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Abstract—This paper introduces a new dynamic har-
monic synchrophasor estimator (DHSE) based on the 
Shannon sampling theorem. Each dynamic harmonic 
phasor is modeled as a weighted sum of a series of sinc 
interpolation functions. Based on this, a bank of finite im-
pulse response filters is designed. They are used to esti-
mate not only the dynamic harmonic synchrophasor but 
also the harmonic frequency and rate of change of fre-
quency (ROCOF). A model parameter is properly se-
lected to obtain good performance, both in low- and high-
order harmonics estimation. Frequency responses and 
simulation tests are used to compare the performances of 
the DHSE and the Taylor-Fourier transform (TFT). Re-
sults show that the DHSE has lower passband ripples and 
higher stopband attenuation than the TFT. Moreover, un-
der frequency deviation, harmonic oscillation and fre-
quency ramp conditions, the DHSE is more accurate than 
the TFT in dynamic harmonic synchrophasor, frequency 
and ROCOF estimation. 

 
Index Terms—dynamic harmonic, finite impulse re-

sponse filter, harmonic synchrophasor, harmonic fre-
quency, rate of change of frequency (ROCOF), sinc in-
terpolation function. 

I. INTRODUCTION 

OWADAYS, dynamic harmonics are widely present in 
power system voltage/current signals. For example, ad-

justable speed devices can cause dynamic current harmonics 
during changing speeds. Also, subsynchronous resonance can 
result in harmonic amplitude and frequency oscillations [1]. 
Thus, it is essential to estimate dynamic harmonic phasors 
simultaneously for smart mitigation device operations and 
subsynchronous resonance monitoring [2]-[5]. 

Phasor measurement units (PMUs) are widely used in 
power systems to track dynamic behaviors of power systems 
in synchronisation. In the future, PMUs are also expected to 
play an important role in dynamic harmonic synchrophasor 
measurement. In [6] and [7], a harmonic PMU prototype was 
designed for harmonic synchrophasor estimation. However, 
as far as we know, there is no standard for harmonic synchro-
phasor measurement. No test conditions and metrics can be 
followed to test a harmonic synchrophasor estimator. The 
IEEE Synchrophasor Standard [8], [9] (called the Standard in 
the following) is only in correspondence with the fundamen-

tal synchrophasor measurement. It states that quantities in-
cluding fundamental synchrophasor, frequency and rate of 
change of frequency (ROCOF) should be estimated with a re-
quired accuracy, even under dynamic conditions. Accordingly, 
the goal of this paper is to develop a dynamic harmonic syn-
chrophasor, frequency and ROCOF estimator with a high ac-
curacy and limited computational complexity. 

Traditionally, the discrete Fourier transform (DFT) (or the 
fast Fourier transform) was widely used for harmonic syn-
chrophasor estimation due to its simplicity and low computa-
tional cost [6], [7], [10]. However, it is not suitable for dy-
namic harmonic synchrophasor estimation. This is because it 
assumes the analyzed signal is periodic. As a result, spectral 
leakage and mutual harmonic interference will be present. 
Window functions and harmonic group-based methods were 
applied in [1] and [11] to mitigate these impacts. 

Recently, a dynamic harmonic phasor model was well es-
tablished in the Taylor-Fourier transform (TFT) [5] and the 
Taylor-Kalman-Fourier (TKF) filters [12]. The TFT and TKF 
can return harmonic phasor derivatives. Thus, not only the 
dynamic harmonic synchrophasor can be estimated but also 
harmonic frequency and ROCOF. Additionally, they are 
much more accurate than the classical DFT because of the 
well-designed maximally flat filters. Inspired by the TFT, 
many Taylor signal model-based methods, such as the Taylor-
Kalman filter [13], [14], were also proposed for dynamic har-
monic synchrophasor estimation. However, these Taylor sig-
nal model-based methods share a problem of large errors un-
der frequency deviation conditions [15], especially when 
high-order harmonics are considered. In order to widen the 
frequency range of the TFT, adaptive TFTs with the use of 
lookup tables, phase-locked loop filters or frequency-locked 
loop filters were proposed in [16]-[18]. However, larger 
memory storage and/or higher computational burden are the 
price to pay to outperform the classical TFT. 

Regarding interharmonic interferences, the Taylor-Fourier 
multifrequency model-based methods [19]-[22] are useful 
tools for this problem. However, they have to sacrifice com-
putation time on measurement matrix generation. Other 
methods, such as the Kalman filter bank [1], [10], the multiple 
resonator [2], and the estimation of signal parameters using a 
rotational invariance technique [23], were also proposed for 
dynamic harmonic synchrophasor estimation in various areas. 

As for dynamic harmonic synchrophasor estimation, the 
challenge is that high-order harmonics have wider frequency 
bands than low-order harmonics. As discussed above, the 
widely used TFT has large errors in high-order harmonics es-
timation. This paper expects to cope with this problem by de-
veloping a new phasor model to describe dynamic harmonics. 
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We demand that the corresponding estimator’s passband per-
formances could be flexibly modified by a model parameter. 
In this way, good performance can also be obtained for high-
order harmonics. 

To this end, a new model is developed based on the Shan-
non sampling theorem, where the sampling frequency can be 
flexibly modified to modify passband and/or stopband perfor-
mance. This model helps us to design a bank of finite impulse 
response (FIR) filters for dynamic harmonic synchrophasor, 
frequency, and ROCOF estimation. 

Although the passband can be widened by adopting a win-
dow function (e.g., the Kaiser window) or a first frequency 
estimation [16-18], this paper would like to deal with this 
problem from the perspective of the model. Moreover, a win-
dow function can be used to widen the passband of the pro-
posed method again. In the following, the proposed dynamic 
harmonic synchrophasor estimator is called the DHSE. 

This paper is organized as follows. First, the principles of 
the DHSE are introduced in section II. Next, the parameters 
impacting on the frequency responses of the DHSE are ana-
lyzed in section III. Then, practical implementation items of 
the DHSE are discussed in section IV. Afterwards, the DHSE 
and TFT are tested and compared under steady state and dy-
namic conditions. Also, a practical example is taken to show 
the practical value of the DHSE. Finally, the main conclu-
sions of the DHSE are given. 

II. DYNAMIC HARMONIC SYNCHROPHASOR ESTIMATOR 

A. Signal Model Foundation 

In the Standard, a fundamental synchrophasor is defined as 
a fundamental phasor referring to the nominal frequency f0. 
In this paper, the concept of the fundamental synchrophasor 
is extended to harmonic components. Thus, the hth harmonic 
synchrophasor refers to the harmonic frequency hf0. In this 
way, a signal with dynamic harmonics can be defined as 
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where Re{∙} denotes the operator returning the real part of the 
phasor; H is the maximum harmonic order; f0 is the nominal 
fundamental frequency; and ph(t)= ah(t)ejθh(t) is the hth har-
monic synchrophasor, in which ah(t) and θh(t) are the magni-
tude (RMS value) and phase oscillations of the hth harmonic. 

Generally, a dynamic harmonic synchrophasor ph(t) can be 
assumed band-limited [24]. According to [25] and [26], each 
band-limited signal ph(t) can be approximately modelled as a 
weighted sum of a series of sinc interpolation functions (more 
derivations can be found in Appendix), which is given by 
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where Bh is a frequency greater than the maximum frequency 
of the baseband signal ph(t) (Bh≠ 0); pk,h=ph(k/(2Bh)) is the 
sample of ph(t) at t=k/(2Bh) with the sampling rate 2Bh; and K 
is the sample number on both sides of ph(0). Thus, 2K can be 
seen as the model order. Moreover, the observation window 

Tw should meet Tw<K/Bh. 

B. Filter Bank Design 

Assume the signal is sampled at N0 samples per cycle 
T0=1/f0. Nw=N0(Tw/T0) is the sample number corresponding to 
the observation interval Tw. Note that Nw should be an odd 
number to make t0=0 at the center of the observation window. 
In this way, there are N samples at both sides of t0=0, and thus 
Nw=2N+1. c=[Nw/N0] is the integer cycle number of the ob-
servation window, where [ ] is the operation picking the clos-
est integer. Then, (1) can be rearranged as 
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where s∈RNw is a column vector consisting of Nw samples of 
the signal s(t); ΦR∈CNw×H(2K+1) and ΦI∈CNw×H(2K+1) are two 

matrices consisting of Nw samples of the basis functions ,
R
k h

(n) (see (4)) and ,
I
k h  (n) (see (5)) in each column; pK∈

CH(2K+1) and pK
*∈CH(2K+1) are two column vectors consisting 

of the harmonic synchrophasor samples (see (6) and (7)). 
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Then the least squares method can be used to realize the 
optimal estimation of p, which is given by 

  1
ˆ = 2 H H
p Φ Φ Φ s                (8) 

where H  is the Hermitian operator. In (8), the matrix Φ+= 
(ΦHΦ)-1ΦH= (Φi,j)∈C[2H(2K+1)]×Nw contains the impulse re-
sponses of the FIR filters for harmonic synchrophasor sam-
ples estimation. Let 
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be a row vector consisting of the impulse responses of the 
filters, in which Φ(h-1)×(2K+1)+(k+K+1),n is the matrix elements cor-
responding to the basis function ,

R
k h  (n); ((h-1)×(2K+1) 

+(k+K+1)) is the row number of Φ+. The FIR filters for har-
monic synchrophasor samples estimation are the time-inverse 
version of gk,h, which is given by 
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C. Dynamic Harmonic Synchrophasor, Frequency and 
ROCOF Estimation 

Based on the filters designed above, harmonic synchro-
phasor samples can be estimated by 
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According to (3), dynamic harmonic synchrophasors and 
their derivatives can be estimated by the above estimated 
samples, which is given by 
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Typically, let K=1. After some deductions on (12), we can 
obtain 
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According to the first equation in (13), h0,h(n) can be used 

as the filter for the hth harmonic synchrophasor p௛
K(0) esti-

mation (even if K≠1, the first equation is still satisfied). On 
the basis of the derivatives of harmonic synchrophasors, har-
monic frequency and ROCOF can also be estimated [24], [27], 
which is given by 
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where Im{ } denotes the operator returning the image part of 
the phasor and * denotes the conjugate operation. The latency 
of the harmonic synchrophasor, frequency and ROCOF esti-
mator is 

w
latency

s

1

2

N
T

f


               (16) 

where Nw−1 is the order of the filters designed above. 

III. FLEXIBLE SELECTION OF PARAMETER Bh FOR DIFFER-

ENT ORDER HARMONICS 

Under off-nominal frequency, frequency oscillation and 
frequency ramp conditions, frequencies of different harmon-
ics will have different deviations from the nominal values. 
For example, if the fundamental frequency has a static devia-
tion of ∆f, the hth harmonic will have a deviation of ∆fh=h∆f. 
In this case, measurement of high-order harmonics needs es-
timators with wide passbands and stopbands. However, the 
TFT’s passbands (or stopbands) are narrow for high-order 
harmonics estimation. 

Generally, the sinc interpolation can be seen as a low pass 
filter for baseband signal ph(t) filtering. The performances of 
the low pass filter are determined by the parameter Bh, and so 
are the DHSE’s performances.1 We can select different values 
of Bh for different harmonics. In Fig. 1, magnitude responses 
of the DHSE under different values of Bh are shown. As seen 
in Fig. 1(b) and (c), with the increase of Bh, the passband and 
stopband bandwidths also increase. Thus, we can choose a 
proper value of B1 for fundamental phasor model foundation, 
and Bh=hB1 is used for the hth harmonic. With the increase of 
harmonic order, the corresponding estimator’s bandwidth 
also increases. 

In the standard GB/T 15945-2008, frequency deviation in 
China’s public power grid is limited within [-0.5, 0.5] Hz [28]. 
Thus, we set the fundamental frequency bandwidth to 1 Hz, 
and the frequency bandwidth of hth harmonic is accordingly 
h Hz. In this case, B1 should be bigger than the possible max-
imum frequency of p1(t), i.e., 0.5 Hz. For example, through a 
large number of simulations, we set B1=0.575 Hz to get good 
passband and stopband performances around each harmonic 
frequency. 

  
Fig. 1.  Magnitude responses of the synchrophasor estimator under different 
values of parameter Bh. In each case, the same values of Bh are selected for 
all harmonics. N0=200, f0=50Hz, Tw=3/f0, K=1 and H=13 are selected for the 
DHSE. (b) and (c) are zooms around the third and fourth harmonic frequency, 
respectively. For better readability, only the frequency responses from −150 
to 300 Hz are shown in (a). 

IV. FREQUENCY RESPONSE 

This section analyzes the performances of the estimator by 
its frequency response. Meanwhile, parameter K’s impact on 
the performances of the estimator are also discussed in this 
section. For brevity, the frequency response of the third har-
monic estimator is chosen as an example. The filters for other 
harmonics have similar performance. 

A. General Discussions on the Performances of the Esti-
mator 

Figs. 2, 3 and 4 show the magnitude responses of the syn-
chrophasor zeroth-derivative, first-derivative and second- de-
rivative estimators, respectively. For the synchrophasor ze-
roth-derivative estimator, flat gains (band-pass) (see Fig. 2(b)) 
can be found around the third harmonic frequency, and null 
gains (band-stop) (see Fig. 2(c) and (d)) can be found around 

1The performances of the DHSE are also determined by the parameter 
K. However, it can only be an integer like the TFT’s model order. Thus, it 
cannot be flexibly selected for each harmonic. 



other harmonic frequencies. As a result, harmonic synchro-
phasors can be well estimated due to the wide passband 
around the harmonic frequency and the wide stopband around 
other harmonic frequencies. Moreover, with the increase in 
harmonic order, the stopband around the harmonic frequency 
becomes wider (see Fig. 2(c) and (d)). 

Similar conclusions can be drawn in other phasor deriva-
tive estimators. A wider stopband can be found around high-
order harmonic frequencies (see Fig. 3(c), (d), Fig. 4(c), (d)). 
Please note that, around the third harmonic frequency, the 
first- and second-derivative estimators have linear and para-
bolic gains, respectively (see Fig. 3(b) and Fig. 4(b)). This is 
expected for harmonic frequency and ROCOF estimation. 

 
Fig. 2.  Magnitude responses of the synchrophasor (zeroth-derivative) esti-
mator. (b) for the third harmonic, (c) for the fourth harmonic and (d) for the 
twelfth harmonic. N0=200, f0=50 Hz, Tw=3/f0, K=1, B1=0.575 Hz, and H=13 
are selected for the DHSE. 

 
Fig. 3.  Magnitude responses of the synchrophasor first-derivative estimator. 
(b) ((c) or (d)) is for the same harmonic shown in Fig. 2. The parameter val-
ues are selected the same as Fig. 2. 

 
Fig. 5.  Magnitude responses of the synchrophasor second-derivative esti-
mator. (b) ((c) or (d)) is for the same harmonic shown in Fig. 2. The parameter 
values are selected the same as Fig. 2. 

B. The Parameter K’s Impact on the Performance of the 
Filters 

Generally, the parameter K determines the sample numbers 
of the sinc interpolation-based model. Thus, it will also have 
impact on the filters’ passband and stopband performances. 
In Fig. 6, the magnitude responses of the third harmonic syn-
chrophasor estimator with different values of K are shown. 

With the increase of K (thus the signal model order also in-
creases), the passband and stopband bandwidths increase rap-
idly (see Fig. 6(b) and (c)). However, the gain in transition 
band becomes larger, which makes the estimator sensitive to 
wideband noise. In practical applications, when the model or-
der is high, a long observation window should be used to im-
prove the filter’s performance of noise suppression. 

 
Fig. 6.  Magnitude response of the synchrophasor estimator with different 
values of parameter K. N0=200, f0=50 Hz, Tw=7/f0, B1=0.575 Hz and H=13 
are selected for the DHSE. For better readability, only the frequency re-
sponses from −150 to 350 Hz are shown in (a). 

V. DISCUSSION OF PRACTICAL IMPLEMENTATION 

This section discusses the possibility of practical imple-
mentation of the DHSE. The passband ripple, stopband atten-
uation, filter order, latency and computational burden are dis-
cussed under different values of window length and model 
order. For brevity, the passband and stopband performance of 
the third harmonic synchrophasor estimator are taken as an 
example. 

A. Practical Implementation Performances of the DHSE 

In Figs. 7, 8 and TABLE I, the DHSE’s and TFT’s perfor-
mance with some practical values of c and model order are 
given. Generally, when a short cycle window and low order 
model is used, the estimator latency is short. When a higher 
order model is used, a longer window should be used to get 
good performance, whereas the price is longer latency. Thus, 
the former selection of c and model order is suitable for pro-
tect applications, which demand fast responses. By contrast, 
the latter one is suitable for precision measurement applica-
tions, which do not need fast responses. 

Now we compare the performance of the DHSE and TFT. 
When the same length window and model order are used in 
the both estimators, their filter orders and latencies are the 
same. However, the DHSE has a smaller passband ripple and 
higher stopband attenuation, both around low- and high-order 
harmonic frequencies. For example, when they are both trun-
cated at the second order, the DHSE’s passband ripple for the 
third harmonic is 1.59E-5 dB, whereas the TFT’s reaches 
1.08E-4 dB (see Fig. 7(b)). When a longer window and higher 
order is used, the DHSE’s passband ripple becomes lower, 
and its stopband attenuation become higher. It still performs 
better than the TFT in terms of passband and stopband per-
formance (see Fig. 8(b), (c) and (d)). 



 
Fig. 7. Magnitude responses of the DHSE and TFT (both truncated at the 
second order). The fundamental passband and stopband bandwidths are both 
set at 1 Hz. Tw=3/f0 is selected for the DHSE. 

v 

 
Fig. 8. Magnitude responses of the DHSE and TFT (both truncated at the 
fourth order). The fundamental passband and stopband bandwidths are both 
set at 1 Hz. Tw=7/f0 is selected for the DHSE. 
 

TABLE I 
PERFORMANCES OF THE DHSE AND TFT. N0=200 AND f0=50 HZ ARE SE-

LECTED FOR THE BOTH ESTIMATORS. 

Method c 
Model 
order 

Passband 
ripple 
/dB 

Stopband at-
tenuation /dB Filter 

order 

La-
tency 
/ms 4th 9th 

DHSE 
3 2 1.59E-5 74.68 72.22 598 29.5 

7 4 1.00E-6 97.78 90.93 1438 69.5 

TFT 
3 2 1.08E-4 67.99 65.94 598 29.5 

7 4 1.36E-5 80.10 74.03 1438 69.5 

B. Computational Burden 

Generally, the filters for synchrophasor derivatives (or 
samples) estimation can be designed offline. Therefore, the 
main computations of the DHSE are for the samples estima-
tion (the computations for harmonic frequency and ROCOF 
estimation are negligible) (see (11), (14), and (15)). Assume 
the length of an observation window is Nw. Then the DHSE 
needs 4Nw real multiplications and 2(Nw−1) real additions for 
a derivative estimation. The total computations for all deriv-
atives estimation are 4*(K+1)*H*Nw real multiplications and 
2*(K+1)*H*(Nw−1) real additions. Obviously, the computa-
tional burdens of the DHSE and TFT are generally the same, 
and are both limited. Thus, the DHSE has the possibility of 
practical implementation. 

VI. PERFORMANCE TESTS 

In order to evaluate and compare the performances of the 
DHSE and TFT, several simulation tests are carried out. The 
total vector error (TVE), frequency error (FE) (in absolute 
value), and ROCOF error (RFE) (in absolute value) defined 
in the Standard are used to evaluate both estimators. Tw=3/f0, 

B1=0.575 Hz, fs=10 kHz, f0=50 Hz and the second order 
model are selected for both estimators. Please note that in 
China’s synchrophasor measurement standard GB/T 26862-
2011 [29], harmonics up to the 13th order are particularly 
considered. Thus, we set H=13 in this paper. The tests are car-
ried out over 104 runs and 250 fundamental cycles. The results 
within the time window [0, Tw/2] are not included in the sta-
tistics. 

Because there are no standards for harmonic synchro-
phasor measurement, no test conditions and metrics can be 
followed. In the following tests, the IEEE Standards [8], [9] 
for fundamental synchrophasor measurement are mainly re-
ferred. Because the accuracy requirements for M class PMUs 
are stricter than P class PMUs, they are mainly referred to for 
accuracy evaluation. Accordingly, because the response time 
requirements for P class PMUs are stricter than M class 
PMUs, they are mainly referred for response time evaluation. 
The relative difference is defined as  

TFT DHSE

TFT

100%,
pee pee

r
pee


           (17)  

which is used to evaluate the difference between the DHSE's 
and TFT’s parameter estimation error (PEE), i.e., TVE, FE 
and RFE. 

A. Frequency Deviation and Noise 

This test is to evaluate the estimators’ performances under 
frequency deviation conditions. In each test, the harmonic 
with order from the second to the 13th is included in the sig-
nal, respectively (see (18)). Each harmonic level is set to 10% 
of the fundamental, which is stated in the M class tests of the 
Standard. The fundamental frequency f is varied from 49.5 to 
50.5 Hz randomly. 

     cos 2 0.1cos 2 2, ,13.s t ft hft h       (18) 

In Fig. 9, the maximum TVEs, FEs and RFEs obtained with 
the DHSE and TFT, as well as their relative differences, are 
shown. We can see that the DHSE is generally more accurate 
than the TFT in harmonic synchrophasor, frequency and 
ROCOF estimation. The TFT has large errors in high-order 
harmonics estimation. By contrast, the DHSE’s accuracy in 
high-order harmonics estimation are improved by at least 
40%. This is because the DHSE has lower passband ripples 
and higher stopband attenuation for this kind of harmonics. 
Similar results are obtained in sections IV and V. 

In the Standard, the TVE and FE limits for M class PMUs 
under this condition are 1% and 0.025 Hz, respectively (there 
is no RFE limit in the Amendment Standard [9]). If the same 
limits are required for harmonic components, the DHSE can 
only meet the TVE requirement. However, the impact of fre-
quency deviations can be mitigated by using a longer obser-
vation window and higher order model (see TABLE I). 

In another test, wideband Gaussian noise at a signal-noise-
ratio of 60 dB is added in (18) (f=50 Hz). As is known, this 
noise level is common in power systems. The results are 
shown in Fig. 10. Although the DHSE's PEEs of high-order 
harmonics are larger than the TFT's, their differences in low-
order harmonics are almost null. Moreover, in this condition, 
the TVE and FE limits can both be met. 

B. Mutual Harmonic Interferences 

Harmonic parameter estimation can be interfered by other 
harmonics. In this test, 10% harmonics from the second to the 



13th are added to a pure sine signal. The fundamental fre-
quency is varied from 49.5 to 50.5 Hz. 

The corresponding results are shown in Fig. 11. The DHSE 
is much more accurate than the TFT in all parameter estima-
tion. Compared with the TFT, the DHSE's accuracies in high-

order harmonics are improved by at least 40%. If the same 
limits given above are referred in this test, the TVE can only 
meet the TVE limit. 

 
Fig. 9. Results under frequency deviation conditions (f=-49.5~50.5 Hz). 

 
Fig. 10. Results under noise conditions (SNR=60 dB). 

 
Fig. 11. Results under mutual harmonic interference conditions. 

 
Fig. 12. Results under harmonic oscillation conditions. 



 
Fig. 13. Results under frequency ramp conditions.

 
 

C. Harmonic Oscillation 

As stated in section I, harmonic amplitudes and frequencies 
(or phases) can be dynamic because of varying loads or sub-
synchronous oscillations. The signal in (19) is used for this 
test, where kx=ka=0.1 are the amplitude and phase modulation 
factors; and fm=5 Hz is the modulation frequency. These pa-
rameters are set according to the M class test of the Standard, 
which has a stricter test condition than the P class test. Har-
monic frequencies are always linear with the fundamental fre-
quency. 
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In Fig. 12, the corresponding results are shown. As seen, 
the DHSE is more accurate than the TFT in harmonic syn-
chrophasor, frequency and ROCOF estimation. Further, the 
higher the harmonic order is, the larger the relative differ-
ences between the DHSE's and TFT's PEEs are. Thus, the 
DHSE performs better than the TFT, especially in high-order 
harmonics parameter estimation. 

The TVE, FE and RFE limits in the Standard for PMUs 
with reporting rates= 50 frames/s are 3%, 0.3 Hz and 14 Hz/s, 
respectively. From Fig. 12, we can see that the DHSE can 
only meet the TVE requirement. 

D. Frequency Ramp 

The frequency of a voltage/current signal can have linear 
changes due to system disturbances. In order to simulate this 
condition, a test signal shown in (20) is used, where Rf=1 Hz/s 
is the rate of change of the fundamental frequency. Accord-
ingly, the ROCOF of the hth harmonic is hRf [23]. The funda-
mental frequency is varied from 49.5 to 50.5 Hz linearly. 
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In Fig. 13, the corresponding results obtained with the 
DHSE and TFT are given. We can see that the maximum 
TVEs, FEs and RFEs of the DHSE are smaller than those of 
the TFT. With the increase in harmonic order, the advantages 
are more obvious. Again, the DHSE performs better than the 
TFT, especially in high-order harmonics parameter estima-
tion. 

In the standard, the TVE, FE and RFE limits for the M class 
PMUs are 1%, 0.01 Hz and 0.2 Hz/s, respectively. As for the 
DHSE, only the 1st~12th harmonic TVEs and fundamental 

FE can meet the requirements. The maximum FE and RFE of 
the DHSE are much larger than the thresholds. Similarly, a 
longer observation window and higher order model can be 
used to mitigate the impact of the frequency ramps. 

E. Exponentially Decaying Amplitude 

Under fault conditions, harmonics can have decaying am-
plitudes. In order to simulate this condition, a signal shown in 
(21) is used for the test, where βh is the damping coefficient of 
the hth harmonic. The corresponding parameter values are 
shown in TABLE II.  
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In TABLE III, the maximum TVEs, FEs and RFEs of the 
DHSE and TFT are shown. Although the DHSE’s estimation 
accuracy is lower than the TFT's, its maximum TVEs, FEs  

TABLE II 
THE PARAMETER VALUES IN (22) 

h 1 2 3 5 7 9 11 13 
ah 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
βh 1.6 1.2 0.8 0.56 0.45 0.34 0.27 0.2 

TABLE III 
MAXIMUM TVES, FES, AND RFES OBTAINED WITH THE DHSE AND TFT 

UNDER EXPONENTIALLY DECAYING AMPLITUDE 

h 
TVE [%] FE [Hz] RFE [Hz/s] 

DHSE TFT DHSE TFT DHSE TFT 
1 0.00 0.00 0.00 0.00 0.01 0.00 
2 0.00 0.00 0.00 0.00 0.08 0.01 
3 0.00 0.00 0.00 0.00 0.09 0.01 
5 0.00 0.00 0.00 0.00 0.11 0.00 
7 0.01 0.00 0.00 0.00 0.14 0.00 
9 0.02 0.00 0.00 0.00 0.17 0.00 
11 0.03 0.00 0.00 0.00 0.23 0.00 
13 0.06 0.00 0.00 0.00 0.08 0.00 

TABLE IV 
RESPONSE TIMES OF THE DHSE AND TFT IN AMPLITUDE STEP CHANGE 

TEST. THE RESULTS ARE EXPRESSED AS NOMINAL CYCLES 

h 
TVE FE RFE 

DHSE TFT DHSE TFT DHSE TFT 
1 0.92 0.91 2.97 2.97  2.98  2.98  
2 2.92 2.92 2.96 2.96  2.99  2.99  
3 2.92 2.91 2.99 2.99  2.98  2.98  
4 2.91 2.91 2.99 2.99  2.99  2.99  
5 2.91 2.91 2.99 2.99  2.99  2.99  
6 2.90 2.90  2.99 2.99  2.99  2.99  
7 2.12 2.12 2.99 2.99  2.99  2.99  
8 1.30 1.30 2.99 2.99  2.99  2.99  
9 1.26 1.26 2.99 2.99  2.99  2.99  

10 1.23 1.23 2.99 2.99  2.99  2.99  
11 1.21 1.20 2.99 2.99  2.99  2.99  
12 1.20 1.19 2.99 2.99  2.99  2.99  
13 1.66 1.59 2.99 2.99  2.99  2.99  

TABLE V 
RESPONSE TIMES OF THE DHSE AND TFT IN PHASE STEP CHANGE TEST. 

THE RESULTS ARE ALSO EXPRESSED AS NOMINAL CYCLES 
h TVE FE RFE 



DHSE TFT DHSE TFT DHSE TFT 
1 2.43  2.43  2.89  2.89  2.83  2.83  
2 2.84  2.84  2.92  2.91  2.97  2.97  
3 2.84  2.84  2.96  2.96  2.96  2.96  
4 2.84  2.84  2.97  2.97  2.97  2.97  
5 2.83  2.83  2.97  2.97  2.97  2.97  
6 2.72  2.71  2.97  2.97  2.97  2.97  
7 2.64  2.63  2.99  2.99  2.97  2.97  
8 2.66  2.66  2.99  2.99  2.99  2.97  
9 2.59  2.59  2.99  2.99  2.99  2.99  

10 2.53  2.53  2.99  2.99  2.99  2.99  
11 2.47  2.40  2.99  2.99  2.99  2.99  
12 2.37  2.28  2.99  2.99  2.99  2.99  
13 2.54  2.54  2.99  2.99  2.99  2.99  

 
and RFEs for all harmonics estimation are 0.06%, 0.00 Hz 
and 0.23 Hz/s, respectively. They are very small, and thus can 
be neglected. In the Standard, there are no TVE, FE and RFE 
limits for fundamental parameter estimation. 

F. Step Change 

Under fault conditions, harmonic amplitudes, phases or 
frequencies may have step changes. For amplitude and phase 
step change tests, the signal shown in (18) is used. In the first 
test, the amplitude of each component changes to 110% of the 
original at the time of t=2 s. In the second test, the phases 
change to 

గ

ଵ଼
 at t=2 s. 

In the Standard, the response time is used to evaluate the 
estimators’ performances under step change conditions. It is  

 
Fig. 14. The TVEs, FEs and RFEs of the 13th harmonic under frequency step 
change condition. 

 
defined as the time interval between the instant when the PEE 
(TVE, FE or RFE) is larger than a given threshold at the first 
and last time. In the Standard, the TVE, FE and RFE thresh-
olds for P class PMUs are 1%, 0.005 Hz and 0.4 Hz/s, respec-
tively. If these requirements are also used for harmonics, the 
corresponding results are shown in TABLE IV and TABLE V. 
As seen, in both tests, the response times of the DHSE and 
TFT are almost the same. For FE and RFE, the response times 
of the both methods are always about 0.06 ms. However, they 
are different in different harmonic synchrophasors estimation. 
This is because the corresponding estimators have different 
frequency responses. 

We also test the estimators’ performances under frequency 
step change conditions. The fundamental frequency of (18) 
changes to 49.5 Hz at t=2 s. Unlike the above two tests, the 

response times of the DHSE and TFT are not the same any-
more. This is because the two methods have different perfor-
mance under frequency deviation conditions. An example is 
given in Fig. 15. Generally, the DHSE performs better in re-
sponse times. Please note that because the maximum FEs and 
RFEs under steady states are larger than the thresholds, re-
sponse times cannot be obtained. 

G. Interharmonic Interferences 

Interharmonics can be significant in power systems. In the 
Standard, an interfering signal out of the filter passband is 
considered for synchrophasor measurement. Its frequency 
varies over a range from below the passband and from above 
the passband up to the second harmonic. We use a similar 
scheme for harmonic tests. For example, interharmonics 
within [(h-1)f0+0.5(h-1), hf0-25] and [hf0+25, (h+1)f0-
0.5(h+1)] Hz are considered for the hth harmonic test (report-
ing rate= 50 frames/s). The test signal is shown in (2). 

     
 

0 0cos 2 0.1cos 2

0.05cos 2 2, ,13i

s t f t hf t

f t h

 



 

  
    (22) 

In Fig. 16, the TVEs, FEs and RFEs of the second harmonic 
are shown. Generally, the ability of interharmonic rejection is 
determined by the estimator’s frequency response (or FIR rip-
ples). For each harmonic estimation, the worst case is when 
the interharmonic is close to the estimator’s passband. By 
contrast, if the interharmonic is close to other harmonics, the 
detrimental effect will be very small. In Fig. 17, the maximum 
TVEs, FEs and RFEs of different harmonics are shown.  

 
Fig. 16. The TVEs, FEs and RFEs of the second harmonic under different 
interharmonics interference. 

 
Fig. 17. The maximum TVEs, FEs and RFEs of different harmonics (from 
the second to the 13th). 



 

For low-order harmonics, the DHSE and TFT have similar 
performance in harmonic synchrophasor, frequency and 
ROCOF estimation. However, with the increase of harmonic 
orders, their differences become bigger. 

In the Standard, the corresponding requirements of the 
TVE and FE of this test condition are 1.3% and 0.01 Hz, re-
spectively. Obviously, the DHSE cannot meet the require-
ments completely. For example, the maximum TVE, FE and 
RFE of the second harmonic are 30.99%, 3.96 Hz and 654.68 
Hz/s, respectively. Thus, the interharmonic is a main uncer-
tainty contribution in harmonic synchrophasor, frequency and 
ROCOF estimation. Generally, a long observation window 
can be used to mitigate the detrimental impact. 

H. A Practical Example 

In order to demonstrate the DHSE's practical values, a set 
of current field data is used for the test. In Fig. 18, the field 
data and its spectrum are shown. As seen, there are significant 
fundamental and third harmonic components. 

The corresponding parameter estimates of the DHSE and 
TFT are shown in Fig. 19. For better readability, the estimates 
of the DHSE and TFT are shown separately. We can see that 
the DHSE's and TFT's amplitude, frequency or ROCOF esti-
mates are almost the same. Thus, for an unknown signal, the 
DHSE can still be used to estimate harmonic parameters. 

 

 
Fig. 18. Current recorded data and its spectrum 

 
(a) 

 
(b) 

 
(c) 

Fig. 19. Parameter estimates of the DHSE and TFT. 

VII. CONCLUSION 

A novel dynamic harmonic synchrophasor estimator is pro-
posed for dynamic harmonic synchrophasor, frequency and 
ROCOF estimation. On the basis of the sinc function interpo-
lation, a bank of FIR filters is designed. The parameter Bh is 
properly selected to obtain good performance in low- and 
high-order harmonics estimation. The limited computational 
burden helps it have the possibility of practical implementa-
tion. As is shown in the simulation tests, interharmonic inter-
ference is a main uncertainty contribution of the DHSE in all 
parameter estimation. If the Standard for fundamental syn-
chrophasor measurement is also referred for harmonic com-
ponent measurement, it is shown that the FE and RFE limits 
are more difficult to meet than the TVE limits. A practical ex-
ample shows that the DHSE can also be used to process an 
unknown signal. 

Compared with the TFT, the DHSE has lower passband rip-
ples and higher stopband attenuation. Thus, under frequency 
deviation, harmonic oscillation and frequency ramp condi-
tions, the DHSE is more accurate than the TFT in all param-
eter estimation. 

APPENDIX 

According to the Shannon sampling theorem, each har-
monic synchrophasor ph(t) can be described as [25] 
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where pk,h=ph(k/(2B)), with k∈[  ,  ], are the samples of 
ph(t) at t=k/(2B) with the sampling rate 2B. Fig. A1 gives a 
qualitative representation of the Shannon sampling theorem. 



Next, we give an approximate model of (A1) with finite terms. 

 
Fig. A1. Qualitative representation of the Shannon sampling theorem 
 

Note that in a limited observation window [-Tw/2, Tw/2], 
the samples far away from [-Tw/2, Tw/2] have few contribu-
tions to the reconstruction of ph(t). Thus, ph(t) can be recon-
structed by the samples in and around the observation win-
dow approximately [26], which is given by 
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where K is the number of samples on both sides of ph(0). Ac-
cording to the former descriptions, the observation window 
Tw should meet Tw<K/B. 
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