves on the results from IBI.
In practice, MS-IBI offers a compromise where slightly worse fits
to pairwise RDFs allow a better representation of some thermo-
dynamic properties and improved transferability. However, this is
at some additional computational cost in terms of fitting. More-
over, the oscillations of the effective potential, are not eliminated
by this method and for pressure-consistent potentials to be pro-
duced, further pressure corrections may be required. This can
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make it more difficult to achieve a single temperature transfer-
able potential (noting that a “too high” pressure in one reference
system can be balanced by a “too low” pressure in another). We
also note that the burden of producing IBI (or MS-IBI) poten-
tials increases dramatically with the number of different types of
coarse-grained beads. As each pair interaction needs to be fit-
ted, the practical application of IBI/MS-IBI for complex systems
is extremely computationally expensive.

The failure of MS-IBI to produce a single temperature trans-
ferable model highlight the difficult of achieving this in a coarse-
grained model. Some success has been achieved by scaling or
reweighting a model developed at one temperature to other tem-
peratures, using the MS-CG88 and IBI23,89 methods. The condi-
tional reversible work method has been fairly successful at achiev-
ing a temperature transferablity, although the model has worse
representability at the temperature for which it was parametrised,
compared to pressure-corrected IBI.84 Ultimately, the issue of
temperature transferability in a pair potential is one that is yet
to be solved, and doing so will require addressing the differences
in the free-energy decomposition with temperature which come
to the fore when coarse-graining.90

Given the excellent structural predictions from IBI, it is interest-
ing to ask whether there are other related approaches that could
improve the basic method. Of interest here, is the previous work
of Lyubartsev et al.,91 who showed that the coarse-graining of
water via Newton inversion could be carried out in the liquid-
vapour two-phase region. Here, matching of the RDF leads to
pair potentials that seem to give a better representation of pres-
sure than those arising from IBI of bulk water. Motivated by this
work, we used MS-IBI in the vapour and liquid phases of octane
and found the resultant potentials do give good pressures; how-
ever, the model was no more temperature transferable than the
other models presented in this paper.

The HFM used in this work does remarkably well in terms of
prediction of local structure, noting that it is not fitted to repro-
duce this. The simple pressure correction term that we introduce
in the current paper does not noticeably change local structure
but does allow the pressure to be corrected by small changes to
the effective pair potential, and thereby allows HFM to work un-
der conditions of const-N pT .

Unfortunately, for the octane-benzene mixture the effective
pair potentials produced with HFM change even more than IBI
potentials with concentration. So transferability for these poten-
tials is rather poor. (Noting that there is no theoretical basis to
expect coarse-grained pair potentials to be similar across state
points.) One possible solution is to include three-body terms. For
simple systems, this is known to improve representability.92,93

It may also allow a coarse-grained model to react better to its
environment, for example in the modelling of a phase-separated
liquid mixture.94 However, it is not guaranteed that three-body
terms alone would address all the causes of poor transferabil-
ity in coarse-grained models; specifically, the multi-body PMF
for the system contains many contributions that are state-point
dependent, which it may not be possible to match using only
configuration-dependent potentials.20,95

Chemically transferable models, whether between different

concentrations or between similar chemical systems, are crucial,
as they reduce the time otherwise spent parametrising models for
each state point. Models developed by the conditional reversible
work method have been shown to be transferable between dif-
ferent alkane chain lengths.96 However, as the authors note, this
method is not necessarily applicable to more complex systems.
The extended ensemble approach of Mullinax and Noid,97 in
which the coarse-grained potential is parametrised for an ensem-
ble of systems simultaneously, allows for concentration transfer-
able models, although at the cost of some representability com-
pared to models parametrised for a single system. This approach
was extended by Dunn and Noid98 to include volume potentials,
yielding a set of related models which, together, can give both
temperature and concentration transferability.

The linear pressure correction which has been applied in this
work is very effective at correcting the coarse-grained pressure
for a given state-point, without requiring the inclusion of any
other parameters in the coarse-grained force field. However, it
does not do so in a transferable way; in fact, it has been shown
by Wang et al.99 that correcting the pressure in this way means
that the compressibility of the model will no longer be correct.
The reason for this is that the linear correction does not take into
account the underlying issue with the representation of pressure
in coarse-grained models; the effective pair potentials generated
by IBI and HFM are volume-dependent, and so the virial formula
for calculating pressure is not valid.9 The volume potentials first
suggested by Das and Anderson63, on the other hand, are able
to simultaneously represent pressure and compressibility,100 be-
cause they explicitly take into account the volume-dependence of
coarse-grained potentials. This approach has recently been used
to construct a temperature transferable coarse-grained model,101

although this is, of course, at the expense of adding extra parame-
ters to the model, and therefore slowing down the coarse-grained
simulations.

The SAFT-γ Mie EoS is an intriguing approach to top-down
coarse-graining. As an EoS, SAFT-γ Mie is remarkably accurate
when fitted to produce a wide range of experimental data. The
possibility of being able to fit Mie potentials to reproduce, for
example, vapour-liquid coexistence data over a range of temper-
atures guarantees that optimised effective pair potentials will be
produced that are transferable in terms of thermodynamic free
energies. However, there are problems with SAFT-γ Mie poten-
tials in terms of local structure prediction. These problems have
their origin in the use of tangential spheres and the lack of angle-
dependent terms. Both are quite serious practical problems. The
former leads to a local structure that is fundamentally different
to that seen in conventional coarse-grained models. In some
cases, such as in the recent work on chromonics by Potter and
co-workers,17 where a SAFT-γ Mie EoS is used to parametrise
molecular fragments, the local bead packing arrangement leads
to an unphysical stacking of molecules, promotes phase separa-
tion and therefore limits both representability and transferability
within a molecular dynamics model. Within the SAFT framework,
the use of shape factors102 is an interesting suggestion that may
go some way to solving this problem. However, this would be
difficult to implement for systems with multiple bead types. Al-
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ternative top-down approaches may also be effective; for example,
a recent study by An et al. presents a coarse-grained model for
alkane chains parametrised using a particle swarm optimisation
strategy. This model is both transferable, and exhibits good struc-
tural accuracy.103

In the current work, the addition of angle terms to the molec-
ular dynamics simulations made only a small difference to the
SAFT-γ Mie results. In this case, there did not appear to be a
particularly strong coupling between these terms and the opti-
mal values of the nonbonded parameters ε, σ , λr and λa. For
other systems, we might expect this link to be more significant.
For comparison, researchers have found that in DPD simulations
there is a strong link between the calculated values of various
thermodynamic quantities, and the strength of the connecting
springs used to link beads.104,105 So for example, in DPD, it is
possible to fit Ai j parameters for a bead by calculating changes
in free energy for insertion of particles; hence infinite dilution
activity coefficients are very valuable in DPD parametrisation.106

However, the local environment sampled by a bead is altered sig-
nificantly by the bond and angle terms within a DPD model; and
this can be quite problematic. In principle, it is possible to en-
visage derivation of additional 3-body and 4-body terms within a
SAFT framework (current SAFT theories are based on first-order
Wertheim perturbation theory). However, a derivation of the cor-
responding equations, and a simplified version of these that can
be added to the existing SAFT equations, has so far not been
achieved due to the complex nature of the equations that arise.

It is worth noting that in the current work we have used stan-
dard combining rules for benzene-octane cross-interactions. This
is superficially very attractive because the parametrisation task for
systems with many beads becomes far less onerous when all the
cross-interaction terms do not need to be fitted. Unfortunately, for
many systems the combining rules do not work as well.107 How-
ever, simple improvements to the fitting of thermodynamic data
within SAFT-γ Mie can be made by allowing the ki j parameter to
vary from zero.108

A further interesting comparison between the bottom-up and
top-down approaches is the shape of the potentials they produce.
As shown in Figure 6, the bottom-up methods produce a wide
variety of potential shapes, which do not correspond to a com-
mon functional form. In principle, the use of numerical or spline
potentials allows for greater flexibility when trying to match the
reference properties. In practice, however, it can result in over-
fitting the model to a particular state point. The reason for the
irregular bumps present in many of these potentials is that they
are effective pair potentials, in which any multi-body contribu-
tions resulting from the coarse graining of the system are included
only in an averaged way. This will only be applicable to the state
point at which the model was parametrised since the local envi-
ronment of a given bead will vary depending on the temperature
and concentration. SAFT-γ Mie models, on the other hand, are
based entirely on Mie potentials, with a distinct functional form
described in Equation 12. Because of this well-defined shape,
there is less danger of overfitting; therefore, they are likely to
have much better transferability than IBI or HFM models.

Finally, given the difficulties in achieving the two key chemi-

cally desirable attributes (i.e. local structure and thermodynam-
ics) within a single coarse-grained model, it is appropriate to ask
the question as to whether it is possible to have this level of repre-
sentability, together with transferability to other state points. We
would strongly argue that, in principle, it is. In one sense, all clas-
sical models can be thought of as existing on a continuum scale of
complexity: atomistic models are largely successful because typi-
cal force fields have achieved a reasonably high degree of repre-
sentability and transferability. Yet we know that if, for example, a
TIP4P water molecule is transferred from bulk water into the gas
phase (an environment with a different density) or transferred to
the surface of a protein (an environment with a dielectric con-
stant) then the TIP4P water is not as good a model as it is for
bulk water. The way around this transferability problem is partly
being tackled by polarizable models, such as AMOEBA;109 i.e.
models that can respond to environmental changes. For coarse-
grained models it is desirable to do the same, without the obvi-
ous but prohibitively expensive, addition of full three-body forces
to a method such as HFM. Recent work provides some encour-
agement that this can be achieved due to the improvements of
the transferability in DPD models via addition of a local density-
dependent term (MDPD).110 Crucially, the computational cost of
this local density-dependent term scales with system size like a
simple pair potential. A similar approach has been applied to
transferable bottom-up coarse-grained models of a range of sys-
tems, including liquid-liquid and liquid-vapour equilibria. This
includes interactions which are transferable between bulk liquids
and liquid-liquid interfaces, which is a notable improvement in
chemical transferability.39,65,111–113

5 Conclusions
In this paper, we have compared the accuracy and transferability
of coarse-grained models parametrised using top-down (SAFT-γ
Mie) and bottom-up (IBI, HFM and MS-IBI) methods. Both ap-
proaches were found to have distinct advantages and disadvan-
tages.

In terms of structural accuracy, IBI was found to be superior to
both HFM and SAFT-γ Mie. MS-IBI models were almost as accu-
rate, although the use of multiple reference systems meant the
loss of some accuracy for individual state points. HFM models
were able to reproduce the structure of the systems studied fairly
well, while SAFT models were not able to give an accurate pic-
ture of the local structure of any of the systems. Unfortunately,
even for this simple system, the effective pair potentials derived
in each process vary considerably between state points, limiting
transferability.

In terms of thermodynamics, although neither bottom-up
method was able to reproduce exactly the solvation or mixing free
energies of the atomistic system, the accuracy was good enough
that the correct phase behaviour was observed. Pressure correc-
tion was found to be crucial for the reproduction of solvation
free energies, confirming that matching structure or forces alone
does not guarantee thermodynamic consistency when moving to
a coarse-grained representation of a system. Models derived from
SAFT-γ Mie were found to be thermodynamically transferable
across a range of temperatures and concentrations.
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MS-IBI models improve the transferability of the IBI method,
although they are not guaranteed to be a complete solution. The
failure of MS-IBI to produce a temperature transferable model of
octane highlights a fundamental difficulty with bottom-up coarse
graining. Removing degrees of freedom will always reduce the
entropy of the system, so in order to match the free energy, the en-
thalpy/entropy balance must be shifted. Since the entropic con-
tribution to the free energy is temperature dependent (including
the contribution to the entropy from degrees of freedom that have
been removed), the overall free energy of the system will not scale
correctly with temperature, and the force field will not be com-
pletely transferable. SAFT models tend to be considerably better
in terms of thermodynamic transferability, due to fitting over a
range of state points. Unfortunately, this is at the expense of very
poor structural accuracy.

Finally, we discussed in detail, possible ways forward for
coarse-graining, which may eventually address the problems
of structure prediction, correct thermodynamics and improved
transferability.
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