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Gas diffusion in coal powders is a multi-rate process1
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Abstract Gas migration in coal is strongly controlled by surface diffusion of adsorbed gas5

within the coal matrix. Surface diffusion coefficients are obtained by inverse modelling of6

transient gas desorption data from powdered coals. The diffusion coefficient is frequently7

considered to be dependent on time and initial pressure. In this article it is shown that the8

pressure dependence can be eliminated by performing a joint inversion of both the diffusion9

coefficient and adsorption isotherm. A study of the log-log slope of desorbed gas production10

rate against time reveals that diffusion within the individual coal particles is a multi-rate11

process. Application of a power law probability density function of diffusion rates enables12

the determination of a single gas diffusion coefficient that is constant in both time and initial13

pressure.14
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1 Introduction16

There is much interest in measurement of gas diffusion coefficients for coal. Such coeffi-17

cients are required for field-scale coal-bed-methane (CBM) simulators to plan and forecast18

the performance of CBM production operations. Coal beds generally exhibit an orthogonal19

set of fractures. Fractures in coal are referred to as cleats. The surrounding blocks of coal20

are typically referred to as the matrix. Methane gas is adsorbent in coal. Gas adsorption21

is a pressure dependent process with adsorption increasing with increasing pressure. CBM22

production involves reducing pressure in the coal bed by fluid production (this can be water23

and/or gas). The reduced pressure causes gas to desorb and migrate through the cleat system.24

Due to very small permeability, migration of gas within the coal matrix is dominated25

by diffusion. Three modes of gas diffusion are generally considered (Zhao et al., 2019): (1)26

free diffusion of desorbed gas in the pore-space of the coal matrix; (2) Knudsen diffusion27

of desorbed gas in the pore-space of the coal matrix; (3) surface diffusion of adsorbed gas28

within layers of adsorbed gas in the coal matrix.29

Free diffusion of desorbed gas within the coal matrix is not thought to be significant30

because the gas molecules are a similar size to the pore-sizes in the coal matrix of con-31

cern. Instead, Knudsen diffusion is likely to dominate, whereby diffusion is enhanced by the32

bouncing of gas molecules on the side of the pores. Nevertheless, many simulators assume33

only surface diffusion of adsorbed gas occurs within the matrix with all gas desorption tak-34

ing place at the cleat face (King et al., 1986; Ye et al., 2014; Zang and Wang, 2016; Miao et35

al., 2018).36
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A common method of measuring gas diffusion coefficients is the so-called “particle37

method” (Dong et al., 2017). This involves grinding coal into a powder and sieving out par-38

ticles within a fixed diameter interval. These are then packed into a reactor vessel. Methane39

gas is injected into the vessel until a designated pressure is reached. The vessel is then ex-40

posed to atmospheric pressure and the volume of gas produced from the vessel is recorded41

with time. The diffusion coefficient of the coal is estimated by calibrating a mathematical42

model of gas diffusion to the observed gas production time-series (Guo et al., 2016; Yue et43

al., 2017; Dong et al., 2017; Cheng-Wu et al., 2018).44

The observed diffusion process is generally thought to represent the surface diffusion of45

adsorbed methane within the ground coal particles. A problem frequently encountered is that46

a mathematical model of Fickian diffusion in a homogeneous spherical particle is unable to47

simulate both the early and late portions of the experiment. Instead, a weighted mean of48

responses from two spherical diffusion models with different diffusion coefficients is often49

applied, generally referred to as a bidisperse model (Smith and Williams, 1984; Clarkson50

and Bustin, 1999; Wang et al., 2014). Whilst such a model has sufficient degrees of freedom51

(two diffusion times and a weighting coefficient) to fit the observed data of concern, the52

physical basis of the conceptual model is weak. The model represents a mixture of particles53

with two different sizes and/or two different diffusion coefficients. Whilst it is conceivable54

that there should be a continuum of different particle sizes present in such experiments it is55

unclear why the distribution should be dominated by two specific sizes in particular.56

More recently, spherical diffusion models with transient diffusion coefficients have been57

adopted, whereby a spatially uniform diffusion coefficient is defined using a heuristic func-58

tion that continually declines with time (Dong et al., 2017; Yue et al., 2017; Zhao et al., 2017;59

Cheng-Wu et al., 2018). Such an approach leads to simple to evaluate analytical solutions,60

which are straightforward to accurately calibrate against observed data. However, there is61
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no physical basis to justify allowing a spatially uniform diffusion coefficient to decline with62

time in this context.63

Jiang et al. (2013) Kang et al. (2015, 2016) and Fan et al. (2016) alternatively propose to64

use time and space-fractional diffusion equations in order to describe gas production curves65

over the full time range. This more phenomenological approach is driven by the general66

use of fractional diffusion models for anomalous diffusion processes and does not require67

transient diffusion coefficients. However, whilst the use of fractional space derivatives is68

motivated by a possibly fractal grain structure within the coal particles, a physical basis for69

using time-fractional derivatives is unclear in this context. Furthermore, a time-fractional70

approach predicts a persistent power-law decay in production rate, which is generally not71

the case (Dentz et al., 2004; Meerschaert et al., 2008). Instead, production rates tend to72

exponentially cut off at a characteristic time-scale, as will be shown using experimental gas73

desorption data later in the article.74

The fact that a transient diffusion coefficient or a time-fractional derivative is required75

implies that there is missing physics within the conventional Fickian diffusion model. Previ-76

ous researchers have suggested that the missing physics of concern includes free and Knud-77

sen diffusion within the coal matrix (Dong et al., 2017; Liu et al., 2018; Liu and Lin, 2019).78

Wang et al. (2017) found that the need for a transient diffusion coefficient can be elim-79

inated by using a dual-porosity model whereby coal particles are assumed to comprise a80

micro and macro pore-space. A dual porosity framework will give rise to at least two addi-81

tional fitting parameters as compared to a single porosity diffusion model and will therefore82

be much better at matching observed experimental data (Zang et al., 2019). Of note is that83

the gas production data from “particle-method” experiments is presented as desorbed gas84

volume as a function of time. However, a better diagnostic approach, not typically used in85

the literature, is to study desorbed gas production rate as a function of time on log-log axes.86
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Dual-porosity phenomena will manifest itself as two connected offset straight-lines both87

with log-log slopes of -0.5, one for the macro-pores and another for the micro-pores. This88

will similarly be the case for the so-called bidisperse model.89

A -0.5 slope is characteristic of spherical or near spherical particles of the same diame-90

ter and homogeneous spatial structure. A single straight-line with a log-log slope, which is91

not equal to -0.5 is indicative of multi-rate phenomena (MRP), whereby there are multiple92

diffusion rates simultaneously present (Haggerty et al., 2000, 2001; Gouze et al., 2008). A93

distribution of particle sizes and shapes as well as heterogeneous spatial structure will give94

rise to such phenomena. 3D laser scanning of ground coal particles, such as those used in95

the aforementioned “particle method” experiments, reveals that individual coal particles are96

frequently aspherical and angular (Koekemoer and Luckos, 2015). Such particles appear to97

be assembled from conglomerations of smaller particles comprising a wide range of possi-98

ble sizes, which would provide a good physical basis for MRP in this context. Furthermore,99

accommodating for MRP will likely remove the need for adopting a transient diffusion co-100

efficient to simulate observed phenomena in experimental gas production data.101

It is also noted that previous research has treated diffusion coefficient to be a function102

of the initial pressure of the experiment. However, the gas pressure within the packed bed103

pore-space is assumed to be at atmospheric pressure from the start of the experiment. The104

fact that different diffusion coefficients are required for different initial pressures points105

towards potential errors in the gas adsorption isotherm being adopted (which is pressure106

dependent). A frequently used adsorption isotherm is the Langmuir isotherm, which has two107

physical parameters. These parameters are generally obtained by calibrating the isotherm to108

an additional set of steady state desorption experiments (Guo et al., 2016; Yue et al., 2017;109

Dong et al., 2017).110
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Liu et al. (2017) were able to describe diffusion controlled, time-dependent swelling of111

coal matrix upon CH4 adsorption with a single diffusion coefficient that is constant with112

both pressure and time. It follows that it should be possible to describe gas production rates113

from gas desorption experiments with a constant diffusion coefficient as well.114

The objective of this article is to demonstrate that gas production rates from gas desorp-115

tion experiments using ground coal particles can be described using a single static diffusion116

coefficient that is independent of initial pressure when MRP are accounted for and the asso-117

ciated gas adsorption isotherm is obtained through a joint inversion of gas desorption data118

for all initial pressures studied. The demonstration is developed using experimental data119

previously presented by Dong et al. (2017).120

The outline of this article is as follows: The experimental procedure of Dong et al. (2017)121

is introduced and described. A simple spherical diffusion model is presented. A new multi-122

rate model is developed assuming that diffusion rate is a stochastic process characterized123

by a truncated power law probability density function, hereafter referred to as a stochastic124

power law model. A joint inversion procedure is described involving simultaneous calibra-125

tion of models to observed gas desorption data for multiple experimental initial pressures.126

A joint inversion of diffusion coefficient and adsorption isotherm is applied using the sim-127

ple spherical diffusion model. The exercise is then repeated using the stochastic power law128

model.129

2 Methods and data130

2.1 Description of gas desorption experiments131

In this article, “particle method” experimental data, previously generated by Dong et al.132

(2017) are revisited. The experiments focus on anthracite from the Daning coal mine in the133
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Qinshui Basin of China. The coal was ground into powder and two samples were acquired,134

one with particles ranging from 1.0 to 3.0 mm in diameter (sample 1) and another with135

particles ranging from 0.5 to 1.0 mm in diameter (sample 2). The density of the coal, ρc136

[ML−3], was measured as being 1.50 g cm−3.137

For each experiment, a reactor vessel, of interior volume, Vv [L3], of 102 ml, was packed138

with a mass of coal powder, Mc [M], of 50 g. The vessel was then exposed to a vacuum for139

24 hours to remove all free and adsorbed gas. Following from this, the vessel was heated and140

maintained at a constant temperature, T [Θ], of 303.15 K. Pure methane was subsequently141

injected into the vessel until a desired gas pressure, PI [ML−1T−2], was achieved. The vessel142

was maintained at P = PI for 6 hours to ensure gas adsorption equilibrium within the coal143

particles was achieved. The initial pressures studied were 0.25, 0.5, 1, 2, 3 and 4 MPa.144

The outlet of the reactor vessel was then reduced to atmospheric pressure, P0 [ML−1T−2],145

0.101 MPa, by linking the outlet to a closed gas sample bag, exposed externally to atmo-146

spheric conditions. Atmospheric pressure was reached at the vessel outlet after around 5 s147

and then the vessel was connected to a gas measuring cylinder. The volume of gas entering148

the measuring cylinder was recorded at different times for a total of 120 minutes.149

The results of the experiment are presented as desorbed gas volume, vd [L3M−1], in ml150

g−1. This represents the volume of gas at standard conditions (taken to be 303.15 K and151

0.101 MPa), in ml, desorbed from a gram of coal powder, after a given time, t [T], since the152

reactor vessel was connected to the closed gas sample bag. The vd term is calculated from153

(Guo et al., 2016)154

vd ≡
Md

ρg0Mc
=

Mgt −Mg f

ρg0Mc
(1)

where Md [M] is the mass of desorbed gas, Mgt [M] is the total mass of gas contained within155

both the closed gas sample bag and the measuring cylinder, Mg f [M] is the total mass of156
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free gas that will ultimately be released from the reactor vessel that is not thought to have157

previously been adsorbed to the coal and ρg0 [ML−3] is the density of gaseous methane at158

standard conditions. The Mg f term is calculated from (Guo et al., 2016)159

Mg f =

(
Vv−

Mc

ρc

)
(ρgI−ρg0) (2)

where ρgI [ML−3] is the density of gaseous methane at P = PI .160

2.2 Mathematical models161

In this section, a simple spherical diffusion model is presented. We then develop a new162

multi-rate, stochastic power law model by assuming that diffusion rate is characterised by163

a truncated power law probability density function (PDF). When using the simple spherical164

diffusion model, the log-log slope of gas production rate as a function of time is restricted165

to -0.5. Log-log slopes that deviate from -0.5 are indicative of multi-rate phenomena. An166

important advantage of the stochastic power law model is that this log-log slope is explicitly167

controlled by an empirical parameter, k.168

2.2.1 Simple spherical diffusion model169

For coal-particles that are homogeneous spheres of equal size, vd can be determined using170

the simple spherical diffusion model (Crank, 1979; Dong et al., 2017)171

F ≡ vd

vd0
= 1− 6

π2

∞

∑
n=1

1
n2 exp(−ατn) (3)

where172

vd0 = vL

(
PI

PL +PI
− P0

PL +P0

)
(4)
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α =
4DA

a2 (5)

173

τn = π
2n2t (6)

and vL [L3M−1] and PL [ML−1T−2] are Langmuir isotherm parameters describing gas ad-174

sorption within the coal particles, DA [L2T−1] is the apparent diffusion coefficient and a [L]175

is the diameter of the coal particles. By fitting a Langmuir isotherm to steady state gas des-176

orption data, Dong et al. (2017) previously found that vL = 36 ml g−1 and PL = 1.13 MPa177

for the anthracite of concern.178

Also of relevance is that the desorbed gas production rate, dvd/dt, is found from179

dF
dt
≡ 1

vd0

dvd

dt
= 6α

∞

∑
n=1

exp(−ατn) (7)

The vd0 parameter represents the maximum volume of gas per unit mass of coal that can180

be desorbed from the experiment. The α parameter represents the characteristic diffusion181

rate of the spherical particle under consideration.182

2.2.2 Stochastic power law model183

If the diffusion rate parameter, α [T−1], is stochastic and characterized by a PDF, f (α) [T−1],184

the expectant of vd is found from185

〈vd〉=
∫

∞

0
vd f (α)dα (8)

and186 〈
dvd

dt

〉
=

∫
∞

0

dvd

dt
f (α)dα (9)
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Here we consider the case that f (α) is a truncated power law of the form187

f (α) =
(k−1)αk−2

α
k−1
1 −α

k−1
0

, α ∈ [α0,α1] (10)

where k [-] is an exponent and α0 [T−1] and α1 [T−1] represent the minimum and maximum188

diffusion rates, respectively.189

The multiple rate model applied in our study is based on the existence of a distribution190

of particle sizes, which implies a distribution of characteristic diffusion rates. The superpo-191

sition of gas production rates originating from a set of particles of different size and shape192

gives rise to a different decay law at intermediate times while a cut-off time is determined by193

the largest sized particles. The reason for adopting a truncated power-law PDF for diffusion194

rates is based on the following observations: Firstly, there needs to be a truncation in the195

distribution due to the simple fact that there is a smallest and largest particle size within the196

mixture of particles, which implies a largest and smallest diffusion rate, respectively. Sec-197

ondly, the observation of a power-law in the production rate at intermediate times indicates198

a power-law in the distribution of the diffusion rates. This becomes clear in the subsequent199

examination of Figs. 1 and 2 below.200

Haggerty et al. (2000) previously derived analytical solutions for Eq. (9) with Eq. (10)201

for the special cases where k = 0, 1 and 2. They claim that solutions for non-integer k values202

are only achievable using numerical methods. In fact, this is not true. We have derived such203

solutions by substituting Eqs. (3), (7) and (10) into Eqs. (8) and (9) and evaluating the204

resulting integrals. The resulting formulae take the form:205

〈F〉 ≡ 〈vd〉
vd0

= 1− 6
π2

∞

∑
n=1

(k−1)τ1−k
n [Γ(k−1,α0τn)−Γ(k−1,α1τn)]

n2(αk−1
1 −α

k−1
0 )

(11)
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and206 〈
dF
dt

〉
≡ 1

vd0

〈
dvd

dt

〉
= 6

∞

∑
n=1

(k−1)τ−k
n [Γ(k,α0τn)−Γ(k,α1τn)]

α
k−1
1 −α

k−1
0

(12)

where Γ(a,x) is the incomplete gamma function (Jameson, 2016).207

Notably, Eq. (11) is problematic because Γ(a,x) is difficult to evaluate for a < 0. How-208

ever, given the recursive relationship (Jameson, 2016)209

Γ(a+1,x) = aΓ(a,x)+ xae−x (13)

it can be shown that210

〈F〉= 1− 6
π2

∞

∑
n=1

τ1−k
n [Γ(k,α0τn)−Γ(k,α1τn)]+α

k−1
1 e−α1τn −α

k−1
0 e−α0τn

n2(αk−1
1 −α

k−1
0 )

(14)

Figs. 1a, c and e show example plots of 〈F〉 against normalised time, α0t, for a range of211

k values and α1/α0 ratios. It can be seen that 〈F〉 equilibrates faster with increasing α1 and212

also increasing k. This is because increasing these parameters implies that the PDF for α is213

increasingly dominated by higher diffusion rates. Also of interest is that, regardless of the214

k value, as α1 → α0, the stochastic power law model converges on results from the simple215

spherical diffusion model (shown as a thick green line for comparison).216

Figs. 1b, d and f show corresponding plots of α
−1
0 〈dF/dt〉 against normalised time, α0t,217

on log-log axes. For t < π−2α
−1
1 (as indicated by the coloured circular markers), the log-218

log slope is -0.5, similar to the simple spherical diffusion model (again presented as thick219

green lines for comparison). For π−2α
−1
1 < t < π−2α

−1
0 , the log-log slope of the stochastic220

power law model is−k (compare with the plots of (α0t)−k, shown as black dashed lines). For221

t > π−2α
−1
0 , the gas production rate quickly drops off as this represents the time at which the222
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system reaches diffusion equilibrium. The π2 factor is a geometry parameter, characteristic223

of diffusion in spheres (Zimmerman et al., 1993).224

The fact that 〈dF/dt〉 plots against t on log-log axes as a straight line with a slope of225

−k for intermediate times is indicated by the presence of a τ−k
n term in Eq. (12). However,226

because this happens at intermediate times as opposed to early or late times, it is not possible227

to derive a neat asymptotic result to demonstrate this point further.228

2.3 Joint inversion procedure229

In previous studies (e.g. Dong et al., 2017; Yue et al., 2017; Cheng-Wu et al., 2018), the sim-230

ple spherical diffusion model, Eq. (3), has been fitted to gas desorption data with Langmuir231

isotherm parameters obtained a priori using additional steady state desorption data. Here the232

gas desorption data of Dong et al. (2017) is revisited using Eq. (3) but with the transfer rate,233

α, and values of vd0, for each initial pressure, PI , studied, treated as unknown parameters,234

obtained by joint inversion of gas desorption data for each PI studied. This was achieved as235

follows:236

MATLAB’s optimization tool, FMINSEARCH, was used to select a value of α, which237

in turn was used to determine values of F from Eq. (3) for each time under consideration.238

A value of vd0 was obtained by dividing the mean of the observed vd values, for a given PI ,239

by the mean of the F values. This was repeated for each PI value studied. A set of modeled240

vd values was obtained, for each PI value studied, by multiplying the F values by each of241

the vd0 values. The Root Mean Squared Error (RMSE) between the modelled and observed242

vd values was determined. FMINSEARCH then iteratively changed the value of α until the243

RMSE was minimized.244
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The above methodology was also applied using the stochastic power law model, Eq.245

(14). However, in this case, FMINSEARCH was used to find optimal values for α0 and α1246

with k [-] being obtained a priori by inspection of the log-log slope of the observed dvd/dt247

data.248

FMINSEARCH is a local optimisation tool, which is appropriate in this case because249

the number of free parameters is small and multiple minima in RMSE are not expected.250

FMINSEARCH requires specification of seed values for the unknown model parameters.251

These were obtained my manual, a priori, trial and error fitting of the models to the observed252

data. For the simple spherical diffusion model, the seed value of α was taken to be 0.001253

min−1. For the stochastic power law mode, the seed values for α0 and α1 were taken to be254

0.001 min−1 and 0.1 min−1, respectively.255

3 Results256

Comparisons of simulated and observed desorbed gas volume for samples 1 and 2, using the257

simple spherical diffusion model, are shown in Figs. 2a and c, respectively. Note that only258

one α value is assumed for each sample. However, separate vd0 values are assumed for each259

PI value considered (these are shown in Fig. 3). The model closely follows the desorbed260

gas volume data. The calibrated model parameters and estimated diffusion coefficients are261

presented in Table 1. The diffusion coefficients are calculated using Eq. (5) with a set to262

the median value, which is 2 mm for Sample 1 and 0.75 mm for Sample 2. These values263

are consistent with the range of diffusion coefficients previously determined by Dong et al.264

(2017, Table 2) using a transient diffusion coefficient. However, it is clear that the model un-265

derestimates desorption during late times. The same is also true for desorbed gas production266
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rate (see Figs. 2b and d). This has resulted in the estimated values for vd0 being significantly267

less than those predicted using the Langmuir isotherm of Dong et al. (2017) (see Fig. 3).268

An important feature of the simple spherical diffusion model is that the log-log slope269

of a plot of desorbed gas production rate against time is -0.5. In contrast, the observed data270

show a log-log slope of around -0.7 (see Figs. 2b and d). Deviations from a -0.5 log-log271

slope are indicative of multi-rate phenomena (Haggerty et al., 2000). Also of interest is that272

the observed gas production rates exhibit an exponential cut off at large times, which can273

be represented by the minimum diffusion rate in our truncated power-law PDF described274

above.275

An advantage of using the stochastic power law model, described above, is that the log-276

log slope can be directly specified using the k parameter. Based on the observed data we277

chose to set k = 0.7. The two additional calibration parameters, α0 and α1, were then ob-278

tained by applying the calibration procedure described above. Comparisons of simulated and279

observed desorbed gas volume for samples 1 and 2, using the stochastic power law model,280

are shown in Figs. 4a and c, respectively. Note that only one set of α0 and α1 values is as-281

sumed for each sample. However, separate vd0 values are again determined for each PI value282

considered. The model much more closely follows the observed desorption gas volume data283

(see Figs. 4a and c) as compared to the simple spherical diffusion model (compare RMSE284

values in Table 1). The same is also true for the desorbed gas production rate (compare Figs.285

2b and d with Figs. 4b and d).286

The calibrated model parameters, estimated diffusion coefficients and RMSE values are287

also presented in Table 1. The diffusion coefficients are calculated using Eq. (5) with α =288

α0. These diffusion coefficients are much smaller than those estimated using the simple289

spherical diffusion model. This is because the stochastic power law model also allows for290

the presence of much smaller particles, which have higher rate coefficients (as high as α1).291
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It is also of note that the RMSE is significantly reduced when the stochastic power law292

model is used instead of the simple spherical diffusion model (see Table 1). Furthermore,293

the estimated values for vd0 are much closer to those predicted using the Langmuir isotherm294

of Dong et al. (2017) (see Fig. 3). It is also of interest to see that the observed data for all295

pressures plot as a single curve for each sample when the data is divided by the calibrated296

values of vd0 (see Fig. 5).297

4 Conclusions298

Many previous studies claim that the apparent diffusion coefficient for surface diffusion of299

adsorbed gas in coal is a function of pressure and time. The objective of this study was to300

demonstrate that this diffusion coefficient can in fact be treated as a constant in both pressure301

and time. The demonstration involved revisiting gas desorption data previously obtained by302

Dong et al. (2017).303

It was argued that the perceived pressure dependence of diffusion coefficient comes304

about because gas adsorption isotherms are obtained a priori to inversion of the diffusion305

coefficient. By acquiring the diffusion coefficient and the adsorption isotherm simultane-306

ously from a joint inversion of gas desorption data from multiple initial pressures, it was307

hypothesized that the dependency of the diffusion coefficient on initial pressure would be308

removed.309

It was further argued that the transient nature of the diffusion coefficient comes about310

due to missing physical processes in the mathematical models used for calibration. Typi-311

cally, ground coal particles used for such experiments are treated as identical homogeneous312

spheres characterized by a single diffusion coefficient, referred to as the simple spherical313

diffusion model. Previous analysis of data from gas desorption experiments has focused on314



16 Mathias et al.

gas volume produced from the sample as a function of time. However, in this article, addi-315

tional insight was gained by studying the plots of gas production rate as function of time316

on log-log axes. The simple spherical diffusion model manifests itself, at early times on317

such a plot, as a straight line with a slope of -0.5. In contrast, the observed gas desorption318

data studied in this article exhibited a log-log slope of -0.7. Deviations from a -0.5 slope319

are indicative of multi-rate phenomena (Haggerty et al., 2000). Such phenomena can be ex-320

plained in this context by the fact that individual coal particles comprise an agglomeration321

of multiple sized sub-particles.322

The first joint inversion performed in this study employed the simple spherical diffu-323

sion model. A close correspondence between modeled and observed transient desorbed gas324

volume was obtained using a single static diffusion coefficient. However, closer inspection325

revealed that the model underestimates desorbed gas volume at late times. This in turn led326

to a significant underestimate of final desorbed gas volume as compared to that predicted by327

an a priori obtained Langmuir isotherm.328

Following on from this, a stochastic extension of the simple spherical diffusion model329

was derived, which assumes diffusion rates of spheres are described by a truncated power330

law probability density function, referred to as the stochastic power law model. The afore-331

mentioned log-log slope from the stochastic power law model was then set a priori to 0.7332

and an additional joint inversion was performed to obtain a new diffusion coefficient and ad-333

sorption isotherm. The correspondence between the model and observed transient desorbed334

gas volume data was significantly improved compared to when using the simple spherical335

diffusion model. Furthermore, the final desorbed gas volumes estimated using the stochastic336

power law model were much closer to those predicted by the a priori obtained Langmuir337

isotherm.338
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Table 1 Calibrated parameter values and associated RMSE using the simple spherical diffusion model (sim-
ple) and the stochastic power law model (stochastic) for both sample 1 (1-3 mm) and sample 2 (0.5-1 mm).
The α value for the simple spherical diffusion model is shown as α0 for convenience.

Model α0 α1 k RMSE DA

(min−1) (min−1) (-) (ml g−1) (m2s−1)
Simple - sample 1 0.00302 - - 0.243 5.03×10−11

Simple - sample 2 0.00391 - - 0.289 9.16×10−12

Stochastic - sample 1 0.000112 0.0431 0.70 0.0795 1.86×10−12

Stochastic - sample 2 0.000380 0.0371 0.70 0.102 8.91×10−13

The study relies on an assumption that MRP is due to individual coal-particles being339

comprised of a conglomeration of smaller spherical particles with diffusion times charac-340

terised by a truncated power law distribution. Furthermore, it is assumed that only surface341

diffusion occurs within the individual particles. Such an approach overlooks the potentially342

important roles of Knudsen diffusion and desorption of gas within the individual particles.343

Nevertheless, this limitation is common to most previous studies in the field. Furthermore,344

our proposed model captures experimental behaviour well using very few degrees of free-345

dom.346

An important conclusion from this study is that the apparent diffusion coefficient for347

surface diffusion of adsorbed gas in coal can be treated as a constant in pressure and time.348

Furthermore, the study emphasizes the importance of studying plots of desorbed gas produc-349

tion rates against time on log-log axes. It is also recommended to use the stochastic power350

law model to determine surface diffusion coefficients for subsequent gas desorption studies.351

These diffusion coefficients can be used by reservoir simulators to estimate gas diffusion352

rates in coal matrix during coal-bed methane production.353
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Fig. 1 Plots of 〈F〉 and 〈dF/dt〉, using the stochastic power law model, for different values of k (as indicated
in the subtitles) and α1/α0 (as indicated in the legends). Results from the simple spherical diffusion model
(simple) are shown for comparison as thick green lines. The stochastic power law model log-log slopes are
shown for comparison as black dashed lines. The coloured circular markers show where t = π−2α

−1
1 , which

marks the time at which the log-log slope, for the stochastic power law model, is no longer equal to −0.5.
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Fig. 2 Results from calibrating the simple spherical diffusion model to observed desorbed gas volume data.
The solid lines and circular markers are results from the model and the observed data, respectively. a) and b)
show results for sample 1. c) and d) show results for sample 2.
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Fig. 3 Plot of estimated final desorbed gas volume, vd0, against initial pressure of the desorption experiment,
PI . The green line is the Langmuir isotherm from steady state adsorption data previously obtained by Dong
et al. (2017). The other dashed lines and solid lines are estimates based on calibrating the simple spherical
diffusion model (simple) and the stochastic power law model (stochastic) to transient desorbed gas volume
data, respectively



Multi-rate diffusion in coal powders 25

0 20 40 60 80 100 120

Time (min)

0

2

4

6

8

10

12

14

16

18

20

22

D
es

or
be

d 
ga

s 
vo

lu
m

e 
(m

l g
-1

)

a)

100 101 102

Time (min)

10-2

10-1

100

D
es

or
be

d 
ga

s 
pr

od
uc

tio
n 

ra
te

 (
m

l g
-1

 m
in

-1
)

b)

P
I
 = 0.25 MPa

P
I
 = 0.5 MPa

P
I
 = 1 MPa

P
I
 = 2 MPa

P
I
 = 3 MPa

P
I
 = 4 MPa

0 20 40 60 80 100 120

Time (min)

0

2

4

6

8

10

12

14

16

18

20

22

D
es

or
be

d 
ga

s 
vo

lu
m

e 
(m

l g
-1

)

c)

100 101 102

Time (min)

10-2

10-1

100

D
es

or
be

d 
ga

s 
pr

od
uc

tio
n 

ra
te

 (
m

l g
-1

 m
in

-1
)

d)

P
I
 = 0.25 MPa

P
I
 = 0.5 MPa

P
I
 = 1 MPa

P
I
 = 2 MPa

P
I
 = 3 MPa

P
I
 = 4 MPa

Fig. 4 Results from calibrating the stochastic power law model to observed desorbed gas volume data. The
solid lines and circular markers are results from the model and the observed data, respectively. a) and b) show
results for sample 1. c) and d) show results for sample 2.
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Fig. 5 Results from calibrating the stochastic power law model to observed desorbed gas volume data re-
scaled by dividing by vd0. The results from the model are shown as solid green lines. The observed data are
shown as circular markers, with the different colours indicating the different initial pressures, as shown in the
legends. a) and b) show results for sample 1. c) and d) show results for sample 2.


