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Abstract 

Primates were traditionally thought to have a reduced sense of smell. Although there is now 

evidence that olfaction plays a greater role in primate social life than previously assumed, research 

on the sense of smell in non-human apes is scarce. Chimpanzees sniff the ground and vegetation on 

boundary patrols, but the function of this behaviour is unclear. Since chimpanzees are highly 

territorial and can kill individuals that do not belong to their own community, sniffing might function 

to gather information about conspecifics, particularly concerning group membership and kinship. To 

investigate whether chimpanzees recognize group members and kin via olfactory cues, we conducted 

behavioural bioassays on two groups of chimpanzees at Leipzig Zoo. In a pilot study, we found that 

chimpanzees responded more strongly to urine than to faeces or body odour. We then presented 

urine from group members, outgroup individuals and an unscented control in aerated boxes using a 

simultaneous discrimination task. The first behaviour after a chimpanzee first approached a box was 

related to olfaction (sniffing, nose within 20 cm, licking) in 83% of cases, highlighting the importance 

of olfaction as a general investigation mechanism in this species. Chimpanzees sniffed significantly 

longer at urine stimuli than the control and significantly longer at odours from outgroup individuals 

than those from group members. Furthermore, the duration of sniffing was positively correlated with 

relatedness. Our results suggest that chimpanzees use olfactory cues to obtain information about 

social relationships and fill a gap in our understanding of primate chemical communication. 
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Introduction 

Olfaction is among the oldest senses [1] and influences social behaviour such as territorial 

defence, kin recognition and mate choice in many species [2,3]. In contrast to other mammals, 

research on olfaction in the primate order was neglected for decades, mostly because primates were 

considered to be “microsmatic” (having a poor sense of smell), relying more on visual and acoustic 

rather than olfactory cues [4,5]. The notion that primates are microsmatic was primarily based on 

anatomical evidence such as a reduction in the proportional size of the olfactory epithelium and 

olfactory bulb volume as compared to most other mammalian species [6,7] or a decrease in 

functional olfactory receptor genes [8,9]. However, neuroanatomical features are not necessarily 

correlated with olfactory performance [5]. 

Good olfactory capabilities are now recognized in some primate taxa, but not in others. 

Strepsirrhines (lemurs, lorises and galagos) and platyrrhines (New World monkeys) rely heavily on 

olfactory communication, showing classical scent marking behaviour and/or possessing specialized 

scent glands [10,11]. For example, callitrichids use olfactory cues to detect ovulation [12] and familiar 

individuals [13], and lemurs signal information including identity and relatedness in their glandular 

secretions which conspecifics can perceive in experiments [14–16]. In contrast to strepsirrhines and 

New World monkeys, catarrhines (Old World monkeys and apes, including humans) do not seem to 

have a functional vomeronasal organ (VNO) and accessory olfactory bulb (structures related to the 

perception of pheromones), at least postnatally [17]. However, the main olfactory system may also 

perceive social signals [18] and recent evidence suggests that social odorants serve a signalling 

function in Old World monkeys [e.g. 19–26]. Evidence for human chemo-signalling is also growing, 

indicating that olfaction may play a greater role in humans than previously assumed [27,28]. For 

example, humans have excellent odour discrimination abilities [29] and an unexpectedly high 

olfactory sensitivity that exceeds that of mice, rats and dogs for some substances [30]. Furthermore, 

humans may use chemosignals in mate choice [31,32] and can recognize kin via body odour alone 

[33–35].  

Given the importance of olfaction in other primates including humans, the scarcity of 

research on the sense of smell in non-human great apes (hereafter apes) is surprising and leaves an 

important gap in our understanding of primate chemical communication. Although observations 

suggest that they use their sense of smell in various contexts [36], can discriminate between natural 

odors [37] and detect contaminants [38,39], no experimental investigations yet exist examining 

which social information apes perceive via odours. Human rater studies suggest, however, that 

gorillas (Gorilla gorilla gorilla) produce individually identifiable body odours [40] and that wild gorilla 

silverbacks use body odour as a flexible, context dependent signalling mechanism to group members 

and outgroup conspecifics [41]. 
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Chimpanzees (Pan troglodytes) are one of our two closest living relatives and an important 

model species for understanding human evolution [42]. Wild chimpanzees sniff their environment 

while males sniff more frequently in sexual and social contexts and females more frequently in a 

feeding context [43]. Chimpanzees also often sniff the ground, vegetation and signs of chimpanzees 

such as nests, faeces and urine while patrolling the borders of their territory [44,45]. However, the 

function of sniffing behaviour during boundary patrols is unclear. Since chimpanzees live in multi-

male, multi-female communities with high fission-fusion dynamics where community members may 

not meet for several days [46,47], and since chimpanzees are highly territorial and often kill 

individuals from other communities [44,48], obtaining information about the whereabouts of group 

members and outgroup individuals and the ability to discriminate between the latter are crucial for 

maximizing fitness, and it seems likely that they use olfaction to perceive this information. 

In addition to recognizing group members, chimpanzees may maximize inclusive fitness 

through kin recognition, which is important to avoid inbreeding [49] and prevent infanticide [50]. 

Chimpanzees bias their behaviour towards and form strong social bonds with relatives [51–54, but 

see 55], and breed with genetically dissimilar mates [56], suggesting they can recognize their kin. 

Although they have excellent facial recognition abilities [57,58], olfactory cues may also be important 

for kin recognition in chimpanzees, given their fission-fusion behaviour and often dense habitat. 

We report behavioural bioassays investigating the signalling function of social odours in apes. 

Our first aim was to test whether chimpanzees can distinguish between group members (ingroup 

individuals) and non-group members (outgroup individuals) using olfactory cues. In a simultaneous 

discrimination task, we presented two groups of zoo-living chimpanzees with urine from ingroup and 

outgroup individuals and an unscented control. If chimpanzees can discriminate between in- and 

outgroup urine, they should show a differential behavioural response towards the odour stimuli. We 

predicted that chimpanzees will investigate urine longer than the unscented control and outgroup 

urine longer than ingroup urine. Our second aim was to investigate whether chimpanzees can 

recognize their kin via olfactory cues. Since chimpanzees bias their behaviour towards relatives, we 

predicted that they will respond more strongly towards kin than non-kin odour.  

 

Material and Methods  

a. Study site and population 

We studied two groups of captive chimpanzees (groups A and B) at the Wolfgang Köhler 

Primate Research Center at Leipzig Zoo from December 2015 to February 2016. At the time of the 

study, group A contained 18 (11 females, 7 males) and group B seven (6 females, 1 male) individuals. 

We excluded one male infant in group A since its behavioural responses were influenced by its 

mother. The subjects’ age ranged 6-50 years (mean±SD=25±13 years, ESM 2 table S1). Each group 
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has access to spacious inside and outside enclosures with regular feeding, daily enrichment and 

water available ad libitum.  

 

b. Pilot study on odour source preference 

In a pilot study, we tested which odour source chimpanzees respond most strongly to by 

presenting three different odour sources (body odour, faeces and urine) from the same group 

member to both groups. Chimpanzees reacted most strongly towards urine, so we used urine as an 

odour source for subsequent bioassays. The increased inspection time of urine compared to faeces 

might reflect a trade-off between gathering information about the scent donor and infection risk 

from faeces (see electronic supplementary material (ESM) 1 for detailed methods, results and 

discussion). 

 

c. Urine collection 

We collected urine samples from adult chimpanzees in both groups at Leipzig Zoo using 

disposable pipettes directly after animals urinated on the floor in the sleeping or observation rooms 

and stored them in 15 ml plastic tubes at -20°C until use. We used new pipettes for each individual 

and only collected urine that we could assign to an individual. For females, we only collected urine 

when they showed no sexual swelling and were not menstruating, to avoid hormonal influences of 

the menstrual cycle on the odour. 

 

d. Behavioural Bioassay 

Ingroup vs. outgroup and olfactory sensitivity 

To test whether chimpanzees can discriminate between ingroup and outgroup individuals via 

olfactory cues, we presented urine from one ingroup individual and one outgroup individual, and an 

unscented control (to test whether animals perceive urine over background) simultaneously 1 m 

apart in three plexiglass boxes (12 x 12 x 20 cm3) installed on a metal grid on the ground in the inside 

enclosure (ESM 2 fig. S1). The odourless boxes were locked with padlocks, had multiple holes (3 mm 

in diameter) on each side and were lined with odourless wire mesh (mesh size: 0.5 mm) to prevent 

chimpanzees from using sticks to reach the contents. Thirty minutes prior to each session, we 

thawed samples and the experimenter (SH) rated their odour intensity on a scale of 0-10 to control 

for a potential influence of odour intensity on response behaviours. We placed 15 ml of each urine 

sample on a small piece of 100% cotton in the test boxes and a piece of cotton without urine in the 

control box. We always handled boxes with odourless disposable vinyl gloves to avoid transferring 

human body odour to the test apparatus.  
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We installed boxes in the morning before the chimpanzees entered the inside enclosure and 

removed them as soon as the animals left the enclosure (session duration 7h18m-8h33m, 

mean±SD = 8h8m±20m). All group members present in the inside enclosure could visit the boxes at 

any time, a more natural situation than testing subjects individually. Although this means that data 

for individual animals may depend on that of other animals, our observations did not suggest that 

this was the case. After each session, the experimenter assigned a new intensity score to each 

sample to assess changes in odour intensity over time. We disinfected boxes for an hour with a 4% 

solution of aldehyde-free antiseptic cleaner (OROsept K, Kleen Purgatis GmbH) then rinsed them 

thoroughly with water after each session. 

We counterbalanced the location of the three stimuli (ingroup, outgroup, control) to control 

for potential side preferences. We used urine from 15 different individuals (10f, 5m) and conducted 6 

sessions per group: 3 sessions with only female odours and 3 sessions with only male odours (we 

assigned sex order randomly). We conducted sessions at intervals of at least 6 days (range = 6-17 

days, mean±SD = 8.9±3.8 days) to reduce habituation effects.  

We recorded the chimpanzees’ behavioural reactions towards the odour stimuli using a 

digital video camera (Panasonic HC-V757 HD), positioned on an observer platform outside the 

enclosure. 

 

e.   Video Analysis and Behavioural Definitions 

SH analysed videos frame-by-frame using Mangold Interact version 16.1.0 (see ESM 3 for 

example video). We recorded the durations and time stamps of response behaviours. Our main 

target response behaviour was sniffing (defined as placing the nose within 3 cm of the box), but we 

also included the olfaction-related responses nose within 20 cm and licking, and the non-olfaction 

related responses presence within 50 cm, touching and manipulating (ESM 2 table S2). For analysis, 

we combined touching and manipulating into one response variable (‘manipulating’) to measure 

tactile investigation of odours. To determine the mode of first investigation, we used the first 

behaviour shown when an animal first arrived at the boxes. To gain insight into whether 

chimpanzees perceive and discriminate odours from more than 20 cm, we recorded which odour 

stimulus the subjects sniffed first. The video camera automatically split the recordings into 22 min 

segments. To estimate inter-observer reliability, a second rater coded 23 of 144 (16%) video 

segments used for statistical analysis, representing all sessions in both groups. Both raters were blind 

to the location of the odour stimuli. We estimated inter-observer reliability using Spearman’s rank 

correlations for the total durations of each behaviour per individual, box location and session [59]. 

Where N was smaller than 10, we used the exact version of Spearman’s rank correlation (rs: 

range=0.346-1, mean±SD=0.733±0.191, see ESM 2 table S3 for detailed results). 
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f.    Statistical Analysis 

We conducted all analyses using Linear Mixed Models (LMMs, [60]) with Gaussian error 

structure and identity link. We set significance at p<0.05 and trends at 0.05≤p<0.1. We fitted all 

models in R (version 3.4.0, [61]) using function lmer of R package lme4 (version 1.1-13, [62]).  

To test whether chimpanzees react differently to urine odours compared to the control and 

whether they show a differential behavioural response to ingroup and outgroup odours, we fitted 

two separate LMMs for each response variable. We used the total duration of behaviours (per 

subject, odour stimulus and session) as response variables and odour stimulus as test predictor. We 

included sex, group and age of the subject, session number and box location (for all models) and sex 

and group of the odour donor and intensity score (for ingroup vs. outgroup models) as control 

predictors. To account for a potential differential response of males and females towards male and 

female odours in the ingroup vs. outgroup models, we also included the three-way interaction 

between odour stimulus, subject sex and odour donor sex. We included subject ID and session ID (for 

all models) and odour ID (for ingroup vs. outgroup models) as random effects and used a maximal 

random slopes structure.  

To test whether the degree of relatedness influences behavioural responses, we fitted a 

LMM for each response variable for ingroup odours only. We calculated relatedness coefficients 

(range = 0-0.5) from pedigree data kindly provided by Leipzig Zoo. We included the relatedness 

coefficient as test predictor and all control predictors that were significant for the ingroup vs. 

outgroup models. We included subject ID, odour ID and session ID as random effects and used a 

maximal random slopes structure (see ESM 2 for details of statistical analyses). 

 

 

Results 

Mode of first investigation 

In 83% (73/88) of cases, the first behaviour chimpanzees showed after first approaching a 

box (apart from looking) was related to olfaction (sniffing, nose within 20 cm, licking); in 15% (13/88) 

of cases, chimpanzees used tactile investigation first, and in 2% (2/88) of cases they only inspected 

the boxes visually while present within 50 cm (fig. 1). Two adult males (α-male and ex-α-male of 

group A) never investigated any of the boxes, possibly because they were the oldest males in the 

group (22 and 40 years) and olfactory function decreases with age [e.g. 63,64]. None of the 

encounters with the boxes produced any obvious alarm or aggressive responses from the subjects. 

 

First sniffs and number of individuals sniffing 
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Chimpanzees sniffed more often at outgroup odours first upon their first approach, and this 

was most apparent in the first two sessions (table 1). 

The number of individuals that sniffed a box declined from 20 in the first session to 11 in the 

last session (table 1). The number of subjects that sniffed all three boxes in a session decreased from 

9 individuals in the first session to 1 individual in sessions 4-6 (table 1). 

 

Control vs. odour  

Our control vs. odour models revealed a significant influence of the set of predictor variables 

on the total time individuals spent sniffing and present within 50 cm of a stimulus, but not of nose 

within 20 cm, licking, or manipulating (ESM 2 table S9). More specifically, subjects sniffed odour 

stimuli and stayed within 50 cm of them for significantly longer than they did for control stimuli 

(fig. 2, table 2; for detailed results of all predictor variables see ESM 2 table S10). Session number had 

a highly significant negative effect on the duration of sniffing and tended to have a negative effect on 

presence within 50 cm (fig. 3, ESM 2 table S10), indicating habituation over the six sessions. Younger 

individuals spent significantly more time within 50 cm of the boxes than older individuals (ESM 2 

table S10). 

 

Ingroup vs. outgroup  

The results of the ingroup vs. outgroup models revealed that the set of predictor variables 

tended to influence sniffing but not nose within 20 cm, licking, presence within 50 cm or 

manipulating (ESM 2 table S9). The three-way interaction between odour stimulus, sex of subject ID 

and sex of odour ID and the three two-way interactions were not significant for sniffing (tested by 

fitting a reduced model without the three-way interaction), so we fitted a reduced model without 

interactions to obtain interpretable P-values for the main effects. The reduced model revealed a 

significant effect of odour stimulus, with subjects sniffing outgroup odours longer than ingroup 

odours (fig. 4, table 2; ESM 2 table S11).  

 

Relatedness 

When we tested the effect of relatedness on behavioural responses towards familiar 

individuals, we found a significant influence of the set of predictor variables on the total durations of 

sniffing and presence within 50 cm but not of nose within 20 cm, licking and manipulating (ESM 2 

table S9). The total time spent sniffing and present within 50 cm of familiar odours increased with 

relatedness to the odour donor (fig. 5, table 2; ESM 2 table S12).  
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Discussion 

We present bioassays testing the effect of conspecific odours on the behaviour of non-

human apes. Overall, our results support our predictions, and suggest that chimpanzees are sensitive 

to social odorants and that they detect group membership and relatedness via olfactory cues.  

 

Control vs. odour and mode of first investigation 

Chimpanzees sniffed urine stimuli for significantly longer and stayed within 50 cm of them for 

longer than they did for the control. This finding suggests that chimpanzees are sensitive to social 

odorants [65] and reflects responses to urinary stimuli in macaques [66]. However, chimpanzees also 

showed some interest in and also sniffed the control box, suggesting they use their sense of smell as 

a general investigation mechanism for novel objects. Supporting this hypothesis, 83% of the first 

behaviours shown when approaching the boxes for the first time in a session were related to 

olfaction. Thus, our results highlight the long neglected importance of olfaction in this species.  

 

Ingroup vs. outgroup 

Chimpanzees sniffed outgroup urine significantly longer than ingroup urine. Since differences 

in responsiveness between odorants typically reflect discriminability [5,65], our results suggest that 

chimpanzees can discriminate between group members and outgroup conspecifics using olfactory 

cues. Our result is in line with findings for several other mammalian species [e.g. 67–70], including 

primates. Strepsirrhines [71,72], New World monkeys [13,73] and Old World monkeys [19] 

discriminate between ingroup and outgroup individuals, responding for longer or more strongly to 

the scent of familiar than unfamiliar conspecifics. Our findings show that this discrimination 

mechanism also exists in apes, strengthening existing evidence that the perception of social olfactory 

signals does not depend on a functional VNO. 

Sustained inspection of an unfamiliar outgroup odour may reflect a higher interest in a novel 

odour or increased efforts to obtain and process new information about the individual scent donor 

[68]. According to the scent-matching hypothesis, individuals of territorial species learn the scent of 

marks they encounter in the environment and then compare it with the scent of animals they meet, 

to facilitate appropriate behaviour [74,75]. Besides obtaining information about the state or identity 

of an intruder, chimpanzees might also be able to assess the distance to competing groups through 

the freshness or intensity of the odour or the frequency of outgroup scents encountered [74]. 

Although chimpanzees are not known to actively scent mark their territory, they sniff and inspect 

olfactory cues such as urine, faeces or traces of body odour in chimpanzee nests on boundary patrols 

[44,45]. Our findings suggest that they use these cues to identify the trail of group members and 

gather information about intruders, and thus to maximize fitness, for example by reducing 
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aggression. 

The ability to discriminate between group members and outgroup individuals via odour may 

be based on familiarity with or individual recognition of the scent donor. Familiarity alone cannot 

explain our results, because chimpanzees also detected their degree of relatedness to the urine 

donor, suggesting that they respond differently based on information encoded in the odour, in 

addition to familiarity. Whether this information is based on the particular odour donor and thus 

reflects a mental representation of individual scents in chimpanzees cannot be reliably deciphered 

based on our findings but opens up an interesting area for future research.  

Chemical studies using gas chromatography-mass spectrometry also suggest that chemical 

cues contain information about group membership in many species (e.g. [76–78]). In primates, 

chemical profiles reflect group membership in scent gland secretions in mandrills, Mandrillus sphinx 

[20] and body odour in rhesus macaques, Macaca mulatta [21]. Given our results it is likely that 

chimpanzee urinary olfactory profiles also encode information about group membership and kinship 

[79]. Chemical analyses should investigate the information content (including e.g. sex, age, 

dominance status, reproductive state) and chemical composition of chimpanzee urine.  

 

Habituation 

Our results suggest that chimpanzees habituated to the odour stimuli over the six sessions. 

Durations of sniffing decreased significantly and the number of animals that sniffed one or more 

boxes declined considerably, suggesting a loss of interest in the boxes. Future studies of olfactory 

discrimination abilities in chimpanzees should therefore limit the number of sessions to a maximum 

of three sessions if three scent stimuli are involved (so that stimulus placement can still be 

counterbalanced) and rather increase the number of groups tested or apply a habituation-

dishabituation paradigm (e.g. [37]).  

Many more individuals sniffed outgroup odours first than ingroup or control stimuli in the 

first two sessions. In the majority of these cases, chimpanzees approached the box containing the 

outgroup odour straight after entering the inside enclosure, whereas in subsequent sessions they 

often ignored the boxes on entering the enclosure. They may have quickly realized that there is no 

real danger of the presence of intruders and thus lost interest in the stimuli. Although the number of 

first sniffs of outgroup odours was not considerably higher than for ingroup or control stimuli over 

the six sessions, given our observations in the first two sessions and the strong habituation effect 

suggesting the first few sessions are most important, we cannot rule out the possibility that 

chimpanzees perceive important olfactory cues from a greater distance. Further studies of olfactory 

sensitivity thresholds in chimpanzees are needed to shed more light on their olfactory capabilities.   
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Relatedness 

The more closely related chimpanzees were to a familiar group member, the longer they 

sniffed and stayed within 50 cm of that individual’s urine stimulus. This suggests that chimpanzees 

can perceive the degree of relatedness through urinary olfactory cues and that such cues may play a 

crucial role in kin recognition in this species. Our results are in line with a recent study showing that 

chimpanzees breed with genetically dissimilar mates and take the degree of relatedness into account 

in their mate choices [56]. Enhanced inspection of familiar kin versus familiar non-kin may reflect 

generally greater interest in related individuals who are often preferred affiliation and coalition 

partners [46,53,55,80]. 

Maternal kin recognition in chimpanzees is well-accepted, and likely based on prior 

association with the mother [46,52,53,55,80,81]. However, whether chimpanzees can recognise 

paternal kin is contentious [53,55], although recent evidence that fathers associate more with their 

offspring than with unrelated infants provides evidence that they can [44, 47]. Recognition of 

paternal relatives in polygynandrous species likely depends on phenotype matching based on visual, 

acoustic or olfactory cues [reviewed in 50,82]. Chimpanzees’ ability to assess kinship visually through 

facial recognition is well established [57,58,83]. Our findings suggest that phenotype matching via 

olfactory cues is a further mechanism for kin recognition in chimpanzees. Our dataset was too small 

to differentiate between maternal and paternal kin dyads and future studies should investigate 

whether chimpanzees can use odour to distinguish maternal and paternal kin.  

The question of why chimpanzees rely on olfaction when they have a high ability to recognize 

individuals and kin visually through facial cues is important for our understanding of the evolution of 

primate communication. Olfactory cues might be especially important when visibility is reduced. 

Most chimpanzees live in a dense forest habitat where the location and identification of conspecifics 

that are not close by may depend more on acoustic and odor cues rather than visual cues. 

Furthermore, chimpanzees sometimes feed, travel and mate at night [46,84–87], and olfaction may 

help to gather valuable social information in the dark. Finally, since olfactory cues can persist for 

longer than acoustic and visual cues [88], the ability to recognize individuals via olfaction may be 

especially important when the sender is no longer present.  

Our results contribute to an active area of research on olfactory kin recognition mechanisms. Odour 

is linked to variation in major histocompatibility complex alleles and plays an important role in kin 

recognition in many mammalian species, including primates [89,79, reviewed in 90]. Humans, for 

example, can discriminate between kin and non-kin via olfactory cues alone, and human mothers can 

recognize the odour of their own offspring [34,35]. Lemurs signal relatedness in their odour profiles 

[15,91] and detect this information via olfactory cues [16]. We provide the first behavioural evidence 
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of odour-based kin recognition in apes which is important to prevent infanticide and facilitate 

inbreeding avoidance and nepotism.  

 

Conclusion 

Olfaction in non-human apes has long been neglected. However, humans have retained good 

olfactory capabilities in the absence of a functional VNO and accessory olfactory bulb. Understanding 

how these human capabilities have evolved requires the study of the functional significance of odour 

cues in closely related species, which also lack these anatomical features. Our results provide 

behavioural evidence that olfaction plays a more important role in chimpanzee social life than 

hitherto suspected and suggest that chimpanzees obtain information about both inter- and 

intragroup social relationships from olfactory cues, filling an important gap in our understanding of 

primate chemical communication and contributing to the argument that a functional VNO is not 

necessary to perceive olfactory social signals. The ability to obtain information about conspecifics via 

odour may regulate chimpanzee behaviour and may be an adaptive advantage, for example via 

conflict management, mate choice, inbreeding avoidance, nepotism or the detection of ovulation. 

Future studies should investigate the full range of social information contained in ape odour sources 

using chemical analyses and further bioassays. 
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Fig. 1 First investigatory behaviours after chimpanzees first approached a box in a test session. 

Olfactory investigation includes sniffing, nose within 20 cm and licking; tactile investigation includes 

touching and manipulating; visual investigation includes just presence within 50 cm (paying attention 

to box without olfactory or tactile investigation) 
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Fig. 2 Total durations of response behaviours towards urine odour samples and an unscented 

control. Plots show the median (thick horizontal lines) and quartiles (boxes) for sniffing and presence 

within 50 cm. Data are presented on a log-scale 
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Fig. 3 Effect of session number on the total duration of sniffing and presence within 50 cm. Dashed 

lines depict the model (fitted based on all fixed effects manually dummy coded and then centered to 

a mean of zero), thin dotted lines the 95% confidence intervals of the model. Data are presented on a 

log-scale 
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Fig. 4 Total duration of sniffing of ingroup and outgroup urine. Plots show the median (thick 

horizontal lines) and quartiles (boxes). Data are presented on a log-scale 
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Fig. 5 Effect of relatedness, expressed as the relatedness coefficient, on the total duration of sniffing 

and presence within 50 cm. Dashed lines depict the model (fitted based on subject group manually 

dummy coded and then centered to a mean of zero), thin dotted lines the 95% confidence intervals 

of the model. Data are presented on a log-scale 
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Table 1 Number of individuals that sniffed first at a given odour stimulus and the number of individuals that 
sniffed all three odours per session 

Session 
 

1 2 3 4 5 6 
Total 

observations 

Number of individuals that sniffed first at a given odour 

 
Outgroup 11 10 2 3 4 2 32 

 
Ingroup 4 4 7 8 2 4 29 

 
Control 5 4 2 2 6 5 24 

 
Total 20 18 11 13 12 11 85 

Number of individuals that sniffed all 3 odours 

    

  

9 5 3 1 1 1 20 

 

 

 

 

Table 2 Results of main effects for Linear Mixed Models with Gaussian error structure testing the influence of 
stimulus type on chimpanzees’ response to odour stimuli. For results of control predictors see ESM 2 tables 
S10-S12. Significances and trends are marked in bold. Ref = reference level. Colons represent the interaction 
between fixed effects 

(1): not shown because lacks a reasonable interpretation 
(2): z-transformed to mean=0 and sd=1; mean and sd of the original variables are presented in ESM 2 table S13 

Model Response variable Predictor variable Estimate SE χ2 p 

Control vs. odour Sniffing Odour (ref = control) 0.482 0.213 4.660 0.031 

 Nose within 20cm Odour (ref = control) 0.362 0.243 1.913 0.167 

 Licking Odour (ref = control) 0.382 0.293 1.572 0.210 

 Presence within 50cm 

 

Odour (ref = control) 0.507 0.234 3.961 0.047 

 Manipulating 

 

Odour (ref = control) 0.393 0.274 1.985 

 

0.159 

 Ingroup vs. outgroup Sniffing Odour (ref = ingroup) 0.564 

 

0.251 

 

4.675 0.031 

 
 Nose within 20 cm Odour:Subject sex:Odour sex -0.820 

 

1.246 

 

0.423 0.515 

 
 Licking Odour:Subject sex -0.222 0.769

6 

0.101 0.751 

  Odour:Odour sex -0.560 0.851 0.419 0.517 

 Presence within 50 cm 

 

Odour:Subject sex:Odour sex 

 

-2.718 

 

1.413 

 

2.975 0.085 

 
 Manipulating  Odour:Subject sex 1.605 0.735 3.981 0.046 

  Odour:Odour sex 0.032 0.886 0.001 0.972 

Relatedness Sniffing r(2) 0.544 0.226 5.152 0.023 

 Nose within 20cm r(2) 1.839 1.506 1.461 0.227 

 Licking r(2) 0.316 0.351 0.762 0.383 

 Presence within 50cm 

 

r(2) 0.791 0.246 8.719 0.003 

 Manipulating  r(2):Subject sex 0.429 0.414 1.040 0.308 


