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This paper develops readily applicable methods for estimating the intrinsic dimension of multi-

variate datasets. The proposed methods, which make use of theoretical properties of the empirical
distribution functions of (pairwise or pointwise) distances, build on the existing concepts of (i)

correlation dimensions and (ii) charting manifolds that are contrasted with (iii) a maximum

likelihood technique and (iv) other recently proposed geometric methods including MiND and

IDEA. This comparison relies on application studies involving simulated examples, a recorded
dataset from a glucose processing facility, as well as several benchmark datasets available from the

literature. The performance of the proposed techniques is generally in line with other dimension

estimators, speci¯cally noting that the correlation dimension variants perform favorably to the

maximum likelihood method in terms of accuracy and computational e±ciency.
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1. Introduction

Recently, nonparametric concepts to extract m feature components embedded

within a set of M recorded variables have gained interest in the scienti¯c commu-

nity.23 In a nonparametric context, estimating the intrinsic dimension (ID), which

can be integer- or real-valued, is challenging. The research literature has proposed

several conceptual approaches for this problem, including fractal dimensions,11,24

charting manifolds6 and maximum likelihood (ML) dimension.37 This paper develops

methods on the basis of these existing concepts.

For more traditional parametric models, an often observed situation is that a

particular variable may contain information that is encapsulated in other variables

too. Thus, the variables are interrelated which allows describing them by a reduced

set of m 2 N latent variables, with m being the ID. Related (unsupervised) models,

consequently, discriminate between signi¯cant and residual information and are,

conceptually, of one of the following forms27,57:

x ¼ Asþ r; ð1aÞ
x ¼ �ðsÞ þ r: ð1bÞ

Here, x 2 RM is the data vector, s 2 Rm stores the latent variables and r 2 RM is a

noise vector. The assumptions for the data models in Eq. (1) are as follows:

Assumption 1: Efxg ¼ Efrg ¼ AEfsg ¼ Ef�ðsÞg ¼ 0;

Assumption 2: Efx2
i g > Efr2jg, 81 � i; j � M .

Here, Ef�g is the expectation operator. Assumption 2 is required to ensure an in-

signi¯cant loss of information,8,21 with some works relying on the more restrictive as-

sumption Efx2
i g � Efr2jg.35 The vector s describes common trends in x. The

assumption Efxg ¼ 0 is not a restriction of generality, as the o®set term ���� ¼ �Efxg
can be added, such that Efxþ ����g ¼ 0. Equation (1a) describes a linear relationship

between s and signi¯cant information in x through the use of a model subspace, de¯ned

by the column space ofA. Equation (1b) is a nonlinear extension of Eq. (1a), where the

nonlinear transformation of s describes signi¯cant information in x. Throughout this

paper, we denote the density functions of x and s by f and g, respectively.

1.1. Parametric intrinsic dimension estimation

To estimate m 2 N for Eq. (1a), a plethora of methods have been proposed over the

past decades. The top left section in Table 1 summarizes a subset of methods that

gained attention in the literature, most of which relate to the application of principal

component analysis (PCA) to estimate the column space of A and rely on various

assumptions. Depending on the assumptions imposed on r, the variance of the re-

construction error43 (VRE) and the equality of eigenvalues test for maximum like-

lihood PCA20 provide consistent estimations of m. The eigen decomposition of the

scaled covariance matrix EfxxTg gives a consistent estimation of the column space
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ofA, even if s does not follow a normal distribution.22,38 Consistency for estimatingm,

however, is only guaranteed if EfsrTg ¼ 0.

Work on estimating the ID for the model structure in Eq. (1b) mainly relies on

nonlinear extensions of PCA and includes autoassociative neural networks as well as

kernel PCA (KPCA). The latter approach can extract nonlinear principal compo-

nent scores using the same objective function as PCA.36 Various approaches to

estimate m 2 N have been considered, including cross-validation, an analysis of the

residual variance or the H-principle; see Table 1 (top, right). The suitability of

nonlinear PCA for ID estimation, however, has been disputed.41

1.2. Nonparametric intrinsic dimension estimation

To develop nonparametric estimation methods, this paper considers concepts that do

not assume, or make use of, the data model in Eq. (1). The underlying mechanism for

generating data, however, may still follow Eq. (1). To provide a general framework

for estimating m, we assume here that m 2 N or m 2 Rþ.
Multidimensional scaling (MDS)5 is among the family of nonparametric

approaches, listed in Table 1. Conceptually, MDS (just as PCA/NLPCA) is a

dimension reduction rather than dimension estimation method, requiring ad hoc

Table 1. Overview of techniques to estimate m. Methods which are considered in this
paper are printed in italic and novel contributions are additionally denoted in bold.

Traditional Parametric Approaches

Linear Eq. (1a) Nonlinear Eq. (1b)

� eigenvalue-based (linear projection)31,35,55 � eigenvalue-based (nonlinear projection)

� e.g. PCA20 � KPCA15,46

� cross-validation-based35 (e.g. VRE43) � autoassociative neural networks2,34,58

� information-based35 � cross-validation-based47

� Velicer's partial correlation55 � residual-based3,2

� Probabilistic/Bayesian PCA4,52 � H-principle30

More Recently Proposed Nonparametric Approaches

Global approaches Local approaches

� MDS � local eigenvalues/PCA
� via stress functions8 � Fukunaga–Olsen approach21

� ISOMAP50 � local eigenvalue algorithm57

� geometric/\correction" methods � topology representing networks7,42

� IDEA45 � near-neighborhood approaches
� MiND,45 DANCo13 � near-neighbor algorithm,57 kNN12

� fractal-based concepts � graph-based methods12,28

� box-counting33 � localized representation learning14,18

� Taken's method48 � ML37

� correlation-dimension concepts11,51 � charting concepts6

– slope method (log-log-plot)8 � dip method

– intercept method � regression method
– polynomial method

– \kernel" correlation integral29
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rules, such as a \knee" in the stress function, to determine an integer-valued

m.34,36,58 Camastra8 argued that estimating m in this way may be di±cult since a

distinct \knee" does not always exist.

It is, hence, preferable to have tailored ID estimation methods available. A

suitable family of techniques is given by the fractal dimension, which includes, for

example, box-counting and correlation-dimension. Associated concepts estimatem 2
Rþ directly by adapting methods from the chaos theory to determine the dimension

of attractors of real datasets.24 All methods discussed above rely on the entire dataset

and are, therefore, global methods,8 an overview of which is provided on the left side

of Table 1.

Alternatively, the literature proposed local methods, which identify the topolog-

ical dimension locally as the dimension of the tangent space along the data at a

speci¯c target point.8,10 An early instance is the work by Fukunaga and Olsen,21

where m is estimated to be the number of normalized nonzero eigenvalues of region-

wise covariance matrices. A variety of alternative local methods have been developed

since then; some of which are listed at the bottom right part of Table 1.

The presentation in Table 1 di®ers in some aspects from alternative categoriza-

tions. For instance, Camastra and Staiano10 consider ISOMAP to be a local method,

on the grounds that it makes use of a local variant of MDS. However, since it

produces a single global ID estimate, we advocate considering it as a global method.

More precisely, our classi¯cation criterion is as follows: Local methods produce

(possibly, multiple) local ID estimates and global methods produce (a single) global

ID estimates. It is important to note, however, that some of the local methods in

Table 1 average over local ID estimates in order to derive an overall ID estimate.28,37

Following this line of reasoning, our classi¯cation does not require the additional

classi¯cation category of pointwise10 methods.

Following the preceding discussion, the literature has reported substantial progress

in estimating the ID of multivariate datasets in recent years, as evidenced by the

methods and citations provided in Table 1. However, several of these techniques have,

thus far, been proposed as concepts rather than a suite of tailored methods. This is,

speci¯cally, the case for the (global) correlation dimension, as well as the (local)

charting technique. Related problems for their practical implementation include:

. fractal concepts require the computation of the correlation integral for a sphere

with radius r ! 0, which is computationally nontrivial;

. charting manifold techniques struggle with multiple practical issues such as zeros

in the denominator, multiple peaks in the objective function, and the aggregation

of local estimates of m to produce a global estimate.

The aim of this paper is to address these problems by

(i) developing methods for the correlation dimension and the charting manifold

concepts;
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(ii) benchmarking their performance;

(iii) contrasting them with existing work, with particular focus not only on the MLE

method, but also on other recent techniques, such as MiND or IDEA.45

We de¯ne the techniques related to correlation dimension as the slope, intercept

and polynomial methods and those associated with the charting manifolds as dip and

regression methods. While the slope method can be considered as a quantitative

variant of the existing log–log plot technique,8 the remaining methods are novel.

The paper is organized as follows: Sec. 2 summarizes the correlation dimension

and the charting manifold concepts. Building on these concepts, Sec. 3 introduces the

proposed global correlation dimension and the local charting manifold methods. This

is followed by contrasting the developed methods with the MLE method in Sec. 4,

which summarizes the application studies to simulated data, the analysis of a

recorded dataset from an industrial glucose processing plant and three benchmark

datasets that are available in the literature. This section also includes an analysis of

the computational e±ciency of the di®erent techniques. Finally, Sec. 5 provides a

concluding summary of this paper.

2. Concepts for Determining Intrinsic Dimensions

This section brie°y revises the (global) correlation dimension and the (local) charting

manifold concepta in Secs. 2.1 and 2.2, respectively. For the comparison in Sec. 4,

Sec. 2.3 brie°y summarizes the MLE approach.37 For the remainder of this paper,

­ ¼ fx1; . . . ;xng denotes a M-variate datasetb containing n samples xi ¼ ðxi1; . . . ;

xiMÞT , i ¼ 1; . . . ;n.

2.1. Correlation dimension concept

Correlation dimension is a fractal-based concept, which has been successfully

employed to estimate the attractor dimension of dynamic systems.24 It can be seen as

a simple substitute of the box-counting dimension, which, in turn, corresponds to the

Hausdor® dimension.11 The concept is based on the empirical distribution function

(EDF) of pairwise distances:

CnðrÞ ¼
2

nðn� 1Þ
Xn
i¼1

Xn
j¼iþ1

I jjxj � xijj � r
� �

; ð2Þ

where If�g is the indicator function, that is 1 if jj � jj � r and 0 if jj � jj > r, jjxj � xijj
denotes the Euclidean distance between the samples xj and xi and the subscript for

Cn refers to the number of samples in the reference set ­. Essentially, Eq. (2) counts

aBrand's concept of \charting" has a broader scope and involves the construction of a patch-wise, low-
dimensional coordinate system. This paper still uses the term \charting" for convenience.

b If the data are originally presented in the form of a time series, and the task is to identify the attractor

dimension of the dynamical system underlying the time series, then the dataset ­ needs to be ¯rstly

produced from the time series data via the \method of delays".9, 45
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the number of pairs whose mutual distance is less than or equal to the radius r. The

function CnðrÞ tends to 0 monotonically as r ! 0. Based on Eq. (2), the correlation

integral is de¯ned as

CðrÞ ¼ lim
n!1CnðrÞ; ð3Þ

from which the correlation dimension can be extracted as follows:

m ¼ lim
r!0

logðCðrÞÞ
log r

: ð4Þ

Here, log denotes the natural logarithm function. Two important practical issues

that immediately arise are the asymptotic limits in Eqs. (3) and (4). While these

limits are necessary from a conceptual point of view, none of them are attainable in

practice. We can practically assume, however, that if n is large enough, CnðrÞ can
replace CðrÞ in Eq. (4). As a guideline for selecting n, Eckmann and Ruelle16 showed

that estimation of m via correlation dimension requires at least n ¼ 10m=2.

The more serious issue is that the correlation integral needs to be evaluated for a

sphere of radius r ! 0. For any ¯nite dataset without replicated cases, CnðrÞ ¼ 0 as

r ! 0. Consequently, the numerator of Eq. (4) is practically unde¯ned for small

enough radii. Hein and Audibert29 addressed this problem by replacing the indicator

function in (2) by a kernel function, and basing the dimension estimation on the speed

of convergence of the correlation integral, rather than the correlation integral itself.

When working with (2) directly, as in this paper, it is of practical importance to

prede¯ne a suitable range of values of r which allows an accurate estimation of m.8,51

Thus far, such \direct" algorithms to estimate m have been based mainly on the

analysis of the log–log plot,8 which attempts to determine the slope of logðCðrÞÞ as a
function of log r. This paper considers a quantitative version of the log-log technique,

and also proposes two novel methods, which use appropriate modeling techniques to

estimatem for a given dataset­ at a radius r ¼ 0. These two methods, introduced in

Sec. 3.1, which we refer to as the intercept and the polynomial methods, tackle the

problem by exploiting features of the functions in Eqs. (3) and (4). The following

remarks motivate their development.

Remark 1. To re°ect why Eq. (4) is a correct relationship between the correlation

integral and the ID, consider a structure which lies (perfectly) on some linear

hyperspace or nonlinear surface of ­. It then follows (further discussed in Remark 2)

that CðrÞ / rm for a su±ciently small r. More precisely, the relationship between

CðrÞ and r for a su±ciently small r becomes

CðrÞ ¼ c � rm;
where m is the ID and c is constant. Now, applying the logarithm to the above

equality yields

logðCðrÞÞ ¼ log cþm log r: ð5Þ

J. Einbeck, Z. Kalantan & U. Kruger
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Next, substituting Eq. (5) into Eq. (4) gives rise to

lim
r!0

logðCðrÞÞ
log r

¼ lim
r!0

log cþm log r

log r
¼ m: ð6Þ

Consequently, the correlation dimension asymptotically reveals the ID of the

dataset.

Remark 2. We now justify the assumption CðrÞ / rm. Consider a simple scenario

in which n samples sit at prede¯ned discrete positions (with distance 1) along a line:

. . . . … . .
For r ¼ 0, the double sum in the numerator of Eq. (2) is equal to 0. For r ¼ 1, this

sum is n� 1, and for r ¼ 2, it is ðn� 1Þ þ ðn� 2Þ. Generally, this sum is ðn� 1Þ þ
ðn� 2Þ þ � � � þ ðn� rÞ � nr / r for large n, con¯rming that CðrÞ / rm for the case

m ¼ 1. For a one-dimensional curve, this statement would still hold for a su±ciently

small r. These simple geometric considerations cannot be extended easily to higher

dimensions m 	 2. Even the case of m ¼ 2 requires complex graph theory. We,

therefore, take a di®erent line of reasoning. Recall that Eq. (2) describes an EDF of

pairwise distances. According to the strong law of large numbers, the EDF will

converge to the true distribution function (DF) of the pairwise distances for large n.

Considering the simple case of a uniform data distribution inside a sphere, it can

be shown1,25 that the corresponding DF is ambðm; rÞrm þ cðm; rÞ, where am > 0 is a

constant, depending on m, and aðm; rÞ and bðm; rÞ are regularized incomplete Beta

functions depending on m and r, with the properties bðm; rÞ � 1 and cðm; rÞ � 0 for

small r. From this, it can be concluded that CðrÞ / rm if r is small enough. More

recent research provides extensions to more general data distributions.53

2.2. Charting manifold concept

This concept estimates m by examining the rate of growth of samples in hyper-

spheres. Di®erent from the previous concept, the charting manifold technique counts

points rather than pairs, and does this locally instead of globally. Let x be an element

of­, which is not assumed to be located on the boundary of the manifold. We refer to

this point as a \target point" henceforth. The charting manifold relies on the pro-

portionc of points that fall inside a sphere of radius r that is centered at x

NxðrÞ ¼
1

n

Xn
i¼1

Ifjjxi � xjj � rg: ð7Þ

As before, If�g is the indicator function. The subscript for Nx emphasizes that this is

a local estimate that depends on the center, x, of the sphere. Brand6 argued that if r

falls below the noise scale, then NxðrÞ / rM . Moreover, if the underlying manifold is

su±ciently smooth, then there will be a scale r at which the manifold can be

cBrand does not use the constant 1=n preceding the sum in (7). It is, however, useful to interpret NxðrÞ,
analogously to CðrÞ, as the EDF of distances to x. This constant does not a®ect the developments which

follow.

Practical Considerations on Nonparametric Methods for Estimating ID of Nonlinear Data Structures

2058010-7

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
D

U
R

H
A

M
 o

n 
12

/0
4/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



approximated by a locally linear hyperplane of dimension m. We may refer to this

radius, say r0, as the signal level, at which the points are distributed only in the

directions of the local tangent space (hyperplane) of the manifold. Consequently, in a

neighborhood of r0, it follows that NxðrÞ / rm. Increasing r further, the curvature of

the manifold becomes signi¯cant so that NxðrÞ rises at a rate between rm and rM .

When reaching the boundary that encloses all data, NxðrÞ eventually °attens and

naturally approaches 1.

Brand6 de¯ned the statistic

GxðrÞ ¼
d log r

d logðNxðrÞÞ
; ð8Þ

for determining the radius r0 and hence, reveals the intrinsic structure. It then

follows from the above considerations that, for noise scales,6

GxðrÞ �
1

M
<

1

m
:

This, in turn, suggests that plotting GxðrÞ versus r produces a maximum at the

signal level of 1/m. Hence, this peak gives the intrinsic (topological) dimension m.

Although this concept is appealing, its implementation may be cumbersome and

nontrivial. Practical applications may, for example, be hampered by the following:

(i) the choice of the range of r values investigated for this purpose;

(ii) the existence of the expression logðNxðrÞÞ in the denominator (possibly unde-

¯ned for small r);

(iii) the choice of target points, x;

(iv) the existence of multiple peaks in the graph GxðrÞ versus r; and
(v) how to synthesize or average the individual estimates of m for the di®erent

target points.

While items (i) and (ii) have been noted in a similar form for the correlation

dimension concept, items (iii)–(v) are intrinsic to the charting manifold concept.

Section 3 proposes two novel variants of Brand's 6 conceptual algorithm, which

implicitly address the above issues. To discriminate the charting manifold concept

from the correlation dimension one, introduced in Sec. 2.1, we give the following

remark.

Remark 3. As an alternative de¯nition, let CxðrÞ denote the number of pairs inside

the sphere of radius r, centered at x. Then, at the signal level, we get

CxðrÞ /
NxðrÞ

2

� �
¼ Oðr2mÞ;

with Oð�Þ denoting the order. Hence, as the number of data points within the sphere

of radius r increases with rm, the number of pairs increases with OððrmÞ2Þ / r2m.

The resulting ID estimates using CxðrÞ, therefore, would need to be divided by 2. In

J. Einbeck, Z. Kalantan & U. Kruger
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light of this, the conclusions of Remark 2 may appear counter-intuitive. However,

note that in the context of the correlation dimension, pairs are counted globally,

leading to the order rm, whereas here they are counted locally, resulting in the

order r2m. Although this paper does not utilize CxðrÞ, it is important to understand

this fundamental conceptual di®erence between the two approaches.

2.3. Maximum likelihood estimation

Levina and Bickel37 proposed this technique for estimating m. As for the charting

manifold, a sphere of radius r is considered at a ¯xed point x. It is assumed that the

data stored in ­ are independent, stem from the same underlying manifold, and that

there exists an embedding of the form xi ¼ �ðsiÞ, where si 2 Rm is a sample drawn

from the density function gð�Þ, with both �ð�Þ and gð�Þ being smooth functions op-

erating on an m-variate space. These assumptions allow de¯ning xi as a homoge-

neous Poisson process.37 The log-likelihood of this Poisson formulation yields a ML

estimator based on the distances between close neighbors.

Let k be the number of nearest neighbors to the point xi, then the local ML

estimator for m is

mkðxiÞ ¼
1

k� 2

Xk�1

j¼1

log
TkðxiÞ
TjðxiÞ

� �" #�1

; ð9Þ

where TkðxiÞ and TjðxiÞ are the Euclidean distances between xi and the kth and jth

nearest neighboring samples, respectively. To guarantee an asymptotically unbiased

estimate, the denominator of Eq. (9) must be k� 2, as discussed in Sec. 3.1 in Ref. 37.

The asymptotics here are n ! 1, k ! 1 and k/n ! 0. The local estimates in

Eq. (9) need to be suitably combined to produce a global estimate. Levina and

Bickel37 argued that it is unnecessary to remove boundary points for this purpose

and proposed utilizing the average

mðkÞ ¼ 1

n

Xn
i¼1

mkðxiÞ; ð10Þ

as a suitable estimator for ¯xed k. However, it was subsequently suggested19,40 that,

from a ML perspective, the correct estimator to use is

mðkÞ ¼ 1

n

Xn
i¼1

m�1
k ðxiÞ

" #�1

: ð11Þ

In either case, the process is repeated for p values of k, say kð1Þ; . . . ; kðpÞ, within the

data range, and the ID for a dataset ­ can be obtained by averaging

m ¼ 1

p

Xp
j¼1

mðkðjÞÞ: ð12Þ
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As a third variant, one may consider alleviating the bias incurred in (10), especially

for small k,37 by taking the median instead of the mean in (12). We consider all three

options in this paper. It is ¯nally noted that a ML point of view can also be adopted

for the correlation dimension.48

3. Proposed Intrinsic Dimension Estimation Methods

This section gives a detailed description of the developed methods for the correlation

dimension and the charting manifold concepts in Secs. 3.1 and 3.2, respectively,

extending and formalizing preliminary ideas given in Ref. 17. We make the initial

decision to normalize all columns of the dataset­ so that each of theM variables has

a sample mean of zero and a sample standard deviation of 1. While this is not strictly

necessary in order to apply the proposed methods, it is convenient for computational

and comparative purposes, and it allows giving generic recommendations for the

choice of range for radii in (2) and (7).

3.1. Correlation dimension methods

The three methods for estimating m are (i) the slope method, (ii) the intercept

method and (iii) the polynomial method which Secs. 3.1.1–3.1.3 introduce, re-

spectively. As the slope method is merely a further development of the log–log

plot,8 the paper only considers the intercept and polynomial methods as new

contributions to knowledge. Each of these methods requires a set of monotonously

increasing radii, de¯ned by frj; j ¼ 1; . . . ; sg, where the smallest radius r1 > 0 is

large enough to include at least 2 samples. The parameter s, which determines the

number of grid points, is of little relevance as long as it is reasonably large, say

s 	 20. In majority of applications, one will have 0 < r1 < rs � 1, and speci¯c

recommended settings of r1 and rs will be given for each of the three methods in

the respective subsections. It is noted, however, that radii in a M-dimensional

space scale with
ffiffiffiffiffiffi
M

p
; that is, for very large M , the minimum radius which con-

tains at least two data points may be considerably higher than the proposed

boundaries. In such cases, we recommend to set r1 equal to this minimum radius,

and rs ¼ 1:5
 r1.

3.1.1. Slope method

According to Eqs. (3) and (4), the ¯nite-sample estimator

lim
r!0

logðCnðrÞÞ
log r

� m ð13Þ

gives a good approximation of m for large n. Camastra11 proposed to plot logðCnðrÞÞ
versus log r and graphically estimate the slope and, hence, m. To quantify this

graphical approach, this paper estimates m from the simple linear regression model

logðCnðrÞÞ ¼ aþ b log r; ð14Þ

J. Einbeck, Z. Kalantan & U. Kruger

2058010-10

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
D

U
R

H
A

M
 o

n 
12

/0
4/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



using the pairs ðlog rj; logðCnðrjÞÞÞ for j ¼ 1; . . . ; s. It follows from Remark 1 that the

estimate of m is bmS ¼ b: ð15Þ
For further reference, the subscript S refers to the slope method. Through applica-

tion studies, we found that r1 ¼ 0:3 and rs ¼ 0:5 yield satisfactory results in most

situations, though problems may arise when the implicit linearity assumption in (14)

fails. Smaller radii than r1 ¼ 0:3 may yield erroneous values for CnðrÞ or a °attening

curve for CnðrÞ, producing suboptimal estimates for m.

3.1.2. Intercept method

This method approximates the correlation integral directly for r ¼ 0 instead of es-

timating the slope for some small values of r. For this, consider the graph ðr;DnðrÞÞ,
where

DnðrÞ ¼
logðCnðrÞÞ

log r
: ð16Þ

The advantage of using DnðrÞ instead of CnðrÞ lies in its approximate linearity, as

formulated in the following theorem (proven in Appendix A).

Theorem 1. In the vicinity of r� ¼ e�2 � 0:14, the function DnðrÞ reduces to a

linear function of the radius r, that is,

DnðrÞ ¼ aþ bðr� r�Þ: ð17Þ

The intercept method estimates m by extrapolating the linear regression line,

¯tted to the pairs ðrj;DnðrjÞÞ; j ¼ 1; . . . ; s. More precisely, the estimate of m is the

intercept of the ¯tted linear equation and the ordinate at r ¼ 0. Finally, incorpo-

rating the constant�br� in the coe±cient a� ¼ a� br� yields the regression equation

DnðrÞ ¼ a� þ br, such that the estimate of m becomes

bmI ¼ Dnð0Þ ¼ a�; ð18Þ

where the subscript I refers to the intercept method. The radius r should be

0:14 � rj � 0:5. If the minimum radius, r1 ¼ 0:14 does not result in the inclusion of

at least two data points, r1 needs to be increased. Note, however, that by con-

struction the intercept method will not produce meaningful results if r > 1 (as

otherwise DnðrÞ < 0); hence, there is the additional restriction rs < 1 and it is pos-

sible that for a very large M , the intercept method is not applicable. See Sec. 4.3 for

some examples.

Notably, although the intercept method uses a range of small values of r to

determine DnðrÞ, it estimates the ID at the radius r ¼ 0. The application studies in

Sec. 4 show that the intercept method performs, generally, similar to the slope

method.
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3.1.3. Polynomial method

This method relies on an explicit model of the correlation integral CðrÞ through a

higher-order polynomial. The model, in conjunction with the property in Eq. (4),

allows computing the correlation dimension directly. It is clear from the considera-

tions in Remarks 1 and 2 that, if the data are well described by a manifold of some

dimension m, then CðrÞ will approach 0 as r ! 0. This, in turn, motivates the

following intuitive condition:

Condition 1. Cð0Þ ¼ 0.

The preceding discussion gives rise to the following theorem, which Appendix B

proves.

Theorem 2. Expressing the correlation integral as a polynomial of order q:

CðrÞ ¼
Xq
i¼0

air
i ¼ a0 þ a1rþ a2r

2 þ � � � þ aqr
q; ð19Þ

under Condition 1, that is a0 ¼ 0, the correlation dimension m is as follows:

if aj ¼ 0; j ¼ 1; . . . ; q � 1 and aq 6¼ 0; then m ¼ q:

Theorem 2 suggests to carry out a series of hypothesis tests to estimate m. The

parameters a1, . . ., aq can be obtained using multiple linear regression of CnðrÞ versus
the the powers of r, for example, using the function lm in R.44 To determine whether

a parameter is zero, the standard t-test can be utilized. Based on application studies,

it is recommended to leave the signi¯cance level of this test unspeci¯ed and to

estimate m as the most signi¯cant parameter, that is,bmP ¼ fjjaj has minimal p-value among a1; . . . ; aqg: ð20Þ
The subscript P refers to the polynomial method. It is suggested to initially set

q ¼ minfM ; 4g and increase the integer q successively if required.

Di®erent to the slope and intercept methods, the polynomial method provides an

integer estimation and not a \fractal dimension". The choice of the upper limit

radius presents a trade-o® between the radii being close enough to 0 and large enough

to include a su±cient number of samples to guarantee an accurate estimation of the

unknown parameters a1, . . ., aq. We suggest to set r1 such that the corresponding

sphere contains at least one pair, and rs ¼ 1.

3.2. Charting manifold methods

This section develops two methods on the basis of the charting manifold concept,

which we refer to as the dipmethod and the regressionmethod, detailed in Secs. 3.2.1

and 3.2.2, respectively. Prior to their presentation, two issues need to be discussed.

Firstly, local methods require the selection of a set of target points over which the

local ID estimates will be averaged.51 The largest possible set for this purpose is ­,

J. Einbeck, Z. Kalantan & U. Kruger
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which is impractical for computational reasons. However, this is also not necessary,

since the ID estimates for neighboring points can be expected to be very similar. It

remains the issue of how to select such target points, considering that points close to

the boundaries may result in underestimatingm.6 One approach could be to estimate

the density f, for each xi 2 ­, via

f̂ ðxiÞ ¼
1

nh1 . . .hM

Xn
i¼1

YM
j¼1

K
xij � xj

hj

� �
; ð21Þ

where Kð�Þ is a kernel function and hj are component-wise bandwidths, and then

select sample target points only from the set fxjf̂ ðxÞ > cg, for some constant c > 0.

However, computing this kernel density estimate for a (potentially large and/or

high-dimensional) dataset can be computationally ine±cient. Hence, we propose a

simpler concept based on the notion of isolated points.49 An isolated point is a point

which is so far away from the rest of the data that the kernel density estimate at that

point is only determined by itself. It is conceptually clear that isolated points are not

able to contribute sensible ID estimates. According to Eq. (21), the density of an

isolated point is given by f � ¼ 1
nh1...hM

KMð0Þ, which is independent of x. If the kernel

K has unbounded support, then f � will rarely be attained exactly so that for our

purposes we declare a point as isolated if f̂ ðxÞ=f � < 2. The speci¯c choice of K is of

little relevance as it does not impact on the ID estimation in itself, but only on the

selection of target points. We have used the Gaussian kernelKðuÞ ¼ 1ffiffiffiffi
2�

p expð� 1
2 u

2Þ
in the application studies in Sec. 4.

Summarizing, in order to select b target points, we proceed as follows:

(1) Compute the bandwidths hj; j ¼ 1; . . . ;M, as 10% of the range of the jth

variable.

(2) Select a point, say x, randomly from the dataset.

(3) If f̂ ðxÞ=f � < 2, dismiss the selected point.

(4) Iterate between 2 and 3 until b target points have been sampled. Denote the

resulting set of points by B.
This procedure is e±cient, as only few kernel density estimates need to be com-

puted. Our experiments have shown that b ¼ 50 target points are usually su±cient to

obtain good overall ID estimates.

Secondly, instead of utilizing the objective function in Eq. (8), it is advantageous

for the development of both methods to consider the following alternative

formulation:

HxðrÞ ¼
1

GxðrÞ
¼ d logðNxðrÞÞ

d log r
: ð22Þ

The rationale behind the de¯nition ofHxðrÞ is that it is more stable computationally,

especially when r tends to 0 or 1, both of which would lead to an unde¯ned
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denominator in the case of GxðrÞ. Furthermore, as will be demonstrated in Sec. 3.2.1,

it has the interpretational advantage that the ID can be directly read from its graph.

3.2.1. Dip method

Determining the peak of Gxð�Þ is equivalent to obtaining the dip of Hxð�Þ. Denoting

this extremal value by r0, it follows from the discussion in Sec. 2.2 that NxðrÞ ¼ crm

in a neighborhood of r0. Applying the logarithm to this equality yields

logðNxðrÞÞ ¼ log cþm log r: ð23Þ

Substituting this expression into Hxð�Þ for r ¼ r0 gives rise to

Hxðr0Þ ¼
dðlog cþm log rÞ

d log r

����
r¼r0

¼ d log c

d log r|fflfflffl{zfflfflffl}
¼0

þm
d log r

d log r

����
r¼r0

¼ m: ð24Þ

Therefore, ifHxðrÞ has a minimum, or a dip, for r ¼ r0, thenm is given byHxðr0Þ. To
obtain the required derivative, consider a Taylor expansion of logðNxðrÞÞ as a

function of logðrÞ, for a value r 0 close to r:

logðNxðr 0ÞÞ ¼ logðNxðrÞÞ þ
dðlogðNxðrÞÞÞ

dðlog rÞ ðlog r 0 � log rÞ

þ 1

2

d2ðlogðNxð�ÞÞÞ
dðlog �Þ2 ðlog r 0 � log rÞ2; ð25Þ

where log � is in the interval between log r 0 and log r. Now, de¯ning kernel weights

whðr 0; rÞ ¼ K
log r 0 � log r

h

� �
; ð26Þ

where h is a localization parameter,26 we can get a smooth estimate of the derivative

function HxðrÞ for a ¯xed r-value based on the log-count of NxðrjÞ for the radii

r1; . . . ; rj; . . . ; rs by minimizingXs
j¼1

whðrj; rÞðlogðNxðrjÞÞ � �� �ðlog rj � log rÞ � �ðlog rj � log rÞ2Þ ð27Þ

with respect to �, � and �, yielding least squares estimates �̂, �̂ and �̂ . Comparing

Eqs. (25) and (27), it follows that �̂ ¼ �̂ðrÞ is the required estimator for

HxðrÞ ¼ d logNx

d log r ðrÞ. Let us denote this estimator by ~Hxð�Þ. Notably, Eq. (27) can be

evaluated for every ¯xed r, even if r is not part of the grid points r1, . . ., rs.

It is noted that the kernel K used here does not necessarily need to be the same

kernel as that one used in (21), but that, in (26), the choice of kernel is indeed

important: An unsmooth kernel will impact on the smoothness of the derivative

estimate, and hence on the reliability of the ID estimate. So, in (26), we strictly

advise the use of a Gaussian kernel.

J. Einbeck, Z. Kalantan & U. Kruger
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In practice, examining the function ~HxðrÞ over r will often yield more than one

dip, so the question arises which one too choose. Each of these dips can be argued to

correspond to a local ID estimate at a di®erent scale. We have settled on choosing the

maximal dip (that is, among all the minima of Hxð�Þ, we choose that one of maximal

value). The reasoning for this is twofold: Firstly, often, there will be some initial dips

caused by little granularities in the data, and secondly, if there is evidence for dif-

ferent local dimensions at di®erent scales, it is arguable that the larger dimension

estimates supersede the smaller ones. Denoting the position of this \maximal dip" by

r ¼ r0, one gets the local ID estimate mDðxÞ ¼ ~Hxðr0Þ, with the subscript D

denoting the dip method. Applying this procedure for each target point x 2 B allows

determining the overall estimate bmD as the median over each local estimate:bmD ¼ medfmDðxÞjx 2 Bg: ð28Þ

3.2.2. Regression method

There is a similarity between Eq. (5) in Remark 1 and Eq. (23), and as a consequence

also between Eqs. (6) and (24). This motivates applying a log–log analysis8 on NxðrÞ
in a similar fashion to the slope method detailed in Sec. 3.1.1. For a given x and a

range of r values, one initially computes the values NxðrÞ. Then, ¯tting the para-

meters of the equation

logðNxðrÞÞ ¼ aþ b log r ð29Þ
using simple linear regression produces least squares estimates â and b̂, yielding the

local estimate

mRðxÞ ¼ b̂: ð30Þ
While this method does have the advantage of not requiring the selection of band-

widths or other tuning parameters, there is a caveat to this line of reasoning: unlike

the case of the correlation integral, it is not possible to assume that Eq. (23) holds

true for any small value of r. More precisely, Eq. (23) is only valid at the signal

level, r0. However, a possible strategy is to select a range of r values that contain r0.

This paper uses a range of radii such that the minimum radius contains at least two

data points, and the maximum radius all data points.d

Again, this is a local method, which needs to be applied for each target point, and

the local estimates need to be suitably averaged, using a median, to arrive at the

overall estimate: bmR ¼ medfmRðxÞjx 2 Bg: ð31Þ
The subscript R denotes the method used for the estimate, that is, the regression

method in this case. The reference regression is to distinguish this method from the

dThis wide range could possibly be ¯netuned in future research. However, as elaborated upon later on in

this paper, this large range yields positive e®ects in terms of robustness to local granularities in the data.
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conventional log–log plot approach. Experimental results for this method are pro-

vided in Sec. 4.

4. Comparing the Various Estimation Methods

This section illustrates, compares and benchmarks the methods developed in Sec. 3.

The analysis is based on a recorded dataset that stems from an industrial glucose

production facility in Sec. 4.1, a series of simulation examples in Sec. 4.2 serving as a

\proof of concept", and a comparison with benchmark datasets and methods pre-

sented previously in the literature in Sec. 4.3. For each dataset analyzed here, the

recorded variables are mean centered and subsequently scaled to unity variance.

Section 4.4 critically examines the computational e±ciency of each of the proposed

methods.

Unless stated otherwise, the values of r1 and rs for the correlation dimension

methods are chosen as described in Sec. 3. For the intercept and slope methods, the

grid points rj are placed with a spacing of 0.01 which e.g. implies that s ¼ 21 when

r1 ¼ 0:3 and rs ¼ 0:5. For the polynomial method, we use rs ¼ 1 and s ¼ 30. For the

charting manifold methods, the sequence of the radius r is selected such that the

sphere with the minimum radius contains at least two data points and the sphere

with the maximum radius includes all samples. This usually involves a much larger

range of r values, up to rs ¼ 10, as compared to the correlation methods, so that a

grid spacing of 0.1 is adequate for these techniques. For the dip method, we compute
~Hxð�Þ ¼ �̂ð�Þ using the function locpoly in R44 with bandwidth parameter h ¼ 0:1,

again unless stated otherwise. For the MLE method, we used the inverse averaging

rule (11) as default, but provide, on some occasions, comparison to the other var-

iants. For all other methods, parameter settings are as given in the respective source

papers.28,45

4.1. Industrial dataset

For illustrative purposes, we consider data recorded from a glucose production fa-

cility containing n ¼ 28 801 observations for a total of M ¼ 39 variables. The

recorded variables include, among others, readings of various temperature, °ow

rates, pressure and pressure di®erences, measurements of viscosity, etc. A sample of

each process variable was taken every 30 s. The recorded data cover four days of

glucose production with two di®erent grades and show a signi¯cant degree of vari-

able correlation. The scree plot in Fig. 1 con¯rms the high degree of variable cor-

relation. More precisely, the ¯rst principal component is dominant, as it explains

54% of the total variance in the data. Successive components take a non-negligible

part of the variation as well. In fact, one needs nine principal components to capture

at least 90% of the total variance in the data. To give additional insight, we produce

a pairs plot of the ¯rst nine principal component scores (for the sake of visualization,

only a sample of n 0 ¼ 5000 scores have been plotted) in Fig. 1 (top right). We clearly
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see that there remains some inner structure, indicating that m < 9 when taking this

structure into account through nonparametric methods. The next subsections

present the results of applying the methods proposed earlier to this dataset.

4.1.1. Correlation dimension methods

Slope method. The lower left plot in Fig. 1 shows the estimated linear regression

curve of the computed values of logðCnðrÞÞ versus log r. The resulting linear equation
is y ¼ �7:03þ 4:71 log r. Thus, the resulting estimate is bmS ¼ 4:71.

(a) Scree plot (b) Scatter diagrams

(c) Slope method (d) Intercept method

Fig. 1. Analysis of industrial dataset. (a) Scree plot; (b) matrix scatterplot of the ¯rst nine principal

component scores; (c) slope method; (d) intercept method.
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Intercept method. The lower right plot in Fig. 1 shows the curve DnðrÞ versus r
and the resulting estimated regression line. As expected, the function between DnðrÞ
and r can be approximated by a linear function for r between 0.14 and 0.5, which

follows from the discussion in Sec. 3.1.2. The estimated linear regression equation

DnðrÞ ¼ a� þ br ¼ 5:45þ 17:53 r produces the estimate bmI ¼ 5:45, which is close to

the estimate by the slope method.

Polynomial method. The estimate of m is determined by considering the sig-

ni¯cance of the estimated parameters of the polynomial in Eq. (19). We have

carried out this estimation, for a polynomial of order q ¼ 6, using the statistical

software R.44 The output is provided in Table 2 (left), where the column

\Estimate" gives the estimated values of aj in the jth row. The standard error of

the estimate of aj is given in the column \Std.Error" and the quotient of the

¯rst two columns gives the test statistic (t-value) displayed in the third column.

The p-values in the fourth column are computed with reference to a t distribution

with s� q ¼ 30� 6 degrees of freedom. The most signi¯cant parameter is a5,

implying that the estimate is bmP ¼ 5. Generally, it is equivalent to look for

the smallest p-value, or the largest absolute t-value. Venables and Ripley56 pro-

vided a detailed discussion on how to interpret linear model outputs. It is ¯nally

noted that attempts using a polynomial degrees q 	 7 did not produce reliable

results.

4.1.2. Charting manifold methods

Dip method. We obtain b ¼ 50 target points as outlined in Sec. 3.1. The derivative

estimators are found using a local polynomial smoother with bandwidth h ¼ 0:08 for

a sample of size 50. The median of all 50 di®erent estimates gives the overall estimatebmD ¼ 4:44. Figure 2 presents exemplary derivatives ~HxðrÞ for three of the target

points.

Regression method. Utilizing the same target points as for the dip method, we

consider the number of data points falling into hyperspheres of radius r. Next, ¯tting

a linear regression of log-counts versus log-radii for each target point results in an

overall estimate of bmR ¼ 3:05.

Table 2. Results of ¯tting a polynomial of degree 6 for the industrial dataset. Left: summary
table for linear model ¯t to ðr;CnðrÞÞ using the full data. The * symbol indicates the chosen dimen-

sion; right: distribution of chosen ID for 50 random subsamples of sizes n 0 ¼ 2000 and n 0 ¼ 4000,

respectively.

-Value
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4.1.3. Other methods

MLE method. The inverse-average version of the MLE estimator is not exactly

computable for this dataset, since for most values of k, the quantitymkðxiÞ is exactly
zero for four of the 28 801 observations xi. The other two variants for the compu-

tation of the MLE both yield the value 6.45.

VPC and VRE. For comparative purposes, we also provide in Table 3 the results

of the parametric VRE,54 which is a cross-validatory approach and Velicers Partial

Correlation55 methods mentioned in Sec. 1.1. These techniques are designed to de-

termine the number of principal components, which are larger than the IDs

Fig. 2. Three exemplary curves ~HxðrÞ used for ID estimation of the industrial dataset using the dip
method.

Table 3. Estimates of m for the industrial dataset.

PCA

Criterion > 70% > 80% > 90% Broken stick VRE VPC

Estimate of m 3 5 9 4 7 8

Nonparametric Techniques

Methods Reg. Dip Int Slope Poly. MLE

Estimate of m 3.05 4.44 5.45 4.71 5 6.45

Practical Considerations on Nonparametric Methods for Estimating ID of Nonlinear Data Structures

2058010-19

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
D

U
R

H
A

M
 o

n 
12

/0
4/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



suggested by the correlation dimension and charting manifold techniques. This

suggests that a linear subspace to capture the main variation in the data may not be

adequate for this dataset.

4.1.4. Discussion of results

After inspection of the summary of results in Table 3, it is concluded that all non-

parametric techniques, except the regression method, agree on an ID of � 5 for this

dataset, which is also sensible in the light of the parametric analysis via PCA. The

reason for the possible failure of the regression method is not entirely transparent in

this example, but as it appears that the local methods are potentially sensitive to

granularities, such as local strings and clusters of low dimension, in the data. The pairs'

plot of the principal component scores in Fig. 1 indicates that such granularities may

exist for this dataset. The MLE value is close to the value obtained by the linear VRE

method. This relatively high value is, we believe, in°uenced by two factors. Firstly, the

MLE technique seems to show a slight tendency to overestimate the true ID when the

sample size is large and/or the data are clustered, see also the further examples to

follow. Secondly, manual inspection of the terms mkðxiÞ indicated that the inverse-

average estimate of the ID would be in the region 5.5 if it was computable.e

4.2. Simulation studies

This subsection presents a number of simulation examples serving as a \proof of

concept", which con¯rm that in some simple scenarios the expected results are

obtained. The results for the individual methods are presented in the form of box-

plots which show the median and distribution of the estimates for the MLE, inter-

cept, slope, regression and dip method. In addition, the results of the polynomial

method are shown in tabular form.

4.2.1. First scenario

Datasets containing four variables are generated from a multivariate normal dis-

tribution with the mean vector 	 ¼ ð9; 5; 6; 4ÞT and the diagonal covariance matrix

§ ¼ 50I4. Since these datasets do not possess any latent structure, related to Eq. (1),

it follows that M ¼ m. Two di®erent choices of sample sizes n ¼ 200 and n ¼ 2000

are considered, and in either case a total of 100 datasets were generated. The top

panels of Fig. 3 summarize the resulting estimates for the global intercept and slope,

the local dip and regression, and the MLE method in its version (11). The results of

the polynomial method are displayed in Table 4.

In summary, while the correlation methods for n ¼ 200 featured a low bias but a

high variance, the charting methods showed a very small variance at the expense of a

negative bias. For the correlation methods, note that one observes a considerable

eOf course, one could at this point contemplate the development of a \robust" variant of the inverse-

average method, but this is beyond the scope of this paper.
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number of estimates that exceed M ¼ 4, which could be argued to be implausible

given how the datasets were generated. When the sample size is increased to

n ¼ 2000, the correlation methods improve strongly in terms of variance, and the dip

method also improves strongly in terms of bias.

Fig. 3. Simulation study; boxplots of estimates for scenarios 1 (top) and 2 (bottom), using sample sizes

n ¼ 200 (left) and n ¼ 2000 (right).

Table 4. Results of polynomial method for
¯rst (a), second (b) and third (c) simulation

scenarios. Numbers marked in bold refer to

the \correctly" identi¯ed estimates.

m̂P

Example n 1 2 3 4

(a) 200 2 1 44 53
(a) 2000 0 0 63 37

(b) 200 100 0 0 0

(b) 2000 100 0 0 0

(c) 2000 0 100 0 0
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From Fig. 3 top, the MLE demonstrates a consistently low bias and variance.

Investigating in more detail, the MLE estimates obtained using the three di®erent

variants of MLE estimation are compared in Fig. 4(a), using kð1Þ ¼ 5; kðpÞ ¼ 50 and

p ¼ 46. We see that — in this particular example — the \incorrect" averaging

scheme by Levina and Bickel seems to lead to a better result than the correct version

using the inverse-averaging scheme. This may be due to the fact that in this example

m ¼ M , which will naturally force the MLE to lie below M .

4.2.2. Second scenario

The second scenario uses the data structure of type Eq. (1a) for a single latent

variable, m ¼ 1, which is uniformly distributed (between 0 and 10) and describes

points on a straight line through a four-dimensional space. For each of the four

variables, a zero mean noise variable that is independently and normally distributed

with a variance of 0.0025 was added. As before, each method was contrasted using a

total of 100 generated datasets, each containing n ¼ 200 or n ¼ 2000 samples.

Table 4 shows the results of the polynomial method, which, notably, correctly

identi¯es m ¼ 1 for each of the 100 datasets, irrespective of the sample size.

The lower panel in Fig. 3 bottom shows the resulting boxplots for the intercept

and slope, the local regression and dip and the MLE methods. This demonstrates

that all considered methods achieve good ID estimates of relatively low bias and

variance, with two notable exceptions: the regression method delivers a slight neg-

ative bias, and, interestingly, the MLE becomes biased for the larger sample size

n ¼ 2000, as can be seen from the bottom right panel of Fig. 3. This is consistent with

(a) (b)

Fig. 4. Comparison of three ways of estimating the MLE for simulation scenarios 1 (a) and 2 (b), using
sample size n ¼ 200. Within each panel, the three boxplots give the MLE obtained via (from left to right):

(i) Bickel and Levina's original estimator; (ii) a variant of the latter using the median in the averaging step

(12); and (iii) the inverse-average version by McKay and Ghahramani.
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Levina and Bickel's37 observation \that n ¼ 100 highly correlated points look like a

line, but n ¼ 2000 points ¯ll out the space around the line". Higher values of kð1Þ and
kðpÞ would be required to achieve a better estimate; changing the type of averaging

does not help. The comparison of the di®erent MLE variants is given again, for

n ¼ 200, in Fig. 4 (right). We see that the median version occupies a middle ground

between the two other variants, and seems to have a slightly reduced variance as

compared to these.

4.2.3. Third scenario

This example is based on the simulation setup presented in Liu et al.38 The simulated

process produces a ¯ve-variate data vector x that depends on the three latent

variables s1, s2 and s3:

. s1ðiÞ ¼ 2 cosð0:08 iÞ sinð0:06 iÞ;

. s2ðiÞ ¼ sign½sinð0:03 iÞ þ 9 cosð0:01 iÞ�;

. s3ðiÞ 
 Nf0; 0:25g,
where i is a sampling index andNf�g represents a normal distribution, here with zero

mean and a variance of 0.25. The random vector is de¯ned by xðiÞ ¼ yðiÞ þ rðiÞ,
where

y1ðiÞ
y2ðiÞ
y3ðiÞ
y4ðiÞ
y5ðiÞ

0BBBBB@

1CCCCCA ¼

0:86 0:79 0:67

�0:55 0:65 0:46

0:17 0:32 �0:28

�0:33 0:12 0:27

0:89 �0:97 �0:74

2666664

3777775
s1ðiÞ
s2ðiÞ
s3ðiÞ

0B@
1CA ð32Þ

and the random noise vector has a normal distribution rðiÞ 
 Nf0; 0:0025Ig. From
this process, a total of 100 datasets, containing n ¼ 100 samples each, were

generated.

Figure 5 (right) displays the boxplot of the estimates of m for all methods. The

results for the polynomial method are in Table 4. The correlation dimension ap-

proach produced median values of 3.17 and 2.60 for the intercept and slope methods,

respectively. The application of the polynomial method yielded an estimate of 2 for

each dataset. The charting manifold approach yielded median values of 1.25 and 1.17

for the regression and the dip method, respectively. Finally, a median value of 3.61

was determined for the inverse-averaged MLE technique (with the other two MLE

variants delivering higher values). Especially when comparing to the ¯rst scenario,

each method produced a considerably higher precision in estimatingm for each of the

100 datasets.

According to Eq. (32), there are three latent variables implying that the ID

estimate should not exceed 3. In light of this, one may consider the MLE over-

estimated. The global correlation-based results are more reasonable, while each of

the local methods yield underestimates. This can be partially explained by

Practical Considerations on Nonparametric Methods for Estimating ID of Nonlinear Data Structures

2058010-23

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
D

U
R

H
A

M
 o

n 
12

/0
4/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



considering an exemplary simulated dataset as provided in the left-hand side of

Fig. 5. The displayed scatter plots indicate that the data describe two noisy strings,

each of which appears roughly one-dimensional, so that the obtained local ID esti-

mates of � 1 are plausible in this light.

4.3. Comparison with reference data and methods

In this subsection, we use three reference datasets, two of them synthetic and one of

them real, which have been frequently employed in the recent literature to compare

the performance of modern ID estimation routines. Speci¯cally, the synthetic

datasets are a Swiss roll and a 12-dimensional manifold in 72-dimensional space,

which have been labeled as M7 and M8, respectively, in Rozza et al.45 The real

dataset is the \ISOMAP" face data MFaces which is a collection of 698 gray-level

sculpture images of dimension 64
 64 ¼ 4096. These datasets are among those

proposed by Campadelli et al.12 as benchmark datasets, with the latter one being

highlighted as \particularly challenging due to its high curvature", and have also

been examined in He et al.28 We have generated the synthetic datasets using R

package \manifgen"32 based on methods developed by Hein and Audibert.29 We

followed the setup in Rozza et al.45 and created 20 instances of datasets of size 2500

each. Average ID estimates over the 20 runs are provided for all methods in Table 5.

The alternative methods considered include PCA, Probabilistic PCA

(PPCA52), Bayesian PCA (BPCA4), two versions of the \Minimum Neighbor Dis-

tance estimators",39 namely a Maximum Likelihood version (MiNDML
45) and

a variant based on the Kullback–Leibler divergence (MiNDKL
45), the \Intrinsic Di-

mensionality Estimation Algorithm" (IDEA45), a fast graph-based variant of the

(a) (b)

Fig. 5. Third simulation scenario. Panel (a) gives one exemplary simulated dataset, and panel (b) the
summarized ID estimates.
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KNN method (kNNG1
45), as well as another graph-based NN-type algorithm pro-

posed by He et al. (NNG-He28).

For dataset M7 we used the default settings of our methods; whereas for the

high-dimensional datasets M8 and MFaces, the radii ðr1; rsÞ ¼ ð4; 6Þ and ðr1; rsÞ ¼
ð10; 20Þ, respectively, were used for the slope method (with s ¼ 21), re°ecting that in

higher dimensions, higher values of r are needed to obtain nonzero correlation

integrals. For the polynomial method, we used ðr1; rsÞ ¼ ð1; 20Þ. The intercept

method could not be meaningfully applied on datasets M8 and MFaces as it requires

r < 1 for the entire grid. For the local methods, b ¼ 20 target points were selected in

each simulation run.

We ¯nd that our methods behave similarly to existing methods, noting some

overestimation for the intercept method and underestimation for the dip method,

where they were computable.

4.4. Computational e±ciency of proposed methods

Examining the di®erent ways in which the individual methods estimate m allows

assessing their computational e±ciency. Sections 4.4.1–4.4.3 discuss this issue for the

correlation dimension, charting and MLE methods.

Table 5. Comparison of several methods using reference
datasets. Results above the double horizontal line were

obtained through own calculation; results below are

extracted from the orignal sources.28,45

M7 M8 MFaces

M 3 72 4096

m 2 12 3

int 2.23 — —

slope 1.94 11.90 3.72

poly 2.00 (*)8.00 2.00
dip 1.80 9.69 1.79

reg 2.05 11.16 2.84

MLE (mean) 1.97 13.68 4.24
MLE (med) 1.97 13.67 4.22

MLE (inv) 1.81 12.50 3.75

PCA 3.00 24.00 21.00

PPCA 3.00 24.00 5.00

BPCA 2.00 24.00 4.00

Hein 2.00 12.00 3.00
MiNDML 2.00 13.30 3.59

MiNDKL 2.00 16.50 3.90

IDEA 2.07 14.49 3.73
kNNG1 1.97 13.87 3.60

NNG-He 1.81 4.55 6.07

Notes (*): The median of the 20 outcomes for the polynomial

method is actually 11; the value 8 was caused through a few
occurrences of the result m̂P ¼ 1.

Practical Considerations on Nonparametric Methods for Estimating ID of Nonlinear Data Structures

2058010-25

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
D

U
R

H
A

M
 o

n 
12

/0
4/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



4.4.1. Correlation dimension methods

The main computational burden of the slope, intercept and polynomial methods is

the determination of the correlation integral, which requires, according to Eq. (2),

nðn� 1Þ=2 ¼ Oðn2Þ comparisons for typically s ¼ 20–30 di®erent radii. Addition-

ally, these methods involve the estimation of a small set of linear model parameters,

which follows from Eqs. (14), (17) and (19), respectively, which is anOðnÞ operation.

4.4.2. Charting manifold methods

Both charting manifold methods require the determination of typically b ¼ 50 target

points involving a random sampling and an outlier detection routine, which are of

OðnÞ complexity. For each target point, Eq. (7) determines through n comparisons

the number of points inside the sphere of radius r. The dip method then requires the

application of a kernel smoother, followed by a search for the dips of the smoothed

function in Eq. (27). The regression method is similar in approach to the slope

method and requires the estimation of a set of parameters. In either case, this is an

OðnÞ operation. This step needs to be repeated b times.

4.4.3. MLE method

The estimation of m using this method relies on Eqs. (9)–(12). The former equation

involves a nearest neighborhood search and the determination of Euclidean distances

for the kth and jth nearest neighbors of the sample xi. The integer k itself is not a

¯xed constant but includes, according to Eq. (12), a total of p di®erent values, where

p is typically between 10 and 50. The number of searches for Eq. (9) alone is of the

order n2. This is to be repeated for all p nearest neighbors, i.e. kð1Þ, . . ., kðpÞ. By
directly comparing the number of searches and °oating point operations for the MLE

method with the correlation dimension and the charting manifold methods, it is to be

expected that the MLE method is, consequently, computationally inferior for large

sample sizes.

4.4.4. Direct comparison

This subsection utilizes the second simulation scenario, discussed in Sec. 4.2.2, to

compare the computational time consumed for each method to estimate m. For the

six methods, Table 6 summarizes the median time consumed for a single run in

seconds, calculated from 100 Monte Carlo experiments, each for n ¼ 200 and n ¼
2000 samples. Each method was programmed in R, version 3.2.1, and executed using

an Intel(R) Core(TM) i7-3770 CPU with 3.40GHz.

In both cases, n ¼ 200 and n ¼ 2000, the correlation techniques are the most

e±cient ones and are of the same order of magnitude. The increase in the sample size

by a factor 10 resulted in an increase in computational time by around 100. This is to

be expected, given that the number of searches/sums to determine CnðrÞ are of order
Oðn2Þ. The charting manifold methods are around 300 times slower in estimating m
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for n ¼ 200 and around 30 times slower for n ¼ 2000. Determining NxðrÞ is, unlike
the estimation of CnðrÞ, of order n. The di®erence in computational burden between

correlation dimension and charting manifold methods is therefore decreasing as n

increases. The MLE technique was more e±cient than the local methods for small

sample sizes but expectedly lost this advantage for large sample sizes. The hun-

dredfold increase in the computational time, resulting from the tenfold increase in

the number of samples, is expected as the number of searches is of the order n2.

Especially for large datasets, it is an appealing option to reduce the computational

burden of the dimension estimation by using only a sample of the original dataset.

Therefore, we give additionally some insight into the repeatability of ID estimates

under subsampling. This is exempli¯ed here using the industrial dataset for which 50

randomly selected datasets of the size 2000 and 4000 were constructed. Figure 6(a)

Table 6. Computational comparison (median run time in
seconds) of the 6 estimation methods.

Method

Correlation Dimension Charting Manifold

slope intercept polynomial dip regression MLE

n ¼ 200

0.004 0.005 0.007 1.374 1.381 0.423

n ¼ 2000

0.140 0.236 0.434 9.639 9.600 23.833

(a) ID estimates for subsamples (b) Computational time

Fig. 6. (a) From left to right: Boxplots of 50 ID estimates for the industrial dataset, using the intercept

method with samples of sizes 2000 and 4000, and using the slope method with samples of sizes 2000 and
4000, respectively. The dashed and dotted horizontal lines correspond to the respective full-sample esti-

mates; (b) corresponding average running times (in seconds) for a single ID estimate as a function of the

sample size, on log–log scale.
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shows the resulting ID estimates for the correlation dimension method. The ¯rst two

boxplots display the ID estimates using the intercept method and 50 subsets of size

2000 and 4000, respectively. The third and fourth boxplots present the results for the

slope method. The full data estimates via the intercept and slope method are also

provided through a dashed and dotted line, respectively. We see that the di®erent

estimates have a small variance that decreases as the sample size increases, and that

the intercept method shows a stronger response to the subsampling than the slope

method. In conformity with the considerations from Sec. 4.4.1, it is also evident that,

on a log–log scale, the computational time of both slope and intercept method

increases linearly with the sample size (Fig. 6 right). One ¯nally ¯nds from Table 2

(right) that the polynomial method becomes less variable in its decision when the

subsample size increases.

5. Concluding Summary

This paper has summarized methods for estimating the ID of multivariate data.

While parametric ID estimation methods have been intensively studied in the lit-

erature, only relatively recent work addressed the utilization of nonparametric

methods. In fact, most methods proposed are di±cult to implement in practice for

large variable sets and numbers of samples or low data densities. Moreover, corre-

lation dimension and charting manifold approaches have been proposed as concepts

rather than tailored methods that can be readily applied in practice.

The correlation dimension concept relies on estimating the correlation integral

as a function of a sphere of radius r engul¯ng pairs of samples. It follows from

Eq. (2) that the correlation integral determines the distribution of the distances

between points. The charting manifold concept uses a similar approach but in-

stead of using each sample and obtain pairwise distances, this concept relies on

counting the number of samples that are in the vicinity of some nonisolated target

points.

The focus of this paper has, therefore, been the development of methods for the

correlation dimension and the charting manifold concepts. More precisely, we have

proposed three methods for the former, which have been referred to as slope,

intercept and polynomial methods. While the slope method is a simple enhance-

ment of the graphical-based log–log technique, only the intercept and polynomial

methods have been considered here as novel methods. For the charting manifold

concept, the paper has proposed the dip and regression method as new local-based

methods.

By contrasting these ¯ve methods with the MLE method using a recorded set

from a glucose production facility and three simulation examples, the paper has

found that the correlation dimension methods have shown the best performance in

terms of the estimation accuracy and the time consumed to produce an estimate.

Particularly, the polynomial methods showed a consistently high degree of accuracy.

However, it has to be noted that the polynomial method may run into di±culties for
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larger m, which requires larger polynomial orders, q. More precisely, an increase in

the order q of the polynomial is accompanied by a signi¯cant increase in the vari-

ability of the parameter estimates in the model for CðrÞ, rendering the resulting

p-values uninformative. This follows from the well-known fact that the estimation

variance tends to grow as the number of parameters to be estimated increases for a

¯xed number of samples.

While the MLE method gives generally very precise ID estimates, we observed a

slight tendency to overestimate the ID in situations where the data are clustered,

the sample size is large, and/or the inverse-average version cannot be computed. In

contrast, the proposed charting manifold methods have had a tendency to under-

estimate the ID which was particularly visible for the regression method in the

industrial data example. A more detailed analysis of our examples has indicated

that, despite all methodological precautions, both local methods are a®ected by

localized granularities, for example linear strings or small clusters, that are not

representing the global structure of the data. A potential advantage of local

methods, however, is their ability to identify such localized granularities. Based on

the application studies, by directly comparing the performance of both charting

manifold techniques, the dip method produced a more accurate estimation than the

regression method. However, a notable advantage of the regression method is its

simplicity and the absence of tuning parameters. A comparison with a wide range of

recently proposed ID estimation techniques has demonstrated that our results are

in line with, and competitive to, those methods; though not necessarily superior at

all instances.

The question of local strings and clusters, which impact on ID estimates, relates

to the question of how to deal with situations in which several disconnected

manifolds coexist in a single dataset. The analysis of our third simulation example

provides an illustration into the behavior of dimension estimation techniques in

such a scenario. This topic, however, requires a further and a more thorough in-

vestigation involving more complex examples that include data structures con-

sisting of multiple manifolds of di®erent ID for example. It is clear that, by virtue of

their construction, the global methods listed in the left-hand side of Table 1 are not

able to deal with such disconnected data structures, as they are designed to produce

a single ID estimate. Recent contributions to this problem have been based on

¯nding sparse and local representations, which relate the neighborhood size directly

to an ID estimate.14,18

The main computational burden for the correlation dimension methods is the

estimation of the correlation integral, which, as explained, is of the order n2. Though

the computation of the local methods has been generally slower than the global

methods in the examples examined in this paper, we have emphasized that the EDF

of the distances of samples to the center of the sphere is only of order n. Hence,

computationally, the larger the sample size, the more cumbersome is the estimate of

the correlation integral for the global methods relative to the determination of the
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EDF for the local methods, since n2 � n. That is, for very large sample sizes, the

local methods should turn out to be more e±cient. While all datasets considered in

this paper (except M8) ful¯lled Eckmann and Ruelle's16 rule that n 	 10m=2, the

sample sizes considered in this paper were arguably still quite small. We regard it as a

positive outcome that satisfactory dimension estimation has been possible under

these conditions. Further research on the robustness of the estimation methods in the

presence of outliers, very small or very large sample sizes, or excessive complexity, is

nonetheless required. Signi¯cant challenges lie in the estimation of \large" IDs. We

found that the polynomial method is of reduced reliability for polynomial degrees

q 	 7, hence restricting its use to dimensions m � 6. Future work should study this

limitation, though it should be pointed out that the problem is more general: Already

Eckmann and Ruelle16 have stated that their rule makes dimension estimation for

m 	 6 or 7 virtually impossible. For instance, if m ¼ 20, then the above rule would

require 10 billion samples! Camastra and Vinciarelli11 addressed this problem to

some extent by providing a \reference curve" which corrects the bias when n is too

small. While further advances in this direction, exploiting geometric properties of

nearest neighbors, have recently been made,13,45 further work on this problem would

certainly be bene¯cial. A ¯nal, but very important, problem is to develop diagnostic

tools or quantitative criteria which assess the goodness or reliability of ID estimates.

The ability to quantify the accuracy of ID estimates is of considerable practical

importance, as the ID is directly related to the information bottleneck in large-scale

problems.
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Appendix A. Proof of Theorem 1

With CnðrÞ 
 crm and DnðrÞ ¼ logCnðrÞ
log r , it follows that

DnðrÞ 
 mþ log c

log r
� mþ fðrÞ log c: ðA:1Þ

The next step is to develop a second-order Taylor expansion of fðrÞ ¼ 1
log r for

0 < r0 < 1, which has the following coe±cients:

fðrÞ ¼ 1

log r
; f 0ðrÞ ¼ � 1

rlog2r
; f 00ðrÞ ¼ 1

r2log3r
ðlog rþ 2Þ: ðA:2Þ
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Including a remainder in Lagrange form, 1
6 f

000ð�Þðr� r0Þ3, substituting these coe±-

cients into Eq. (A.1) yields

DnðrÞ ¼ mþ log cðfðr0Þ þ f 0ðr0Þðr� r0Þ þ
1

2
f 00ðr0Þðr� r0Þ2

þ 1

6
f 000ð�Þðr� r0Þ3Þ ðA:3aÞ

DnðrÞ ¼ mþ log c

log r0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
a

� log c

r0log2r0|fflfflfflfflffl{zfflfflfflfflffl}
b

ðr� r0Þ

þ 1

2

log c

r20log
3r0

ðlog r0 þ 2Þðr� r0Þ2 þ
log c

6
f 000ð�Þðr� r0Þ3: ðA:3bÞ

Here, � is in the interval between r and r0. Now, for r0 ¼ e�2, the squared term

vanishes and hence, Eq. (A.3b) reduces to

DnðrÞ ¼ aþ bðr� r0Þ þ
log c

6
f 000ð�Þðr� r0Þ3: ðA:4Þ

If the radius is in the vicinity of r0 ¼ e�2 � 0:135, the remainder is negligible and

DnðrÞ is approximately a linear function of r� r0.

Appendix B. Proof of Theorem 2

Assuming that CðrÞ is a polynomial with degree q 	 1 and considering the condition

Cð0Þ ¼ 0

CðrÞ ¼
Xq
i¼1

air
i ¼ a1rþ a2r

2 þ a3r
3 þ � � � þ aq�1r

q�1 þ aqr
q:

For a1 6¼ 0, the estimate of m, according to Eq. (4), becomes

m ¼ lim
r!0

logða1rþ a2r2 þ a3r3 þ � � � þ aq�1rq�1 þ aqrqÞ
log r

: ðB:1Þ

Next, applying l'Hospital's rule yields

m ¼ lim
r!0

rða1 þ 2a2rþ 3a3r2 þ � � � þ qaqrq�1Þ
a1rþ a2r2 þ a3r3 þ � � � þ aqrq

¼ lim
r!0

a1rþ 2a2r2 þ 3a3r3 þ � � � þ qaqrq

a1rþ a2r2 þ a3r3 þ � � � þ aqrq
:

Applying l'Hospital's rule again gives rise to

m ¼ lim
r!0

a1 þ 4a2rþ 9a3r2 þ � � � þ q2aqrq�1

a1 þ 2a2rþ 3a3r2 þ � � � þ qaqrq�1
! 1: ðB:2Þ
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Now, assuming a0 ¼ a1 ¼ 0 and a2 6¼ 0, produces the following estimate for m:

m ¼ lim
r!0

logða2r2 þ a3r3 þ � � � þ aqrqÞ
log r

: ðB:3Þ

In a similar fashion to the derivation of Eq. (B.2), applying l'Hospital's rule three

consecutive times to Eq. (B.3) yields

m ¼ 4a2
2a2

¼ 2:

Similarly, under the assumption that a0 ¼ a1 ¼ a2 ¼ 0 and a3 6¼ 0, Eq. (B.1) redu-

ces to

m ¼ lim
r!0

logða3r3 þ � � � þ aq�1rq�1 þ aqrqÞ
log r

and, as before, applying l'Hospital rule now a total of four consecutive times,

produces

m ¼ 18a3
6a3

¼ 3:

By induction, it is straightforward to show that if a0 ¼ a1 ¼ � � � ¼ aq�1 ¼ 0 and

aq 6¼ 0, and consecutively applying l'Hospital's rule a total of q times, we get m ¼ q

for r ! 0.
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