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Abstract
Species at risk of extinction are not uniformly distributed in space. Concentrations of

threatened species may occur where threatening processes are intense, in refuges from

those processes, or in areas of high species diversity. However, there have been few

attempts to identify the processes that explain the distribution of at-risk species. Here,

we identified the relative importance of biological traits, environmental factors, and

anthropogenic stressors in driving the spatial patterns of both total and at-risk species

richness of North American mammals and birds. Environmental factors are the pre-

dominant drivers of both total and at-risk species richness. Strikingly, the directions of

variable relationships differ substantially between models of total and at-risk species

richness. Understanding how environmental gradients differentially drive variation

in total and at-risk species richness can inform conservation action. Moreover, our

approach can predict shifts in at-risk species concentrations in response to projected

environmental change and anthropogenic stressors.
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1 INTRODUCTION

Extinction can be an idiosyncratic process. Responses to

threatening processes by different taxa in different regions are

variable (Batista, Gouveia, Silvano, & Rangel, 2013), whilst

the implementation and success of conservation actions

are often substantially influenced by social and economic

factors (Knight, Cowling, Difford, & Campbell, 2010).

Nonetheless, there is widespread recognition that conserva-

tion planning and policy cannot account for the idiosyncratic

nature of every vulnerable population's plight (Franklin,

1993). From the placement of protected areas, to investment

in mitigating the fragmenting effects of linear infrastructure,

policy-makers and conservation practitioners must often

be guided by patterns in the distribution of vulnerable
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biodiversity. As a result, conservation practitioners require a

comprehensive understanding of the location of, and threats

to, biodiversity, in order to make informed choices about the

relative costs, benefits, and likely success of different con-

servation actions (Brooks et al., 2006). Identifying where

concentrations of threatened species occur, and which

processes drive their occurrence, will enable conservation

practitioners to ascertain the conservation actions that will

deliver the best returns for biodiversity (Wilson et al., 2005).

Ultimately, biodiversity loss is driven by extrinsic,

habitat-level threatening processes (Wilson et al., 2005).

Anthropogenic threats, such as increasing human population

density, resource extraction and climate change have all been

linked with extinction risk (Cardillo et al., 2004). Biolog-

ical attributes of species can determine their resilience to
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threatening processes, and substantial effort has been

dedicated to identifying those species-specific traits most

associated with extinction risk (Cardillo et al., 2008; Purvis,

Gittleman, Cowlishaw, & Mace, 2000). Additionally, the

characteristics of an environment may predispose species in

a given area to threatening processes (Davies et al., 2006).

Energy availability is thought to drive increases in resource

availability (Hawkins et al., 2003) and speciation rates

(Rohde, 1992), increasing the number of species that can

become at-risk, or that are predisposed to rarity. Traditionally,

studies of spatial variation in extinction risk control for the

effects of species richness by modelling the proportion of

species in an environment classified as threatened (Davies

et al., 2006). However, the environmental gradients that

drive total species richness may operate differently for at-risk

species richness (Moura, Villalobos, Costa, & Garcia, 2016).

To understand the drivers of the distribution of at-risk species

richness, we need to: (a) establish the role of environmental

factors, anthropogenic threats, and biological traits; and (b)

identify how the drivers of at-risk species richness differ from

those that determine the size of the species pool—something

yet to be considered in spatial analyses of extinction risk

(Davies et al., 2006).

The processes driving threatened species richness are

strongly scale-dependent (Keil et al., 2018) and different

scales of enquiry offer advantages and disadvantages. Stud-

ies of extinction risk at global or biogeographic realm extents

(Cardillo et al., 2008; Davies et al., 2006) offer important

insights into what is driving large-scale, irreversible changes

(Keil et al., 2018); however, their spatial grain is too coarse

to account for the localized changes that must precede global-

scale change. In contrast, smaller scale studies can uncover

the drivers of finer-resolution changes, which is crucial for

informing landscape management that seeks to foster species

persistence; however, conclusions drawn from small-scale

studies may also lack wider conservation application (Bald-

win et al., 2018; Bonnot, Thompson, Millspaugh, & Jones-

Farrand, 2013). Regional-scale studies offer a compromise

between understanding the fine-scale processes leading to

biodiversity loss and having generalizable conservation out-

comes. Furthermore, regional-scale studies performed at the

extent at which national land management agencies operate,

allow for the identification of priority areas on which to focus

resources, whilst promoting cooperation and sharing of these

resources (Baldwin et al., 2018).

Here, we aim to identify the drivers of both at-risk and total

species richness. To do this we ask whether variation in at-risk

and total species richness can be explained by spatial variation

in environmental, anthropogenic, and biological trait param-

eters. By comparing the drivers of at-risk and total species

richness, we attempt to develop a more comprehensive under-

standing of what determines concentrations of at-risk species,

independent of what drives the size of the species pool. We use

data on the threat status and distributions of a large number

of bird and mammal species that occur across the contiguous

United States (CONUS). Examining both birds and mammals

allows us to explore whether the variables predicting the spa-

tial pattern of extinction risk are consistent across taxa.

2 METHODS

2.1 Species data
The spatial distributions across CONUS of 499 and 228

species of birds and mammals, respectively, were obtained

from BirdLife International and NatureServe (2016) for birds

and from IUCN (2016) for mammals. Data were available

as spatial polygons of distributional boundaries, which were

intersected with a grid of ∼25 × 25 km (250 mi2) cells (here-

after referred to as the “grid”). Where a species’ range poly-

gon intersected with a grid cell, the species was treated as

present within that cell. Extinction risk ranks were obtained

from NatureServe (http://www.natureserve.org/), with each

species assigned a conservation status based on a 5-level

ordinal scale: critically imperilled (G1), imperilled (G2),

vulnerable (G3), apparently secure (G4), and demonstrably

secure (G5). We used these national assessments of conser-

vation status, as the IUCN classifications were designed for

global assessments and therefore pose certain problems when

used at a national scale (Gärdenfors, Hilton-Taylor, Mace, &

Rodríguez, 2008). The use of standard ranking criteria makes

these ranks comparable across birds and mammals. Under

these criteria 16 bird species and 38 mammal species were

classified as at-risk (G1, G2, or G3).

Species’ trait data were collated from published data

sources for a suite of biological traits (Tables S2 and S3)

previously shown to correlate with species’ extinction risk

(Cardillo et al., 2008; Gaston & Blackburn 1995; Purvis et al.,

2000). A list of species included in the analyses and sources of

species’ trait data can be found in the supporting information

(Appendices S1 and S2). We calculated the mean (or modal

in the case of categorical variables) value for each trait, for all

species occurring in each grid cell.

2.2 Environmental and anthropogenic
covariates
We obtained data on eight environmental covariates, all previ-

ously shown to be good explanators of species richness (Luo

et al., 2012). Data on five bioclimatic variables were derived

from the gridded surface meteorological dataset of Abat-

zoglou (2013); mean annual temperature and precipitation,

total annual solar radiation, and seasonality in both tempera-

ture and precipitation. Mean elevation and its standard devia-

tion were derived from the National Elevation Dataset. A mea-

http://www.natureserve.org/
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sure of land cover diversity was calculated using the 2011 U.S.

Geological Survey's National Land Cover Database (NLCD;

Homer et al., 2015).

Anthropogenic influence was assessed using three vari-

ables. Using the NLCD, we calculated the area of each cell

that was covered by land classified as intensively used by

humans. We estimated the mean human population density

within each cell from the U.S. Department of Commerce,

Bureau of Census (2015), as an additional index of human

influence. Using the Protected Area Database (Conservation

Biology Institute, 2012), we calculated the total area of land

receiving some form of protection from transformation. All

environmental and anthropogenic explanatory variables were

calculated at the grid resolution.

2.3 Modelling species richness
We used random forests (RFs) to assess the potential of

the environmental, anthropogenic and trait covariate sets,

to explain spatial patterns in both total and at-risk species

richness. For a given taxon, we fitted separate models to

both the total number of species and the total number of

species classified as at-risk (G1, G2, or G3) occurring in

a cell. To account for spatial autocorrelation (SAC) we

used a “blocking” method, whereby we split the data into

ten sampling blocks based on ecoregions (Olson et al.,

2001: http://www.worldwildlife.org/science/data). We fitted

the models to nine of the ten sampling blocks and tested per-

formance on the omitted block using R2. This process was

repeated ten times, resulting in ten RF models of both total

and of at-risk species richness for each taxon. Models were fit-

ted using the “randomForest” package in R (Liaw & Wiener,

2002).

Variable importance for each response (total richness, at-

risk richness) and taxon (birds, mammals) was calculated

using a permutation accuracy measure (Strobl, Boulesteix,

Zeileis, & Hothorn, 2007) using the 10 RF models. To enable

comparison between models and taxa, the relative variable

importance was calculated by dividing the importance of

each individual variable by the summed importance across

all variables. To prevent bias towards categories with more

variables, the mean relative variable importance was taken

for each of three broad variable categories: biological traits,

environment, and anthropogenic variables. We used repeated

measures ANOVAs to test for significant differences in both

individual and mean categorized variable importance among

birds and mammals for both model responses.

To assess variable relationships, we made predictions to a

data set where all but the focal variable were held at their mean

(or modal) value. We repeated this for each of the ten models

for the four combinations of response and taxon. To aid com-

parison of variable relationships, all predictions were scaled to

have a mean of zero and a standard deviation of one. All anal-

yses were carried out in R 3.3.1 (R Development Core Team,

2016). Where mean metrics of model fit are given, these are

accompanied by standard deviations (SD). Additional details

on covariates and methods for model fitting, accounting for

SAC, and assessing model fit are given in the supporting

information.

3 RESULTS

Models fitted to total and at-risk bird species richness

explained a moderate amount of variation in observed

richness patterns (total species richness: mean R2 = 0.67,

±0.23, at-risk species richness: mean R2 = 0.58, ±0.22,

Figures 1a and b). Models fitted to total and at-risk mammal

species richness explained a large amount of the variation in

the observed richness patterns (total species richness: mean

R2 = 0.84, ±0.10, at-risk species richness: mean R2 = 0.87,

±0.07, Figures 1c and d).

Environmental variables were significantly more impor-

tant than either anthropogenic variables or biological traits

for explaining both total and at-risk bird species richness

(Figure 2, Table S4). There were, however, no significant dif-

ferences in the importance of individual variables when com-

paring models of total and at-risk bird species richness (Paired

Wilcoxon test: V = 7546, P = 0.39, Figure 2). For mammals,

environmental variables were also significantly more impor-

tant than both anthropogenic factors and biological traits for

explaining total species richness, and of significantly greater

importance than anthropogenic factors for explaining at-risk

species richness (Figure 3, Table S4). There were, however,

no significant differences in the importance of individual

variables between models of total and at-risk mammal species

richness (Paired Wilcoxon test: V = 9055, P = 0.98, Figure 3).

In several cases, partial relationships between individual

variables and total species richness differed from those

with at-risk species richness (Figure 4). For both birds and

mammals, anthropogenic land use was negatively related to

total species richness, but positively related to at-risk species

richness. The area of protected land showed a positive rela-

tionship with both bird and mammal at-risk species richness,

whilst the relationship with total species richness was hump

shaped for both taxa. For birds, environments with more

seasonality in precipitation supported lower total species

richness but greater at-risk species richness. Whilst there is a

limited relationship between diversity of elevation and total

species richness, more elevationally diverse areas supported

more at-risk species. There were substantial differences in

the partial relationships between individual variables and

total and at-risk bird species richness for all biological trait

variables (Figure 4f and Figure S1l-r). For mammals, the

greatest number of at-risk mammal species occurred at the

http://www.worldwildlife.org/science/data
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F I G U R E 1 Model predicted distributions of total (a) and at-risk (b) bird species richness and total (c) and at-risk (d) mammal species

richness. Note the different scales for each panel. Total species richness is shown in quantiles, with associated species counts indicated in brackets,

whilst at-risk species richness is on a continuous scale

lowest elevations, but the greatest total species richness

occurred at the highest elevations (Figure 4i).

4 DISCUSSION

Our results demonstrate, at a near-continental scale, that

abiotic environmental parameters are generally the most

important drivers of variation in both total and at-risk species

richness of both birds and mammals. Significantly, our

models also show that, despite the similar importance of each

variable in explaining total and at-risk species richness, there

are striking differences in the effects of these variables. We

discuss our findings in light of the processes driving spatial

patterns of extinction risk and the utility of our analyses for

conservation practitioners.

4.1 The biological and spatial factors
associated with extinction risk
The predominant drivers of at-risk species richness are the

same as those driving the size of the species pool. In areas

with greater total species richness, niche space is likely to be

more finely partitioned, leading to more naturally rare species,

prone to imperilment (Rohde, 1992). However, this similarity

in variable importance belies crucial differences in the nature

of their effects on patterns of total and threatened species rich-

ness, especially for birds. For example, although total bird

species richness showed a limited relationship with eleva-

tional diversity, at-risk bird species richness increased. By

enabling persistence and diversification through geographic

isolation and providing refuges from adverse environmental

conditions, areas with high levels of topographic heterogene-

ity could promote the occurrence of narrow range endemic

species, which are more naturally prone to extinction (Stein,

Gerstner, & Kreft, 2014).

For mammals, relationships between the explanatory

variables and total and at-risk species richness were more

consistent. However, richness of threatened mammals was

higher at low elevations, despite overall richness increasing

with elevation. This may be linked to habitat loss and

degradation associated with human development pressures

along southeastern U.S. coastal habitats (Oli, Holler, &

Wooten, 2001) and low elevation, early-seral, and open

plant communities in the arid and semiarid regions of the

western United States (Kofron & Villablanca, 2016), both

of which may disproportionately affect the small mammal

communities that inhabit those environments.

For birds and mammals, both anthropogenic land use and

area of protected land had contrasting effects on the richness

of total and at-risk species richness. For example, total species
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F I G U R E 2 Relative variable importance from the 10 random forest models fitted to explain the distribution of the total number (G1–G5) and

the total number of at-risk (G1, G2, and G3) bird species across CONUS. The mean variable importance for each category is shown for both at-risk

(a) and total (b) species richness. Individual variable importance scores are also shown for at-risk (c) and total (d) species richness. The line across

each box indicates the median and the box boundaries indicate the interquartile range (IQR). Whiskers identify extreme data points that are not more

than 1.5 times the IQR on both sides; the dots are more extreme outliers

richness in both taxa declined with the area of anthropogenic

land use, whilst the richness of at-risk species increased.

Human activities and associated land use changes often lead

to habitat loss and fragmentation, increasing the threats to

which species are exposed, and resulting in a greater num-

ber of at-risk species but a lower number of species overall

(Pautasso, 2007). Area of protected land showed a positive

relationship with at-risk species richness, implying that pro-

tected areas are acting as habitat refugia, enabling the per-

sistence of threatened species in areas with limited anthro-

pogenic influence. Meanwhile, area of protected land showed

a hump-shaped relationship with total species richness. This

is consistent with the idea that protection often targets areas

with high remaining species richness but marginal economic

value, such as areas of high elevation or low soil productivity

(Scott et al., 2001).

Our measures of spatial variation in biological traits are

relatively coarse, potentially underrepresenting their impor-

tance in influencing at-risk species richness. Nevertheless,

our results show biological traits to be more important than

anthropogenic factors for determining at-risk species richness

for both birds and mammals. Differences between taxa in the

importance of biological traits could be a consequence of rel-

ative dispersal abilities, affecting species’ capacity to explore

the surrounding environment and adjust distributions accord-

ingly (Moura et al., 2016). Good dispersers are more likely

to be at equilibrium with conditions, whilst poor dispersers

are more likely to be restricted by abiotic barriers to move-

ment (Arita & Rodríguez, 2004). Non-volant mammals are

generally less vagile than birds, potentially explaining why

biological traits are relatively more important for mammals

than birds. Additionally, the differences between the impor-

tance of environmental factors, anthropogenic stressors, and

biological traits for birds and mammals could relate to their

different sensitivities to threatening processes. For example,

birds have been shown to be more sensitive to the impacts of

climate change than mammals, whereas mammals are more

sensitive to the impacts of overexploitation (Ducatez & Shine,

2016). Overexploitation has a direct effect on species, with

the effect greatest for species with larger body masses, and

slower life histories, indicating why biological traits may be

more important for mammals than for birds (González-Suárez

et al., 2013).

4.2 The utility of extinction risk studies
Given the lack of congruence in the distributions of at-risk

species richness between taxonomic groups, choosing where

to focus action, and what those actions should be, can be a

predicament for conservation planners. By understanding the
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F I G U R E 3 Relative variable importance from the 10 random forest models fitted to explain the distribution of the total number (G1–G5) and

the total number of at-risk (G1, G2, and G3) mammalian species across CONUS. The mean variable importance for each category is shown for both

at-risk (a) and total (b) species richness. Individual variable importance scores are also shown for at-risk (c) and total (d) species richness. Interpreta-

tion of box and whiskers is as for Figure 2

location of and the threats to biodiversity, we are better able to

evaluate the relative costs and benefits of different conserva-

tion actions (Wilson et al., 2005). Here, we comment on the

implications of our findings, and the utility of our approach

for four areas of practical conservation.

Large-scale conservation relies heavily on the establish-

ment of new protected areas (Pimm, Jenkins, & Li, 2018).

Protected areas, however, are often established in areas with

low opportunity costs, limiting the potential benefits for biodi-

versity (Tesfaw et al., 2018). By combining spatially explicit

information on the occurrence of a large collection of species,

with potential drivers associated with extinction risk, our

approach guards against siting reserves in areas of low stake-

holder conflict with little biodiversity conservation benefit

and can identify factors that should be addressed in conser-

vation plans associated with reserve establishment.

Another pragmatic consideration relates to the high

incidence of threatened biodiversity on private lands (Groves

et al., 2000). Many governments now supplement pub-

licly owned resources with funded conservation programs

on private grounds (Gordon, Langford, White, Todd, &

Bastin, 2011) or enter into public–private partnerships that

plan for species conservation while maintaining private

landowner land use flexibility (Langpap & Kerkvliet, 2012).

The approach we have presented here can help to guide

locations for public–private partnerships and to identify

the most appropriate local conservation. For example, the

link between dispersal ability and at-risk species richness

indicates the importance of management strategies that pro-

mote functional connectivity in landscapes where mammal

species are at risk. Our correlative approach is, of course,

vulnerable to identifying noncausal processes. With cautious

interpretation, however, the results still offer insight into the

processes driving at-risk species richness. For instance, we

point to our interpretation of the relationship between at-risk

mammal species richness and minimum elevation, which

suggests a role for human development pressures in low lying

coastal and shrubland areas.

Our approach also yields conservation recommendations

for the management of existing public lands. Although these

lands are “protected,” many of the agencies responsible for

their stewardship operate under a multiple-use mandate,

permitting resource extraction activities like timber harvest-

ing, livestock grazing, and mining. Using the U.S. Forest

Service as an example, management of their lands is guided

by the 2012 Planning Rule (USDA, Forest Service, 2012)

that defines the requirements for developing and revising

land resource management plans on National Forests and

Grasslands. These plans are required to provide the ecological

conditions necessary to maintain species of conservation
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F I G U R E 4 Relationships between variables and the predicted number of at-risk (blue lines) and total number (yellow lines) of birds (a–f) and

mammals (g–l) in a grid cell. The lines show the mean predictions, with other variables held at their mean values, from across the 10 random forests.

Shaded areas are the standard deviations around those means. To aid comparison, predictions have been scaled to have a mean of one and a standard

deviation of zero. Relationship plots for all individual variables can be found in the supporting information (Figures S1 and S2)

concern. The observation unit of our approach is, in most

cases, of sufficient resolution to describe the heterogeneity of

at-risk species occurrence within a National Forest. Models

identifying the important drivers of concentrations of these

species can inform decisions regarding what proportions of

National Forests should be dedicated to species conservation

and which can contribute to the provisioning of ecosystem

services.

Finally, in an era of rapid global change, it would be

naïve to assume that regions targeted for conservation under

current conditions would remain immutable. Our approach

can be coupled with projections of environmental attributes

and anthropogenic stressors to anticipate where spatially

explicit targeting for species conservation might shift in the

future.

Successful conservation planning must occur regionally

or across whole landscapes, as this is the scale at which the

ultimate political and economic drivers of threatening pro-

cesses take place. Natural resource agencies and conservation

organizations, however, often only work within their own

jurisdictions, which can lead to diffuse and uncoordinated

efforts and less comprehensive conservation action (Aycrigg

et al., 2016). If biodiversity is to be fully protected in the

face of climate change, urban expansion, wildfires and

other large-scale threatening processes, conservation efforts

must incorporate landscape-scale strategies alongside the
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species-by-species and site-specific conservation strategies

that currently dominate efforts to stem extinction (Likens &

Lindenmayer, 2012), particularly in the United States (Evans

et al., 2016). By assessing the drivers of threat at a national

scale, our approach can help to inform a comprehensive

strategy for systematic and resilient habitat conservation.
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