Nonparametric predictive inference for diagnostic test thresholds

Tahani Coolen-Maturi^{a,*}, Frank P.A. Coolen^b, Manal Alabdulhadi^c

^aDepartment of Mathematical Sciences, Durham University, Durham, DH1 3LE, UK

^bDepartment of Mathematical Sciences, Durham University, Durham, DH1 3LE, UK

^cDepartment of Mathematics, Qassim University, Qassim, Saudi Arabia.

Abstract

Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine, machine learning and credit scoring. The receiver operating characteristic (ROC) curve and surface are useful tools to assess the ability of diagnostic tests to discriminate between ordered classes or groups. To define these diagnostic tests, selecting the optimal thresholds that maximise the accuracy of these tests is required. One procedure that is commonly used to find the optimal thresholds is by maximising what is known as Youden's index. This paper presents nonparametric predictive inference (NPI) for selecting the optimal thresholds of a diagnostic test. NPI is a frequentist statistical method that is explicitly aimed at using few modelling assumptions, enabled through the use of lower and upper probabilities to quantify uncertainty. Based on multiple future observations, the NPI approach is presented for selecting the optimal thresholds for two-groups and three-groups scenarios. In addition, a pairwise approach has also been presented for the three-groups scenario. The paper ends with an example to illustrate the proposed methods and a simulation study of the predictive performance of the proposed methods along with some classical methods such as Youden index. The NPI-based methods show some interesting results that overcome some of the issues concerning the predictive performance of Youden's index.

Keywords: Diagnostic accuracy; Lower and upper probability; Imprecise probability; Nonparametric predictive inference; Youden index; Thresholds

1. Introduction

Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine, machine learning and credit scoring. The receiver operating characteristic (ROC) curve is a useful tool to assess the ability of a diagnostic test to discriminate between two classes or groups. The ROC curve is constructed by plotting the sensitivity of the test versus its specificity (or as often versus 1-specificity) under all the possible values of a threshold

^{*}Corresponding author

Email addresses: tahani.maturi@durham.ac.uk (Tahani Coolen-Maturi),

frank.coolen@durham.ac.uk (Frank P.A. Coolen), m.h.m.alabdulhadi@durham.ac.uk (Manal Alabdulhadi)

 $c \in (-\infty, \infty)$. The sensitivity and specificity of a diagnostic test for a given threshold c, can be defined as the probability of the correct classification of individual from the disease and non-disease groups, receptively (Pepe, 2003). To completely define a diagnostic test and therefore to assess its performance, searching for the optimal threshold c is required. One procedure that is commonly used to find the optimal threshold is by maximising what is known as the Youden index (Fluss et al., 2005; Youden, 1950). Formally, Youden's index can be defined as $J = \max\{\text{sensitivity}(c) + \text{specificity}(c) - 1\}$, where J = 1 if the two groups are perfectly separated, and J = 0 if they completely overlap. Geometrically, Youden index represents the vertical distance between the ROC curve value corresponding to the threshold c and the point on the diagonal line.

For three-group classification problems, the ROC surface is introduced and studied in the literature, see for example (Mossman, 1999; Nakas and Yiannoutsos, 2004; Nakas, 2014). In this case, two threshold values (or often called cut off points) c_1 and c_2 (where $c_1 < c_2$) are needed to define the diagnostic test. Nakas et al. (2010) generalized the Youden index for the three-group classification problem, where for the three ordered groups X, Y and Z, the generalized Youden index can be defined as $J(c_1, c_2) = P(X \le c_1) + P(c_1 < Y \le c_2) + P(Z \ge c_2)$. The optimal thresholds are the values of c_1 and c_2 which maximise $J(c_1, c_2)$, where J is equal to 1 when the three groups are identical, and J is equal to 3 where they are perfectly separated.

Youden index has attracted a lot of attention from researchers over the past decade. For example, several methods have been introduced in the literature to estimate the Youden index and construct its confidence intervals. Researchers approached that either by assuming some underlying distributions (such as normal or gamma distribution) (Jund et al., 2005; Perkins and Schisterman, 2005; Schisterman and Perkins, 2007; Molanes-López and Letón, 2011) or by using nonparametric techniques such as the empirical and kernel methods (Fluss et al., 2005; Molanes-López and Letón, 2011). To this end, sample sizes required for these methods are also studied in the literature, see e.g. (Jund et al., 2005; Perkins and Schisterman, 2005; Schisterman and Perkins, 2007; Molanes-López and Letón, 2011). In this paper, we will compare our proposed methods with the empirical estimate of Youden's index and with the empirical estimate of Liu's index (Liu, 2012), which can be defined as the product between the sensitivity and specificity of the diagnostic test, $L(c) = \text{sensitivity}(c) \times \text{specificity}(c)$.

Classical methods often focus on estimation rather than prediction. The end goal of studying the accuracy of diagnostic tests is to adapt and apply these tests on future patients, not necessarily on the data at hand where the disease status of patients is known with certainty. There is also the concern of whether the diagnostics tests' performance will be the same outside the sample at hand. Another issue would be the validity of the underlying assumptions required by some of these classical methods, which are often difficult to justify in practice. In this paper, we introduce a nonparametric predictive approach, called NPI, for selecting the optional threshold(s) for two- and three- group classification problems, where the inference itself is based on future observations (patients).

Nonparametric Predictive Inference (NPI) is a frequentist statistical framework based on

Hill's assumption $A_{(n)}$ (Hill, 1968), which yields direct probabilities for one or more future observations, based on n observations for related random quantities. NPI is close in nature to predictive inference for the low structure stochastic case as briefly outlined by Geisser (1993), which is in line with many earlier nonparametric test methods where the interpretation of the inferences is in terms of confidence intervals. In NPI the $A_{(n)}$ assumptions justify the use of these inferences directly as probabilities. Using only precise probabilities or confidence statements, such inferences cannot be used for many events of interest, but in NPI we use the fact, in line with De Finetti's Fundamental Theorem of Probability (Finetti, 1974), that corresponding optimal bounds can be derived for all events of interest (Augustin and Coolen, 2004). NPI provides exactly calibrated frequentist inferences (Lawless and Fredette, 2005), and it has strong consistency properties in theory of interval probability (Augustin and Coolen, 2004). In NPI the n observations are explicitly used through the $A_{(n)}$ assumptions, yet as there is no use of conditioning as in the Bayesian framework, we do not use an explicit notation to indicate this use of the data. It is important to emphasize that there is no assumed population from which the n observations were randomly drawn, and hence also no assumptions on the sampling process. NPI is totally based on the $A_{(n)}$ assumptions, which however should be considered with care as they imply e.g. that the specific ordering in which the data appeared is irrelevant, so accepting $A_{(n)}$ implies an exchangeability judgment for the *n* observations. It is attractive that the appropriateness of this approach can be decided upon after the n observations have become available. NPI is always in line with inferences based on empirical distributions, which is an attractive property when aiming at objectivity (Coolen, 2006).

NPI has been introduced for many applications areas where the predictive nature of this method plays an important role, including reliability, survival analysis, competing risks, operation research, and finance. For more information about NPI and its different applications we refer the reader to (Coolen, 2011b) and the references within. Restricting attention to one future observation, NPI has been introduced for diagnostic tests accuracy considering different types of data. For example, Coolen-Maturi et al. (2012a) introduced NPI for diagnostic tests accuracy with binary data, while Elkhafifi and Coolen (2012) presented NPI for diagnostic tests with ordinal data. Coolen-Maturi et al. (2012b, 2014) proposed NPI for two-and three- group ROC analysis with continuous data. The results in (Elkhafifi and Coolen, 2012) have been generalised by Coolen-Maturi (2017b) for three-group ROC analysis with ordinal data. Recently, Coolen-Maturi (2017a) considered NPI for scenarios where two or more diagnostic tests are combined in order to improve the overall accuracy, this is often achieved by maximising some objective functions such as the area under the ROC curve. She also considered the case where one or more tests may be subject to limits of detection.

In this paper we introduce NPI for selecting the optimal diagnostic test thresholds based on multiple future observations. NPI for future order statistics, which is based on multiple future observations, has been introduced by Coolen et al. (2017). We will employ some of their results in order to calculate the NPI-based lower and upper probabilities. This paper is organised as follows: First a brief overview of NPI for future observations is given in Section 2. NPI for selecting the optimal thresholds for two- and three-group diagnostic tests are introduced in Sections 3 and 4, respectively. In Section 5 we propose a pairwise approach for selecting the optimal thresholds in the three-group diagnostic test scenario. Section 6 provides NPI-based inference for Youden's index. We apply the proposed methods to a real data set in Section 7, while in Section 8 we investigate the performance of the proposed methods via simulations. Finally, some concluding remarks are made in Section 9.

2. NPI for future order statistics

Nonparametric Predictive Inference (NPI) is a frequentist statistical framework based on Hill's assumption $A_{(n)}$ (Hill, 1968), which yields direct probabilities for one or more future observations, based on *n* observations for related random quantities. $A_{(n)}$ does not assume anything else and it can be considered as a post-data assumption related to exchangeability. Inferences based on $A_{(n)}$ are nonparametric and predictive, and can be considered appropriate if there is hardly any information or knowledge about the random quantities of interest, other than the *n* observations (Hill, 1988). $A_{(n)}$ does not provide precise probabilities for many events of interest, however it provides bounds for all probabilities, these are lower and upper probabilities in the theory of interval probability (Augustin and Coolen, 2004; Weichselberger, 2000).

The assumption $A_{(n)}$ partially specifies a predictive probability distribution for one future observation as follows. Suppose that $X_1, \ldots, X_n, X_{n+1}$ are continuous, real-valued and exchangeable random quantities. Suppose the ordered observations of X_1, \ldots, X_n are denoted by $x_1 < x_2 < \ldots < x_n$, and define $x_0 = -\infty$ and $x_{n+1} = \infty$ for ease notation (or define $x_0 = 0$ when dealing with non-negative random quantities). These *n* observations partition the real-line into n+1 intervals $I_j = (x_{j-1}, x_j)$, for $j = 1, 2, \ldots, n+1$. The assumption $A_{(n)}$ implies that the future observation X_{n+1} is equally likely to fall in any of these intervals with probability $\frac{1}{n+1}$ (Coolen, 2011a). In NPI uncertainty is quantified by lower and upper probabilities for events of interest. Augustin and Coolen (2004) introduced predictive lower and upper probabilities based on $A_{(n)}$ as follows: Lower probability $\underline{P}(.)$ and upper probability $\overline{P}(.)$ for the event $X_{n+1} \in B$, based on the intervals $I_j = (x_{j-1}, x_j)$ ($j = 1, 2, \ldots, n+1$) created by *n* real-valued non-tied observations, and the assumption $A_{(n)}$, are

$$\underline{P}(X_{n+1} \in B) = \frac{1}{n+1} \sum_{j} \mathbf{1}\{I_j \subseteq B\}$$
$$\overline{P}(X_{n+1} \in B) = \frac{1}{n+1} \sum_{j} \mathbf{1}\{I_j \cap B \neq \emptyset\}$$

In other words, the lower probability $\underline{P}(X_{n+1} \in B)$ is achieved by taking only probability mass into account that is necessarily within B, which is only the case for the probability mass $\frac{1}{n+1}$ per interval I_j if this interval is completely contained within B. The upper probability $\overline{P}(X_{n+1} \in B)$ is achieved by taking all the probability mass into account that could possibly be within B, which is the case for the probability mass $\frac{1}{n+1}$, per interval I_j , if the intersection of I_j and B is non-empty.

We are interested in $m \ge 1$ future observations, X_{n+i} for $i = 1, \ldots, m$. We link the data and future observations via Hill's assumption $A_{(n)}$ (Hill, 1968), or more precisely, via

 $A_{(n+m-1)}$ (which implies $A_{(n+k)}$ for all k = 0, 1, ..., m-2), which can be considered as a postdata version of a finite exchangeability assumption for n + m random quantities. $A_{(n+m-1)}$ implies that all possible orderings of the n data observations and the m future observations are equally likely, where the n data observations are not distinguished among each other, and neither are the m future observations. Let $S_j = \#\{X_{n+i} \in I_j, i = 1, ..., m\}$, then assuming $A_{(n+m-1)}$ we have

$$P(\bigcap_{j=1}^{n+1} \{S_j = s_j\}) = \binom{n+m}{n}^{-1}$$
(1)

where s_j are non-negative integers with $\sum_{j=1}^{n+1} s_j = m$. Let $X_{(r)}$, for $r = 1, \ldots, m$, be the *r*-th ordered future observation, so $X_{(r)} = X_{n+i}$ for one $i = 1, \ldots, m$ and $X_{(1)} < X_{(2)} < \ldots < X_{(m)}$. The following probabilities are derived by counting the relevant orderings, and hold for $j = 1, \ldots, n+1$, and $r = 1, \ldots, m$,

$$P(X_{(r)} \in I_j) = {\binom{j+r-2}{j-1}} {\binom{n-j+1+m-r}{n-j+1}} {\binom{n+m}{n}}^{-1}$$
(2)

For this event NPI provides a precise probability, as each of the $\binom{n+m}{n}$ equally likely orderings of n past and m future observations has the r-th ordered future observation in precisely one interval I_j (Coolen and Maturi, 2010). The event that the number of future observations in an interval (x_a, x_b) , denoted by $S_{a,b}^m$, is greater than or equal to a particular value v, has the following precise probability (Alqifari, 2017),

$$P(S_{a,b}^{m} \ge v) = \sum_{i=v}^{m} \binom{n+m}{n}^{-1} \binom{b-a-1+i}{i} \binom{n-b+a+m-i}{m-i}$$
(3)

For more applications of NPI for future order statistics we refer the reader to Coolen et al. (2017).

3. Predictive inference for a two-group diagnostic test threshold

Assume that we have real-valued data from a diagnostic test on individuals from two groups, and there are n_x observations from the healthy group X and n_y observations from the disease group Y. Throughout this paper it is assumed that these two groups are fully independent, in the sense that any information about the individuals in one group does not contain any information about the individuals in the other group. The ordered data of groups X and Y are denoted by $x_1 < x_2 < \ldots < x_{n_x}$ and $y_1 < y_2 < \ldots < y_{n_y}$, respectively. For ease of presentation, we define $x_0 = y_0 = -\infty$ and $x_{n_x+1} = y_{n_y+1} = \infty$. These n_x observations partition the real-line into $n_x + 1$ intervals $I_i^X = (x_{i-1}, x_i)$, for $i = 1, 2, \ldots, n_x + 1$, and the n_y observations partition the real-line into $n_y + 1$ intervals $I_j^Y = (y_{j-1}, y_j)$ for $j = 1, \ldots, n_y + 1$. In this section, we consider m_x future individuals from group X, with diagnostic test results X_{n_x+r} , $r = 1, \ldots, m_x$, and m_y future individuals from group Y, with diagnostic test results Y_{n_y+s} , $s = 1, \ldots, m_y$. Let the m_x and m_y ordered future observations from groups X and Y be denoted by $X_{(1)} < X_{(2)} < \ldots < X_{(m_x)}$ and $Y_{(1)} < Y_{(2)} < \ldots < Y_{(m_y)}$, respectively.

Small values of the diagnostic test results are often associated with absence of the disease and large values of the test results with presence of the disease. To this end, a threshold $c \in (-\infty, \infty)$ can be used to classify individuals to either being healthy (absence of the disease) if their test result is below or equal to the threshold c, or having the disease if their test result is greater than the threshold c. Then the main question is how to find or select the optimal threshold c that maximizes the correct classification of patients and healthy people. As the NPI-based inferences are in terms of future observations, we will select the value c that gives the best correct classification based on the m_x and m_y future individuals. To this end, we will make use of the NPI results summarized in Section 2, but first we need to introduce further notation.

For a specific value of c, $C_{(-\infty,c)}^X$ denotes the number of correctly classified future individuals from the healthy group X, that is those with test results $X_{n_x+r} \leq c$ (for $r = 1, \ldots, m_x$), and $C_{(c,\infty)}^Y$ denotes the number of correctly classified future individuals from the disease group Y, that is those with test results $Y_{n_y+s} > c$ (for $s = 1, \ldots, m_y$). Let α and β be any two values in (0, 1] that are selected to reflect the desired importance towards one group over another. This is close to the concept of utility in the literature, see for example Hand (2009). We consider the aim that the number of correctly classified future individuals of the healthy group X is at least αm_x , and that the number of correctly classified future individuals of the disease group Y is at least βm_y . Of course one can choose α and β to be equal if one prefers to give the same importance of correct classification of the future individuals to both groups.

As the two groups are assumed to be independent, the joint NPI lower and upper probabilities can be derived as the products of the corresponding lower and upper probabilities for the individual events that involve $C_{(-\infty,c)}^X$ and $C_{(c,\infty)}^Y$, thus

$$\underline{P}(C_{(-\infty,c)}^X \ge \alpha m_x, C_{(c,\infty)}^Y \ge \beta m_y) = \underline{P}(C_{(-\infty,c)}^X \ge \alpha m_x) \times \underline{P}(C_{(c,\infty)}^Y \ge \beta m_y)$$
(4)

$$\overline{P}(C_{(-\infty,c)}^X \ge \alpha m_x, C_{(c,\infty)}^Y \ge \beta m_y) = \overline{P}(C_{(-\infty,c)}^X \ge \alpha m_x) \times \overline{P}(C_{(c,\infty)}^Y \ge \beta m_y)$$
(5)

We will refer to Equations (4) and (5) as 2-NPI-L and 2-NPI-U, respectively.

Next we are going to use the NPI results for future order statistics in Section 2, in particular Equation (2), to derive the NPI lower and upper probabilities in Equations (4) and (5). We first present the results for group X in detail, followed by those for group Y, for which deriving the results follows similar steps. We note that the event $C_{(-\infty,c)}^X \ge \alpha m_x$ is equivalent to $X_{(\lceil \alpha m_x \rceil)} \le c$, where $\lceil \alpha m_x \rceil$ is the smallest integer greater than αm_x , and similarly that the event $C_{(c,\infty)}^Y \ge \beta m_y$ is equivalent to $Y_{(m_y - \lceil \beta m_y \rceil + 1)} > c$, where $\lceil \beta m_y \rceil$ is the smallest integer greater than βm_y .

For $I_i^X = (x_{i-1}, x_i), i = 1, \dots, n_x^3 + 1$, and $c \in I_{i_c}^X = (x_{i_c-1}, x_{i_c}), i_c = 2, 3, \dots, n_x$, the

NPI lower and upper probabilities for the event $C^X_{(-\infty,c)} \ge \alpha m_x$ are given by

$$\underline{P}(C_{(-\infty,c)}^X \ge \alpha m_x) = \underline{P}(X_{(\lceil \alpha m_x \rceil)} \le c) = \sum_{i=1}^{i_c-1} P(X_{(\lceil \alpha m_x \rceil)} \in I_i^X)$$
(6)

$$\overline{P}(C_{(-\infty,c)}^X \ge \alpha m_x) = \overline{P}(X_{(\lceil \alpha m_x \rceil)} \le c) = \sum_{i=1}^{i_c} P(X_{(\lceil \alpha m_x \rceil)} \in I_i^X)$$
(7)

where the precise probabilities on the right hand sides of Equations (6) and (7) can be obtained from Equation (2). For $i_c = 1$, Equations (6) and (7) become

$$\underline{P}(C_{(-\infty,c)}^X \ge \alpha m_x) = 0 \quad \text{and} \qquad \overline{P}(C_{(-\infty,c)}^X \ge \alpha m_x) = P(X_{(\lceil \alpha m_x \rceil)} \in I_1^X)$$

and for $i_c = n_x + 1$,

$$\underline{P}(C_{(-\infty,c)}^X \ge \alpha m_x) = 1 - P(X_{(\lceil \alpha m_x \rceil)} \in I_{n_x+1}^X) \quad \text{and} \quad \overline{P}(C_{(-\infty,c)}^X \ge \alpha m_x) = 1$$

If c is equal to one of the observations x_i , say $c = x_{i_c}$ for the specific value $i_c \in \{2, ..., n_x\}$, then this event has the following precise probability,

$$P(C_{(-\infty,c)}^X \ge \alpha m_x) = P(X_{(\lceil \alpha m_x \rceil)} \le c) = \sum_{i=1}^{i_c} P(X_{(\lceil \alpha m_x \rceil)} \in I_i^X)$$
(8)

The NPI lower and upper probabilities for the event $C_{(c,\infty)}^Y \ge \beta m_y$ are derived similarly. For $I_j^Y = (y_{j-1}, y_j), \ j = 1, \ldots, n_y + 1$, and $c \in I_{j_c}^Y = (y_{j_c-1}, y_{j_c}), \ j_c = 2, 3, \ldots, n_y$, the NPI lower and upper probabilities for the event $C_{(c,\infty)}^Y \ge \beta m_y$ are

$$\underline{P}(C_{(c,\infty)}^{Y} \ge \beta m_{y}) = \underline{P}(Y_{(m_{y} - \lceil \beta m_{y} \rceil + 1)} > c) = \sum_{\substack{j=j_{c}+1\\n_{x}+1}}^{n_{y}+1} P(Y_{(m_{y} - \lceil \beta m_{y} \rceil + 1)} \in I_{j}^{Y})$$
(9)

$$\overline{P}(C_{(c,\infty)}^Y \ge \beta m_y) = \overline{P}(Y_{(m_y - \lceil \beta m_y \rceil + 1)} > c) = \sum_{j=j_c}^{n_y + 1} P(Y_{(m_y - \lceil \beta m_y \rceil + 1)} \in I_j^Y)$$
(10)

For $j_c = 1$, Equations (9) and (10) become

$$\underline{P}(C_{(c,\infty)}^Y \ge \beta m_y) = 1 - P(Y_{(m_y - \lceil \beta m_y \rceil + 1)} \in I_1^Y) \text{ and } \overline{P}(C_{(c,\infty)}^Y \ge \beta m_y) = 1$$
(11)

and for $j_c = n_y + 1$,

$$\underline{P}(C_{(c,\infty)}^Y \ge \beta m_y) = 0 \quad \text{and} \qquad \overline{P}(C_{(c,\infty)}^Y \ge \beta m_y) = P(Y_{(m_y - \lceil \beta m_y \rceil + 1)} \in I_{n_y + 1}^Y)$$

Furthermore, for $c = y_{j_c}$ we have

$$P(C_{(c,\infty)}^{Y} \ge \beta m_{y}) = P(Y_{(m_{y} - \lceil \beta m_{y} \rceil + 1)} > c) = \sum_{j=j_{c}+1}^{n_{y}+1} P(Y_{(m_{y} - \lceil \beta m_{y} \rceil + 1)} \in I_{j}^{Y})$$
(12)

The optimal diagnostic threshold is selected by maximisation of Equation (4) for the lower probability or Equation (5) for the upper probability. To search for the optimal threshold c, one needs to search for the value c that maximises the lower or the upper probability within each of the $(n_x + n_y + 1)$ intervals created by the data observations, which could be computationally demanding especially for larger data sets. However, as shown in Alabdulhadi (2018), there is no need to go through each of the $(n_x + n_y + 1)$ intervals to find the optimal threshold c. As for any sensible method, if c is moved such that one more data observation is correctly classified for one group while not changing the number of correctly classified data observations for the other group, it is an improvement. In this reasoning, we call a method 'sensible' if such a move of the threshold leads to a greater value of the target function, so typically our NPI lower and upper probabilities. Our methods are indeed sensible in this way, which follows from the expressions of the NPI lower and upper probabilities involved. Thus, the optimal threshold c for the two groups classification setting can only be in intervals where the left end point of the interval is an observation from group X and the right end point is an observation from group Y, that is $c \in (x, y)$. We should also consider the first and the last interval for the optimal threshold c.

4. Predictive inference for three-group diagnostic test thresholds

This section extends the results in the previous section for three-groups scenario. Thus, in addition to the notation introduced above for groups X and Y, we need to introduce further notation for group Z as follows. Suppose we have n_z observations from group Z, and the ordered data from this group is denoted by $z_1 < z_2 < \ldots < z_{n_z}$, and we define $z_0 = -\infty$ and $z_{n_z+1} = \infty$. Again these n_z observations partition the real-line into $n_z + 1$ intervals $I_l^Z = (z_{l-1}, z_l)$, for $l = 1, 2, \ldots, n_z + 1$. Let the diagnostic test results of m_z future individuals be denoted by Z_{n_z+t} , $t = 1, \ldots, m_z$ and let the corresponding ordered future observations be denoted by $Z_{(1)} < Z_{(2)} < \ldots < Z_{(m_z)}$. Similarly, we assume that the three groups are fully independent.

Now let us assume that the three groups are ordered in the sense that observations from group X tend to be smaller than those from group Y, which in turn tend to be smaller than those from group Z. For a decision rule, two thresholds $c_1 < c_2$ are required to classify individuals, based on their diagnostic test results, into one of the three groups, such that a test value which is less than or equal c_1 is an indication that this individual belongs to group X, a test value between c_1 and c_2 is an indication that this individual belongs to group Y, and a test value which is greater than c_2 is an indication that this individual belongs to group Z. Similar to the previous section, we will make use of the NPI results summarized in Section 2, but first we need to introduce further notation.

For specific values of c_1 and c_2 ($c_1 < c_2$), $C_{(-\infty,c_1)}^X$ denotes the number of correctly classified future individuals from group X, that is those with test results $X_{n_x+r} \leq c_1$ (for $r = 1, \ldots, m_x$), $C_{(c_1,c_2)}^Y$ denotes the number of correctly classified future individuals from group Y, that is those with test results $c_1 < Y_{n_y+s} \leq c_2$ (for $s = 1, \ldots, m_y$), and $C_{(c_2,\infty)}^Z$ denotes the number of correctly classified future individuals from group Z, that is those with test results $Z_{n_z+t} > c$ (for $t = 1, \ldots, m_z$). Let α, β and γ be any values in (0, 1] that are selected to reflect the desired importance of the groups. We consider the event that the number of correctly classified future individuals of the healthy group X is at least αm_x , the number of correctly classified future individuals of the disease group Y is at least βm_y , and the number of correctly classified future individuals of the disease group Z is at least γm_z . Of course one can choose α , β and γ to be equal if one prefers to give the same importance of correct classification to all future individuals.

Under the independence assumption of the three groups, the joint NPI lower and upper probabilities can be derived as the products of the corresponding lower and upper probabilities for the individual events involving $C_{(-\infty,c_1)}^X$, $C_{(c_1,c_2)}^Y$, and $C_{(c_2,\infty)}^Z$, thus

$$\underline{P}(C_{(-\infty,c_1)}^X \ge \alpha m_x, C_{(c_1,c_2)}^Y \ge \beta m_y, C_{(c_2,\infty)}^Z \ge \gamma m_z)$$

= $\underline{P}(C_{(-\infty,c_1)}^X \ge \alpha m_x) \times \underline{P}(C_{(c_1,c_2)}^Y \ge \beta m_y) \times \underline{P}(C_{(c_2,\infty)}^Z \ge \gamma m_z)$ (13)
 $\overline{P}(C_{(-\infty,c_1)}^X \ge \alpha m_x, C_{(c_1,c_2)}^Y \ge \beta m_y, C_{(c_2,\infty)}^Z \ge \gamma m_z)$

$$C_{(-\infty,c_1)} \ge \alpha m_x, C_{(c_1,c_2)} \ge \beta m_y, C_{(c_2,\infty)} \ge \gamma m_z)$$

= $\overline{P}(C_{(-\infty,c_1)}^X \ge \alpha m_x) \times \overline{P}(C_{(c_1,c_2)}^Y \ge \beta m_y) \times \overline{P}(C_{(c_2,\infty)}^Z \ge \gamma m_z)$ (14)

We are going to refer to the use of Equations (13) and (14) as 3-NPI-L and 3-NPI-U, respectively.

For $I_i^X = (x_{i-1}, x_i)$ with $i = 1, \ldots, n_x + 1$ and $c_1 \in I_{i_{c_1}}^X = (x_{i_{c_1}-1}, x_{i_{c_1}}), i_{c_1} \in \{2, 3, \ldots, n_x\}$, the NPI lower and upper probabilities for the event $C_{(-\infty,c_1)}^X \ge \alpha m_x$ are given by

$$\overline{P}(C_{(-\infty,c_1)}^X \ge \alpha m_x) = \overline{P}(X_{\lceil \alpha m_x \rceil} \le c_1) = \sum_{i=1}^{i_{c_1}} P(X_{\lceil \alpha m_x \rceil} \in I_i^X)$$
(16)

For $i_{c_1} = 1$, Equations (15) and (16) become

$$\underline{P}(C_{(-\infty,c_1)}^X \ge \alpha m_x) = 0 \quad \text{and} \qquad \overline{P}(C_{(-\infty,c_1)}^X \ge \alpha m_x) = P(X_{(\lceil \alpha m_x \rceil)} \in I_1^X)$$

and for $i_{c_1} = n_x + 1$,

$$\underline{P}(C_{(-\infty,c_1)}^X \ge \alpha m_x) = 1 - P(X_{(\lceil \alpha m_x \rceil)} \in I_{n_x+1}^X) \quad \text{and} \quad \overline{P}(C_{(-\infty,c_1)}^X \ge \alpha m_x) = 1$$

If c_1 is equal to one of the observations x_i , say $c_1 = x_{i_{c_1}}$ for the specific value $i_{c_1} \in \{2, ..., n_x\}$, then this event has the following precise probability,

$$P(C_{(-\infty,c_1)}^X \ge \alpha m_x) = P(X_{(\lceil \alpha m_x \rceil)} \le c_1) = \sum_{i=1}^{i_{c_1}} P(X_{(\lceil \alpha m_x \rceil)} \in I_i^X)$$

For $I_j^Y = (y_{j-1}, y_j)$ with $j = 1, \ldots, n_y + 1$ and $c_1 \in I_{j_{c_1}}^Y = (y_{j_{c_1}-1}, y_{j_{c_1}})$ and $c_2 \in I_{j_{c_2}}^Y = (y_{j_{c_2}-1}, y_{j_{c_2}})$, with $j_{c_1} \in \{1, \ldots, n_y + 1\}$ and $j_{c_2} \in \{1, \ldots, n_y + 1\}$, with $c_2 \ge c_1$, which

implies that $j_{c_2} \geq j_{c_1}$, the NPI approach leads to the following lower and upper probabilities $\underline{P}(C_{(c_1,c_2)}^Y \geq \beta m_y)$ and $\overline{P}(C_{(c_1,c_2)}^Y \geq \beta m_y)$,

$$\underline{P}(C_{(c_1,c_2)}^Y \ge \beta m_y) = P(C_{(y_{j_{c_1}},y_{j_{c_2}-1})}^Y \ge \beta m_y)$$
(17)

$$\overline{P}(C_{(c_1,c_2)}^Y \ge \beta m_y) = P(C_{(y_{j_{c_1}-1},y_{j_{c_2}})}^Y \ge \beta m_y)$$
(18)

For $j_{c_1} = 1$ and $j_{c_2} = 2$, Equations (17) and (18) become

$$\underline{P}(C_{(c_1,c_2)}^Y \ge \beta m_y) = 0 \quad \text{and} \quad \overline{P}(C_{(c_1,c_2)}^Y \ge \beta m_y) = P(C_{(-\infty,y_{j_{c_2}})}^Y \ge \beta m_y)$$

For $j_{c_1} = 1$ and $j_{c_2} = \{3, ..., n_y + 1\},\$

$$\underline{P}(C_{(c_1,c_2)}^Y \ge \beta m_y) = P(C_{(y_{j_{c_1}},y_{j_{c_2}-1})}^Y \ge \beta m_y) \text{ and } \overline{P}(C_{(c_1,c_2)}^Y \ge \beta m_y) = P(C_{(-\infty,y_{j_{c_2}})}^Y \ge \beta m_y)$$

For $j_{c_1} = n_y$ and $j_{c_2} = n_y + 1$,

$$\underline{P}(C_{(c_1,c_2)}^Y \ge \beta m_y) = 0 \quad \text{and} \qquad \overline{P}(C_{(c_1,c_2)}^Y \ge \beta m_y) = P(C_{(y_{j_{c_1}-1},\infty)}^Y \ge \beta m_y)$$

In fact $\underline{P}(C_{(c_1,c_2)}^Y \ge \beta m_y) = 0$ for all $j_{c_2} = j_{c_1} + 1$. A special case occurs when c_1 and c_2 occur in the same interval, that is c_1 and $c_2 \in (y_{j_{c_1}-1}, y_{j_{c_1}})$, then the lower probability in Equation (17) is equal to zero and the upper probability can be calculated from Equation (18) as follows: In order to assign the probability masses within the interval $(y_{j_{c_1}-1}, y_{j_{c_1}})$ to derive the NPI upper probability in Equation (18), let the number of observations from groups X and Z between $y_{j_{c_1}-1}$ and $y_{j_{c_1}}$ be denoted by $n_x^{j_{c_1}}$ and $n_z^{j_{c_1}}$, respectively. These observations create a partition of the interval $(y_{j_{c_1}-1}, y_{j_{c_1}})$ into $n_x^{j_{c_1}} + n_z^{j_{c_1}} + 1$ sub-intervals. If $c_1 < x_i$ in sub-interval (y_{j-1}, x_i) , then we put the probability mass to the right end point of x_i . Simultaneously, if $c_2 > z_l$ in sub-interval (z_l, y_j) , then we put the probability mass to the right end point of x_i , and if they are only from group Z then we put the probability mass to the left end point of z_l , $l = 1, ..., n_z + 1$. If the observations are only from group Z then we put the probability mass to the left end point of z_l in the interval $(y_{j_{c_1}-1}, y_{j_{c_1}})$, we put all the probabilities masses in between c_1 and c_2 , as long as c_1 to the left of c_2 .

For $I_l^Z = (z_{l-1}, z_l)$ with $l = 1, \ldots, n_z + 1$ and $c_2 \in I_{l_{c_2}}^Z = (z_{l_{c_2}-1}, z_{l_{c_2}}), l_{c_2} = 1, 2, 3, \ldots, n_z$, the NPI approach leads to the following lower and upper probabilities $\underline{P}(C_{(c_2,\infty)}^Z \ge \gamma m_z)$ and $\overline{P}(C_{(c_2,\infty)}^Z \ge \gamma m_z)$,

$$\underline{P}(C_{(c_2,\infty)}^Z \ge \gamma m_z) = \underline{P}(Z_{(m_z - \lceil \gamma m_z \rceil + 1)} > c_2) = \sum_{l=l_{c_2}+1}^{n_z+1} P(Z_{(m_z - \lceil \gamma m_z \rceil + 1)} \in I_l^Z)$$
(19)

$$\overline{P}(C_{(c_2,\infty)}^Z \ge \gamma m_z) = \overline{P}(Z_{(m_z - \lceil \gamma m_z \rceil + 1)} > c_2) = \sum_{l=l_{c_2}}^{n_z+1} P(Z_{(m_z - \lceil \gamma m_z \rceil + 1)} \in I_l^Z)$$
(20)

For $l_{c_2} = 1$, Equations (19) and (20) become

$$\underline{P}(C_{(c_2,\infty)}^Z \ge \gamma m_z) = 1 - P(Z_{(m_z - \lceil \gamma m_z \rceil + 1)} \in I_1^Z) \text{ and } \overline{P}(C_{(c_2,\infty)}^Z \ge \gamma m_z) = 1$$

and for $l_{c_2} = n_z + 1$,

$$\underline{P}(C_{(c_2,\infty)}^Z \ge \gamma m_z) = 0 \quad \text{and} \qquad \overline{P}(C_{(c_2,\infty)}^Z \ge \gamma m_z) = P(Z_{(m_z - \lceil \gamma m_z \rceil + 1)} \in I_{n_z+1}^Z)$$

Furthermore, for $c = z_{l_{c_2}}$ we have

$$P(C_{(c_2,\infty)}^Z \ge \gamma m_z) = P(Z_{(m_z - \lceil \gamma m_z \rceil + 1)} > c_2) = \sum_{l=l_{c_2}+1}^{n_z+1} P(Z_{(m_z - \lceil \gamma m_z \rceil + 1)} \in I_j^Z)$$

Thus the optimal thresholds c_1 and c_2 can be obtained by maximising Equations (13) and (14). To search for the optimal thresholds c_1 and c_2 , one needs to search for the values c_1 and c_2 that maximise the lower or the upper probability within each of the $(n_x + n_y + n_z +$ 1) intervals created by the data observations, which could be computationally demanding especially for larger data sets. However, the optimal threshold c_1 can only be in intervals where the left end point of the interval is an observation from group X and the right end point is an observation from group Y, that is $c_1 \in (x, y)$. Any observations from group Z are irrelevant here and must be ignored. On the other hand, the optimal threshold c_2 can only be in intervals where the left end point of the interval is an observation from group Y and the right end point is an observation from group Z, that is $c_2 \in (y, z)$. Any observations from group Y and the right end point is an observation from group Z, that is $c_2 \in (y, z)$. Any observations from group X are irrelevant here and must be ignored. We should also consider within the first interval for the optimal threshold c_1 and within the last interval for the optimal threshold c_2 . This substantially reduces the number of intervals we need to search for the optimal thresholds c_1 and c_2 .

5. Pairwise predictive inference for three-group diagnostic test thresholds

It could be of interest to consider selecting the optimal thresholds (c_1, c_2) independently rather than selecting them jointly as in Section 4, that is to optimally select the threshold c_1 solely from groups X and Y and the threshold c_2 solely from groups Y and Z. In this case we can make use of the method presented in Section 3 to independently select the optimal thresholds c_1 and c_2 as follows. First, we obtain the optimal threshold c_1 based only on groups X and Y by using the methodology presented in Section 3, so from Equations (4) and (5), we have

$$\underline{P}(C_{(-\infty,c_1)}^X \ge \alpha m_x, C_{(c_1,\infty)}^Y \ge \beta m_y) = \underline{P}(C_{(-\infty,c_1)}^X \ge \alpha m_x) \times \underline{P}(C_{(c_1,\infty)}^Y \ge \beta m_y)$$
(21)

$$\overline{P}(C_{(-\infty,c_1)}^X \ge \alpha m_x, C_{(c_1,\infty)}^Y \ge \beta m_y) = \overline{P}(C_{(-\infty,c_1)}^X \ge \alpha m_x) \times \overline{P}(C_{(c_1,\infty)}^Y \ge \beta m_y)$$
(22)

where

$$\underline{P}(C_{(-\infty,c_1)}^X \ge \alpha m_x) = \underline{P}(X_{\lceil \alpha m_x \rceil} \le c_1) = \sum_{\substack{i=1\\i_{\alpha}}}^{i_{c_1}-1} P(X_{\lceil \alpha m_x \rceil} \in I_i^X)$$
(23)

$$\overline{P}(C_{(-\infty,c_1)}^X \ge \alpha m_x) = \overline{P}(X_{\lceil \alpha m_x \rceil} \le c_1) = \sum_{i=1}^{\iota_{c_1}} P(X_{\lceil \alpha m_x \rceil} \in I_i^X)$$
(24)

$$\underline{P}(C_{(c_1,\infty)}^Y \ge \beta m_y) = \underline{P}(Y_{(m_y - \lceil \beta m_y \rceil + 1)} > c_1) = \sum_{\substack{j=j_{c_1}+1\\n_y+1}}^{n_y+1} P(Y_{(m_y - \lceil \beta m_y \rceil + 1)} \in I_j^Y)$$
(25)

$$\overline{P}(C_{(c_1,\infty)}^Y \ge \beta m_y) = \overline{P}(Y_{(m_y - \lceil \beta m_y \rceil + 1)} > c_1) = \sum_{j=j_{c_1}}^{n_y + 1} P(Y_{(m_y - \lceil \beta m_y \rceil + 1)} \in I_j^Y)$$
(26)

Secondly, to obtain the optimal threshold c_2 based only on groups Y and Z, we again use the methodology presented in Section 3, and from Equations (4) and (5), we have

$$\underline{P}(C_{(-\infty,c_2)}^Y \ge \beta m_y, C_{(c_2,\infty)}^Z \ge \gamma m_z) = \underline{P}(C_{(-\infty,c_2)}^Y \ge \beta m_y) \times \underline{P}(C_{(c_2,\infty)}^Z \ge \gamma m_z)$$
(27)
$$\overline{P}(C_{(-\infty,c_2)}^Y \ge \beta m_y) \times \overline{P}(C_{(c_2,\infty)}^Z \ge \gamma m_z)$$
(28)

$$\overline{P}(C_{(-\infty,c_2)}^Y \ge \beta m_y, C_{(c_2,\infty)}^Z \ge \gamma m_z) = \overline{P}(C_{(-\infty,c_2)}^Y \ge \beta m_y) \times \overline{P}(C_{(c_2,\infty)}^Z \ge \gamma m_z)$$
(28)

where

$$\underline{P}(C_{(-\infty,c_2)}^Y \ge \beta m_y) = \underline{P}(Y_{\lceil \beta m_y \rceil} \le c_2) = \sum_{j=1}^{j_{c_2}-1} P(Y_{\lceil \beta m_y \rceil} \in I_j^Y)$$
(29)

$$\overline{P}(C_{(-\infty,c_2)}^Y \ge \beta m_y) = \overline{P}(Y_{\lceil \beta m_y \rceil} \le c_2) = \sum_{j=1}^{j_{c_2}} P(Y_{\lceil \beta m_y \rceil} \in I_j^Y)$$
(30)

$$\underline{P}(C_{(c_2,\infty)}^Z \ge \gamma m_z) = \underline{P}(Z_{(m_z - \lceil \gamma m_z \rceil + 1)} > c_2) = \sum_{l=l_{c_2}+1}^{n_z+1} P(Z_{(m_z - \lceil \gamma m_z \rceil + 1)} \in I_l^Z)$$
(31)

$$\overline{P}(C_{(c_2,\infty)}^Z \ge \gamma m_z) = \overline{P}(Z_{(m_z - \lceil \gamma m_z \rceil + 1)} > c_2) = \sum_{l=l_{c_2}}^{n_z+1} P(Z_{(m_z - \lceil \gamma m_z \rceil + 1)} \in I_l^Z)$$
(32)

The precise probabilities in Equations (23)-(26) and Equations (29)-(32) can be calculated using Equation (2) in Section 2. We will refer to the pairwise method presented in this section as NPI-PW and the corresponding approach that utilised the lower (upper) probabilities in Equations (21) and (27) (in Equations (22) and (28)) to obtain the optimal (c_1, c_2) as NPI-PW-L (NPI-PW-U). The optimal thresholds c_1 and c_2 obtained using the pairwise method presented in this section could be equal to the optimal c_1 and c_2 obtained from Section 4, but this is not necessarily always the case. In fact there are some scenarios, in particular when there is much overlap between the groups, where the optimal thresholds obtained from the pairwise method may not satisfy the condition that $c_1 < c_2$. In that case, one may want to consider investigating a different ordering of the groups, e.g. X < Z < Yinstead of X < Y < Z. We should mention here that for the NPI-PW method, it may occur that $c_2 < c_1$, due to the fact that c_1 and c_2 are obtained separately, in this case we define c_2 to be equal to c_1 . The above mentioned problem that can occur if the NPI-PW method is applied twice for a three-group scenario is illustrated by a small example in the PhD thesis of Alabdulhadi (2018, Example 3.3).

6. NPI-based inference for Youden index

Coolen-Maturi et al. (2014) introduced NPI for three-group Youden index based on one future individual per group. In this section we introduce NPI-based inference for two- and three-group Youden index taking into account a fixed number of multiple future individuals per group. Let the NPI-based lower and upper probabilities for two- and three-group Youden index be denoted by 2-NPI-Y-L, 2-NPI-Y-U, 3-NPI-Y-L and 3-NPI-Y-U, respectively, and they are given by

$$2\text{-NPI-Y-L} = \underline{P}(C_{(-\infty,c)}^Y \ge \beta m_y) + \underline{P}(C_{(c,\infty)}^X \ge \alpha m_x) - 1$$
(33)

$$2-\text{NPI-Y-U} = \overline{P}(C_{(-\infty,c)}^Y \ge \beta m_y) + \overline{P}(C_{(c,\infty)}^X \ge \alpha m_x) - 1$$
(34)

$$3-\text{NPI-Y-L} = \underline{P}(C^X_{(-\infty,c_1)} \ge \alpha m_x) + \underline{P}(C^Y_{(c_1,c_2)} \ge \beta m_y) + \underline{P}(C^Z_{(c_2,\infty)} \ge \gamma m_z)$$
(35)

$$3-\text{NPI-Y-U} = \overline{P}(C^X_{(-\infty,c_1)} \ge \alpha m_x) + \overline{P}(C^Y_{(c_1,c_2)} \ge \beta m_y) + \overline{P}(C^Z_{(c_2,\infty)} \ge \gamma m_z)$$
(36)

These probabilities are calculated as explained in Sections 3 and 4. In the following sections we compare the NPI-based methods presented in this paper with the classical methods, presented in Section 1, such as Liu's index, the two- and three-group Youden's index. To this end, let the empirical estimates of those indices be denoted by 2-EL, 2-EY and 3-EY, respectively, and are given by

$$2-\text{EL} = \frac{1}{n_x} \sum_{i=1}^{n_x} \mathbf{1}\{x_i \le c\} \times \frac{1}{n_y} \sum_{j=1}^{n_y} \mathbf{1}\{y_j > c\}$$

$$2-\text{EY} = \frac{1}{n_x} \sum_{i=1}^{n_x} \mathbf{1}\{x_i \le c\} + \frac{1}{n_y} \sum_{j=1}^{n_y} \mathbf{1}\{y_j > c\} - 1$$

$$3-\text{EY} = \frac{1}{n_x} \sum_{i=1}^{n_x} \mathbf{1}\{x_i \le c_1\} + \frac{1}{n_y} \sum_{j=1}^{n_y} \mathbf{1}\{c_1 < y_j \le c_2\} + \frac{1}{n_z} \sum_{l=1}^{n_z} \mathbf{1}\{z_l > c_2\}.$$

7. A real data example

The n-acetyl aspartate over creatinine NAA/Cr is a neuronal metabolism maker in the brain used to distinguish between different levels of human immunodeficiency virus HIV in

patients (Nakas et al., 2010; Chang et al., 2004). The NAA/Cr levels were available on 137 patients, of whom 61 were HIV-positive subjects with AIDS dementia complex ADC, 39 were HIV-positive non-symptomatic subjects NAS, and 37 were HIV-negative individuals NEG. The NAA/Cr levels are anticipated to be lowest among the ADC group and highest among the NEG group, with the NAS group being intermediate to the other two. This can be expressed as ADC < NAS < NEG (Chang et al., 2004), we refer to these groups as X, Y and Z, respectively. Nakas et al. (2010) used this dataset to illustrate the generalized Youden index for thresholds selection in three-class classification problems. The empirical Youden index is maximised (equals to 1.434) at the threshold values $c_1 = 1.83$ and $c_2 = 1.99$. We use this data set to illustrate the three methods presented in Sections 3, 4 and 5, namely 3-NPI, 3-NPI-Y and NPI-PW.

Figure 1 presents the probability density estimation of NAA/Cr levels for ADC, NAS and NEG, where a noticeable overlap between the three groups can be observed, in particular between the NAS and NEG groups. We may not be surprised if we found latter that the diagnostic test may struggle to distinguish between the latter two groups, which leaves us with the question whether or not we should combine the latter two groups together and run the analysis again to achieve a better diagnostic accuracy, we will discuss this at the end of this example. As it is irrelevant how c_1 and c_2 are chosen within the respective intervals, the reported values of c_1 and c_2 in this example are set be equal to the lower-end point of the respective intervals plus 0.0005. One can also, for example, set c_1 and c_2 to be the mid-points of these respective intervals, which we do in the simulations reported in Section 8, where it actually can have a small difference due to the explicit study of predictive performance on simulated future individuals.

Figure 1: Density estimation of NAA/Cr levels for ADC, NAS and NEG

Table 1 provides the optimal threshold values (c_1, c_2) obtained from the three NPI-based

methods along with their corresponding lower and upper probabilities and for different values of m. We have also considered three different scenarios of α , β and γ . We notice that when $\alpha = \beta = \gamma = 0.6$, all the methods provide the same optimal threshold values (c_1, c_2) regardless of the m value, of course the corresponding lower and upper probabilities are different. For the scenario where $\alpha = 0.6$ and $\beta = \gamma = 0.1$, that is we put less emphasis on the number of correctly classified future observations from groups Y and Z and more on the number of correctly classified future observations from group X, we notice that all the lower and upper probabilities are of course greater than for the case where $\alpha = \beta = \gamma = 0.6$ and obviously we have different values of the optimal thresholds (c_1, c_2) . For the scenario where $\alpha = 0.9$ and $\beta = \gamma = 0.1$, that is we are requesting even more emphasis on the number of correctly classified future observations from group X, the lower and upper probabilities are substantially smaller except for the NPI-PW (Y, Z) where they are obviously constant (as α is not used in its calculation).

	I	lower cas	e	Upper case		
Method	c_1	c_2	value	c_1	C ₂	value
m = 5			$\alpha = \beta =$	$\gamma = 0.6$		
3-NPI	1.6505	1.8605	0.0735	1.6505	1.8605	0.1072
3-NPI-Y	1.7205	1.7205	1.4852	1.7605	2.0505	1.5913
NPI-PW (X, Y)	1.7605	-	0.5658	1.7605	-	0.6125
NPI-PW (Y, Z)	_	1.8605	0.3057	-	1.8605	0.3577
m = 10			$\alpha = \beta =$	$\gamma = 0.6$		
3-NPI	1.6505	1.8605	0.0245	1.6505	1.8605	0.0457
3-NPI-Y	1.7205	1.7205	1.4213	1.7605	2.0505	1.5450
NPI-PW (X, Y)	1.7605	_	0.5325	1.7605	_	0.5945
NPI-PW (Y, Z)	-	1.8605	0.2074	-	1.8605	0.2651
m = 25			$\alpha = \beta =$	$\gamma = 0.6$		
3-NPI	1.6505	1.8605	0.0038	1.6505	1.8605	0.0115
3-NPI-Y	1.7605	1.7605	1.3935	1.7605	2.0505	1.5616
NPI-PW (X, Y)	1.7605	-	0.5246	1.7605	-	0.6095
NPI-PW (Y, Z)	_	1.8505	0.1169	-	1.8605	0.1747
m = 5		0	$a = 0.6, \beta$	$\gamma = \gamma = 0.$	1	
3-NPI	1.7605	1.8605	0.5302	1.7605	1.8605	0.6061
3-NPI-Y	1.7605	1.8605	2.4441	1.7605	1.8605	2.5497
NPI-PW (X, Y)	1.8305	-	0.8843	1.8305	-	0.9045
NPI-PW (Y, Z)	-	1.8505	0.9372	-	1.8505	0.9509
m = 10		0	$a = 0.6, \beta$	$\gamma = \gamma = 0.$	1	
3-NPI	1.8305	1.9405	0.7933	1.8305	1.9405	0.8477
3-NPI-Y	1.8305	1.9405	2.7795	1.8305	1.9405	2.8408
NPI-PW (X, Y)	1.9005	-	0.9806	1.9005	-	0.9869
NPI-PW (Y, Z)	-	1.8505	0.9964	-	1.8505	0.9977
m = 25		0	$a = 0.6, \beta$	$\gamma = \gamma = 0.$	1	
3-NPI	1.8305	1.9405	0.8169	1.8305	1.9405	0.8821
3-NPI-Y	1.8305	1.9405	2.8093	1.8305	1.9405	2.8794
NPI-PW (X, Y)	1.9005	-	0.9935	1.9005	-	0.9964
NPI-PW (Y, Z)	-	1.8505	0.9996	-	1.8505	0.9998
m = 5		0	$a = 0.9, \beta$	$\gamma = \gamma = 0.$	1	
3-NPI	1.9005	1.9405	0.2462	1.9005	1.9405	0.3365
3-NPI-Y	1.4205	1.8605	1.9313	1.9005	1.9405	2.0878
NPI-PW (X, Y)	1.9005	-	0.5443	1.9005	-	0.6054
NPI-PW (Y, Z)	-	1.8505	0.9372	-	1.8505	0.9509
m = 10		0	$\alpha = 0.9, \beta$	$\gamma = \gamma = 0.$	1	
3-NPI	1.9005	1.9405	0.5369	1.9005	1.9405	0.6545
3-NPI-Y	1.9005	1.9405	2.4437	1.9005	1.9405	2.6086
NPI-PW (X, Y)	1.9605	-	0.7450	1.9605	-	0.8203
NPI-PW (Y, Z)	-	1.8505	0.9964	-	1.8505	0.9977
m = 25		0	$a = 0.9, \beta$	$\gamma = \gamma = 0.$	1	
3-NPI	1.9005	1.9405	0.3803	1.9005	1.9405	0.5432
3-NPI-Y	1.9005	1.9405	2.2040	1.9005	1.9405	2.4703
NPI-PW (X, Y)	1.9605	-	0.6578	1.9605	-	0.7785
NPI-PW (Y, Z)	-	1.8505	0.9996	-	1.8505	0.9998

Table 1: Optimal thresholds (c_1, c_2) using NPI-based methods

An interesting point, which may not be obvious from Table 1, is that the 3-NPI-Y method

often tries to squeeze one of the groups in order to maximise the corresponding lower and upper probabilities (as it is based on summing up the individual probabilities rather than taking the product) while the 3-NPI method actually tries to balance between the groups (of course given that we choose $\alpha = \beta = \gamma$) in order to find the optimal thresholds c_1 and c_2 . To illustrate this further, we have calculated the individual probabilities, the optimal thresholds and the corresponding lower and upper probabilities of both methods and they are presented in Table 2. As we can see from this table, the 3-NPI-Y method squeezes group Y in order to obtain the optimal thresholds that maximise the lower probability in Equation (35), and thus focuses on maximising the number of correctly classified future observations from groups X and Z. In addition, the 3-NPI-Y method squeezes group Z in order to obtain the optimal thresholds that maximise the upper probability in Equation (36), and thus focuses on maximising the number of correctly classified future observations from groups X and Y. On the other hand, the 3-NPI method tries to balance between the three groups in order to obtain the optimal thresholds that maximise both the lower and upper probabilities, but we also notice a slightly smaller value for the Y group in the lower probability case and a slightly higher value for the Z group for the upper probability case, but both values are still close to the values of the other groups.

c_1^L	c_2^L	$\underline{P}(C^X_{(-\infty,c_1)} \ge \alpha m_x)$	$\underline{P}(C_{(c_1,c_2)}^Y \ge \beta m_y)$	$\underline{P}(C^Z_{(c_2,\infty)} \ge \gamma m_z)$	3-NPI-L	3-NPI-Y-L
1.6505	1.8605	0.4415	0.3676	0.4531	0.0735	_
1.7205	1.7205	0.6161	0.0000	0.8691	_	1.4852
c_1^U	c_2^U	$\overline{P}(C^X_{(-\infty,c_1)} \ge \alpha m_x)$	$\overline{P}(C^Y_{(c_1,c_2)} \ge \beta m_y)$	$\overline{P}(C^Z_{(c_2,\infty)} \ge \gamma m_z)$	3-NPI-U	3-NPI-Y-U
1.6505	1.8605	0.4707	0.4553	0.5000	0.1072	_
1.7605	2.0505	0.7747	0.7907	0.0259	—	1.5913

Table 2: Comparison of 3-NPI and 3-NPI-Y methods, for m = 5 and $\alpha = \beta = \gamma = 0.6$, where (c_1^L, c_2^L) and (c_1^U, c_2^U) are the corresponding thresholds of the lower and upper probabilities, respectively.

Method	Lowe	r case	Uppe	Upper case					
Method	c	value	c	value					
	($\alpha = \beta = 0.6, m = 5$							
2-NPI	1.7605	0.5688	1.7605	0.6024					
2-NPI-Y	1.7605	1.5084	1.7605	1.5523					
	0	$\alpha = \beta = 0$.6, m = 1	.6, $m = 10$					
2-NPI	1.7605	0.5379	1.7605	0.5831					
2-NPI-Y	1.7605	1.4668	1.7605	1.5272					
	0	$\alpha = \beta = 0$.6, m = 2	5					
2-NPI	1.7605	0.5364	1.7605	0.6002					
2-NPI-Y	1.7605	1.4650	1.7605	1.5495					

Table 3: Selecting the optimal threshold c using the NPI-based methods, when NAS and NEG are combined

We notice, from Table 1, that when $\alpha = \beta = \gamma = 0.6$, the lower and upper NPI-PW method based on groups Y and Z are much lower than those based on groups X and Y, this is due to the fact that groups Y and Z overlap more than groups X and Y. If we combine

Figure 2: Density estimation of NAA/Cr levels for ADC and (NAS, NEG) combined

the groups Y and Z together, as shown in Figure 2, and we run the analysis again, then the remaining NPI-based methods, 2-NPI and 2-NPI-Y, are presented in Table 3. As we can see from this table, all NPI-based methods give the same optimal threshold value at c = 1.7605 regardless of the value of m, this can happen but is not necessarily always the case. The empirical Liu's index (2-EL) is equal to 0.4314 at the same threshold value as the NPI-based methods (at c = 1.7605) while the empirical Youden index (2-EY), which is equal to 0.3371, gives a different threshold value at c = 1.6605. We can also see by comparing the values of NPI-PW (X, Y) in Table 2 with the values of 2-NPI in Table 3 that we now have less imprecision (the difference between the upper and lower probabilities) when groups Y and Z are combined.

8. Simulation

In order to study the performance of the methods presented in this paper, a simulation study was conducted for the two- and three-groups scenarios. We have considered two main cases, in which the data are simulated from the following normal distributions:

Case A: $X \sim N(0, 2^2)$, $Y \sim N(1, 2^2)$, and $Z \sim N(3, 2^2)$. Case B: $X \sim N(0, 1^2)$, $Y \sim N(1, 1^2)$, and $Z \sim N(3, 1^2)$.

The data set from group Z is only used when the three-groups scenario is considered, and due to the large variance in Case A, the groups in that case overlap more than in Case B. The m_x , m_y and m_z future observations will be simulated from the same underlying normal distributions as the n_x , n_y and n_z simulated data observations. The simulated data

observations will be used to find the optimal thresholds (c in the two-groups scenario, and c_1 and c_2 in the three-groups scenario) according to these methods and for specific values of (α, β, γ) when applicable, where the optimal threshold values are set to the midpoint within the search intervals. Then the simulated future observations (future test results) are compared with the optimal thresholds to obtain the number of correctly classified observations per group. That is, for the two-groups scenario, the number of future observations out of m_x (m_y) with the simulated test results are less or equal to (greater than) c are obtained. Similarly for the three-groups scenario, the number of correctly classified future observations is the number of future observations out of m_x with the simulated test results less than or equal to c_1 , the number of future observations out of m_y with the simulated test results in $(c_1, c_2]$, and the number of future observations out of m_z with the simulated test results greater than c_2 . The number of correctly classified future observations in all simulations from groups X, Y and Z are denoted by $S_{j_x}^X$, $S_{j_y}^Y$ and $S_{j_z}^Z$, where $j_x \in \{0, 1, \ldots, m_x\}$, $j_y \in \{0, 1, \ldots, m_y\}$ and $j_z \in \{0, 1, \ldots, m_z\}$, respectively. Bar plots have been used to summarise these numbers from all methods as shown later in this section. We have studied the prediction performance of all methods in terms of the number of correctly classified future observations that are achieved using the desired criteria, that is when the number of correctly classified future observations from group X, Y, and Z exceed αm_x , βm_y and γm_z , respectively. Let us denote by "+" when the desired criteria is achieved and "-" otherwise. Throughout this section we assume that $n_x = n_y = n_z = n$ and $m_x = m_y = m_z = m$, thus $j_x = j_y = j_z = j$ and $j \in \{0, 1, \dots, m\}$.

For the two-group scenario, we run the simulation for n = 10 and m = 5, 30, while for the three-groups scenario we have considered n = 20 and m = 3, 10. For both scenarios we have chosen different values of α , β and γ , obviously these selected values have no impact on Youden's index and Liu's index in terms of selecting the optimal thresholds, however for the sake of the comparison we have involved α , β and γ when we compared the prediction performance of these two methods with the proposed methods, that is we have considered the same desired criteria, that is the number of future observations that are correctly classified from groups X, Y and Z are at least αm , βm and γm , respectively. The results in this section are based on 10,000 simulations per case per setting.

8.1. Two-groups scenario

The prediction performance results for Case A are given in Tables 4 and 5 for m = 5 and m = 30, respectively, and in Tables 6 and 7 for Case B. We have studied the performance for n = 10 and $\alpha = \beta = 0.2, 0.6, 0.8$ for the NPI-based methods (2-NPI and 2-NPI-Y) and the empirical estimates of Youden's index and Liu's index (2-EY and 2-EL).

Considering Table 4, for example, where "+ +" indicates that the desired criteria is achieved for both groups while "- -" indicates that the desired criteria is not achieved for both groups. For example, for 2-NPI-Y-U and $\alpha = \beta = 0.2$ the desired criteria has been achieved for both groups 9886 out of 10,000 simulations, that is at least 6 future observations ($\alpha m = 0.2 \times 30$ and $\beta m = 0.2 \times 30$) are correctly classified from the disease and non-disease groups. On the other hand, only 62 out of 10,000 simulations in which the desired criteria is achieved (6 or more out of 30 are correctly classified) from the non-disease group (group X) and the desired criteria is not achieved for the disease group (group Y).

From Tables 4-7, the 2-NPI (2-NPI-L and 2-NPI-U) method clearly outperforms all the other methods and for all the settings that have been considered. While for small values of α and β it appears that the 2-NPI and 2-NPI-Y perform similarly, the 2-NPI-Y method performs poorly for larger values of α and β . One possible explanation is that the 2-NPI-Y method is based on the sum of the probabilities of correct classification rather than the product, which seems not ideal if one tries to achieve higher proportions of those who are correctly classified. Yet for small values of α and β , as we have mentioned earlier the 2-NPI-Y method performs equally well as the 2-NPI method.

Interestingly, the Liu's index (2-EL) is the closest in terms of performance to the 2-NPI method over all settings, apart of course of the 2-NPI-Y method inconsistent performance that has been discussed above. It is not surprising that Liu's index performs better than Youden's index, as we have already discussed that summing up the probabilities of correct classification may not be ideal when considering the prediction performance. We also notice that Youden's index is actually performing better than the 2-NPI-Y method for larger values of α and β , this is interesting as one may think that the 2-NPI-Y method should have a similar performance as Youden's index or even better (considering its predictive nature), however, we should not forget that α and β have not been used to obtain the optimal threshold using Youden's index, while these α and β are involved in finding the optimal threshold using the 2-NPI-Y method.

In addition, all methods perform poorly with the increase of α and β as the criteria become harder to achieve. On the other hand, all methods also tend to perform poorly when m increases, except for smaller values of α and β . Finally, and not surprisingly, all methods perform much better in Case B than in Case A, as the groups in Case B are more separated than in Case A.

			C	$\alpha = \beta = 0.2$							
-	-	0	0	0	0	0	0				
-	+	301	293	301	294	890	424				
+	-	259	249	259	249	620	356				
+	+	9440	9458	9440	9457	8490	9220				
$\alpha = \beta = 0.6$											
-	-	793	795	664	747	540	741				
-	+	2869	2854	3372	3040	3844	3039				
+	-	2795	2787	2937	2882	3034	2911				
+	+	3543	3564	3027	3331	2582	3309				
			C	$\alpha = \beta = 0.8$							
-	-	3556	3575	1684	2447	2734	3455				
-	+	2885	2874	4686	3902	3749	2999				
+	-	2797	2779	3325	3149	2962	2815				
+	+	762	772	305	502	555	731				

 $X \ Y \ | \ 2\text{-NPI-L} \ 2\text{-NPI-U} \ 2\text{-EY} \ 2\text{-EL}$

Table 4: Case A: n = 10 and m = 5

$\alpha = \beta = 0.2$												
-	-	0	0	0	0	0	0					
-	+	52	50	54	52	752	185					
+	-	63	65	62	62	542	172					
+	+	9885	9885	9884	9886	8706	9643					
$\alpha = \beta = 0.6$												
-	-	867	890	586	797	488	751					
-	+	3943	3922	4753	4162	4905	4203					
+	-	3624	3595	3606	3617	3748	3696					
+	+	1566	1593	1055	1424	859	1350					
			0	$\alpha = \beta = 0.8$								
-	-	7043	7186	1461	2701	5003	6746					
-	+	1495	1447	3327	4450	2899	1753					
+	-	1460	1365	5212	2848	2097	1499					
+	+	2	2	0	1	1	2					

X Y 2-NPI-L 2-NPI-U 2-NPI-Y-L 2-NPI-Y-U 2-EY 2-EL

Table 5: Case A: n = 10 and m = 30

X	Y	2-NPI-L	2-NPI-U	2-NPI-Y-L	2-NPI-Y-U	2-EY	2-EL					
$\alpha = \beta = 0.2$												
-	-	0	0	0	0	0	0					
-	+	116	112	116	113	347	172					
+	-	95	94	95	94	182	134					
+	+	9789	9794	9789	9793	9471	9694					
$\alpha = \beta = 0.6$												
-	-	226	236	212	226	175	209					
-	+	2095	2084	2199	2119	2843	2208					
+	-	1992	1970	2108	2019	2089	2086					
+	+	5687	5710	5481	5636	4893	5497					
				$\alpha = \beta = 0.8$								
-	-	1956	1975	1360	1696	1669	1904					
-	+	3090	3076	3899	3418	3766	3162					
+	-	3052	3022	3374	3228	2931	3067					
+	+	1902	1927	1367	1658	1634	1867					

Table 6: Case B: n = 10 and m = 5

$\alpha = \beta = 0.2$												
-	-	0	0	0	0	0	0					
-	+	9	9	10	9	163	41					
+	-	11	11	11	10	88	26					
+	+	9980	9980	9979	9981	9749	9933					
$\alpha = \beta = 0.6$												
-	-	31	33	26	34	20	21					
-	+	2571	2518	2905	2629	3723	2860					
+	-	2377	2345	2546	2348	2570	2574					
+	+	5021	5104	4523	4989	3687	4545					
			С	$\alpha = \beta = 0.8$								
-	-	4513	4627	1580	2987	3470	4257					
-	+	2747	2726	3646	3747	3835	2998					
+	-	2673	2579	4748	3220	2640	2684					
+	+	67	68	26	46	55	61					

 $X Y \mid 2$ -NPI-L 2-NPI-U 2-NPI-Y-L 2-NPI-Y-U 2-EY 2-EL

Table 7: Case B: n = 10 and m = 30

8.2. Three-groups scenario

In this section, we consider the three-groups scenario, where we study the predictive performance of all methods for the two cases mentioned above. The prediction performance results for Case A are given in Tables 8 and 9 for m = 10 and m = 30, respectively, and in Tables 10 and 11 for Case B. We have studied the performance for n = 20, $\alpha = \beta = \gamma \in \{0.2, 0.6, 0.8\}$, and when $\alpha = \beta = 0.5$, $\gamma = 0.7$ for the NPI-based methods (3-NPI, 3-NPI-Y and NPI-PW) and the empirical estimates of Youden's index (3-EY).

From these tables, we observed similar behaviour as in the two-groups scenario. Again the 3-NPI-Y method performs equally well as the 3-NPI method, however, the performance of the 3-NPI-Y method is worse when α , β and γ are larger. Interestingly, the NPI-PW method has better performance than the empirical Youden's index (3-EY) when $\alpha = \beta = \gamma$. Again Youden's index performs better than the 3-NPI-Y method for larger values of α , β and γ due to the same reasoning as discussed for the two-groups scenario in Section 8.1. We also notice that for larger values of α , β and γ , the 3-NPI-Y tends to squeeze the middle group Y substantially, while Youden's index tends to squeeze groups Y in some occasions or even squeeze all groups in one group (group Z in this case). While the NPI-PW method squeezes group Y on some occasions and squeezes all the groups in one group Z in others, it still provides large numbers of correctly classified future observations. Figures 3-6 show the distributions of the numbers of future observations out of m in all 10,000 simulations, that are correctly classified for each group, the squeezing behaviour of the 3-NPI-Y, NPI-PW and 3EY methods is clearly shown.

	$\alpha = \beta = \gamma = 0.2$											
-	-	-	0	0	0	0	0	0	0			
-	-	+	0	1	0	1	6	7	43			
-	+	-	1	0	1	0	0	0	2			
-	+	+	251	183	257	187	51	51	645			
+	-	-	5	6	5	6	3	3	9			
+	-	+	280	382	281	380	2421	2419	3124			
+	+	-	160	128	158	126	6	6	58			
+	+	+	9303	9300	9298	9300	7513	7514	6119			
$\alpha = \beta = \gamma = 0.6$												
-	-	-	1323	1245	217	387	579	575	530			
-	-	+	2360	2440	1608	889	2981	2985	3061			
-	+	-	969	772	206	245	144	138	505			
-	+	+	1154	1007	598	345	329	318	889			
+	-	-	1631	1754	984	492	1267	1241	1103			
+	-	+	1574	1860	6251	7374	4380	4425	3569			
+	+	-	556	485	67	136	107	99	171			
+	+	+	433	437	69	132	213	219	172			
					$\alpha = \beta =$	$\gamma = 0.8$						
-	-	-	6375	6225	1380	12	4596	4602	3968			
-	-	+	1915	2021	3780	349	3104	3113	3252			
-	+	-	411	307	150	2	87	78	318			
-	+	+	71	62	33	1	23	23	65			
+	-	-	1094	1214	3054	252	1496	1479	1290			
+	-	+	124	157	1603	9384	692	703	1105			
+	+	-	10	13	0	0	2	2	2			
+	+	+	0	1	0	0	0	0	0			
					$\alpha = \beta = 0$	$0.5 \ \gamma = 0.7$			·			
-	-	-	775	741	356	417	313	321	442			
-	-	+	1628	1758	1320	978	1594	1584	1512			
-	+	-	995	749	535	431	99	96	827			
-	+	+	1228	1075	728	588	209	203	897			
+	-	-	1675	1738	1431	970	1665	1663	1815			
+	-	+	1689	2114	4482	5598	5563	5573	3422			
+	+	-	1229	1040	845	584	224	218	689			
+	+	+	781	785	303	434	333	342	396			

X Y Z \mid 3-NPI-L 3-NPI-U 3-NPI-Y-L 3-NPI-Y-U NPI-PW-L NPI-PW-U \mid 3-EY

Table 8: Case A m = 10 and n = 20

			$\alpha = \beta = \gamma = 0.2$								
-	-	-	0	0	0	0	0	0	0		
-	-	+	0	0	0	0	0	0	14		
-	+	-	0	0	0	0	0	0	1		
-	+	+	73	44	75	44	4	4	583		
+	-	-	0	0	0	0	0	0	2		
+	-	+	64	120	64	121	2359	2358	3210		
+	+	-	35	27	35	27	1	1	26		
+	+	+	9828	9809	9826	9808	7636	7637	6164		
$\alpha = \beta = \gamma = 0.6$											
-	-	-	2284	2160	149	447	644	633	664		
-	-	+	3026	3158	1311	770	3790	3825	3856		
-	+	-	1078	815	142	148	68	67	487		
-	+	+	619	481	524	118	87	85	506		
+	-	-	1809	1985	691	386	1197	1166	1206		
+	-	+	951	1191	7168	8091	4191	4201	3232		
+	+	-	193	173	14	32	14	14	41		
+	+	+	40	37	1	8	9	9	8		
	$\alpha = \beta = \gamma = 0.8$										
-	-	-	8618	8551	1386	8	6890	6959	5507		
-	-	+	935	992	4675	249	2154	2135	2808		
-	+	-	65	39	75	1	3	2	104		
-	+	+	2	0	2	0	0	0	2		
+	-	-	378	414	3473	170	811	774	927		
+	-	+	2	4	389	9572	142	130	652		
+	+	-	0	0	0	0	0	0	0		
+	+	+	0	0	0	0	0	0	0		
					$\alpha = \beta = 0$	$0.5 \ \gamma = 0.7$					
-	-	-	1136	1124	216	516	253	277	454		
-	-	+	2115	2299	1118	989	1665	1646	1833		
-	+	-	1306	909	440	423	63	59	1040		
-	+	+	822	684	520	323	53	46	619		
+	-	-	2235	2355	1338	1038	1853	1830	2344		
+	-	+	1370	1748	5644	6308	6002	6031	3207		
+	+	-	811	683	685	313	69	67	436		
		+	205	198	39	90	42	44	67		

X Y Z \mid 3-NPI-L 3-NPI-U 3-NPI-Y-L 3-NPI-Y-U NPI-PW-L NPI-PW-U \mid 3-EY

Table 9: Case A m = 30 and n = 20

	$\alpha = \beta = \gamma = 0.2$											
-	-	-	0	0	0	0	0	0	0			
-	-	+	0	0	0	0	0	0	0			
-	+	-	0	0	0	0	0	0	0			
-	+	+	26	17	26	17	13	12	135			
+	-	-	0	0	0	0	0	0	0			
+	-	+	26	46	28	46	208	208	539			
+	+	-	5	5	5	4	0	0	0			
+	+	+	9943	9932	9941	9933	9779	9780	9326			
$\alpha = \beta = \gamma = 0.6$												
-	-	-	54	55	37	47	25	23	18			
-	-	+	651	657	629	684	913	925	1072			
-	+	-	239	192	169	171	47	41	73			
-	+	+	2006	1720	1803	1796	1195	1162	2024			
+	-	-	287	297	210	282	125	118	130			
+	-	+	2510	2827	3663	3035	4569	4576	4173			
+	+	-	551	534	373	453	120	118	151			
+	+	+	3702	3718	3116	3532	3006	3037	2359			
	$\alpha = \beta = \gamma = 0.8$											
-	-	-	1799	1777	82	271	1097	1102	961			
-	-	+	3425	3405	1107	878	4165	4209	4271			
-	+	-	758	636	32	107	275	276	425			
-	+	+	980	863	100	174	605	590	910			
+	-	-	1185	1273	783	338	925	920	816			
+	-	+	1472	1673	7884	8176	2701	2668	2450			
+	+	-	204	198	6	26	82	81	58			
+	+	+	177	175	6	30	150	154	109			
					$\alpha = \beta = 0$	$0.5 \ \gamma = 0.7$						
-	-	-	13	11	9	11	5	6	9			
-	-	+	262	253	269	265	309	292	297			
-	+	-	131	107	114	105	23	22	127			
-	+	+	1377	1158	1369	1181	639	642	1453			
+	-	-	193	189	194	188	125	134	223			
+	-	+	1857	2165	2213	2239	4468	4381	3260			
+	+	-	842	773	759	749	216	225	576			
+	+	+	5325	5344	5073	5262	4215	4298	4055			

X Y Z \mid 3-NPI-L 3-NPI-U 3-NPI-Y-L 3-NPI-Y-U NPI-PW-L NPI-PW-U \mid 3-EY

Table 10: Case B m = 10 and n = 20

			$\alpha = \beta = \gamma = 0.2$								
-	-	-	0	0	0	0	0	0	0		
-	-	+	0	0	0	0	0	0	0		
-	+	-	0	0	0	0	0	0	0		
-	+	+	0	0	1	0	0	0	75		
+	-	-	0	0	0	0	0	0	0		
+	-	+	0	2	0	2	55	54	390		
+	+	-	0	0	0	0	0	0	0		
+	+	+	10000	9998	9999	9998	9945	9946	9535		
$\alpha = \beta = \gamma = 0.6$											
-	-	-	21	20	16	15	5	5	5		
-	-	+	595	591	486	632	943	948	1202		
-	+	-	211	158	119	125	13	12	57		
-	+	+	2445	2008	2025	2047	1128	1092	2324		
+	-	-	266	281	166	249	46	43	84		
+	-	+	2767	3282	4678	3597	5724	5740	4816		
+	+	-	517	483	254	387	54	56	79		
+	+	+	3178	3177	2256	2948	2087	2104	1433		
					$\alpha = \beta =$	$\gamma = 0.8$			•		
-	-	-	3533	3496	32	238	1825	1851	1558		
-	-	+	4092	4090	984	517	5600	5657	5493		
-	+	-	497	386	27	37	135	123	321		
-	+	+	290	231	66	66	124	122	301		
+	-	-	957	1074	629	163	659	639	640		
+	-	+	616	706	8262	8979	1652	1604	1684		
+	+	-	13	15	0	0	5	4	3		
+	+	+	2	2	0	0	0	0	0		
					$\alpha = \beta = 0$	$0.5 \ \gamma = 0.7$					
-	-	-	2	2	1	2	0	0	0		
-	-	+	140	148	150	158	185	174	218		
-	+	-	89	62	87	59	5	3	156		
-	+	+	1386	1088	1384	1154	409	418	1590		
+	-	-	131	137	113	132	54	57	215		
+	-	+	1745	2149	2345	2208	5569	5438	3685		
+	+	-	817	731	702	704	127	134	475		
+	+	+	5690	5683	5218	5583	3651	3776	3661		

 $X \ Y \ Z \ \big|$ 3-NPI-L 3-NPI-U 3-NPI-Y-L 3-NPI-Y-U NPI-PW-L NPI-PW-U $\big|$ 3-EY

Table 11: Case B m = 30 and n = 20

From Figures 3-6, we can see that for larger values of $\alpha = \beta = \gamma$, all methods struggle to meet the required criteria, especially in Case A where the groups have more overlap. We also notice that the number of correctly classified future observations from group Z is much larger than from groups X and Y, as group Z is more separated in comparison to the other two groups. In addition, selecting the values of α , β and γ will have impact on the number of correctly classified future observations, for example, the number of correctly classified future observations when $\alpha = \beta = \gamma = 0.6$ is lower than when $\alpha = \beta = 0.5$ and $\gamma = 0.7$ for both cases. From Tables 8 to 11, we can see that when $\alpha = \beta = \gamma = 0.6$ and $\alpha = \beta = \gamma = 0.8$ all the methods perform better for small value of m than for larger m, while for $\alpha = \beta = \gamma = 0.2$ all the methods perform better for large m than for small m. Obviously, all methods perform much better in Case B than in Case A, as the groups in Case B are more separated than in Case A.

Figure 3: Simulation 10,000 times, when $\alpha=\beta=\gamma=0.6$ and m=10 (case A) $\frac{28}{28}$

Figure 4: Simulation 10,000 times, when $\alpha=\beta=\gamma=0.8$ and m=10 (case A) 29

Figure 5: Simulation 10,000 times, when $\alpha=\beta=\gamma=0.6$ and m=10 (case B) $\frac{30}{30}$

Figure 6: Simulation 10,000 times, when $\alpha=\beta=\gamma=0.8$ and m=10 (case B) 31

9. Concluding remarks

This paper considered the choice of thresholds for diagnostic tests, with two or three groups, explicitly as a predictive problem instead of the classical approach based on estimation. We considered m individuals in each group for who the thresholds would be applied. and criteria in terms of the proportions of successful diagnoses. Nonparametric predictive inference was applied to derive the optimal thresholds, which were shown to depend on the target success proportions and also on the value of m. Our method provides a general theoretic investigation into setting diagnostic thresholds from a predictive perspective, for m_x future healthy people and m_y future patients, where we mostly restrict analysis to $m_x = m_y = m$. Of course, in practice one would not know a specific value of m but the main idea is to investigate how the optimal threshold can vary for different values of m. If, however, there is a scenario with specific numbers m_x and m_y of interest, then the method can be straightforwardly applied. The methods were illustrated by an example using data from the literature, and the performance was evaluated through simulation studies. These revealed that, in case of three group scenarios for which the classical Youden's index approach is used, one of the groups may have very poor predictive performance, this is avoided by the methods presented in this paper.

NPI is a statistical method with strong frequentist properties, in line with the notion of exact calibration as introduced by Lawless and Fredette (2005). Contrary to most classical frequentist statistics methods, NPI does not consider data as resulting from an assumed sampling method related to an assumed population. Instead, by focusing on future observations, the variation is in the possible orderings of the data observations and future observations, so the randomness is explicitly in the prediction. In absence of knowledge about the underling population distribution, this is an alternative approach. If one had such additional knowledge, then one could attempt to combine NPI with aspects of sample variation; this is an interesting topic for future research.

This line of work provides many questions and opportunities for future research. For example, one may wish to consider how one can set meaningful target proportions for the predictive inferences, or to develop similar approaches for different kinds of data, e.g. ordinal data. Another example would be instead of using the proposed method for selecting the optimal thresholds based on the sensitivity and specificity of the test, it may be attractive to use such a method to select the optimal thresholds based on positive and negative predictive values (PPV, NPV). To this end, one needs to consider carefully the events of interest for the NPI approach to PPV and NPV. If one measures multiple markers per patient, their optimal combination together with optimal selection of thresholds is of interest, while also taking dependence of such multivariate data into account provides interesting challenges, A further challenge is to develop such methods for data containing right-censored observations. Some of these topics require further development of NPI, including methods for multivariate data and for multiple future observations based on right-censored data. Generally, considering such problems from a predictive perspective, in particular also how the number of future individuals considered might influence the optimal thresholds, provides interesting new insights which may also have substantial practical relevance.

Acknowledgement

We are grateful to Dr. Christos Nakas for providing the data set used in the example. The authors would like to thank an anonymous reviewer for supporting this work and for valuable comments that led to improved presentation.

References

- Alabdulhadi, M., 2018. Nonparametric predictive inference for diagnostic test thresholds. Ph.D. thesis, Durham University, Durham, UK.
- Alqifari, H., 2017. Nonparametric predictive inference for future order statistics. Ph.D. thesis, Durham University, Durham, UK.
- Augustin, T., Coolen, F. P., 2004. Nonparametric predictive inference and interval probability. Journal of Statistical Planning and Inference 124 (2), 251–272.
- Chang, L., Lee, P., Yiannoutsos, C. T., Ernst, T., Marra, C., Richards, T., Kolson, D., Schifitto, G., Jarvik, J., Miller, E., et al., 2004. A multicenter in vivo proton-mrs study of hiv-associated dementia and its relationship to age. Neuroimage 23 (4), 1336–1347.
- Coolen, F. P., 2006. On nonparametric predictive inference and objective bayesianism. Journal of Logic, Language and Information 15 (1-2), 21–47.
- Coolen, F. P., 2011a. Nonparametric predictive inference. In: International encyclopedia of statistical science. Springer, pp. 968–970.
- Coolen, F. P., Coolen-Maturi, T., Alqifari, H. N., 2017. Nonparametric predictive inference for future order statistics. Communications in Statistics: Theory and Methods, to appear.
- Coolen, F. P., Maturi, T. A., 2010. Nonparametric predictive inference for order statistics of future observations. In: Combining Soft Computing and Statistical Methods in Data Analysis. Springer, pp. 97–104.
- Coolen, F. P. A., 2011b. Nonparametric predictive inference. In: Lovric, M. (Ed.), International Encyclopedia of Statistical Science. Springer, pp. 968–970.
- Coolen-Maturi, T., 2017a. Predictive inference for best linear combination of biomarkers subject to limits of detection. Statistics in Medicine 36 (18), 2844–2874.
- Coolen-Maturi, T., 2017b. Three-group roc analysis predictive analysis for ordinal outcomes. Communications in Statistics: Theory and Methods 46 (19), 9476–9493.
- Coolen-Maturi, T., Coolen-Schrijner, P., Coolen, F. P., 2012a. Nonparametric predictive inference for binary diagnostic tests. Journal of Statistical Theory and Practice 6 (4), 665–680.
- Coolen-Maturi, T., Coolen-Schrijner, P., Coolen, F. P., 2012b. Nonparametric predictive inference for diagnostic accuracy. Journal of Statistical Planning and Inference 142 (5), 1141–1150.
- Coolen-Maturi, T., Elkhafifi, F. F., Coolen, F. P., 2014. Three-group roc analysis: A nonparametric predictive approach. Computational Statistics & Data Analysis 78, 69–81.
- Elkhafifi, F. F., Coolen, F. P., 2012. Nonparametric predictive inference for accuracy of ordinal diagnostic tests. Journal of Statistical Theory and Practice 6 (4), 681–697.
- Finetti, B. d., 1974. Theory of probability. a critical introductory treatment.
- Fluss, R., Faraggi, D., Reiser, B., 2005. Estimation of the youden index and its associated cutoff point. Biometrical Journal 47 (4), 458–472.
- Geisser, S., 1993. Predictive inference. Vol. 55. CRC Press.
- Hand, D. J., 2009. Measuring classifier performance: a coherent alternative to the area under the roc curve. Machine learning 77 (1), 103–123.
- Hill, B. M., 1968. Posterior distribution of percentiles: Bayes' theorem for sampling from a population. Journal of the American Statistical Association 63 (322), 677–691.
- Hill, B. M., 1988. De finettis theorem, induction, and a(n) or bayesian nonparametric predictive inference (with discussion). Bayesian statistics 3, 211–241.
- Jund, J., Rabilloud, M., Wallon, M., Ecochard, R., 2005. Methods to estimate the optimal threshold for normally or log-normally distributed biological tests. Medical decision making 25 (4), 406–415.

- Lawless, J., Fredette, M., 2005. Frequentist prediction intervals and predictive distributions. Biometrika 92 (3), 529–542.
- Liu, X., 2012. Classification accuracy and cut point selection. Statistics in medicine 31 (23), 2676–2686.
- Molanes-López, E. M., Letón, E., 2011. Inference of the youden index and associated threshold using empirical likelihood for quantiles. Statistics in medicine 30 (19), 2467–2480.
- Mossman, D., 1999. Three-way rocs. Medical Decision Making 19 (1), 78-89.
- Nakas, C. T., 2014. Developments in roc surface analysis and assessment of diagnostic markers in three-class classification problems. REVSTAT–Statistical Journal 12 (1), 43–65.
- Nakas, C. T., Alonzo, T. A., Yiannoutsos, C. T., 2010. Accuracy and cut-off point selection in three-class classification problems using a generalization of the youden index. Statistics in medicine 29 (28), 2946– 2955.
- Nakas, C. T., Yiannoutsos, C. T., 2004. Ordered multiple-class roc analysis with continuous measurements. Statistics in medicine 23 (22), 3437–3449.
- Pepe, M. S., 2003. The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press, Oxford.
- Perkins, N. J., Schisterman, E. F., 2005. The youden index and the optimal cut-point corrected for measurement error. Biometrical Journal 47 (4), 428–441.
- Schisterman, E. F., Perkins, N., 2007. Confidence intervals for the youden index and corresponding optimal cut-point. Communications in Statistics: Simulation and Computation 36 (3), 549–563.
- Weichselberger, K., 2000. The theory of interval-probability as a unifying concept for uncertainty. International Journal of Approximate Reasoning 24 (2), 149–170.
- Youden, W. J., 1950. Index for rating diagnostic tests. Cancer 3 (1), 32–35.