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ABSTRACT

Context. Magnetic helicity is approximately conserved in resistive magnetohydrodynamic models. It quantifies the entanglement of
the magnetic field within the plasma. The transport and removal of helicity is crucial in both dynamo development in the solar interior
and active region evolution in the solar corona. This transport typically leads to highly inhomogeneous distributions of entanglement.
Aims. There exists no consistent systematic means of decomposing helicity over varying spatial scales and in localised regions. Spec-
tral helicity decompositions can be used in periodic domains and is fruitful for the analysis of homogeneous phenomena. This paper
aims to develop methods for analysing the evolution of magnetic field topology in non-homogeneous systems.
Methods. The method of multi-resolution wavelet decomposition is applied to the magnetic field. It is demonstrated how this de-
composition can further be applied to various quantities associated with magnetic helicity, including the field line helicity. We use a
geometrical definition of helicity, which allows these quantities to be calculated for fields with arbitrary boundary conditions.
Results. It is shown that the multi-resolution decomposition of helicity has the crucial property of local additivity. We demonstrate a
general linear energy-topology conservation law, which significantly generalises the two-point correlation decomposition used in the
analysis of homogeneous turbulence and periodic fields. The localisation property of the wavelet representation is shown to charac-
terise inhomogeneous distributions, which a Fourier representation cannot. Using an analytic representation of a resistive braided field
relaxation, we demonstrate a clear correlation between the variations in energy at various length scales and the variations in helicity at
the same spatial scales. Its application to helicity flows in a surface flux transport model show how various contributions to the global
helicity input from active region field evolution and polar field development are naturally separated by this representation.
Conclusions. The multi-resolution wavelet decomposition can be used to analyse the evolution of helicity in magnetic fields in a
manner which is consistently additive. This method has the advantage over more established spectral methods in that it clearly char-
acterises the inhomogeneous nature of helicity flows where spectral methods cannot. Further, its applicability in aperiodic models
significantly increases the range of potential applications.
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1. Introduction

The concept of magnetic helicity for a divergence free field B
is most commonly introduced as the following scalar integral
quantity

H =

∫
V

A · B dV , (1)

where A is the vector potential of B (B = ∇ × A). This measure
was originally introduced by Woltjer (1958), and given a topo-
logical definition by Moffatt (1969) as the linking of magnetic
field lines (see also Arnol’d & Khesin 1998 when field lines do
not form closed curves). If we decompose a magnetic field into
distinct magnetic regions (by distinct, we mean that fieldlines do
not cross the boundaries of the regions within the volume V),
then helicity can be decomposed into the sum of self helicities
of each region, and mutual helicities between regions (Berger
1999). For example, if the regions are flux ropes, then the self
helicity can be described as the twist and writhe of individual
ropes, while the mutual helicity arises from the linking or braid-
ing of distinct ropes. This decomposition has also been applied to
the studies of coronal loops: see Aschwanden (2019), where the
authors investigate how the stability of coronal loops is associ-
ated with the braided linking number. Other shapes are possible:
for example an arcade in the solar corona can be sheared (self
helicity), and it can also envelop a flux rope (mutual helicity).

Magnetic helicity is a well conserved quantity in low resis-
tivity magnetohydrodynamics (Taylor 1974; Moffatt 2018). The
conservation is maintained in less ideal conditions, albeit to
a weaker degree (Berger 1984), making it an ideal approxi-
mate invariant for investigation into complex magnetic field sys-
tems (Ji et al. 1995; Brandenburg 2009; Contopoulos et al. 2009;
Russell et al. 2015; Zuccarello et al. 2018).

Magnetic helicity plays an important role in studies
of magnetohydrodynamic (MHD) turbulence in general, and
dynamo theories of magnetic energy generation in particu-
lar (e.g. Vishniac & Cho 2001; Blackman & Brandenburg 2003;
Sur et al. 2007; Brandenburg et al. 2016). In a two scale kine-
matic dynamo, the large scale energy can increase exponentially.
This poses a problem for magnetic helicity conservation. If the
large scale magnetic helicity increases exponentially, then the
small scale field must have an equal and opposite helicity which
also blows up. Dissipation of the small scale helicity may not be
physically feasible.

A solution to this problem lies in making the dynamo inho-
mogeneous – the dynamo operates in one region of space (e.g.
the base of the convection zone) and excess magnetic helic-
ity is carried away (Brandenburg 2009; Vishniac & Shapovalov
2013). However, to model this process properly, we need to
be able to specify how helicity is spatially distributed. In other
words we need to be able to locate where helicity resides more
precisely than simply using complete flux ropes.
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Another area where helicity localisation could be useful is
in the study of solar activity. Many studies show how mag-
netic helicity can flow from the interior into active regions (e.g.
Berger & Ruzmaikin 2000; Kusano et al. 2002; Pevtsov 2003;
Park et al. 2008; Dalmasse et al. 2014; Prior & MacTaggart
2019). A knowledge of how this helicity is distributed within the
active region may aid the understanding and prediction of flares
and coronal mass ejections. Scale dependence of magnetic helic-
ity can also help in understanding the evolution of turbulence in
the solar wind (Brandenburg et al. 2011).

Localising helicity is difficult for a number of reasons. First,
while one can attempt to define helicity density as the quantity

Hden = A · B, (2)

this is in no sense gauge invariant as gradient fields can be added
to A without changing the magnetic field. Second, it does not
represent spatially localised information, in a particular gauge
such as Coulomb gauge, A is an integral over the magnetic field,
and is thus non-local. This has mathematical grounding – helic-
ity is associated with the Gauss linking number, for which we
must take a double integral across all space. If we only have
information about a small patch of field, there is no way of know-
ing how a field line goes on to twist and writhe around the rest
of the field.

What about integrals of helicity as in Eq. (1)? For the
expression (1) to be physically meaningful, V must either be
unbounded space, or if V is finite with boundary S then S must
be a either a magnetic surface (B · n̂|S = 0), or the field must
have periodic boundary conditions on S . If, for example, there
is net flux perpendicular to two periodic directions this can lead
to unphysical effects involving magnetic helicity (Berger 1997;
Watson & Craig 2001; Brandenburg & Subramanian 2004).

In Sect. 2 we formally introduce the gauge problem associ-
ated with magnetic helicity, and briefly describe relative helicity,
which gives a gauge-invariant measure when the volume is not
bounded by a magnetic surface. In general this measure is not
additive in the sense that the helicity of all space may not equal
the sum of helicities of subvolumes. We then discuss Fourier
decompositions of helicity, which help to provide information
on how helicity behaves on various scales. Under certain cir-
cumstances (isotropic turbulence) this approach can overcome
both the gauge and localisation problems; but not in the inho-
mogeneous aperiodic cases we would like to generalise to. This
includes a discussion on the transformed two-point correlation
tensor which decomposes into helicity and energy. Finally we
discuss field line helicities which measure how one chosen field
line interlinks with all other lines. This quantity can be used
to accurately quantify reconnection activity in magnetic fields
(Prior & Yeates 2018), however, the decomposition of helicity
into contributions from individual fieldlines is still not localised.

In Sect. 3 we present helicity densities expressed as two-
point correlation functions which are the building blocks of link-
ing and winding. This final measure is gauge invariant, even
for fields with non-trivial boundary distributions, as it does not
depend on the vector potential for its definition. We select this
measure as our base definition and in subsequent sections show
it can be used to overcome the spatial localisation problem.

Section 4 provides a background to wavelet transforms and
multi-resolution analysis as a solution to the localisation prob-
lem, and how these can be applied to helicity integrals. In Sect. 5
we give a formal introduction of the full 3D wavelet transform
and its application to the helicity integral. Section 6 provides
examples of how the wavelet multi-resolution helicity formula-
tion can be applied in practice. This includes a pair of twisted

flux ropes which present a trivial (null) spectral decomposition;
the multi-resolution helicity decomposition is shown to resolve
the spatial separation of the system’s entanglement. A second
example of a pair of interlinked twisted flux ropes demonstrates
how the decomposition can separate out the contributions from
large scale linking and smaller scale twisting, as well as correctly
assess the localisation of the helicity in this system. In Sect. 7 we
consider the application of the multi-resolution wavelet decom-
position to our geometric two-point correlation definition of
helicity. This is used to derive linear helicity-energy decompo-
sitions for both the helicity and the field line helicity. Section 8
considers an example of a reconnecting magnetic braid, based on
the numerical experiments in Wilmot-Smith et al. (2009, 2011)
and Russell et al. (2015). The field line helicity multi-resolution
analysis is utilised here. In particular we show that the field’s
twisted structure and its field line entanglement balance their
helicity fluxes at differing spatial scales. Further we show that
the growth and then decay in magnetic energy of this system
highly correlated with the field line helicity relaxation at that the
dominant spatial scales. In Sect. 9 we apply the multi-resolution
decomposition to a flux transport model and finally conclude in
Sect. 10.

2. Existing helicity decompositions

2.1. The gauge problem

Suppose the volume of interest V is neither bounded by a mag-
netic surface or of infinite extent. This introduces a gauge depen-
dence to the helicity integral: given some function Φ we can let
AG = A+∇Φ, which induces a change in helicity corresponding
to

HG = H +

∫
S

ΦB · dS. (3)

To overcome this problem, Berger & Field (1984) introduced a
gauge invariant measure of helicity known as “relative helic-
ity”, which measures the magnetic helicity of the magnetic field
B relative to some secondary field B0 by taking the difference
between their helicities across all space. However, this quan-
tity does not have the property of additivity; if V is decomposed
into subvolumes, the relative helicity from each subvolume may
not equal the total in V . Further, the reference field may not be
smooth across boundaries of sub-domains.

2.2. Fourier spectra

The splitting of magnetic fields into different scales is already
core to the study of many magnetohydrodynamical systems:
Verma (2004) provides an in-depth review of turbulent magneto-
hydrodynamic fields, which have energy interchanges occurring
across a spectrum of spatial scales. Following Blackman (2004,
2015), and Subramanian & Brandenburg (2005), we can write
the magnetic energy spectrum as

Ek =

∫
|B̃|2k2 dΩk, (4)

where k = ||k||, and a tilde represents the Fourier transform.
Ωk then represents a spherical shell in wave space, given by all
wavenumbers k− ≤ k ≤ k+, for which k± = ||k|| ± 0.5. In Fourier
space, we have the direct relation Ã = −ik × B̃/k2. Thus we can
write

Hk =

∫
i(k × B̃∗(k)) · B̃(k) dΩk, (5)
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and as such we have a gauge invariant measure of magnetic
helicity at scale L = 2π/k which has the property of additivity
(see for example Moffatt 1978; Blackman & Brandenburg 2003;
Démoulin 2007; Brandenburg et al. 2016). The gauge invariance
follows from the fact that the surface integral of (3) vanishes for
the periodic boundary conditions required for a Fourier repre-
sentation of B.

It is important to note that the Fourier decomposition can
produce spurious results: if we imagine an infinite system of
alternately twisted flux tubes, the Fourier transform of mag-
netic helicity would be zero at all scales (Asgari-Targhi & Berger
2009). To see this, suppose that Bz is constant so only has power
at k = 0, but Bx and By vary in x and y to make the oppositely
twisted tubes. Then at any k > 0, both k and B̃(k) will be in the
x−y plane. Thus the triple product must involve Bz; but Bz will
be zero for k > 0.

Also the Fourier spectrum does not give information on spa-
tial locality. The windowed Fourier transform can help. An enve-
lope function with compact support is convolved on top of the
infinite sinusoidal functions. Taking the Fourier transform using
such a reduced analytic form gives an idea of the variations cor-
responding to scales at a given locality, but has two downsides
(aside from the requirement of periodicity): firstly, the transfor-
mation does not provide an orthogonal basis, which is required
to maintain additivity. Secondly, the window size is fixed, mean-
ing we cannot separate intense fluctuations which are on smaller
scales than the window size from weak contributions on the same
scale as the window size.

2.3. Two-point correlation functions

An important consequence of a Fourier decomposition of a mag-
netic field is that the helicity Hk can be related to the magnetic
energy Ek via the transform of the two-point correlation tensor
Mi j:

Mi j(X, x) = Bi(X − x)B j(X + x). (6)

In a periodic domain one can transform this function over the
displacement x to obtain a skew-symmetric tensor function
M̃i j(X, k) of both position and scale, and further, for isotropic
turbulence, this can be decomposed (in three dimensions) as

M̃i j =
[
(δi j − ku

i ku
j )2Ek − iku

l εi jlkHk

]
/8k2π, (7)

where ku
i is the ith component of the unit vector of k and εi jl the

alternating tensor (Roberts & Soward 1975; Brandenburg et al.
2016). So the energy is the trace of the tensor M̃i j and the helicity
represented by the off-diagonal components. This is a potentially
powerful relation between the magnetic helicity and energy on a
given Fourier shell at each point of space.

In this article, we intend to provide a similar decomposi-
tion of magnetic helicity which preserves additivity and scale
dependence, whilst also providing information about the spatial
locality of terms contributing to the power at each scale. Key
to our study is the lack of any assumptions about the boundary
conditions of the magnetic fields or any isotropic assumptions.
One result is a variant of (7) which can retain information on the
spatial distribution of the magnetic energy and helicity, even in
highly inhomogeneous systems.

2.4. Fieldline helicity

Field line helicity is another tool that has become more popular
in recent years. For a given field line γ we have (Berger 1988;

Yeates & Hornig 2013; Prior & Yeates 2014; Yeates & Page
2018; Moraitis et al. 2019)

A(γ) =

∫
γ

A · T ds, (8)

where T = B/||B|| is the unit tangent vector along the fieldline,
and s is the arclength parameter of its curve. The fieldline helic-
ity measures the average winding of all field lines around the
field line under analysis (Prior & Yeates 2014). Field line helic-
ity can be seen as the limit of the methodology of Pevtsov (2003),
where each magnetic surface encloses exactly one field line. If
we imagine tracing the field lines between two planes, the field
line helicity associated with a field line starting at each point
(xl, yl) on some initial plane (typically taken as the lower bound-
ary of a system) gives a two-dimensional density.

The fieldline helicity is linear in A so has the property of
additivity. It is not, however, gauge invariant, nor does it have the
property locality as the expression for A involves an integration
over at least one spatial dimension (see Prior & Yeates 2014).
There is a relative field line helicity version of this quantity,
whose definition comes attached with various technical com-
plexities (Yeates & Page 2018; Moraitis et al. 2019), but is an
invariant for each individual field line. Further, there is some
remaining gauge dependence.

2.5. The need for a different baseline definition of helicity

These decompositions of helicity so far all have drawbacks; none
combine the properties of gauge independence, spatial locality,
and additivity we seek. To overcome this we begin by adopting
a purely geometrical definition of helicity. We first show this has
no gauge dependence, then in the following sections we show
how it can be used to overcome the additivity and locality prob-
lems.

3. Magnetic winding and gauge independence

3.1. Helicity is winding

Given any integral representation for A, the helicity integral
becomes a double integral involving B evaluated at two differ-
ent points. For example, in Coulomb gauge with A expressed
via the Biot-Savart law,

H = −
1

4π

∫
V

∫
V ′

B · B′ × r
r3 d3x d3x′. (9)

The integrand can be regarded as a two-point correlation func-
tion for the magnetic field (Subramanian & Brandenburg 2005).

A particular topologically meaningful choice for A is the
winding gauge. Prior & Yeates (2014) considered the winding
gauge Aw,

Aw(x, y, z) =
1

2π

∫
S z

B(x′, y′, z) × r
r2 dx′ dy′

r = (x − x′, y − y′, 0), (10)

where S z is a plane of constant z value. With this choice the
helicity can be written as

H =
1

2π

∫ z1

z0

∫
S z

∫
S ′z

B · B(x′, y′, z) × r
r3 dx′ dy′ dx dy dz, (11)

for a two-point correlation within the plane S z of constant z.
Here the set of planes S z, z ∈ [z0, z1] cover the whole domain V .
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(a)

Fig. 1. Winding number interpretation of helicity. The winding is
defined by the mutual angle Θ between two curves γ and γ̃. The yellow
arrows depict a fixed direction and the black arrows the joining vector
of the two curves in a given plane S z used to define Θ.

Prior & Yeates (2014) showed that (11) is just the flux-weighted
average winding of all pairs of field line of B with each other,
that is

H(B) =
1

2π

∫ z1

z0

∫
S z

∫
S ′z

Bz(x)Bz(x′)
d
dz

Θ(x, x′) d2x d2x′ dz

(12)

In any planar slices S z, S ′z, Θ(x, x′) defines the “angle” between
the two fieldlines centred at x and x′,

Θ(x, x′) = arctan
(
y − y′

x − x′

)
, (13)

We demonstrate this pictorially in Fig. 1 for two curves γ and
γ′. Similarly a visualisation of the topological nature of the inte-
grand of (11), a two-point correlation function which measures
the net winding, is shown in Fig. 2.

We remark that this requires that the field can be composed
of a set of planar surfaces V = {S z|z ∈ [z0, z1]} and that, if
the volume is finite in x or y, then the field B be tangent on
the side surfaces. Berger & Hornig (2018) showed that this rela-
tion can be obtained from a poloidal-toroidal decomposition, and
extended it to more general domains which can be constructed
from sets of simply connected surfaces. Further it was shown in
Prior & Yeates (2014) that this choice is preferable in that any
other choice of gauge or reference field gives a helicity measure
which is equivalent to choosing to measure the angle Θ with
respect to a varying direction, whose rotation is non physical in
that it does not relate to the entanglement of the field itself.

Prior & Yeates (2014) also showed that the field line helicity
can be written as

A(γ) =
1

2π

∫
γ

∫
S ′z

T · B(x′, y′, z(s)) × rγ
r2
γ

dx′ dy′ ds,

rγ = (x′ − γx, y
′ − γy, 0), (14)

Fig. 2. Two point correlation interpretation of helicity. Given two field
lines, the product of Bz for the first field line, and B′θ (in the plane) for
the second line, as would be in r × B′, gives a measure of their mutual
winding.

if the winding gauge is chosen. This represents the entanglement
of the field line γ with the rest of the field. In Sect. 7.1 we show
that, using a wavelet decomposition of B, it can be represented
as a spatial sum of skew symmetric tensors whose trace give
the magnetic energy and off-diagonal elements give the helicity,
similar to the two-point correlation Fourier transform relation-
ship (7).

3.2. A gauge independent measure of magnetic helicity

The crucial point about (11) is that it gives a definition of a quan-
tity which measures the field-weighted entanglement of the mag-
netic field, and depends only on the field B (as does (14) for
the fieldline helicity). To be sure, we can relate it to the clas-
sical magnetic helicity definition (H =

∫
V A · B) via a vector

potential, but the following properties can be ascribed to the
quantity purely on the basis of its topological definition in terms
of winding rate dΘ/dz. Firstly, it is invariant under ideal evo-
lutions which vanish on the domain boundaries (Prior & Yeates
2014). Secondly, it is approximately conserved for low plasma
β relaxations (Russell et al. 2015). Thirdly, the field line helic-
ity density can be used to directly quantify magnetic reconnec-
tion (Prior & Yeates 2018), even for fields with normal boundary
components.

These are all the properties that mark the magnetic helicity
as a fundamental quantity in solar physics applications. None of
them rely on a vector potential definition to be applicable (as
demonstrated in the indicated references). In what follows we
assert the two-point correlation function as our fundamental def-
inition of the magnetic helicity. For the sake of clarity we for-
mally define the following two-point correlation integral

C(x, y, z) =

∫
S ′z

B(x′, y′, z) × r
r2 dx′ dy′. (15)

The product B ·C represents the total winding and field weighted
correlation of the field at a point (x, y) in the plane S z with the
whole field in that plane (via Eq. (11)). If the field is tangent
on the boundaries of the plane S z then C = Aw, but as we have
discussed above C is a meaningful topological quantity even if
this is not so.

We then have the following gauge free definitions of the
helicity and field line helicity which place no requirements on
the system’s boundary conditions

H(B) =

∫ h

0

∫
S z

B · C dx dy dz, (16)

A(B) =

∫
γ

T · C(γ) ds, (17)
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(a) (b) (c)

Fig. 3. Localised field decompositions. Panel a: a cuboid domain is split into smaller sub-boxes, which each contain a contribution to the total
field, as shown in panel b. By making the discretisation even more dense, as shown in panel c, we make our approximation more accurate.

where z ∈ [0, h] is the z-coordinate which labels the set of planes
S z of the Cartesian domain on which the field is defined.

What remains is to decompose these quantities such that we
have additivity and spatial locality.

4. Spatial localisation and additivity of the helicity

4.1. Localised field decompostion

Here we very briefly introduce the ideas underpinning our spatial
localisation technique to give some geometrical intuition as to
its interpretation. In order to spatially decompose the helicity we
need a representation of the field B in terms of functions with
compact support. For example the box function

φ(x) =

{
1 if 0 ≤ x ≤ 1,
0 if x > 1 or x < 0, (18)

whose 3D composite

Φx0y0z0 (x, y, z) = φ(x − x0)φ(y − y0)φ(z − z0), (19)

gives a box of compact support which is translated in space. By
discretizing the domain as x0 = i∆x, i ∈ 1, . . .N, and suitably
scaling (18), a set of box functions Φlmn is created to cover the
domain in a non overlapping fashion (e.g. Fig. 3a). We can then
approximate the mean field B as

B(x, y, z) ≈
N∑

l=1

N∑
m=1

N∑
n=1

BlmnΦlmn(x, y, z), (20)

Blmn =

∫
V

B Φlmn dV. (21)

Each coefficient Blmn is representative of the average behaviour
of the field in the box (l,m, n) (Fig. 3b).

We can do something similar for the correlation integral C.
Using the fact that the function Φlmn has compact support, an
approximation to magnetic helicity is then given by the sum

H(B) ≈
N∑

i=1

N∑
j=1

N∑
k=1

Blmn · Clmn, (22)

(think of this as a spatial decomposition of the constant part of
the Fourier series). Each triplet (lmn) gives the average of the
density C · B in a particular cube of the domain. To capture the
local variations, we can use a function such as

ψ(x) =


1 if 0 ≤ x ≤ 1/2,
−1 if 1/2 < x ≤ 1,
0 if x > 1 or x < 0,

(23)

defined for all real x (such that it has compact support). The coef-
ficients of B with respect to this function can then be added to
(20) to give a more accurate approximation of the field (this is
a little like breaking the sinusoid of the Fourier transform into
sub components). The smaller the discretisation size (the spatial
scale) N the more accurate the approximation (the discretisation
in Fig. 3c would be more accurate than that in a).

Of course there are multiple issues with such a decomposi-
tion. For example how do we choose the scale of decomposition?
In fact (with regards to the varying component) we might want
to choose multiple scales for fields which have both large and
small scale variation. How might we then add up these scales
whilst avoiding redundancy? A branch of wavelet analysis called
Multi-resolution Analysis tells us exactly how to perform such
a decomposition orthogonally, and combine it across multiple
scales. We shall introduce it formally in Sect. 5: the localised
functions used above are the so-called Haar Scaling Function
(18) and Haar Wavelet (23), and the sum (20) forms one part of
the decomposition; the method for combining the varying field
components is a little more complex. We will see in Sect. 6 that
this spatial scale decomposition (multi-resolution analysis) of
the helicity for the two example fields discussed above show a
non trivial (absolute) variation across spatial scales which nat-
urally identifies to “size” and position of the helicity producing
components of the field.

4.2. Two-point winding correlation localisation

A decomposition such as (22) is still not fully localised, since
the correlation integral C at a point (x, y, z) involves integration
across planes of constant z of the domain. Thus the coefficient

Clmn =

∫
V

CΦlmn dV, (24)

A95, page 5 of 20
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(a) (b)

Fig. 4. Geometric interpretations of spatially decomposed helicity contributions. Panel a: geometrical interpretation of the spatial contribution
Clmn · Blmn of a spatial (wavelet) decomposition of the helicity. The red box represents the spatial sub-domain given by the triplet lmn. Each point
in this red domain contributes a winding with the rest of the field in the plane in which it is contained. Because Clmn · Blmn is a sum over the whole
red domain, the set of planes containing the red domain provide winding contributions to the sum, as indicated in the figure. Panel b: winding
contribution obtained by spatially decomposing the field B inside the two-point correlation function. It represents the winding of the red curve γ
(localised in the plane as represented by the vector B at that point) and the field lines in the sub-plane indicated in green.

will include integration across all planes S z containing the points
(x, y, z) which have compact support from the function Φlmn. As
such the quantity Clmn · Blmn represents the winding correlation
of the field in the box of compact support of Φlmn with the rest of
the field in the planes containing that box, as indicated in Fig. 4a.

A finer localisation can found be inserting the decomposi-
tion of the field B directly into the function C. For example,
since the integral C is defined in the plane S z we could use a
two dimensional decomposition, that is use functions Φlm which
approximate the field B as

B ≈
N∑

l=1

N∑
m=1

Blm(z)Φlm. (25)

Inserting this into the field line winding integrand density (17)
would yield terms in the form

T ·
Blm(z) × r

r2 · (26)

This represents the winding of the curve at the point (x, y)
(represented by the vector T) with a localised sub domain of
curves corresponding to the compact support of Φlm, as indicated
Fig. 4b. We use this decomposition to develop a spatial helicity
energy decomposition for both the helicity and field line helic-
ity in Sect. 7. We stress that this finer decomposition requires an
explicit representation of the helicity in terms of B, which our
gauge free, physically, and topologically meaningful definition
fulfils. This will be our ultimate solution to both the additivity
and localisation problems.

5. Helicity, wavelets and multi-resolution analysis

We first consider dimensional scalar functions f (x) as 3D
wavelet representations are composed of combinations of one
dimensional wavelet decompositions. We will focus on the set

Table 1. Illustrative examples of scales and locality.

Scale Intervals (locality)

0 [0, 1]

1
[
0, 1

2

]
,
[

1
2 , 1

]
2

[
0, 1

4

]
,
[

1
4 ,

1
2

]
,
[

1
2 ,

3
4

]
,
[

3
4 , 1

]
3

[
0, 1

8

]
,
[

1
8 ,

1
4

]
,
[

1
4 ,

3
8

]
,
[

3
8 ,

1
2

]
,
[

1
2 ,

5
8

]
,
[

5
8 ,

3
4

]
,
[

3
4 ,

7
8

]
,
[

7
8 , 1

]

of wavelets known as discrete wavelets which form the discrete
wavelet transform, in particular the multi-resolution represen-
tation of this transform (for details on the continuous wavelet
transform see e.g. Grossmann et al. 1990). What follows is far
from a comprehensive overview of the mathematics the multi-
resolution analysis which is beyond the scope of this study,
for a more detailed introduction see, for example Farge (1992)
for a practical introduction in a fluid dynamic context and
Jawerth & Sweldens (1994) for more details on the underlying
mathematics.

5.1. The basic idea for Haar wavelets

In the previous section we introduced the Haar Scaling func-
tion (18) and varying Haar Wavelet (23) used to characterise the
mean and varying behaviour of a function f (x) respectively, over
a given subset of the domain. As discussed a systematic means
of choosing the and combining the domains (boxes) of compact
support is required. The basic idea of a multi-resolution analysis
for some function defined on a domain [0, 1] (one can always
scale this to any finite domain) is to choose the domain spatial
scales as factors of two 2s, . . . s ∈ 1, 2, . . ., as indicated in Table 1.
Then, for a given choice of scale s the functions (23) and (18) are
mutually orthogonal and orthonormal with each other if suitably
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dilated and translated, that is,∫ 1

0

√
2sφ(2sx − i)

√
2sψ(2sx − j) dx = 0, (27)∫ 1

0

√
2sφ(2sx − i)

√
2sφ(2sx − j) dx

=

∫ 1

0

√
2sψ(2sx − i)

√
2sψ(2sx − j) dx = δi j. (28)

A common notation for these dilation/translation combinations
is to write

φsi(x) = 2s/2φ (2sx − i) and ψsi(x) = 2s/2ψ (2sx − i), (29)

so that∫ 1

0
φsi(x)ψs j(x) dx = 0,∫ 1

0
φsi(x)φs j(x) dx =

∫ 1

0
ψsi(x)ψs j dx = δi j. (30)

One can also see some of these conditions can be extended for
comparisons between scales,∫ 1

0
φsi(x)ψs′ j(x) = 0,∀s′ ≥ s and

i ∈ 0, 1, . . . 2s − 1, j ∈ 0, 1, . . . 2s′ − 1, (31)

as well as∫ 1

0
ψsi(x)ψs′i′ (x) = δss′ii′ . (32)

Thus if we pick some base scale sb the orthogonality conditions
(30), (31), and (32) ensure it is possible to write

f (x) =

2sb−1∑
i=0

〈
φsbi| f

〉
φsbi(x)

+

∞∑
s=sb

2s−1∑
i=0

〈ψsi| f 〉ψsi(x), (33)

where

〈g, f 〉 =

∫ 1

0
fg dx, (34)

for square integrable functions on [0, 1] (Jawerth & Sweldens
1994). It is a celebrated result of Ingrid Daubechies
(Daubechies et al. 1993) to demonstrate that there are various
classes of functions φ and ψ with compact support which sat-
isfy the conditions (30), (31), (32), such that (33) can be used to
represent square integrable functions. The specific choice of φ
and ψ can often be quite important (for discussions on the mat-
ter see e.g. Farge et al. 1996; Zhang et al. 2004). The example
calculations detailed in this study were performed with various
wavelet choices, but no significant differences were observed, so
these comparative calculations were omitted for brevity. In what
follows all example calculations use the Haar basis.

In practice the series (33) will be truncated at some maxi-
mum scale sm and the most common choice is to have sb = 0,

which prioritises the number of spatial scales used in the expan-
sion, so that we have the following multi-resolution approxima-
tion:

f (x) ≈ 〈φ0| f 〉 φ0(x) +

sm∑
s=0

2s−1∑
i=0

〈ψsi, f 〉ψsi(x). (35)

In what follows we use the equality sign for series such as (35) on
the assumption it is understood this is actually an approximation.

The approximation (35) implies the varying behaviour of the
function f on scales 2t with t > sm cannot be properly repre-
sented. More formally it can be shown that each sm yields a
set of representable functions which are a subset of the square
integrable functions, and further that as sm is increased each
previous set of representable functions is a subset of the cur-
rent set of representable functions obtained by increasing sm
(Jawerth & Sweldens 1994). That is to say increasing sm will
always increase the set of functions representable.

There is an analogy with the truncation of Fourier series
which means one cannot represent frequencies below a given
scale. This is particularly clear for the Haar wavelet. As with
Fourier series truncation, the quality of representation is depen-
dent on the degree of small scale behaviour in the function f . In
practice, the target applications in solar physics would involve
simulations on a numerical grid. Thus the minimum scale 2sm

would be determined by the size of the grid on which the mag-
netic field is resolved, so the approximation would be able to
resolve the same scale of function variation as the numerical grid
used to resolve the field.

5.2. Three dimensional multi-resolution analysis

In a three-dimensional Cartesian domain V , we expand the func-
tion’s behaviour along each direction via a one dimensional
multi-resolution expansion. We assume a 3D function H(x)
can be written as Hx(x)Hy(y)Hz(z) (Jawerth & Sweldens 1994).
By writing each function as a multi-resolution expansion one
obtains encounter eight types of combinations (four in 2D) for
each scale s:

ψ
µ
slmn(x) =



φsl(x)φsm(y)φsn(z) if µ = 1,
ψsl(x)φsm(y)φsn(z) if µ = 2,
φsl(x)ψsm(y)φsn(z) if µ = 3,
φsl(x)φsm(y)ψsn(z) if µ = 4,
ψsl(x)φsm(y)ψsn(z) if µ = 5,
ψsl(x)ψsm(y)φsn(z) if µ = 6,
φsl(x)ψsm(y)ψsn(z) if µ = 7,
ψsl(x)ψsm(y)ψsn(z) if µ = 8.

(36)

Writing the respective coefficients as

Hµ
slmn =

∫
V

H(x)ψ µ
slmn(x) dx, (37)

the ensuing multi-resolution decomposition will be

H(x) = H1
0ψ0(x)

+

sm∑
s=0

2s−1∑
l=0

2s−1∑
m=0

2s−1∑
n=0

8∑
µ=2

Hµ
slmnψ

µ
slmn(x), (38)

see for instance Farge et al. (1996).
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5.2.1. Compacted notation

Throughout this study no particular attention was paid to the
contributions of individual µ terms, thus for each l,m, n we
shall assume the µ summation has been performed. Further, for
brevity we define an index k which, when summed over will be
assumed to indicate a sum over l, m and n (or just l and n in 2D).
Thus we write (38) as

H(x) =

sm∑
s=0

2s−1∑
k=0

Hskψsk(x). (39)

5.2.2. Relative scale contributions

For a function H one can define the total (relative) contribution
Qs(H) to the multi-resolution decomposition at a scale s as

Qs(H) =

2s−1∑
k=0

Hsk. (40)

Similarly we define the relative power Ps(H) at scale s as:

Ps(H) =

∑2s−1
k=0 |Hsk |∑sm

s=0
∑2s−1

k=0 |Hsk |
· (41)

For comparison, if the function has the required periodicity we
can calculate the power contained at each Fourier scale k through
the quantity

Hk =
∑
|k|=k

Hk(k). (42)

where the Hk are the coefficients of the appropriate Fourier series
of H.

5.3. Helicity formulae

We consider multi-resolution expansions (39) for B (one per
component) and the multi-resolution expansion of C,

C =

sm∑
s=0

2s−1∑
k=0

Cskψsk(x), (43)

and substitute them into the helicity integral
∫

V C · B dV . Using
the orthogonality relationships (30), (31), and (32) we obtain a
summation over the coefficients of the two series

H =

sm∑
s=0

2s−1∑
k=0

Csk · Bsk =

sm∑
s=0

2s−1∑
k=0

Hsk. (44)

So Hsk is the helicity contribution at scale s at position k = lmn
(summing over all directions µ). As indicated in Fig. 4a the
geometrical interpretation of this coefficient corresponds to the
winding of the compact domain of scale s, centred at the coordi-
nates indicated by the triplet k, with the field in the z-slice of the
volume containing this domain.

5.4. Decompositions of classical magnetic helicity

We wish to stress that the above expression (44) is equally valid
for the classical definition of magnetic helicity:

H =

sm∑
s=0

2s−1∑
k=0

Ask · Bsk =

sm∑
s=0

2s−1∑
k=0

Hsk. (45)

Fig. 5. Magnetic field vector plot of Eq. (47) at z = 0, red indicates
positive twist, and blue indicates negative twist.

for a well-defined magnetic vector potential A. Similarly, we can
define (following Finn & Antonsen 1985) a spatial decomposi-
tion of gauge-invariant relative helicity:

HR =

sm∑
s=0

2s−1∑
k=0

(A + A0)sk · (B − B0)sk

=

sm∑
s=0

2s−1∑
k=0

HR,sk, (46)

where A0 and B0 are the so-called references fields, whose nor-
mal boundary components are the same as those of B and A.
The physical intuition of local winding is, however, only retained
when using the winding gauge Aw.

6. Multi-resolution analysis of magnetic helicity:
illustrative examples

In this section we present two examples which illustrate the ben-
efits of the spatial decomposition offered by a multi-resolution
analysis of magnetic helicity. Unless otherwise stated, all quan-
tities in this section have arbitrary units. Both examples are
equally valid in either the winding correlation regime introduced
here, or by using the classical definition of helicity (with the
winding gauge), as the magnetic field B is tangent at the side
boundaries.

6.1. Oppositely twisted flux tubes

The first of our illustrative examples is that of a pair of oppositely
twisted flux tubes whose vector field takes the form

B =
100

a
exp

[
−((x + 0.55)2 + y2)

a2

]
(−y, x, 0)

−
100

a
exp

[
−((x − 0.55)2 + y2)

a2

]
(−y, x, 0) + (0, 0, 10), (47)

where we have taken a = 0.2. This field (independent of z) is
visualised for the domain [−1, 1] × [−1, 1], in Fig. 5. Making an
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Fig. 6. Fourier decomposition Hk of magnetic helicity for the field (47).

assumption of periodicity (which can be interpreted as an infi-
nite repeating pattern of the form shown here), Fourier analysis
indicates that that this magnetic field has zero overall helicity at
every scale, even when the sum over k = k is taken with absolute
values, as shown in Fig. 6.

By contrast, in Fig. 7, we plot the Hsk for the wavelet multi-
resolution analysis of the magnetic helicity at spatial scales
r = 0 → 6 (along with the associated power Ps(H)). The
plotting style is that of a “bubblegram”: each sub-domain of
helicity given by the multi-resolution analysis is allocated a
three-dimensional sphere at its centre. The radius of this sphere
is dependent upon the absolute magnitude of the helicity of
the sub-domain, and its colour, red or blue, indicating a posi-
tive/negative sign respectively. In this case the magnetic field,
and thus the magnetic helicity, is independent of z, but we
provide the full z range as a visual indicator of the three–
dimensional localising nature of wavelets.

The bubblegrams indicate that the helicity is well localised
in space in accordance with Fig. 5, presenting with the correct
sign of twist. It can be seen that the total helicity Qs(H) at each
scale is zero. The absolute magnetic helicity power Ps(H) is well
localised in scale, as indicated in Fig. 8. Peak magnetic helicity
occurs at half the spatial scale of the domain, which is in good
agreement with the distribution of the twist in the magnetic field
itself.

6.2. Linked rings

The magnetic helicity associated with two flux tubes, with link-
ing number L, identical individual internal twists T and mag-
netic fluxes Φ is

HL = 2(L + T )Φ2, (48)

following Berger (1999). A simple example of such linked rings,
R1 and R2 can be parametrised as

R1(r, θ, φ) = (R cos(θ) + r cos(θ) cos(φ),
R sin(θ) + r sin(θ) cos(φ), r sin(φ)), (49)

and

R2(r, θ, φ) = (Cx,Cy,Cz) + (R cos(θ) + r cos(θ) cos(φ),
− r sin(φ),R sin(θ) + r sin(θ) cos(φ)), (50)

for major radius R, minor radius r ∈ [0, rm], toroidal angle θ and
poloidal angle φ. The set Cx,Cy,Cz denote the centre of R2. An
example with rm = 0.3 and R = 1 is shown in Fig. 9. We define
the magnetic fields BRi of each ring as the sum of toroidal BRit
and poloidal BRi p components, with

BR1,t(x, y, z) = B0

(
−

y√
(x2 + y2)

,−
x
√

q1
, 0

)
, (51)

BR1,p(x, y, z) = T B0

( xz
rxy

,−
yz
q1
, 1 −

R
√

q1

)
,

BR2,t(x, y, z) = B0

(
−

z
√

q2
, 0,−

x + 1
√

q2

)
,

BR2,p(x, y, z) = T B0

( (x + 1)y
q2

,−1 +
R
√

q2
,
yz
q2

)
,

where q1 = (x2 + y2) and q2 = ((x + 1)2 + z2).
We choose R = 1 and Cx = 1, Cy = Cz = 0. Such an arrange-

ment has an associated linking number of L = 1, and we assign
T = −5, B0 = 7 and rm = 0.3, giving total magnetic helicity

HL=1,T=−5 = (2−10)Φ2 = −31.3, (52)

where Φ = 1.98. In Fig. 10, we plot the magnetic helicity coeffi-
cients H4k. The bubblegram indicates a distribution of magnetic
helicity in correspondence to the distribution of the magnetic
fields themselves, which we can attribute to the magnetic twist.

In Fig. 11, we calculate the ratio of the multi-resolution
expansion of helicity with that of the analytical result (from
Eq. (48)) as a function of scales included, which we define by
the measure

Ns(H) =

∑s
s′=0 Qs′ (H)

H
(53)

(with and without internal magnetic twist). Naturally Ns → 1
in the limit s → ∞ as the multi-resolution analysis would be
exactly the magnetic helicity. Here we see the scales at which
Ns gets significantly close to 1 differ in the two cases. This is
as we would expect due to the differing spatial scales between
twist (small scale) and linking (large scale). We see in Fig. 12
the regions of compact support for the Haar wavelet’s at scales
s = 1, 2. The s = 1 and s = 2 scales tend to cover both tubes to
some degree whilst the scales s = 3 and higher generally only
cover one tube. This is reflected in Fig. 11 where we see the
T = 0 field is dominated by scales s = 1, 2, as scales s = 3 and
higher will reflect that on the single tube interior scale there is
no complex topology. By contrast the T = −5 case has a more
balanced distribution across the scales.

7. Helicity, energy and topology

We insert the full three-dimensional multi-resolution decompo-
sition of the field B into the correlation function C (15) to obtain,

C(x) =
1

2π

sm∑
s=0

2s−1∑
k=0

Bsk ×

∫
S ′z

r
r2ψsk(x′, y′, z) dx′ dy′

r = (x − x′, y − y′, 0), (54)
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Fig. 7. Hsk for s = 0 → 6 applied to (47). The largest scale is a measure of the numerical round-off. At the two smallest scales 2−5,6, the visual
appearance of the bubblegram is distorted by the frequency of data points. The magnetic field and its associated helicity is independent of z.

where the parameter dependence of the wavelet function ψ indi-
cates the integration is over only the in-plane functions of the
3D wavelets. In order to directly compare the helicity to the
energy (helicity has an extra dimension of length) we note that if
the planes S z have x and y widths L and aL, respectively then
we can write x = uL and y = avL (0 ≤ u, v ≤ 1) so that
rL = L(u − u′, a(v − v′), 0), then

C(x) =
L
2π

sm∑
s=0

2s−1∑
k=0

Bsk

×

∫
U′z

arL

r2
L

ψsk(x(u′), y(v′), z) du′ dv′, (55)

where Uz is the unit square in the x–y plane. Inserting this
into (16) we obtain the helicity in terms of the multi-resolution

expansion of the field B alone. This calculation is most parsimo-
niously represented as a quadratic form, so we introduce some
notation. We assume a Cartesian domain Uz × [0, h], with Uz a
unit plane at height z, then the following quantities are dependent
only upon the chosen wavelet, not the magnetic field itself.

W s′ sk′k
i =

L
2π

∫ h

0

∫
S z×U′z

ari
L

r2
L

ψs′k′ (x(u′), y(v′), z)

ψsk(x, y, z) du′ dv′ dx dy dz, (56)

The cross-product in (54) can be represented using a skew-
symmetric matrix Ms′ sk′k

i j which takes the form

Ms′ sk′k
i j =

 0 0 −W s′ sk′k
2

0 0 W s′ sk′k
1

W s′ sk′k
2 −W s′ sk′k

1 0

 . (57)
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Fig. 8. Ps(H) for s = 0→ 6 applied to (47).

Fig. 9. Linked flux tubes R1 (red) and R2 (green).

Then, using the Einstein summation convention we have

H =

∫
V

C · B dV = Mss′kk′
i j B j

s′k′B
i
sk. (58)

We note that in general the wavelet orthogonality relationships
cannot be applied to (56) as the in-plane integrals are over
different copies of Uz. However, the z integration is over the
same domain so W s′ sk′k

i will vanish if n′ , n (from the vectors
k = l′m′n′ and k = lmn).

7.1. Helicity as a skew symmetric operator

We note that the helicity is being represented as a product of the
field at differing positions and scales through a skew-symmetric
operator M. This is analogous to the result that the helicity in
periodic domains can be represented as the skew symmetric part
of the Fourier transform, as discussed in Sect. 2.3. In this case

Fig. 10. H4k for linked tubes with T = −5.

Fig. 11. Geometrical extent of Hsk at various scales (Haar wavelet). Pan-
els a: s = 1 and b: s = 2 indicate the overlap of the two tubes is con-
tained within the region of compact support. Panel c: (s = 3) the region
of compact support will generally only cover one tube.

we use the decomposition Ms′ sk′k
i j = LIs′ sk′k

i j +Os′ sk′k
i j , where Is′ sk′k

i j
(the superscript labelling is for notational convenience) is the
identity matrix (one such matrix for each ss′kk′) and

Os′ sk′k =

 −L 0 −W s′ sk′k
2

0 −L W s′ sk′k
1

W s′ sk′k
2 −W s′ sk′k

1 −L

 , (59)
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(a) Scale s = 1 (b) Scale s = 2 (c) Scale s = 3

Fig. 12. Ns(H) calculated for two linked flux tubes. Calculations are shown with either T = −5 (blue) or without (T = 0) internal twist (red).

so that

H = LIs′ sk′k
i j B j

s′k′B
i
sk + Os′ sk′k

i j B j
s′k′B

i
sk. (60)

The sum of contributions to the first term for which (s′, k′) =
(s, k) give the energy of the field (the multi-resolution approxi-
mation of the energy to be precise), and we can thus decompose
the sum as follows

H = LE + N, (61)

N = LIi j(1 − δs′ sδk′k)B j
s′k′B

i
sk + Os′ sk′k

i j B j
s′k′B

i
sk, (62)

where δs′ s is the Kronecker delta function. The operator N con-
tains additional topological information which constitutes the
helicity. In the limit which the maximum scale parameter sm (i.e.
the smallest spatial scale) tends to∞ this relationship is exact so
there is a linear sum

H(B) = LE(B) + N(B), (63)

where N is the multi-resolution representation of a functional of
the field which contains the topological information through the
quantities W s′ sk′k

i . A field evolution for which H is conserved
requires that

dE
dt

= −
1
L

dN
dt

(64)

which would (approximately) apply in significantly low plasma
β resistive MHD simulations.

7.2. Field line helicity

Using (16) and (55) the fieldline helicity of a field line γ at scale
s and position k = lm can be written as

A(γ) =
L
2π

sm∑
s=0

2s−1∑
k=0

∫
γ

B
|B|
· Bsk(z(s))

×

∫
U′z

arL

r2
L

ψsk(x(u′), y(v′), z) du′ dv′ ds, (65)

where the summation over k implies a 2D multi-resolution
decomposition, which is why the coefficient Bsk(z) of the multi-
resolution expansion has z dependence. The contribution toA(γ)
from one individual scale is then denoted As(γ), which is then
further decomposed to individual localities byAsk(γ).

Under ideal evolutionsA(γ) is preserved so the sum ofAs(γ)
must be preserved and changes inAs(γ) must be balanced across
the scales.

7.3. Helicity preserving field evolution

A particular class of fields of significant interest in the solar
physics community are braided fields for which Bz > 0, ∀x ∈ V ,
and hence all field lines pass through the domain from the bot-
tom to top boundary. In such cases each field lines γ can repre-
sented by the points x0 ∈ S 0 where they are rooted, such that
Ask(γ) ≡ Ask(x0) and

H(B) =

∫
S 0

A(x0) dx dy

=

sm∑
s=0

2s−1∑
k=0

∫
S 0

Ask(x0) dx dy. (66)

If the evolution is not ideal but such that the helicity is con-
served (low plasma β resistive relaxations) the distributionA(γ)
changes but the summation (66) must be preserved. In particu-
lar we have an alternative means of calculating the value of the
operator N(B),

N(B) = H(B) − LE(B)

=

sm∑
s=0

2s−1∑
k=0

∫
S 0

Ask(x0) dx dy − LE. (67)

The advantage is that the field line helicity representation of N
is linear in both s and k so, for example, we can decompose the
contributions to N as the difference H − LE at each scale s, and
this decomposition is orthogonal. It is this form which we choose
to utilise in this study.

8. Fieldline helicity example: analytical magnetic
reconnection (the Dundee braid)

Following the resistive MHD based braiding experiments
in Wilmot-Smith et al. (2009, 2011) and Russell et al. (2015)
we define a field composed of exponential twist units
Bt(b0, k, a, l, xc, yc, zc) given by

Bt(b0, k, a, l, xc, yc, zc) =
2b0k

a
exp

(
−

(x − xc)2 + (y − yc)2

a2

−
(z − zc)2

l2

)
R, (68)

where

R = (−(y − yc), x − xc, 0). (69)
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The parameter b0 determines the strength of the field, a the hor-
izontal width of the twist zones, l their vertical extent, and k the
handedness of the twist (k = 1 is right handed). The centre of
rotation is (xc, yc, zc). The braided field is then defined as a super-
position of n pairs of positive and negative twists and a uniform
vertical background field

Bb(1, a, l, d, z0, sd, n) =

n∑
i=1

[
Bt(1, 1, a, l,−d, 0, z0 + sd(i − 1))

+ Bt(1,−1, a, l, 0, d, 0, z0 + sd(i − 1))
]

+ ẑ,

(70)

where d is the offset from the central axis, and sd is the verti-
cal spacing between consecutive twists (of the same sign) and z0
the height of the first twist unit. In the literature, this is some-
times referred to as a “Dundee Braid”. By altering the extent
of the twist units (the parameters a and l) one can control the
overlap. The field lines in the region of overlap show signifi-
cant entanglement (Fig. 13a) a property very well captured by
the field line helicity distribution A(γ) (Fig. 13b). The helicity
of this field is (with a suitable choice of parameters) essentially
zero owing to the balance of positive and negative twisting. It
was found that under a high magnetic Reynold’s number resis-
tive MHD relaxation, under which the helicity is approximately
conserved (Wilmot-Smith et al. 2011; Russell et al. 2015), that
the field was able to simplify via localised reconnection into
(roughly) a pair of oppositely twisted flux ropes.

To keep matters simple in this first application of the
multi-resolution decomposition Ask, we define a rough ana-
lytic approximation of this relaxation process with the following
parameterised magnetic field:

B = Bb(1,D1(t),D2(t), 1,−20, 8, 3) (71)

where

D1(t) =
√

2(1 − t),
D2(t) = 2(1 + 2t).

This field is considered in a domain x, y ∈ [−4, 4], z ∈ [−24, 24],
which are the dimensions (and parameters for t = 0) used in
Wilmot-Smith et al. (2009, 2011) and Russell et al. (2015). As
t increases the twisted units become more and more separated
in the horizontal direction, as shown in Fig. 14. The twist units
(with the same sign) also merge vertically to form two non over-
lapping twisted flux tubes at t = 1. The decrease in overlap
between the oppositely twisted units also tends to reduce the
complex field entanglement (as we shall shortly see this is not
true for low t). It was checked numerically that the total helic-
ity H(B, x, y, z, t) (essentially) remains zero for all t, a property
designed to approximate the numerically observed conservation
of helicity in the low plasma β MHD simulations. The Fourier
expansion of the magnetic helicity of this field is zero through-
out (even when an absolute magnitude sum is used). In Fig. 15,
we present the field line distribution of the scale decomposed
field line helicity decomposition As(x0), which involves a sum-
mation over the spatial parameter k. We remind the reader that
for the field line helicity there is one such summation for each
point x0 (i.e. each field line) – hence this is still a spatial dis-
tribution. The evolution of these distributions is shown at times
t = 0, 0.2, 0.4, 0.6, 0.8, 0.95.

A couple of observations are worth making. Firstly, at t = 0
all scalesAs(x0) show (to varying degrees) the complex mixing

(a)

(b)

Fig. 13. Topological measures of (70). Panel a: subset of the field lines
in the region where the fields opposing twist units overlap. The field line
helicity of the green field line indicated would have contributions due
to its own complex geometry as well as its entanglement with the field.
Panel b: field line helicity distribution (calculated using the code used
in Prior & Yeates 2018) of (71) with t = 0, there is significant small
scale structure indicating the field’s complex entanglement.

pattern present in the full distribution. This is a result of the field
line geometry (i.e. the geometry of the green curve in Fig. 13a).
Eventually this pattern disappears as the field lines reconnect and
disentangle, again this is true of all scales. Secondly, there is a
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Fig. 14. Vector plots of (71). From top left: four time steps t = 0, 0.3, 0.6, 0.9 at z = 0. Red (blue) denotes the positively (negatively) twisted
regions.

surrounding distribution which is most clear at the scales s =
1, 2; this persists throughout the relaxation. This is the twisted
field structure of the field itself; as indicated in the twisted tube
example of Sect. 6.1 twisted tube structures (which always com-
pose the field in some manner) are dominated by contributions
at these scales. Over the whole sum (over s at each t) these con-
tributions cancel.

To quantify the entanglement variation highlighted in the
first point we define a mixing parameter M as

M =

(∣∣∣∣∣∂As(x0)
∂x

∣∣∣∣∣2 +

∣∣∣∣∣∂As(x0)
∂y

∣∣∣∣∣2) 1
2

, (72)

which will highlight the regions in which we see a rapid change
in sign between positive and negative field line helicity As(x0).

Admittedly this will also capture simpler radial decay, but such
contributions should be sufficiently weaker. The mixing asso-
ciated with each scale, in the style of Fig. 15, is shown in
Fig. 16. There are two observations. First that the mixing actu-
ally increases at first up to t = 0.4 then it decays. Second that the
decay is more pronounced at larger length scales (smaller s).

In Fig. 17 we plot the total signed contribution per scale

QS (A) =

∫
S 0

As(x0) dx0 dy0, (73)

spatial integrals over the distributions shown in Fig. 14. Note
that we use the Qs notation used to indicate spatial summation
earlier, here it includes the spatial integration over all fieldlines,
that is all x0. There is always (approximately) as much negative
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Fig. 15. Field line helicity distributions As(x0) of (71). The columns from left to right represent time steps t = 0, 0.2, 0.4, 0.6, 0.8, 0.95 integrated
on a domain [−4, 4]2 in x, y and [−24, 24] in z, with 400× 400 field lines. The vertical direction indicates increasing scale s (except for the top line
which is the total sum over s (it is the actual distributionA)).

as positive contribution, reflecting the total helicity conservation
of the field. These values are dominated by the lower scale. Their
relative magnitudes increase up to about t = 0.4 then decrease
over time. It is interesting that the balance of positive and nega-
tive values is always maintained by the same scales (albeit with
decreasing magnitudes).

In Fig. 18 we plot the absolute power Ps(A):

PS (A) =

∫
S 0
|As(x0)| dx0 dy0∑sm

s=0

∫
S 0
|As(x0)| dx0 dy0

, (74)

associated with each spatial scale for time steps t = 0 to t =
0.95. For early times the values (mostly) decrease with s. How-

ever, as the twisting units separate and merge the scale s = 2
becomes more prevalent, reflecting the coherent development of
the twisted flux ropes. In Figs. 19 and 20 we see the total power
normalised power across all scales of both the field line helicity
A and the mixing M as a function of time, given by

PT (H) =
Ps(H)

maxtPs(H)
· (75)

Qualitatively the plots are very similar, showing a peak around
0.35 and then a relatively large drop as the twist units properly
separate.

We can also directly compare the evolution of the scaled-
fieldline helicity with that of magnetic energy, as shown in
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Fig. 16. Mixing distributions M corresponding to Fig. 15. The distributions are shown at time steps t = 0, 0.2, 0.4, 0.6, 0.8, 0.95 on a domain
[−4, 4]2 in x, y and [−24, 24] in z, with 400× 400 field lines. The vertical direction indicates increasing scale s (except for the top line which is the
total sum over s (it is the actual distributionA)).
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Fig. 17. Total fieldline helicity power QS (A) attributed to each spatial
scale. The distribution for s ∈ [0, 6] is shown for time periods t = 0 to
t = 0.95 for the Dundee braid relaxation.

Fig. 18. Total fieldline helicity absolute normalised power PS (A)
attributed to each spatial scale. The distribution for s ∈ [0, 6] is shown
for time periods t = 0 to t = 0.95 for the Dundee braid relaxation.

Fig. 21, where we plot the absolute normalised magnetic energy
against that of fieldline helicity, normalised within each scale
(PT (A) versus PT (E)).

The correlation between the two time series is seen to
decrease as the spatial scale decreases in size. Their relative
decay is most strongly aligned at scales 20−2−2. Whilst the decay
associated with fieldline helicity power is fairly consistent at all
scales, the decay of magnetic energy is opposite to that of field
line helicity at scales 2−5 and 2−6. It is no surprise that the scales
s = 0, 2 are the most aligned. As we see in Fig. 17 these are
the dominant contributors to the field line helicity variations in
the field. As the magnitude of these peaks rise (up to t = 0.3)
and fall t > 0.3 (Fig. 17) so concurrently does the energy. This

Fig. 19. Temporal evolution of PT (A). Calculations are performed from
t = 0 to t = 0.95 for the Dundee braid relaxation.

Fig. 20. Temporal evolution of PT (M). Calculations are performed from
t = 0 to t = 0.95 for the Dundee braid relaxation.

is a potentially important observation: that the variations in the
multi-resolution decomposition of the field line helicity Ask are
intimately correlated with the variations in energy in the field. In
future studies it would be interesting to see whether this correla-
tion is maintained in resistive relaxation simulations.

9. Flux of magnetic helicity

The flux of magnetic helicity through a surface is typically
defined by

dH
dt

= −2
∫

V
E · B d3x

+

∫
S

(
(A0 · u)B + (A0 · B)u

)
· n̂d2x, (76)
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Fig. 21. Temporal evolution of PT for A (field line helicity) and E (magnetic energy). Each panel represents a scale s (except the first with is the
total over all scales). The normalisation is scale dependent.

for a reference field A0 (as in relative helicity) uniquely defined
by the appropriate boundary conditions of magnetic field B, and
velocity field u. The first term refers to dissipation within the
volume, which has been shown to have an effective time scale
less than energy dissipation, and we thus disregard it. The second
expression can be interpreted as the sum of two individual fluxes:
the effect of twisting motions on the boundary, and secondly the
movement of magnetic field through the boundary.

Wavelet analysis allows us to define a fourth measure of
helicity flux, giving an indication of how helicity moves spa-
tially within the volume. An intuitive example of this could be
a study of a coronal loop expanding through a simulated region,
for which the twist associated with the flux rope would be seen
to move spatially. multi-resolution analysis measures helicity as
a set of coefficients Hsk attributed to a given scale and spatial
domain (with compact support). We can then simply define

dHt,sk

dt
=

Ht,sk − Ht−δt,sk

δt
, (77)

in the form of a finite difference approximation, for the multi-
resolution analyses of two adjacent time snapshots.

Further, we can perform a direct (2D) multi-resolution
analysis on each term of the analytical measure of flux. For
instance,

dH
dtsk

=

∫
S

(A0 · u)ψsk(x) d2x ·
∫

S
Br(x)ψsk d2x, (78)

where we note that the z-spatial co-ordinate has been dropped
again (k = lm). This is a multi-resolution form of the helicity
flux used in studies of the solar helicity flux through the pho-
tosphere (Hawkes & Berger 2018). Using the surface flux trans-
port model simulations of Jiang et al. (2011), we calculate the
helicity flux associated with seven spatial scales in Fig. 22 (the
non-integer powers of two for the spatial scales is dependent on

the resolution of the data). This data covers their simulations for
Solar Cycles 21 and 22, where time is counted from the begin-
ning of Cycle 21. As each cycle develops, the helicity flux asso-
ciated with the largest scale (2−1,−2 in (cos(θ), φ), which equates
to a hemispherical split), drops in line with an increase in helicity
flux associated with Br of a smaller scale. This can be interpreted
as the decreasing relative importance of polar (large scale) field
relative to small-scale emerging active regions. This behaviour
is seen to repeat over the course of two solar cycles (the end of
the figure corresponds to the end of Cycle 22).

10. Conclusions and future directions

10.1. Conclusions

We have demonstrated how a multi-resolution decomposition
can be applied to the magnetic helicity and field line helicity,
crucial topological quantities in astrophysical applications of the
MHD equations. This approach is compared to spectral helicity
decompositions, which require periodic domains. The method of
multi-resolution analysis has some significant advantages over
this purely spectral approach:

Firstly, it requires no periodicity conditions on the domain
thus has a far wider range of potential applications. Secondly,
it yields information on the spatial decomposition of helicity in
the field. This is particularly useful for fields with significant
heterogeneity of their entanglement.

On the first point the we have circumvented any issues
regarding gauge choice by instead using a concrete geometri-
cal definition of helicity. This definition combines the results
of Prior & Yeates (2014) and Berger & Hornig (2018) to give a
topologically meaningful definition of the helicity in terms of
two–point correlation functions of B only (we need not calcu-
late a vector potential). It has no requirements on the boundary
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Fig. 22. Example Helicity flux dH/dtsk multi-resolution calculations.
Equation (78) is applied to a portion of the simulations of Jiang et al.
(2011). The scale 2−a,b refers to spatial scale 2−a2 in cos(θ) and 2−b2π in
φ. Carrington rotations are counted from the beginning of Solar Cycle
21.

conditions of the field to be valid. The second point is a
direct consequence of decomposing the magnetic field B using
a wavelet (multi-resolution) expansion, rather than a Fourier
series expansion. The following explicit theoretical results were
obtained.

Firstly that the helicity can be written as a sum of the com-
ponents of the multi-resolution expansions of the field B and the
correlation integral C, given by Eq. (44). There is an explicit
geometrical interpretation of the coefficients Hsk (at scale s and
position vector k) as indicated visually in Fig. 4a. We demon-
strate the efficacy of this method with the multi-resolution anal-
ysis correctly identifying the opposing twisting two flux tubes
in Sect. 6.1 (where the Fourier decomposition does not). In
Sect. 6.2 we show there is a clear scale separation of twisting and
writhing components of helicity of a pair of linked flux ropes.

Secondly, we showed it is possible to express the helicity as
a linear sum:

H(B) = LE(B) + N(B) (79)

where the operator N is a sum over various contributions to
the total winding (entanglement) of the field from the vari-
ous scale and spatial components of the multi-resolution expan-
sion of the field B, and L is the characteristic horizontal length
scale of the domain. This can be seen as a significant exten-
sion of the two-point field correlation Fourier energy/helicity
decomposition applicable for fields in periodic domains (see e.g.
Brandenburg et al. 2016). This decomposition not only places
no requirement on the boundary conditions of the field but also
gives information about the spatial distribution of contributions
to this sum.

Thirdly it was shown that the field line helicity A(γ), the
average entanglement of the field line γ with the rest of the field,
can be composed into both spatial and scale components using
a multi-resolution analysis (see Eq. (65)). Under an ideal evo-
lution, when the distribution of field line helicity is conserved,
this decomposition could be used to provide insight as to how
the field’s topology redistributes both spatially and across scales

(e.g. flux ropes kinking/expanding or buoyantly rising through
the convection zone of the sun). In this initial study we applied
the field line helicity decomposition to an analytic representa-
tion of a resistively relaxing magnetic braid whose total helicity
is conserved (mimicking well known numerical experiments of
low plasma β resistive MHD relaxation of the same magnetic
braid configuration Russell et al. 2015). In this case the spatially
integrated sum of the field line helicity at each scale, which is
equal to the helicity and hence conserved, indicated that the con-
servation was maintained by a varying balance of entanglement
on scales which reflected the varying field line entanglement and
the twisted structure of the underlying magnetic field. It was also
seen that the variance in these contributions strongly correlated
with the variations in energy of the field during its relaxation.

Finally, we demonstrated how to apply this multi-resolution
decomposition to helicity fluxes through a planar boundary. An
example application of this to a surface flux transport model
over two solar cycles is used to indicate the varying contribu-
tions from the large-scale polar field and the smaller scale active
regions.

In addition to these results and findings we have developed
a number of simple methods/quantities which can be used to
draw conclusions from the expansions, such as the scale total
and power coefficients Qs and Ps, and the mixing measure M
used to interpret the varying degree of complexity of the field
line helicity decompositions in Sect. 8.

10.2. Future directions

The next step of this study would be to apply these techniques
to Resistive MHD simulations. Based on the results of this
study, we propose that the following lines of inquiry should be a
priority.

Firstly, it is known that there is a clear relationship between
the Fourier energy and helicity spectrum in homogeneously
driven turbulence (e.g. Brandenburg et al. 2016). The question
to answer is whether there is a similar relationship in highly
heterogeneous systems for a multi-resolution decomposition of
the energy and helicity. The energy scale/field line helicity
scale correlation, found in the analytically driven braid relax-
ation of Sect. 8 offers some promise, but it should be inves-
tigated as to whether this same behaviour manifests in the
resistive MHD relaxations of Wilmot-Smith et al. (2009, 2011)
and Russell et al. (2015).

Secondly, what information can be obtained from the helic-
ity energy decomposition? In particular, under a field evolution
which preserves helicity, the product represented by the operator
N must oppose that of the energy. Further, N contains the topo-
logical information of the field. Since this decomposition applies
at each spatial point of a discretised field an in-depth analysis of
the transfer between these two quantities may be able to yield
information as to how reconnection activity can lead to a field
relaxing to force free equilibrium. Of particular interest will be
simulations which do not follow the Taylor relaxation hypoth-
esis (those which relax to a non-linear force free equilibrium),
as they imply the assumption that the helicity is the only topo-
logical quantity not destroyed during relaxation is not true in
general.

Thirdly, can the decomposition be used to identify rela-
tively large spatial scale substructure in heterogeneous turbu-
lence? For example partial flux rope type structures. Finally,
does the decomposition, applied to flux transport type simula-
tions or magnetogram data indicate anything about the variations
in behaviour of solar cycles?
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