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ABSTRACT 

The coupled mechanical and water retention elasto-plastic constitutive model of 

Wheeler, Sharma and Buisson (the Glasgow Coupled Model, GCM) predicts unique 

unsaturated isotropic normal compression and unsaturated critical state planar surfaces 

for specific volume and degree of saturation when soil states are at the intersection of 

Mechanical (M) and Wetting Retention (WR) yield surfaces. Experimental results from 

tests performed by Sivakumar on unsaturated samples of compacted speswhite kaolin 

confirm the existence and form of these unique surfaces. The GCM provides consistent 

representation of transitions between saturated and unsaturated conditions, including 

the influence of retention hysteresis and the effect of plastic volumetric strains on 

retention behaviour, and it gives unique expressions to predict saturation and de-

saturation conditions (air-exclusion and air-entry points respectively). Mechanical 

behaviour is modelled consistently across these transitions, including appropriate 

variation of mechanical yield stress under both saturated and unsaturated conditions. 

The expressions defining the unsaturated isotropic normal compression planar surfaces 

for specific volume and degree of saturation are central to the development of a 

relatively straightforward methodology for determining values of all GCM parameters 

(soil constants and initial state) from a limited number of laboratory tests. This 

methodology is demonstrated by application to the experimental data of Sivakumar. 

Comparison of model simulations with experimental results for the full set of 

Sivakumar’s isotropic loading stages demonstrates that the model is able to predict 

accurately the variation of both specific volume and degree of saturation during 

isotropic stress paths under saturated and unsaturated conditions.  

 

 

Keywords: unsaturated soils, saturated soils, constitutive relations, mechanical behaviour, water 

retention, suction, saturation, de-saturation, retention hysteresis 
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INTRODUCTION 

Wheeler et al. [51] developed a coupled elasto-plastic constitutive model for 

unsaturated soils, which represents both mechanical behaviour and water retention 

behaviour, including the coupling between them. The model, originally presented 

solely for isotropic stress states, has subsequently been extended to general stress states 

(e.g. Lloret-Cabot et al. [24]) and is referred to hereafter as the Glasgow Coupled Model 

(GCM). In the model, a single yield surface represents mechanical behaviour, with 

plastic volumetric strains  p

vd   and plastic deviatoric strains  
p

qd   occurring during 

yielding on this surface. Two other yield surfaces represent water retention behaviour, 

with plastic changes of degree of saturation  p

rdS   occurring during yielding on either 

of these surfaces. Coupled movements of the three yield surfaces represent the influence 

of plastic changes of degree of saturation on mechanical behaviour and the influence of 

plastic volumetric strains on water retention behaviour. 

In this paper it is shown that the GCM predicts unique expressions for specific volume 

v  and degree of saturation Sr  for stress states involving simultaneous mechanical 

yielding (occurrence of plastic compression) and wetting retention yielding (occurrence 

of plastic increases of Sr). These expressions for  v  and  Sr  facilitate significantly the 

use and interpretation of the model, including determination of model parameter values 

from experimental test data.  

A major challenge of constitutive models for unsaturated soils is the correct 

representation of transitions between unsaturated and saturated conditions. The 

challenge of properly modelling such transitions is intimately linked to consistent 

consideration of retention hysteresis and to the choice of stress state variables, with 

particular difficulties for conventional models expressed in terms of net stresses (excess 

of total stress over pore air pressure) and suction (difference between pore air pressure 

and pore water pressure), because de-saturation during drying will not occur at zero 

suction and subsequent re-saturation on wetting will occur at a different value of 

suction. This paper shows how the GCM is able to provide consistent representation of 

transitions between unsaturated and saturated states, through the use of non-

conventional stress state variables and proper consideration of retention hysteresis. The 

model gives unique expressions to predict saturation and de-saturation conditions, 
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which account for both retention hysteresis and the influence of plastic volumetric 

strains on retention behaviour, and it provides consistent modelling of mechanical 

behaviour across these transitions.  

 

THE GLASGOW COUPLED MODEL (GCM) 

The stress variables used in the GCM are “Bishops’s stress” tensor  σij
* (sometimes also 

called “average soil skeleton stress”, Jommi [19]) and “modified suction”  s* . The stress 

tensor  σij
*  is similar to the effective stress expression proposed by Bishop in 1959 [4] 

but with his weighting factor  replaced by the degree of saturation (as suggested in 

Schrefler [36]). For the restricted range of stress states that apply in the triaxial test, it 

is sufficient to consider only mean Bishop’s stress  p* , deviator stress  q  and modified 

suction  s* , defined as follows: 

 * 1r w r a rp p S u S u p S s            (1) 

31  q          (2) 

 *

a ws n u u ns           (3) 

where  p  is mean total stress,  uw  is pore water pressure,  ua  is pore air pressure,  σ1  

and  σ3  are, respectively, major and minor principal total stresses and  n  is porosity.  

p   and  s  are mean net stress and matric suction respectively, where  p  , q  and  s  are 

the stress variables used in many more conventional mechanical constitutive models 

for unsaturated soils, such as the Barcelona Basic Model (BBM) of Alonso et al. [1]. 

The stress variables  p* , q  and  s*  are work-conjugate with volumetric strain increment  

dεv , deviatoric strain increment  dεq  and decrement of degree of saturation  –dSr  

respectively (Houlsby [18]).  

Elastic components of  dεv,  dεq  and  –dSr  are given by: 

*

*

e

v

dp
d

vp


           (4) 
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3

e

q

dq
d

G
           (5) 

*

*

s

ds
dS se

r


          (6) 

where  κ  is the elastic swelling index, giving the gradient of elastic swelling lines in 

the  v:
*ln p   plane (mechanical behaviour),  G  is the elastic shear modulus (mechanical 

behaviour) and  κs  is the gradient of elastic scanning curves in the  Sr:
*ln s   plane (water 

retention behaviour). 

The model includes three yield surfaces in  p*:q:s*  space: a Mechanical (M) yield 

surface to represent mechanical behaviour (originally referred to as the Loading 

Collapse (LC) yield surface in Wheeler et al. [51]) and Wetting Retention (WR) and 

Drying Retention (DR) yield surfaces to represent water retention behaviour (originally 

referred to as, respectively, the Suction Decrease (SD) and Suction Increase (SI) yield 

surfaces). Plastic volumetric strains and plastic deviatoric strains occur during yielding 

on the M surface, whereas plastic changes of degree of saturation occur during yielding 

on WR or DR surfaces. The re-naming of the yield surfaces from the original 

terminology used in [51] is to make explicit the fact that the M surface is the only one 

of the three describing mechanical yielding (and this can occur during loading, wetting 

or drying, see Lloret-Cabot et al. [25]), whereas the other two describe retention 

behaviour. This contrasts with the BBM, where both LC and SI yield surfaces represent 

mechanical behaviour (Alonso et al. [1]). 

The equations of M, WR and DR surfaces are given respectively by:  

 2 2 * * *

0 0q p p p          (7) 

* *

1 0s s           (8) 

* *

2 0s s           (9) 

where     is a soil constant and  p0
* , s1

*  and  s2
*  are hardening parameters defining 

the current positions of the M, WR and DR yield surfaces respectively (Figure 1). 
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Equation 7 indicates that constant  s*  cross-sections of the mechanical yield surface are 

elliptical in shape (of aspect ratio    ) and the size  p0
*  of these cross-sections does 

not vary with  s* . Equations 8 and 9 indicate that the WR and DR surfaces form vertical 

walls in  p*:q:s*  space (Figure 1). 

Associated flow rules are assumed on all three yield surfaces. This means that yielding 

on the M  surface alone corresponds to: 

 2*2

*2












p

v

p

q

d

d
  and  0p

rdS    (10) 

where  η* = q/p* . Similarly, yielding on the WR surface alone corresponds to: 

0p p

q vd d             and  
p

rdS  > 0   (11) 

and yielding on the DR surface alone corresponds to: 

0p p

q vd d             and  
p

rdS  < 0   (12) 

The hardening law giving movements of the M yield surface includes a direct 

component of movement caused by plastic volumetric strain (due to yielding on the M 

surface) but also a second (coupled) component of movement caused by any plastic 

changes of  Sr  due to yielding on WR or DR surfaces: 

*

0
1*

0

p p

v r

s s

dp vd dS
k

p


 
     

       (13) 

where  λ  and  κ  are the gradients of normal compression lines and swelling lines 

respectively in the  v:
*ln p   plane for isotropic loading and unloading tests involving no 

plastic changes of  Sr  (such as saturated tests),  λs  and  κs  are the gradients of main 

wetting/drying curves and scanning curves respectively in the  Sr:
*ln s   plane (see 

Figure 2a) for retention tests involving no plastic volumetric strains, and  k1  is a 

coupling parameter.   

Similarly, the hardening law giving movements of the WR or DR yield surfaces includes 

a direct component of movement caused by plastic change of  Sr  (due to yielding on 
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the WR or DR surface) and a second (coupled) component of movement caused  by any 

plastic volumetric strains due to yielding on the M surface: 





 





p

v

ss

p

r
vd

k
dS

s

ds

s

ds
2*

2

*

2

*

1

*

1              (14) 

where  k2  is a second coupling parameter. Equation 14 ensures that the movements of 

the DR and WR yield surfaces are such that the ratio of  
*

2
s   to  

*

1
s   (the spacing of the 

DR and WR surfaces when plotted in terms of  *ln s ) remains constant: 

R
s

s


*

1

*

2          (15) 

where  R  is a soil constant. 

The special cases of the hardening laws during yielding on only a single yield surface 

(M, WR or DR) are given by inserting the relevant condition from Equation 10, 11 or 

12 ( 0p

rdS  or  0p

vd  ) into Equations 13 and 14. 

When the soil reaches a saturated condition ( 1
r

S ), further elastic increases of  Sr  are 

prevented (Equation 6 no longer applies for decreases of *s ) and further plastic 

increases of  Sr  are prevented ( 0 p

r

p

v

p

q
dSdd   replaces Equation 11 for states on 

the WR yield surface alone). In addition, the consistency condition on the WR yield 

surface is removed, so that the stress state can pass beyond the WR surface. This is 

illustrated in Figure 2, with Figure 2a showing water retention behaviour (for conditions 

of no plastic volumetric straining), including a saturated point X, and Figure 2b showing 

the corresponding positions of the yield curves when the stresses are at point X. While 

the soil is saturated, the M yield surface is still operative, and Equation 13 (with  

0p

rdS ) recovers the conventional Modified Cam Clay hardening law (Roscoe and 

Burland [35]). Also, while the soil is saturated, Equation 14 (with 0p

r
dS ) is still used 

to determine coupled movements of the WR and DR surfaces caused by plastic 

volumetric strain. This represents changes of air entry value caused by plastic 

volumetric strain.     



 8 

The model predicts the occurrence of critical states that correspond to the apex of the 

elliptical cross-sections of the  M  yield surface and hence it predicts a unique critical 

state line in the  q:p*  plane: 

*pq           (16) 

The assumption of a unique critical state line in the  q:p*  plane has been demonstrated 

for a range of compacted non-expansive fine grained soils (e.g.  Gallipoli et al. [16], 

Lloret-Cabot et al. [24]). 

 

DERIVATION AND VALIDATION OF EXPRESSIONS FOR  v  AND  Sr 

Isotropic normal compression states 

Due to the coupled movements of the yield surfaces, there is a very wide variety of 

isotropic stress paths that will ultimately arrive at the intersection between M  and WR 

surfaces (Point A  in Figure 3). For example, if yield occurs first on the M surface, this 

will cause a coupled movement of the WR surface, which after a while will typically 

bring the WR surface to the stress point. Similarly, if yield occurs first on the WR 

surface, this will cause a coupled inward movement of the M surface, which after a 

while will typically bring the M surface in to the stress point. More generally, any stress 

paths where plastic volumetric strains and plastic increases of  Sr  occur simultaneously 

correspond to this intersection of M and WR surfaces. Inspection of the literature 

indicates that this behaviour applies to the majority of published experimental data for 

normal compression states. This is because the occurrence of plastic compression 

typically observed during isotropic (or one dimensional) loadings at constant suction 

reduces porosity and, when such reduction is sufficiently large, irreversible increases 

of Sr are also observed, even though suction remains constant during the test (e.g. [8, 

10, 13, 14, 22, 28-30, 32-34, 37, 41, 42, 44, 45, 47, 49, 51]). This type of response is 

also very often observed in available experimental data showing collapse compression 

behaviour on wetting (e.g. [13, 14, 22, 28-30, 32-34, 37, 41, 42, 44, 51]). In this case, 

the plastic increases of Sr caused when decreasing suction tend to reduce the stability 

of the soil skeleton [51] and this loss of stability may potentially result in volumetric 
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compression [25]. From a theoretical point of view, a proper representation of this 

coupling between variations of volumetric strains (mechanical behaviour) and 

variations of degree of saturation or suction (retention behaviour) during loading and 

wetting paths has been the focus of a large number of constitutive relationships 

proposed in the literature (e.g. [1, 3, 9, 12, 13-15, 20, 21, 23-27, 31, 34, 39, 40, 46, 48, 

49, 51-53]), because they potentially play a critical role in the geotechnical response of 

boundary value problems involving unsaturated soils (e.g. [2, 5-7, 11, 17, 22, 38, 43]).  

What can now be shown is that the model predicts unique expressions for  v  and  Sr  

for these isotropic normal compression states at the intersection of M and WR surfaces. 

Combining Equations 13 and 14 gives the following expressions for  p

vd   and  
P

rdS   

in terms of the movements of the M and WR yield surfaces: 

 

 

* *

0 1
1* *

1 2 0 11

p

v

dp ds
d k

v k k p s

    
   

  
      (17) 

 

 

**

01
2* *

1 2 1 01

s sp

r

dpds
dS k

k k s p

    
   

  
      (18) 

Equations 4 and 17, for the elastic and plastic components of volumetric strain, can be 

combined, in order to give the total volumetric strain increment and hence the total 

increment of v : 

 

 

* **

0 1
1* * *

1 2 0 11

dp dsdp
dv k

p k k p s

    
    

  
     (19) 

For an isotropic stress state at the intersection between M and WR surfaces ( * *

0p p   

and  * *

1s s  ) and an isotropic stress increment remaining at this intersection ( * *

0dp dp   

and  * *

1ds ds ), Equation 19 simplifies to: 

*

*
*

1*

*
*

s

ds
k

p

dp
dv           (20) 

 where: 
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21

21*

1 kk

kk







         (21) 

 
 21

1

*

1
1 kk

kk






        (22) 

Integration of Equation 20 indicates that the model predicts that values of  v  for 

isotropic normal compression states at the intersection of M and WR yield surfaces are 

given by the following unique expression: 

**

1

*** lnln skpv          (23) 

where  λ*  and  
*

1k   are soil constants given by Equations 21 and 22, and  *   is an 

additional soil constant. Equation 23 represents a planar surface in  v:
*ln p : *ln s   space, 

as shown in  Figure 4. 

A similar procedure for the variation of  Sr  shows that the model predicts that values 

of  Sr  for isotropic normal compression states at the intersection of M and WR yield 

surfaces are given by: 

**

2

*** lnln pksS sr          (24) 

where  *

s   and  
*

2k   are soil constants given by: 

21

21*

1 kk

kk ss
s







         (25) 

 
 21

2

*

2
1 kk

kk ss







        (26) 

and  *   is an additional soil constant. Equation 24 represents a planar surface in  Sr:

*ln p : *ln s   space, as shown in Figure 5. 

General states 



 11 

Expressions for  v  and  Sr  for any general stress state (see Point B in Figure 3) can now 

be derived by considering an elastic stress path from A (coordinates  *

0p , 0, *

1s  ) to B 

(coordinates  p*, q, s* ): 

*
* * * * * 0

0 1 1 *
ln ln ln

p
v p k s

p

 
       

 
      (27) 

*
* * * * *

1 2 0 *

1

ln ln lnr s s

s
S s k p

s

 
       

 
     (28) 

Equations 27 and 28 provide general expressions for  v  and  Sr  for any stress state (p*, 

q, s*) when the current locations of the M and WR yield surfaces are given by  *

0p   and  

*

1s   respectively. 

For  the particular case of isotropic stress states at the intersection between M and DR 

surfaces (Point C in Figure 3),  
*

0

* pp   , 
*

1

* Rss    and Equations 27 and 28 give: 

* * * * * *

1 1ln ln lnv k R p k s           (29) 

  **

2

**** lnlnln pksRS
sssr

       (30) 

Critical states 

The model predicts that critical states can correspond to any points at the apex of the M  

yield surface, such as Points D, E and F in Figure 3. In practice, however, it will 

normally happen that critical states correspond to the intersection with the WR yield 

surface (i.e. Point D in Figure 3), because yielding on the M surface will cause coupled 

movement of the WR surface that will be sufficient to bring the WR surface to the stress 

point prior to arrival at a critical state.  

Expressions for  v  and  Sr  for critical states corresponding to the intersection of M and 

WR yield surfaces (Point D in Figure 3) can be derived from the general expressions of 

Equations 27 and 28 by inserting  * *

0 2p p  (based on the elliptical shape of constant s* 

cross-sections of the M surface) and  * *

1s s . This gives: 
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**

1

*** lnln skpv         (31) 

**

2

*** lnln pksS sr         (32) 

where  *   and  *   are given by: 

  2ln***          (33) 

2ln*

2

** k        (34) 

Equations 31 and 32 define two unique critical state planar surfaces, in  v:
*ln p : *ln s   

and  Sr:
*ln p : *ln s   spaces respectively. Comparison with Equations 23 and 24 indicates 

that these critical state surfaces for  v  and  Sr  are predicted to be parallel to the 

corresponding normal compression surfaces. 

Experimental validation for isotropic normal compression states 

Experimental data from the tests of Sivakumar [41] on compacted speswhite kaolin are 

used to investigate the validity of the model predictions of unique planar surfaces for  v  

and  Sr  for both isotropic normal compressions states and critical states. 

Experimental results are taken from 15 constant suction isotropic loading tests 

performed by Sivakumar [41] on unsaturated samples at three different values of 

suction  s  (100, 200 and 300 kPa). In each unsaturated test, the isotropic loading was 

preceded by an initial equalisation stage, as the sample was wetted from a substantially 

higher as-compacted value of suction. In all cases, plastic increases of degree of 

saturation occurred during the equalisation stage and plastic volumetric strains and 

increases of  Sr  occurred during the isotropic loading stage, consistent with soil states 

at the intersection of M and WR yield surfaces.  

Figures 4 and 5 show experimental values of v and Sr  from each isotropic loading 

unsaturated test that corresponded to soil states at the intersection of M and WR yield 

surfaces plotted in  v:
*ln p : *ln s   and  Sr:

*ln p : *ln s   spaces respectively, together with 

the corresponding best-fit planar surfaces obtained by least-squares multiple regression. 
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The gradients and intercepts of these best-fit surfaces gave values for  *  , 
*

1k  , *

s  , 

*

2k  , *   and  *  (see Equations 23 and 24), which are listed in Table 1. 

A clearer view of the quality of fit shown in the three-dimensional representation 

presented in Figure 4 is provided by re-plotting the experimental data and best-fit 

surface for  v  in a pair of orthogonal two-dimensional views in Figure 6, using a form 

of plotting where the best-fit surface is reduced to a single straight line in each of the 

two views. Figure 7 provides an equivalent representation for  Sr . Inspection of Figures 

6 and 7 indicates that the two planar surfaces (for  v  and  Sr ) provide excellent fits to 

the experimental data.  

Experimental validation for critical states 

Each of the experimental tests of Sivakumar [41] involved shearing to failure after the 

isotropic loading stage. Figures 8 and 9 show the experimental critical state values of  

v  and  Sr  plotted in  v:
*ln p : *ln s   and  Sr:

*ln p : *ln s   spaces respectively, together with 

the corresponding best-fit planar surfaces obtained by least-squares multiple regression. 

The gradients and intercepts of these best-fit surfaces gave values for  *  , 
*

1k  , *

s  , 

*

2k  , *   and  *  (see Equations 31 and 32), which are listed in Table 2. 

Figures 10 and 11 show pairs of orthogonal two-dimensional views of the critical state 

results, presented in suitable form so that, in each view, the fitted planar surface is 

reduced to a single straight line. Inspection of Figures 10 and 11 shows that the 

experimental critical state results for  v  and  Sr  show a degree of scatter, but 

approximate to planar surfaces in  v:
*ln p : *ln s   and  Sr:

*ln p : *ln s   spaces respectively.  

Tables 1 and 2 include the two sets of experimentally determined values of λ*, k1
*, λs

*, 

and 
*

2k  from isotropic normal compression states and critical states respectively. 

Inspection of these tables show that the two different sets of values of λ* and k1
* (giving 

the gradients of the planar surfaces for v) show good consistency. The values of λs
* and 

k2
* (giving the gradients of the planar surfaces for Sr) show larger differences between 

the two sets.  
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Figure 12 shows a pair of orthogonal two-dimensional representations of the isotropic 

normal compression and critical state data for  v . The continuous lines in Figure 12 

represent the best-fit planar surface to the experimental isotropic normal compression 

data, whereas the dashed lines represent the form of the critical state surface for  v  

predicted by the model (Equations 31 and 33), if values of  *  , λ* ,  and  k1
*  determined 

from the isotropic normal compression planar surface are employed. Inspection of the 

experimental critical state values of  v  shows that the two planar surfaces for  v  are 

approximately parallel, as predicted by the model, but that the vertical spacing between 

the critical state and isotropic normal compression surfaces for  v  is significantly over-

predicted by the model. The over-prediction of the spacing between the two planar 

surfaces for  v  is a consequence of the assumed elliptical shape of constant  s*  cross-

sections of the M yield surface [24] which could be adjusted following similar 

developments with constitutive models for saturated soils. For example, Wheeler et al. 

[50] show that incorporation of evolving plastic anisotropy in an elasto-plastic 

constitutive model for saturated clays (by means of an inclined yield curve with 

evolving inclination) reduces the predicted spacing between critical state line and 

isotropic normal compression line in the  v: pln   plane.  

Figure 13 shows an equivalent pair of orthogonal two-dimensional representations of 

the isotropic normal compression and critical state data for  Sr . Values of  * , *

s   and  

*

2k  determined from the isotropic normal compression planar surface (the solid lines) 

are employed here to plot the dashed lines, which represent the form of the critical state 

surface predicted by the model (Equations 32 and 34). Inspection of Figure 13 shows 

that the vertical spacing between the critical state and isotropic normal compression 

surfaces for  Sr  predicted by the model provides a reasonable match to the experimental 

data, although there is significant scatter.  

 

MODELLING TRANSITIONS BETWEEN UNSATURATED AND SATURATED 

BEHAVIOUR  

The GCM covers both unsaturated states (
r

S  < 1 ) and saturated states ( 1
r

S ). For 

saturated states, the GCM recovers naturally the incremental mechanical constitutive 
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relationships of the MCC model for saturated soils. This is a direct consequence of 

using Bishop’s stress *

ij   as a stress variable of the model because, by definition, *

ij  

becomes the saturated effective stress  'ij   when Sr  = 1, which does not occur for the 

conventional net stress variable  
ij   unless  0s   (see Equation 1). 

For isotropic stress states on the M yield surface, as  Sr  reaches 1 the GCM response 

for v should converge to the conventional saturated Normal Compression Line, NCL:  

ln 'v p          (35) 

where  λ  and  N  are, respectively, the gradient and intercept of the saturated NCL in 

the  v: ln 'p  plane and p′ is the saturated mean effective stress. Manipulation of 

Equations 23 and 24, defining the unsaturated isotropic normal compression planar 

surfaces for  v  and  Sr , shows that for the unsaturated normal compression surface for 

v  (given by Equation 23) to converge to the saturated NCL (Equation 35) at Sr = 1 (as 

given by Equation 24), it is necessary that  κs  =  0. This restriction on the value of κs is 

a consequence of a small inconsistency in the GCM model highlighted by 

Raveendiraraj [32], which is associated with any occurrence of plastic volumetric 

strains while the soil is fully saturated (or fully dry), as illustrated in Figure 14. 

Figure 14 shows a wetting stress path ABC, followed by a loading-unloading cycle 

CDE (not seen in the figure) while the soil is saturated and then a drying path EFG. The 

loading-unloading cycle is such that during CDE plastic volumetric strain occurs, due 

to yielding on the M surface, whereas for simplicity it is assumed that no plastic 

volumetric strains occur during either AB or FG, while the soil is unsaturated. As a 

consequence of the plastic volumetric strain occurring while the soil is saturated, 

coupled movements of the WR and DR yield surfaces occur and this means that the 

water retention curves translate from the positions shown by the fine continuous lines 

in Figure 14 to those shown by the fine dashed lines. As a consequence, whereas the 

soil reaches a saturated state at a value of modified suction  sB
*  during wetting, de-

saturation occurs at a higher value of modified suction  sF
*  during subsequent drying. 

This means that elastic increases of   Sr  occur over the range of modified suction  sF
*  

to  sB
*  during the wetting path (plastic changes of  Sr  also occur) but that elastic 

decreases of  Sr  do not occur between  sB
*  and  sF

*  during the drying path. This means 
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that elastic changes of  Sr  have not been reversible over the range of modified suction  

sB
*  to  sF

* , which contravenes a basic tenet of elastic behaviour. 

The predicted irreversibility of elastic changes of  Sr  introduces inconsistency into the 

model, by incorporating permanent distinction between the effects of past plastic 

volumetric strains occurring at saturated states and those occurring at unsaturated states 

(Raveendiraraj [32]). A simple way to overcome this problem is by assuming  κs  = 0, 

but inevitably this may result in slight deterioration in the representation of water 

retention behaviour. This sacrifice is, however, surprisingly small, because 

experimental values of κs determined from tests on compacted fine-grained soils are 

typically very small (e.g. [24-26]). It is therefore recommended that  0
s

   is assumed 

when the GCM is used in situations where transitions between unsaturated and 

saturated conditions occur (reducing by one the number of soil constants within the 

model). 

With  0
s

 ,  Figure 15 shows a three-dimensional view (in  v:
*ln p : *ln s  space) of 

both the unsaturated isotropic normal compression planar surface for  v  corresponding 

to the intersection of M and WR yield surfaces and the saturated isotropic normal 

compression line (which forms a planar surface parallel to the  *ln s  axis in this three-

dimensional space). The intersection of the two surfaces defines a “saturation line” 

corresponding to the transition from unsaturated to saturated conditions. Figure 16 

shows the equivalent surfaces for  Sr  (in  
r

S :
*ln p : *ln s   space), with the intersection 

between unsaturated and saturated surfaces corresponding to the same saturation line 

as in Figure 15. Also shown in Figures 15 and 16 is a typical stress path ASB involving 

transition from unsaturated to saturated conditions at point S.  

Derivation of expressions for saturation and de-saturation lines 

Adopting  κs  =  0, Equations 21 and 22 remain unchanged, and Equations 25 and 26 

become: 

*

1 21

s
s

k k


 


        (36) 
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 
*

2 2

1 21

sk k
k k





       (37) 

Putting  Sr  = 1 in Equation 24, which defines the unsaturated normal compression 

planar surface for Sr , with  
*

s
   and  

*

2
k   given by Equations 36 and 37, produces an 

expression for the saturation line shown in Figures 15 and 16:  

*

2*

*

* ln
1

ln pks
s







      (38) 

Inserting the expression for the saturation line of Equation 38 in the expression for the 

unsaturated normal compression planar surface for v (Equation 23), gives an expression 

for the saturated NCL:  

 
 1* * *1 ln

s

k
v p

  
    


     (39) 

Comparing Equation 39 with the standard expression for the saturated NCL (Equation 

35), and remembering  pp *
  when  1

r
S  , shows that the intercepts  

* , N*  and  

N  are related:  

 
 

*

*

1

1
s

k

  
  

  
       (40) 

The saturation line defined by Equation 38 represents the combinations of  *s   and  
*p   

at which transitions from unsaturated to saturated conditions will occur if the stress 

state is isotropic and at the intersection between M and WR yield surfaces. With  0
s



,  transitions from unsaturated to saturated conditions can only occur whilst on the WR 

yield surface, but it is not necessary for the stress state to be on the M yield surface or 

for the stress state to be isotropic at the point of transition from unsaturated to saturated 

conditions. Given that changes of  
*p   or  q  do not produce elastic changes of  Sr , it is 

straightforward to use Equation 38 to derive a generalised expression for transition from 

unsaturated to saturated conditions, applicable to any isotropic or anisotropic stress 

states, including those not on the M yield surface, by considering an elastic stress path 
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along the WR yield surface from the intersection with the M yield surface at 0q . This 

generalised expression for transition from unsaturated to saturated conditions under any 

stress state takes the form: 

*

02*

*

* ln
1

ln pks
s







      (41) 

This can be re-written as: 

  2*

0*

*

* 1
exp

k

s

ps 








 



      (42) 

The general expression for the saturation line, corresponding to transition from 

unsaturated to saturated conditions (sometimes known as the air-exclusion point), 

defined by Equation 41 or Equation 42, is illustrated in Figure 17 (in both a log-log plot 

and a linear plot). Note that Equations 41 and 42 and Figure 17 show that the saturation 

value of  *s   is uniquely dependent on the position of the M yield surface (i.e. the value 

of  
*

0
p ). 

Transitions in the reverse direction, from saturated to unsaturated conditions, must 

occur on the DR yield surface if  0
s

 , but it is not necessary for the stress state at the 

point of de-saturation to be on the M surface. This transition from saturated to 

unsaturated conditions occurs on a “de-saturation line” defined by: 

  2*

0*

*

* 1
exp

k

s

pRs 








 



      (43) 

where  R  is the soil constant defining the fixed ratio of  
*

2
s   to  

*

1
s   (see Equation 15). 

Figure 17 shows the form of the de-saturation line defined by Equation 43, 

corresponding to transition from saturated to unsaturated conditions (sometimes known 

as the air-entry point). 

Figure 17 illustrates that the GCM includes the influences of both retention hysteresis 

and plastic volumetric straining on transitions between saturated and unsaturated 
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conditions. The difference between the saturation and de-saturation values of  *s   (at 

the same value of  
*

0
p  ) shows the influence of retention hysteresis, whereas the 

variation of both saturation and de-saturation values of  *s   with  
*

0
p   shows the 

influence of plastic volumetric strains on air-exclusion and air-entry points. 

Mechanical yielding under saturated and unsaturated conditions 

Figure 18 illustrates how the GCM provides consistent modelling of mechanical 

yielding under both saturated and unsaturated conditions. The figure shows a wetting-

drying cycle ABCDEF involving transitions between unsaturated and saturated 

conditions during both wetting and drying (at points B and E respectively). The stress 

path starts on the WR yield surface at A but remains inside the M yield surface 

throughout. The stress path shown in Figure 18 in both the  *s :
*p   plane (Figure 18a) 

and the conventional  s : p   plane (Figure 18b) happens to represent a wetting-drying 

cycle performed at constant  p ,  but the discussion presented in this section would 

apply equally well to any general wetting-drying path remaining inside the M yield 

surface. 

Also shown in Figure 18a is the variation of mechanical yield stress  
*

0
p   predicted by 

the GCM during the wetting-drying cycle, representing the coupled movement of the 

M yield surface. The value of  
*

0
p   reduces during the initial unsaturated section AB of 

the wetting path, due to the coupled inward movement of the M surface caused by the 

plastic increases of  Sr  during yielding on the WR surface (see Equation 13). However, 

during the final saturated section BC of the wetting path, the value of  
*

0
p   remains 

constant, as there are no longer any plastic increases of  Sr  to produce further coupled 

movement of the M surface. During drying path CDEF the stress path passes back inside 

the WR surface at point D, but de-saturation only occurs when the stress path reaches 

the DR surface at E. The value of  
*

0
p   therefore remains constant during the initial 

saturated section CDE of the drying path and then increases during the final unsaturated 

section EF (see Equation 13). 

Figure 18b shows the variation of mechanical yield stress predicted by the GCM during 

the wetting-drying cycle ABCDEF re-plotted in the conventional  s : p   plane. The 
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variation of mechanical yield stress during the unsaturated section AB of the wetting 

path is equivalent to the LC yield curve in conventional models such as the BBM. From 

B to C, however, with the soil in a saturated condition, the variation of mechanical yield 

stress for the GCM plots as a 45° line in the  s : p   plane, consistent with yield at a 

constant value of saturated mean effective stress ( spupp
w

 ). During the 

drying path CDEF the variation of mechanical yield stress follows a 45° line until the 

soil de-saturates at E, and then from E to F it forms a curve again. The qualitative form 

of variation of mechanical yield stress shown in Figure 18b is exactly what would be 

expected for a soil under unsaturated and saturated conditions, where saturation occurs 

at a non-zero air-exclusion value of suction (point B) and de-saturation occurs at a non-

zero air-entry value of suction (point E) that is higher than the air-exclusion value 

because of hysteresis in the retention behaviour. This variation of mechanical yield 

stress emerges naturally from the GCM, whereas it would be very difficult to achieve 

in any mechanical model expressed in terms of net stresses and suction. 

 

DETERMINATION OF MODEL PARAMETER VALUES  

With  0
s

  , the GCM involves 10 soil constants:  λ, κ, N, M, G, N*, k1, k2, s
  and  R. 

The first 5 constants are the Modified Cam Clay parameters, required for modelling of 

mechanical behaviour under saturated conditions, whereas the other 5 constants are 

required to extend the modelling to include mechanical behaviour under unsaturated 

conditions, water retention behaviour and the coupling between them. The values of the 

10 constants must be determined for a given soil if the model is to be used in numerical 

simulations of single element laboratory tests or geotechnical boundary value problems 

where both saturated and unsaturated conditions occur. In addition, the initial state of 

the soil must be specified for any numerical simulation, including appropriate variation 

of this initial state with position (e.g. with depth) in a boundary value problem.  

Soil constants 

The values of soil constants  λ , κ  and  N  can be determined from conventional isotropic 

loading and unloading stages performed in a triaxial apparatus on saturated samples. 

The value of  M  can be determined from experimental critical state data for saturated 
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and unsaturated samples plotted in the  q :
*p   plane (see Equation 16), and the value 

of  G  can be measured in triaxial shear tests on saturated or unsaturated samples (ideally 

involving unload-reload stages). 

It might appear that the values of soil constants  
s

   and  R  would best be determined 

from conventional water retention curves (measured, for example in a pressure plate 

test) plotted in the  
r

S : *ln s   plane, with  
s

   given by the gradient of the main drying 

and main wetting curves and  R  calculated from the spacing of the main drying curve 

and the main wetting curve. However, this procedure would often give misleading 

values for  
s

   and  R , because conventional water retention tests will often involve 

plastic volumetric strains, and under these conditions the GCM predicts that the 

gradients and spacing of the main drying and main wetting curves do not correspond 

simply to  
s

   and  R.  A better alternative is therefore to use experimental data from 

isotropic loading under unsaturated conditions (at a minimum of two different values 

of suction) to define the unsaturated isotropic normal compression planar surfaces for  

v  and  Sr  corresponding to the intersection of M and WR yield surfaces, and to use the 

gradients and intercepts of these surfaces to determine the values of the soil constants  

k1, k2 , s
  and  N*. 

When plotted in  v :
*ln p : *ln s   space, the intercept of the experimental unsaturated 

normal compression surface for  v  gives the value of the soil constant  N*  directly 

(Equation 23). With values of     and     already determined from tests on saturated 

samples, the two gradients  *   and  
*

1
k  of the experimental unsaturated normal 

compression surface for  v  (see Equation 23) can then be used to determine values for 

the soil constants  k1  and  k2 , by combining Equations  21 and 22 to give: 

 


*

*

1
1

k
k         (44) 

*

1

*

2
k

k
 

         (45) 
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The corresponding experimental unsaturated normal compression surface for  Sr  (see 

Equation 24) can then be used to determine the value of the soil constant  
s

 .  With  

0
s

   and values already determined for the soil constants   ,  , N, N*, k1  and  k2,  

Equations 40, 36 and 37 show that the intercept  
*   and the two gradients,  

*

s
   and  

*

2
k  

, of the unsaturated normal compression surface for  Sr  all depend solely on the value 

of  
s

 .  Least-squares fitting of Equation 24 to the experimental data defining the planar 

surface in  
r

S :
*ln p : *ln s   space, with the value of  

s
   as the sole degree of freedom, 

can be used to determine a value for  
s

 . 

The procedure described above for determining the values of  N*, k1 ,  k2  and  
s

 , allows 

three degrees of freedom (the values of  N*, k1  and  k2) for fitting the intercept and the 

two gradients of the unsaturated normal compression surface for  v , but only a single 

degree of freedom (the value of  
s

 ) for fitting the intercept and the two gradients of 

the unsaturated normal compression surface for  Sr.  If this results in poor fitting of the 

experimental data defining the unsaturated normal compression surface for  Sr , it may 

be appropriate to perform iterative adjustment of parameter values, to improve the fit 

of the surface for  Sr , whilst slightly compromising the fit of the surface for  v. 

The final soil constant  R  is required only if the GCM is to be used for simulations 

involving yielding on both WR and DR retention yield surfaces. The value of  R  can be 

determined by comparing experimental values of  v  for isotropic stress states at the 

intersection of DR and M yield surfaces with Equation 29 (with  0
s

 ). Suitable 

experimental tests would include drying of samples starting in normally consolidated 

saturated states.   

The methodology for determining the values of  λ, κ, N, N*, k1, k2  and 
s

  was applied 

to the experimental results of Sivakumar [41], including saturated and unsaturated tests, 

resulting in the values shown in Table 3. 

Initial state     
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The initial state of the soil must be specified for any numerical simulation. For the 

GCM, this initial state is represented by initial values of the stress variables  *

ij
   and  

*s   (
*p , q   and  *s   are sufficient for the case of a triaxial test) and initial values of the 

hardening parameters  
*

0
p   and  

*

1
s  (or  

*

2
s ). 

For simulations of laboratory tests, it is likely that the initial state will be known in 

terms of initial values of conventional stress variables,  p , q  and  s, and initial values 

of  v  and  Sr . These can be combined to give initial values of  
*p , q   and  *s  (Equations 

1 and 3). With the values of soil constants already determined, the general expressions 

for  v  and  Sr  of Equations 27 and 28 can be combined (using  0
s

   and Equations 

21, 22, 36 and 37) to give expressions for the initial values of the hardening parameters  

*

0
p   and  

*

1
s   in terms of the initial values of  

*p , v  and  Sr  (the initial value of  *s   is 

not involved, because of the assumption  0
s

 ): 

 ** *
1*

0

ln
ln

r

s

k Sv p
p

    
 

   
   (46) 

 * **
2*

1

ln
ln r

s

k v pS
s

   
 

   
   (47) 

where  
*   is given by Equation 40.  

Having calculated initial values of  
*

0
p   and  

*

1
s   from Equations 46 and 47, these should 

be checked to ensure that the initial stress state does not fall outside any of the yield 

surfaces. If this condition is not satisfied, it will be necessary to adjust slightly the initial 

value of  Sr  or  v  (accepting that it will not then perfectly match the experimental value) 

in order to adjust the values of  
*

0
p   and  

*

1
s   (Equations 46 and 47) such that the initial 

stress state now falls on or inside the relevant yield surface. Similar adjustment of the 

initial value of  v  or  Sr  may be required if experimental evidence suggests that the 

initial stress state lies exactly on one of the yield surfaces. To bring the initial stress 

state exactly on to one of the yield surfaces, through adjustment of the initial value of  

Sr  or  v , it will normally be necessary to employ an iterative procedure, because the 



 24 

initial stress state is normally known in terms of the conventional stress parameters  p

, q  and  s  (rather than  
*p , q  and  *s ), and adjustment of the initial value of  Sr  or  v  

will then lead to a change of the initial value of  
*p   or  *s   (see Equations 1 and 3).  

The methodology for determining initial state described above was applied to the tests 

of Sivakumar [41], for the initial state corresponding to the start of the isotropic loading 

stage of those tests performed at a suction of 300 kPa ( 50p kPa, 0q , 300s kPa). 

The corresponding average initial experimental values of  v  and  Sr  measured for this 

group of tests were 2.210 and 0.597 respectively. Experimental evidence suggested that 

the initial state was on the WR yield surface but not necessarily on the M yield surface 

(plastic increase of  Sr  but no plastic volumetric strain (no collapse compression) 

occurred during the preceding wetting from the much higher as-compacted value of 

suction). The procedure to calculate the initial values of  
*p   and  *s   and the initial 

values of the hardening parameters  
*

0
p   and  

*

1
s   (using Equations 46 and 47) therefore 

included iterative adjustment of the initial value of  Sr  to ensure that the initial state fell 

exactly on the WR yield surface (
*

1

* ss  ). The values of soil constants used in this 

process were those previously determined and shown in Table 3. The resulting initial 

value of  Sr  was 0.562 (rather than the average experimental value of 0.597) and the 

full calculated initial state conditions are given in Table 4. 

For simulations of boundary value problems, the initial state will typically vary with 

depth within a given soil layer. To represent this, the variations with depth of initial 

stress state and stress history in terms of net stresses  
ij

   and suction  s  will first need 

to be estimated, using similar procedures to those employed for boundary value 

problems involving saturated conditions. This information will then need to be 

combined with the relevant GCM model equations, and the values of the 10 GCM 

constants for the particular soil (typically determined from laboratory test data), to 

estimate the variation with depth of the initial stress state in terms of Bishop’s stresses  

*

ij
   and modified suction  *s   and the variation with depth of the initial values of the 

hardening parameters  
*

0
p   and  

*

1
s .  
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Once the initial state of a boundary value problem has been specified, it is useful to 

express the incremental mechanical and water retention relationships of the GCM, in 

terms of the increments of strains  and the increments of matric suction s (see [23, 

24]) because, together, they define an initial value problem that can be integrated over 

time at each Gauss or integration point within each finite element (i.e. local level). This 

is the common procedure used in the literature for finite element analysis involving 

unsaturated soils [5, 38, 43], because these two increments (i.e. , s) can be easily 

approximated at the corresponding integration points, once the nodal displacements and 

pore fluid pressures increments have been found from the discretized global equations.  

 

SIMULATIONS OF EXPERIMENTAL DATA OF SIVAKUMAR (1993)  

Validation of the GCM was undertaken by performing model simulations of the 

experimental tests of Sivakumar [41] performed on saturated and unsaturated samples 

of compacted speswhite kaolin at suctions of 0, 100, 200 and 300 kPa. Model 

simulations of initial equalisation stages and isotropic loading stages are discussed here, 

whereas model simulations of subsequent shearing stages are discussed elsewhere ([24, 

26]). Model simulations were performed using the set of values for soil constants shown 

in Table 3. 

All simulations commenced from the same initial state A, corresponding to the end of 

the initial equalisation stage for those samples tested at a suction of 300 kPa, as shown 

in Table 4. For tests conducted at suctions of 200kPa or 100kPa the simulations 

commenced with an initial wetting stage, AB or AC respectively, (at  p  = 50 kPa) from 

300s kPa  to the required value of s, to represent the remainder of the initial 

equalisation stage for these tests. For tests conducted at zero suction the simulations 

were designed to replicate the stress path followed by Sivakumar [41] in the initial 

equalisation stage of his tests on saturated samples. This required initial isotropic 

unloading AD (at  300s kPa) from  50p kPa  to  40p kPa , followed by wetting 

DE (at  40p kPa) from  300s kPa  to  0s , and then finally isotropic unloading 

EF (at  0s ) from  40p kPa  to  25p kPa.  These procedures ensured that 

simulations performed at all four values of suction employed consistent initial states at 
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the start of the subsequent isotropic loading stages, with differences of  v  and  Sr  that 

were consistent with model predictions.  

Figures 19 and 20 show experimental variations of  v against p* and p  respectively 

(with stresses on both linear and logarithmic scales) from the isotropic loading stages 

performed at all four different values of suction, plotted together with the corresponding 

model simulations. Variations of Sr are presented in Figure 21 against p*. In Figures 19-

21, model simulations of the initial equalisation stages from the common starting point 

A are indicated by dashed lines, simulations of constant suction isotropic loading stages 

are indicated by thick solid lines and experimental results for isotropic loading stages 

are indicated by symbols joined by thinner solid lines.  

Inspection of Figures 19 and 21 shows that the GCM simulations capture the observed 

changes of  v  and  Sr  during the equalisation stages of the tests conducted at suctions 

of 200kPa, 100kPa and 0, relative to the common starting point A of the simulations. 

As a consequence, the predicted values of  v  and  Sr  at the start of the isotropic loading 

stages of these tests (points B, C and F) show reasonable agreement with the 

corresponding experimental values (predicted values of  v  at C and F are slightly too 

high and slightly too low, respectively). 

In particular, the model simulations correctly predict, at a qualitative level, the complex 

pattern of swelling and collapse compression reported by Sivakumar [41] during 

wetting DE to zero suction in the tests conducted on saturated samples. During the first 

part of this wetting, from D to Y (see Figure 19), the soil state is on the WR yield surface 

but inside the M yield surface, and elastic swelling is predicted (due to the decrease of  

*p ). Coupled inward movements of the M yield surface occur, such that yield on the 

M surface commences at Y, and then collapse compression is predicted from Y to S, 

where the soil reaches a saturated state (at a non-zero air-exclusion value of suction). 

From S to E, with the soil in a saturated condition, the model prediction shows elastic 

swelling, due to the reduction of  
*p   (where  pp *

  in this saturated condition), as 

suction is reduced from the air-exclusion value to a final value of zero. Sivakumar [41] 

observed the same qualitative pattern of behaviour in his experimental tests, with initial 

wetting-induced swelling followed by wetting-induced collapse compression and then 

finally more wetting-induced swelling. Conventional models expressed in terms of net 
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stresses and suction (such as the BBM) would be unable to predict the final phase of 

wetting-induced swelling. 

Inspection of Figure 19 shows that the GCM simulations provide an excellent match to 

the experimental positions of the normal compression lines at the four different values 

of suction in the  v :
*ln p   plane. This is a consequence of selecting the values of the 

model parameters   , N, N*, k1  and  k2  to fit the saturated isotropic NCL and the 

unsaturated isotropic normal compression  planar surface in  v :
*ln p : *ln s   space. The 

fact that the GCM simulations for  v  at the four different values of suction also match 

well the experimental normal compression lines when plotted in the  v : pln   plane (see 

Figure 20) indicates that the model has also been able to provide adequate modelling 

of the variation of  Sr , given that conversion of experimental and predicted values of  

*p   to corresponding values of  p   involves the experimental and predicted values of  

Sr  (see Equation 1). 

Figure 21 shows that the GCM predictions for the variations of  Sr  at the three non-

zero values of suction provide a reasonable match to the experimental results, but the 

match is not as good as for the corresponding variations of  v  (see Figure 19). This is a 

consequence of allowing 3 degrees of freedom (the values of  N*, k1  and  k2) when 

fitting the experimental data defining the unsaturated normal compression surface for  

v , but only 1 degree of freedom (the value of  
s

 ) when fitting the data defining the 

normal compression surface for  Sr . It would have been possible to improve the fit of 

the predicted variations of  Sr , by adjusting some of the model parameter values, but 

this would have been at the expense of slight deterioration in the fit of the predicted 

values of  v.   

A significant conclusion arises from comparison of Figure 19b and Figure 20b: whereas 

a clear pattern emerges from the experimental normal compression lines for different 

values of suction when plotted in the  v :
*ln p   plane, no such pattern is apparent when 

the same experimental curves are plotted in the  v : pln   plane. In the  v :
*ln p   plane 

(Figure 19b), the constant suction experimental normal compression lines 

corresponding to unsaturated conditions (at suctions of 100kPa, 200kPa and 300kPa) 

approximate to straight parallel lines, whereas the saturated normal compression line 
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forms a straight line of lower gradient. This pattern is perfectly represented by the 

GCM, which predicts that constant  s  isotropic normal compression lines corresponding 

to unsaturated conditions approximate to straight parallel lines of gradient  *   in the  

v :
*ln p   plane (the GCM would predict perfectly straight parallel lines of gradient  *   

if  *s  were held constant (see Equation 23), rather than  s ), whereas the GCM predicts 

a saturated isotropic normal compression line of lower gradient   . In contrast, when 

the same experimental curves are re-plotted in the  v : pln   plane (Figure 20b), the 

variation of normal compression line gradient with suction appears complex and 

without clear pattern. Despite this, the GCM manages to predict well the complex form 

of the various normal compression lines in the  v : pln   plane, because the GCM is 

developed in the  v :
*ln p   plane, where the experimental results show a logical pattern, 

and only then transferred to the  v : pln   plane. This provides a strong argument in 

favour of developing models that employ mean Bishop’s stress  
*p   as a stress state 

variable, rather than mean net stress  p .   

Various previous authors have proposed mechanical constitutive models that involve 

relatively complex relationships attempting to represent variations of a virgin 

compression index  with suction (Alonso et al. [1]; Wong and Mašín [52]), with degree 

of saturation (Zhou and Sheng [53]) or with both s and Sr (Alonso et al. [3]). The 

evidence presented in Figure 19b suggests that such complexity may be overcome by 

developing models that use 
*p  as stress state variable and fully account for the coupling 

between mechanical and water retention behaviour.   

 

CONCLUSIONS 

The Glasgow Coupled Model (GCM) predicts that isotropic normal compression states 

and critical states in experimental tests involving plastic volumetric strains and plastic 

increases of  Sr  will correspond to points at the intersection of M and WR yield surfaces. 

For these states, the model predicts unique unsaturated isotropic normal compression 

and unsaturated critical state planar surfaces for specific volume  v  (in  v:
*ln p : *ln s   

space) and also unique isotropic normal compression and critical state planar surfaces 
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for degree of saturation  Sr  (in  Sr:
*ln p : *ln s   space). Experimental results from the 

tests of Sivakumar [41] on unsaturated samples of compacted speswhite kaolin provide 

confirmation of the existence and form of these unique unsaturated normal compression 

and critical state surfaces. The GCM also provides expressions for the values of  v  and  

Sr  for any general stress states, in terms of the values of the stresses  
*p   and  *s   and 

the values of the hardening parameters  
*

0
p   and  

*

1
s . 

The GCM provides consistent representation of transitions between saturated and 

unsaturated states, including the influence of retention hysteresis and the effect of 

plastic volumetric strains on retention behaviour. The GCM gives unique expressions 

to predict saturation and de-saturation conditions (air-exclusion and air-entry points 

respectively), in the form of two unique straight lines in the  *ln s :
*

0
ln p   plane. The 

saturated normal compression line (NCL) plots as a planar surface in both  v :
*ln p :

*ln s   and  
r

S :
*ln p : *ln s   spaces, and when transitions from unsaturated to saturated 

conditions occur under isotropic stress states at the intersection of M and WR yield 

surfaces, the saturation line corresponds to the intersection of unsaturated and saturated 

isotropic normal compression planar surfaces in both spaces. 

The GCM provides consistent modelling of mechanical behaviour across the transitions 

between saturated and unsaturated conditions, including appropriate representation of 

the variation of mechanical yield stress. This appropriate variation of mechanical yield 

stress across transitions between unsaturated and saturated conditions occurring at non-

zero values of suction emerges naturally from the GCM, whereas it would be very 

difficult to achieve in any mechanical model expressed in terms of net stresses and 

suction. 

A straightforward methodology is proposed (and has been demonstrated) for 

determining the values of all GCM model parameters and initial state from a limited 

number of suction-controlled triaxial tests. Central to this methodology is plotting the 

experimental data defining the unsaturated isotropic normal compression planar 

surfaces in  v :
*ln p : *ln s   and  

r
S :

*ln p : *ln s   spaces.  
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GCM simulations of the isotropic loading stages of the experimental tests of Sivakumar 

[41] on compacted speswhite kaolin demonstrate that the model is able to predict 

accurately the variations of both  v  and  Sr  during isotropic stress paths under saturated 

and unsaturated conditions. A clear pattern emerges when the experimental results for 

unsaturated and saturated isotropic normal compression states are plotted against  
*ln p  

, whereas no such pattern is apparent when the same results are plotted against  pln  . 

The GCM represents the clear pattern observed in the  v :
*ln p   plane and, as a 

consequence, also captures the complex variation of the experimental results when re-

plotted in the  v : pln   plane. This would be extremely difficult to achieve with any 

constitutive model developed in terms of net stresses and suction, and this provides a 

strong argument in favour of models, such as the GCM, which employ  
*p   as a stress 

state variable.  
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Table 1.  Gradients and intercepts of best-fit isotropic normal compression planar 

surfaces for  v  and  Sr 

* 0.249   
*

1 0.171k   * 2.728   
* 0.204s   *

2 0.152k   * 0.780   

 

Table 2. Gradients and intercepts of best-fit critical state planar surfaces for  v  and  Sr 

* 0.268   
*

1 0.174k   * 2.731   
* 0.236s   *

2 0.205k   * 0.733   

 

Table 3. Values of soil constants for model simulations  

0.123   010.0  N = 2.621
 

 

N* = 2.728 1 0.715k   2 0.737k   0.129s   

 

Table 4. Initial state for model simulations 

50p kPa 210.2v  * 218.5p  kPa 
*

0 267.9p  kPa 

300s kPa 0.562rS   3.164* s kPa 
*

1 164.3s  kPa 
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Fig. 1. Yield surfaces in Glasgow Coupled Model (GCM) 

  

Fig. 2. Modelling retention behaviour and treatment of saturated conditions 
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Fig. 3. Positions of various points relative to the yield surfaces 

 

Fig. 4. Isotropic normal compression planar surface for v (Sivakumar [41]) 
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Fig. 5. Isotropic normal compression planar surface for Sr (Sivakumar [41]) 

  

Fig. 6. Orthogonal two-dimensional views of isotropic normal compression planar 

surface for v (Sivakumar [41]) 
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Fig. 7. Orthogonal two-dimensional views of isotropic normal compression planar 

surface for Sr (Sivakumar [41]) 

 

Fig. 8. Critical state planar surface for v (Sivakumar [41]) 
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Fig. 9. Critical state planar surface for Sr (Sivakumar [41]) 

 

  

Fig. 10. Orthogonal two-dimensional views of critical state planar surface for v 

(Sivakumar [41]) 
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Fig. 11. Orthogonal two-dimensional views of critical state planar surface for Sr 

(Sivakumar [41]) 

 

  

Fig. 12. Orthogonal two-dimensional views of planar surfaces for v (Sivakumar [41]) 
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Fig. 13. Orthogonal two-dimensional views of planar surfaces for Sr (Sivakumar [41]) 

 

Fig. 14. Demonstration of irreversible elastic changes of Sr if s > 0  
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Fig. 15. Isotropic normal compression planar surfaces for v for unsaturated and 

saturated conditions 

 

Fig. 16. Isotropic normal compression planar surfaces for Sr for unsaturated and 

saturated conditions 



 44 

  

Fig. 17. Predicted saturation and de-saturation lines  

 

 

Fig. 18. Variation of mechanical yield stress during a wetting-drying cycle 
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Fig. 19.  Model predictions and experimental variations of v against p* (Sivakumar 

[41]): (a) Linear scale; (b) Logarithmic scale 
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Fig. 20.  Model predictions and experimental variations of v against p   (Sivakumar 

[41]): (a) Linear scale; (b) Logarithmic scale 
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Fig. 21.  Model predictions and experimental variations of Sr against p*  (Sivakumar 

[41]): (a) Linear scale; (b) Logarithmic scale  
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Fig. 1. Yield surfaces in Glasgow Coupled Model (GCM) 

Fig. 2. Modelling retention behaviour and treatment of saturated conditions 

Fig. 3. Positions of various points relative to the yield surfaces 

Fig. 4. Isotropic normal compression planar surface for v (Sivakumar [41]) 

Fig. 5. Isotropic normal compression planar surface for Sr (Sivakumar [41]) 

Fig. 6. Orthogonal two-dimensional views of isotropic normal compression planar 

surface for v (Sivakumar [41]) 

Fig. 7. Orthogonal two-dimensional views of isotropic normal compression planar 

surface for Sr (Sivakumar [41]) 

Fig. 8. Critical state planar surface for v (Sivakumar [41]) 

Fig. 9. Critical state planar surface for Sr (Sivakumar [41]) 

Fig. 10. Orthogonal two-dimensional views of critical state planar surface for v 

(Sivakumar [41]) 

Fig. 11. Orthogonal two-dimensional views of critical state planar surface for Sr 

(Sivakumar [41]) 

Fig. 12. Orthogonal two-dimensional views of planar surfaces for v (Sivakumar [41]) 

Fig. 13. Orthogonal two-dimensional views of planar surfaces for Sr (Sivakumar [41]) 

Fig. 14. Demonstration of irreversible elastic changes of  Sr  if  κs > 0  

Fig. 15. Isotropic normal compression planar surfaces for  v  for unsaturated and 

saturated conditions 

Fig. 16. Isotropic normal compression planar surfaces for  Sr  for unsaturated and 

saturated conditions 

Fig. 17. Predicted saturation and de-saturation lines  
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Fig. 18. Variation of mechanical yield stress during a wetting-drying cycle 

Fig. 19.  Model predictions and experimental variations of v against p* (Sivakumar 

[41]): (a) Linear scale; (b) Logarithmic scale 

Fig. 20.  Model predictions and experimental variations of v against p   (Sivakumar 

[41]): (a) Linear scale; (b) Logarithmic scale 

Fig. 21.  Model predictions and experimental variations of Sr against p*  (Sivakumar 

[41]): (a) Linear scale; (b) Logarithmic scale  

 


