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ABSTRACT

Context. Magnetic helicity is approximately conserved in resistive magnetohydrodynamic (MHD) models. It quantifies
the entanglement of the magnetic field within the plasma. The transport and removal of helicity is crucial in both
dynamo development in the solar interior and active region evolution in the solar corona. This transport typically leads
to highly inhomogeneous distributions of entanglement.
Aims. There exists no consistent systematic means of decomposing helicity over varying spatial scales and in localised
regions. Spectral helicity decompositions can be used in periodic domains and is fruitful for the analysis of homo-
geneous phenomena. This paper aims to develop methods for analysing the evolution of magnetic field topology in
non-homogeneous systems.
Methods. The method of multi-resolution wavelet decomposition is applied to the magnetic field. It is demonstrate how
this decomposition can further be applied to various quantities associated with magnetic helicity, including the field
line helicity. We use a geometrical definition of helicity, which allows these quantities to be calculated for fields with
arbitrary boundary conditions.
Results. It is shown that the multi-resolution decomposition of helicity has the crucial property of local additivity. We
demonstrate a general linear energy-topology conservation law, which significantly generalises the two-point correlation
decomposition used in the analysis of homogeneous turbulence and periodic fields. The localisation property of the
wavelet representation is shown to characterise inhomogeneous distributions, which a Fourier representation cannot.
Using an analytic representation of a resistive braided field relaxation, we demonstrate a clear correlation between the
variations in energy at various length scales and the variations in helicity at the same spatial scales. Its application to
helicity flows in a surface flux transport model show how various contributions to the global helicity input from active
region field evolution and polar field development are naturally separated by this representation.
Conclusions. The multi-resolution wavelet decomposition can be used to analyse the evolution of helicity in magnetic
fields in a manner which is consistently additive. This method has the advantage over more established spectral methods
in that it clearly characterises the inhomogeneous nature of helicity flows where spectral methods cannot. Further its
applicability in aperiodic models significantly increases the range of potential applications.
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1. Introduction

The concept of magnetic helicity for a divergence free field
B is most commonly introduced as the following scalar in-
tegral quantity

H =

∫
V

A ·B dV, (1)

where A is the vector potential of B (B = ∇ × A). This
measure was originally introduced by Woltjer (1958), and
given a topological definition by Moffatt (1969) as the link-
ing of magnetic field lines (see also Arnol’d & Khesin (1998)
when field lines do not form closed curves). If we decompose
a magnetic field into distinct magnetic regions (by distinct,
we mean that fieldlines do not cross the boundaries of the
regions within the volume V ), then helicity can be decom-
posed into the sum of self helicities of each region, and mu-
tual helicities between regions (Berger 1999). For example,
if the regions are flux ropes, then the self helicity can be
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described as the twist and writhe of individual ropes, while
the mutual helicity arises from the linking or braiding of
distinct ropes. This decomposition has also been applied to
the studies of coronal loops: see Aschwanden (2019), where
the authors investigate how the stability of coronal loops is
associated with the braided linking number. Other shapes
are possible: for example an arcade in the solar corona can
be sheared (self helicity), and it can also envelop a flux rope
(mutual helicity).

Magnetic helicity is a well conserved quantity in low
resistivity magnetohydrodynamics (Taylor 1974; Moffatt
2018). The conservation is maintained in less ideal condi-
tions, albeit to a weaker degree (Berger 1984), making it an
ideal approximate invariant for investigation into complex
magnetic field systems (Ji et al. 1995; Brandenburg 2009;
Contopoulos et al. 2009; Russell et al. 2015; Zuccarello et al.
2018)).

Magnetic helicity plays an important role in studies of
MHD turbulence in general, and dynamo theories of mag-
netic energy generation in particular (e.g. Vishniac & Cho
(2001); Blackman & Brandenburg (2003); Sur et al. (2007);
Brandenburg et al. (2016)). In a two scale kinematic dy-
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namo, the large scale energy can increase exponentially.
This poses a problem for magnetic helicity conservation.
If the large scale magnetic helicity increases exponentially,
then the small scale field must have an equal and opposite
helicity which also blows up. Dissipation of the small scale
helicity may not be physically feasible.

A solution to this problem lies in making the dynamo in-
homogeneous – the dynamo operates in one region of space
(e.g. the base of the convection zone) and excess magnetic
helicity is carried away (Brandenburg 2009; Vishniac &
Shapovalov 2013). However, to model this process properly,
we need to be able to specify how helicity is spatially dis-
tributed. In other words we need to be able to locate where
helicity resides more precisely than simply using complete
flux ropes.

Another area where helicity localisation could be use-
ful is in the study of solar activity. Many studies show
how magnetic helicity can flow from the interior into ac-
tive regions (e.g. Berger & Ruzmaikin (2000); Kusano et al.
(2002); Pevtsov (2003); Park et al. (2008); Dalmasse et al.
(2014); Prior & MacTaggart (2019)). A knowledge of how
this helicity is distributed within the active region may aid
the understanding and prediction of flares and coronal mass
ejections. Scale dependence of magnetic helicity can also
help in understanding the evolution of turbulence in the
solar wind (Brandenburg et al. (2011)).

Localising helicity is difficult for a number of reasons.
First, while one can attempt to define helicity density as
the quantity

Hden = A ·B, (2)

this is in no sense gauge invariant as gradient fields can be
added to A without changing the magnetic field. Second, it
does not represent spatially localised information, in a par-
ticular gauge such as Coulomb gauge, A is an integral over
the magnetic field, and is thus non-local. This has mathe-
matical grounding – helicity is associated with the Gauss
linking number, for which we must take a double integral
across all space. If we only have information about a small
patch of field, there is no way of knowing how a field line
goes on to twist and writhe around the rest of the field.

What about integrals of helicity as in equation (1)? For
the expression (1) to be physically meaningful, V must ei-
ther be unbounded space, or if V is finite with boundary S
then S must be a either a magnetic surface (B · n̂|S = 0),
or the field must have periodic boundary conditions on S.
If, for example, there is net flux perpendicular to two peri-
odic directions this can lead to unphysical effects involving
magnetic helicity (Berger (1997); Watson & Craig (2001);
Brandenburg & Subramanian (2004)).

In Section 2 we formally introduce the gauge problem
associated with magnetic helicity, and briefly describe rel-
ative helicity, which gives a gauge-invariant measure when
the volume is not bounded by a magnetic surface. In general
this measure is not additive in the sense that the helicity
of all space may not equal the sum of helicities of subvol-
umes. We then discuss Fourier decompositions of helicity,
which help to provide information on how helicity behaves
on various scales. Under certain circumstances (isotropic
turbulence) this approach can overcome both the gauge and
localisation problems; but not in the inhomogeneous ape-
riodic cases we would like to generalise to. This includes
a discussion on the transformed two-point correlation ten-
sor which decomposes into helicity and energy. Finally we

discuss field line helicities which measure how one chosen
field line interlinks with all other lines. This quantity can be
used to accurately quantify reconnection activity in mag-
netic fields (Prior & Yeates 2018), however, the decomposi-
tion of helicity into contributions from individual fieldlines
is still not localised.

In Section 3 we present helicity densities expressed
as two-point correlation functions which are the building
blocks of linking and winding. This final measure is gauge
invariant, even for fields with non-trivial boundary distri-
butions, as it does not depend on the vector potential for
its definition. We select this measure as our base definition
and in subsequent sections show it can be used to overcome
the spatial localisation problem.

Section 4 provides a background to wavelet transforms
and multi-resolution analysis as a solution to the locali-
sation problem, and how these can be applied to helicity
integrals. In Section 5 we give a formal introduction of the
full 3–D wavelet transform and its application to the helic-
ity integral. Section 6 provides examples of how the wavelet
multi-resolution helicity formulation can be applied in prac-
tice. This includes a pair of twisted flux ropes which present
a trivial (null) spectral decomposition; the multi-resolution
helicity decomposition is shown to resolve the spatial sep-
aration of the system’s entanglement. A second example of
a pair of interlinked twisted flux ropes demonstrates how
the decomposition can separate out the contributions from
large scale linking and smaller scale twisting, as well as cor-
rectly assess the localisation of the helicity in this system. In
Section 7 we consider the application of the multi-resolution
wavelet decomposition to our geometric two-point corre-
lation definition of helicity. This is used to derive linear
helicity-energy decompositions for both the helicity and the
field line helicity. Section 8 considers an example of a re-
connecting magnetic braid, based on the numerical exper-
iments in Wilmot-Smith et al. (2009, 2011); Russell et al.
(2015). The field line helicity multi-resolution analysis is
utilised here. In particular we show that the field’s twisted
structure and its field line entanglement balance their he-
licity fluxes at differing spatial scales. Further we show that
the growth and then decay in magnetic energy of this sys-
tem highly correlated with the field line helicity relaxation
at that the dominant spatial scales. In Section 9 we ap-
ply the multi-resolution decomposition to a flux transport
model and finally conclude in Section 10.

2. Existing helicity decompositions

2.1. The gauge problem

Suppose the volume of interest V is neither bounded by
a magnetic surface or of infinite extent. This introduces a
gauge dependence to the helicity integral: given some func-
tion Φ we can let AG = A +∇Φ, which induces a change
in helicity corresponding to

HG = H +

∫
S

ΦB · dS. (3)

To overcome this problem, Berger & Field (1984) intro-
duced a gauge invariant measure of helicity known as ‘rel-
ative helicity’, which measures the magnetic helicity of the
magnetic field B relative to some secondary field B0 by tak-
ing the difference between their helicities across all space.
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However, this quantity does not have the property of ad-
ditivity; if V is decomposed into subvolumes, the relative
helicity from each subvolume may not equal the total in
V . Further, the reference field may not be smooth across
boundaries of sub-domains.

2.2. Fourier spectra

The splitting of magnetic fields into different scales is al-
ready core to the study of many magnetohydrodynamical
systems: Verma (2004) provides an in-depth review of tur-
bulent magnetohydrodynamic fields, which have energy in-
terchanges occurring across a spectrum of spatial scales.
Following Blackman (2004); Subramanian & Brandenburg
(2005); Blackman (2015), we can write the magnetic energy
spectrum as

Ek =

∫
|B̃|2k2dΩk, (4)

where k = ||k||, and a tilde represents the fourier transform.
Ωk then represents a spherical shell in wave space, given by
all wavenumbers k− ≤ k ≤ k+, for which k± = ||k||±0.5. In
Fourier space, we have the direct relation Ã = −ik×B̃/k2.
Thus we can write

Hk =

∫
i(k× B̃

∗
(k)) · B̃(k)dΩk, (5)

and as such we have a gauge invariant measure of mag-
netic helicity at scale L = 2π/k which has the property
of additivity (see for example Moffatt (1978); Blackman &
Brandenburg (2003); Démoulin (2007); Brandenburg et al.
(2016)). The gauge invariance follows from the fact that the
surface integral of (3) vanishes for the periodic boundary
conditions required for a Fourier representation of B.

It is important to note that the Fourier decomposition
can produce spurious results: if we imagine an infinite sys-
tem of alternately twisted flux tubes, the Fourier transform
of magnetic helicity would be zero at all scales (Asgari-
Targhi & Berger 2009). To see this, suppose that Bz is
constant so only has power at k = 0, but Bx and By vary
in x and y to make the oppositely twisted tubes. Then at
any k > 0, both k and B̃(k) will be in the x−y plane. Thus
the triple product must involve Bz; but Bz will be zero for
k > 0.

Also Fourier spectrum does not give information on spa-
tial locality. The windowed Fourier transform can help. An
envelope function with compact support is convolved on
top of the infinite sinusoidal functions. Taking the Fourier
transform using such a reduced analytic form gives an idea
of the variations corresponding to scales at a given locality,
but has two downsides (aside from the requirement of peri-
odicity): the transformation does not provide an orthogonal
basis, which is required to maintain additivity. Secondly, the
window size is fixed, meaning we cannot separate intense
fluctuations which are on smaller scales than the window
size from weak contributions on the same scale as the win-
dow size.

2.3. Two-point correlation functions

An important consequence of a fourier decomposition of
a magnetic field is that the helicity Hk can be related to

the magnetic energy Ek via the transform of the two-point
correlation tensor Mij :

Mij(X,x) = Bi(X− x)Bj(X + x). (6)

In a periodic domain one can transform this function over
the displacement x to obtain a skew-symmetric tensor func-
tion M̃ij(X,k) of both position and scale, and further, for
isotropic turbulence, this can be decomposed (in three di-
mensions) as

M̃ij =
[
(δij − kui kuj )2Ek − ikul εijlkHk

]
/8k2π, (7)

where kui is the ith component of the unit vector of k and
εijl the alternating tensor (Roberts & Soward 1975; Bran-
denburg et al. 2016). So the energy is the trace of the tensor
M̃ij and the helicity represented by the off-diagonal compo-
nents. This is a potentially powerful relation between the
magnetic helicity and energy on a given Fourier shell at
each point of space.

In this article, we intend to provide a similar decompo-
sition of magnetic helicity which preserves additivity and
scale dependence, whilst also providing information about
the spatial locality of terms contributing to the power at
each scale. Key to our study is the lack of any assump-
tions about the boundary conditions of the magnetic fields
or any isotropic assumptions. One result is a variant of (7)
which can retain information on the spatial distribution of
the magnetic energy and helicity, even in highly inhomoge-
neous systems.

2.4. Fieldline helicity

Field line helicity is another tool that has become more
popular in recent years. For a given field line γ we have
(Berger 1988; Yeates & Hornig 2013; Prior & Yeates 2014;
Yeates & Page 2018; Moraitis et al. 2019)

A(γ) =

∫
γ

A ·T ds, (8)

where T = B/||B|| is the unit tangent vector along the
fieldline, and s is the arclength parameter of its curve. The
fieldline helicity measures the average winding of all field
lines around the field line under analysis (Prior & Yeates
2014). Field line helicity can be seen as the limit of the
methodology of Pevtsov (2003), where each magnetic sur-
face encloses exactly one field line. If we imagine tracing
the field lines between two planes, the field line helicity as-
sociated with a field line starting at each point (xl, yl) on
some initial plane (typically taken as the lower boundary
of a system) gives a two-dimensional density.

The fieldline helicity is linear in A so has the property
of additivity. It is not, however, gauge invariant, nor does
it have the property locality as the expression for A in-
volves an integration over at least one spatial dimension
(see Prior & Yeates (2014)). There is a relative field line
helicity version of this quantity, whose definition comes at-
tached with various technical complexities (Yeates & Page
2018; Moraitis et al. 2019), but is an invariant for each in-
dividual field line. Further, there is some remaining gauge
dependence.
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2.5. The need for a different baseline definition of helicity

These decompositions of helicity so far all have drawbacks;
none combine the properties of gauge independence, spatial
locality, and additivity we seek. To overcome this we begin
by adopting a purely geometrical definition of helicity. We
first show this has no gauge dependence, then in the follow-
ing sections we show how it can be used to overcome the
additivity and locality problems.

3. Magnetic winding and gauge independence

3.1. Helicity is winding

Given any integral representation for A, the helicity inte-
gral becomes a double integral involving B evaluated at
two different points. For example, in Coulomb gauge with
A expressed via the Biot-Savart law,

H = − 1

4π

∫
V

∫
V ′

B ·B′ × r

r3
d3x d3x′. (9)

The integrand can be regarded as a two-point correlation
function for the magnetic field (Subramanian & Branden-
burg 2005).

A particular topologically meaningful choice for A is
the winding gauge. Prior & Yeates (2014) considered the
winding gauge Aw,

Aw(x, y, z) =
1

2π

∫
Sz

B(x′, y′, z)× r

r2
dx′ dy′ (10)

r = (x− x′, y − y′, 0),

where Sz is a plane of constant z value. With this choice
the helicity can be written as

H =
1

2π

∫ z1

z0

∫
Sz

∫
S′
z

B ·B(x′,y′, z)× r

r3
dx′ dy′ dx dy dz,

(11)

for a two–point correlation within the plane Sz of constant
z. Here the set of planes Sz, z ∈ [z0, z1] cover the whole
domain V . Prior & Yeates (2014) showed that (11) is just
the flux-weighted average winding of all pairs of field line
of B with each other, that is

H(B) =
1

2π

∫ z1

z0

∫
Sz

∫
S′
z

Bz(x)Bz(x
′)

d

dz
Θ(x,x′) d2x d2x′ dz (12)

In any planar slices Sz, S′z, Θ(x,x′) defines the ‘angle’ be-
tween the two fieldlines centred at x and x′,

Θ(x,x′) = arctan

(
y − y′

x− x′

)
, (13)

We demonstrate this pictorially in Figure 1 for two curves
γ and γ′. Similarly a visualisation of the topological nature
of the integrand of (11), a two-point correlation function
which measures the net winding, is shown in (see Figure 2.

We remark that this requires that the field can be com-
posed of a set of planar surfaces V = {Sz|z ∈ [z0, z1]} and

(a)

Fig. 1: Winding number interpretation of helicity. The
winding is defined by the mutual angle Θ between two
curves γ and γ̃. The yellow arrows depict a fixed direction
and the black arrows the joining vector of the two curves
in a given plane Sz used to define Θ.

Fig. 2: Two point correlation interpretation of helicity.
Given two field lines, the product of Bz for the first field
line, and B′θ (in the plane) for the second line, as would be
in r×B′, gives a measure of their mutual winding.

that, if the volume is finite in x or y, then the fieldB be tan-
gent on the side surfaces. Berger & Hornig (2018) showed
that this relation can be obtained from a poloidal-toroidal
decomposition, and extended it to more general domains
which can be constructed from sets of simply connected sur-
faces. Further it was shown in Prior & Yeates (2014) that
this choice is preferable in that any other choice of gauge
or reference field gives a helicity measure which is equiva-
lent to choosing to measure the angle Θ with respect to a
varying direction, whose rotation is non physical in that it
does not relate to the entanglement of the field itself.

Prior & Yeates (2014) also showed that the field line
helicity can be written as

A(γ) =
1

2π

∫
γ

∫
S′
z

T ·B(x′, y′, z(s))× rγ
r2γ

dx′ dy′ ds, (14)

rγ = (x′ − γx, y′ − γy, 0),
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if the winding gauge is chosen. This represents the entangle-
ment of the field line γ with the rest of the field. In Section
7.1 we show that, using a wavelet decomposition ofB, it can
be represented as a spatial sum of skew symmetric tensors
whose trace give the magnetic energy and off-diagonal ele-
ments give the helicity, similar to the two-point correlation
Fourier transform relationship (7).

3.2. A gauge independent measure of magnetic helicity

The crucial point about (11) is that it gives a definition of a
quantity which measures the field–weighted entanglement
of the magnetic field, and depends only on the field B (as
does (14) for the fieldline helicity). To be sure, we can relate
it to the classical magnetic helicity definition (H =

∫
V

A·B)
via a vector potential, but the following properties can be
ascribed to the quantity purely on the basis of its topo-
logical definition in terms of winding rate dΘ/ dz. Firstly,
it is invariant under ideal evolutions which vanish on the
domain boundaries (Prior & Yeates 2014). Secondly, it is
approximately conserved for low plasma β relaxations (Rus-
sell et al. 2015). Thirdly, the field line helicity density can
be used to directly quantify magnetic reconnection (Prior
& Yeates 2018), even for fields with normal boundary com-
ponents.

These are all the properties that mark the magnetic
helicity as a fundamental quantity in solar physics appli-
cations. None of them rely on a vector potential definition
to be applicable (as demonstrated in the indicated refer-
ences). In what follows we assert the two-point correlation
function as our fundamental definition of the magnetic
helicity. For the sake of clarity we formally define the fol-
lowing two-point correlation integral

C(x, y, z) =

∫
S′
z

B(x′, y′, z)× r

r2
dx′ dy′. (15)

The product B · C represents the total winding and field
weighted correlation of the field at a point (x, y) in the plane
Sz with the whole field in that plane (via equation (11)). If
the field is tangent on the boundaries of the plane Sz then
C = Aw, but as we have discussed above C is a meaningful
topological quantity even if this is not so.

We then have the following gauge free definitions of the
helicity and field line helicity which place no requirements
on the system’s boundary conditions

H(B) =

∫ h

0

∫
Sz

B ·C dx dy dz, (16)

A(B) =

∫
γ

T ·C(γ) ds, (17)

where z ∈ [0, h] is the z–coordinate which labels the set
of planes Sz of the Cartesian domain on which the field is
defined.

What remains is to decompose these quantities such
that we have additivity and spatial locality.

4. Spatial localisation and additivity of the helicity.

4.1. Localised field decompostion

Here we very briefly introduce the ideas underpinning our
spatial localisation technique to give some geometrical in-

tuition as to its interpretation. In order to spatially decom-
pose the helicity we need a representation of the field B in
terms of functions with compact support. For example the
box function

φ(x) =

{
1 if 0 ≤ x ≤ 1,
0 if x > 1 or x < 0,

(18)

whose 3-D composite

Φx0y0z0(x, y, z) = φ(x− x0)φ(y − y0)φ(z − z0), (19)

gives a box of compact support which is translated in space.
By discretizing the domain as x0 = i∆x, i ∈ 1, . . . N , and
suitably scaling (18), a set of non-overlapping box functions
Φlmn is created to cover the domain in a non overlapping
fashion (e.g. Figure 3(a)). We can then approximate the
mean field B as

B(x, y, z) ≈
N∑
l=1

N∑
m=1

N∑
n=1

BlmnΦlmn(x, y, z), (20)

Blmn =

∫
V

BΦlmn dV. (21)

Each coefficient Blmn is representative of the average be-
haviour of the field in the box (l,m, n) ( Figure 3(b)).

We can do something similar for the correlation integral
C. Using the fact that the function Φlmn has compact sup-
port, an approximation to magnetic helicity is then given
by the sum

H(B) ≈
N∑
i=1

N∑
j=1

N∑
k=1

Blmn ·Clmn, (22)

(think of this as a spatial decomposition of the constant
part of the Fourier series). Each triplet (lmn) gives the av-
erage of the densityC·B in a particular cube of the domain.
To capture the local variations, we can use a function such
as

ψ(x) =

{
1 if 0 ≤ x ≤ 1/2,
−1 if 1/2 < x ≤ 1,
0 if x > 1 or x < 0,

(23)

defined for all real x (such that it has compact support).
The coefficients of B with respect to this function can then
be added to (20) to give a more accurate approximation of
the field (this is a little like breaking the sinusoid of the
Fourier transform into sub components). The smaller the
discretisation size (the spatial scale) N the more accurate
the approximation (the discretisation in Figure 3(c) would
be more accurate than that in (a)).

Of course there are multiple issues with such a decompo-
sition. For example how do we choose the scale of decompo-
sition? In fact (with regards to the varying component) we
might want to choose multiple scales for fields which have
both large and small scale variation. How might we then
add up these scales whilst avoiding redundancy? A branch
of wavelet analysis called Multi-resolution Analysis tells us
exactly how to perform such a decomposition orthogonally,
and combine it across multiple scales. We shall introduce it
formally in Section 5: the localised functions used above are
the so-called Haar Scaling Function (18) and Haar Wavelet
(23), and the sum (20) forms one part of the decomposition;
the method for combining the varying field components is a
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(a) (b) (c)

Fig. 3: Localised field decompositions. Panel (a), a cuboid domain is split into smaller sub-boxes, which each contain a
contribution to the total field, as shown in (b). By making the discretisation even more dense, as shown in (c), we make
our approximation more accurate.

little more complex. We will see in Section 6 that this spa-
tial scale decomposition (multi-resolution analysis) of the
helicity for the two example fields discussed above show a
non trivial (absolute) variation across spatial scales which
naturally identifies to “size" and position of the helicity pro-
ducing components of the field.

4.2. Two-point winding correlation localisation

A decomposition such as (22) is still not fully localised,
since the correlation integral C at a point (x, y, z) involves
integration across planes of constant z of the domain. Thus
the coefficient

Clmn =

∫
V

CΦlmn dV, (24)

will include integration across all planes Sz containing the
points (x, y, z) which have compact support from the func-
tion Φlmn. As such the quantity Clmn · Blmn represents
the winding correlation of the field in the box of compact
support of Φlmn with the rest of the field in the planes
containing that box, as indicated in Figure 4(a).

A finer localisation can found be inserting the decom-
position of the field B directly into the function C. For
example, since the integral C is defined in the plane Sz
we could use a two dimensional decomposition, that is use
functions Φlm which approximate the field B as

B ≈
N∑
l=1

N∑
m=1

Blm(z)Φlm. (25)

Inserting this into the field line winding integrand density
(17) would yield terms in the form

T · Blm(z)× r

r2
. (26)

This represents the winding of the curve at the point (x, y)
(represented by the vector T) with a localised sub domain
of curves corresponding to the compact support of Φlm, as

indicated Figure 4(b). We use this decomposition to develop
a spatial helicity energy decomposition for both the helic-
ity and field line helicity in Section 7. We stress that this
finer decomposition requires an explicit representation of
the helicity in terms of B, which our gauge free, physically,
and topologically meaningful definition fulfils. This will be
our ultimate solution to both the additivity and localisation
problems.

5. Helicity, wavelets and multi-resolution analysis

We first consider dimensional scalar functions f(x) as 3-
D wavelet representations are composed of combinations
of one dimensional wavelet decompositions. We will focus
on the set of wavelets known as discrete wavelets which
form the discrete wavelet transform, in particular the multi-
resolution representation of this transform (for details on
the continuous wavelet transform see e.g. Grossmann et al.
(1990)). What follows is far from a comprehensive overview
of the mathematics the multi-resolution analysis which is
beyond the scope of this study, for a more detailed intro-
duction see, for example Farge (1992) for a practical intro-
duction in a fluid dynamic context and Jawerth & Sweldens
(1994) for more details on the underlying mathematics.

5.1. The basic idea for Haar wavelets

In the previous section we introduced the Haar Scaling func-
tion (18) and varying Haar Wavelet (23) used to charac-
terise the mean and varying behaviour of a function f(x)
respectively, over a given subset of the domain. As discussed
a systematic means of choosing the and combining the do-
mains (boxes) of compact support is required. The basic
idea of a multi-resolution analysis for some function defined
on a domain [0, 1] (one can always scale this to any finite
domain) is to choose the domain spatial scales as factors of
two 2s, . . . s ∈ 1, 2, ...., as indicated in Table 1. Then, for a
given choice of scale s the functions (23) and (18) are mutu-
ally orthogonal and orthonormal with each other if suitably
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(a) (b)

Fig. 4: Geometric interpretations of spatially decomposed helicity contributions. Panel (a), the geometrical interpretation
of the spatial contribution Clmn ·Blmn of a spatial (wavelet) decomposition of the helicity. The red box represents the
spatial sub-domain given by the triplet lmn. Each point in this red domain contributes a winding with the rest of the
field in the plane in which it is contained. Because Clmn · Blmn is a sum over the whole red domain, the set of planes
containing the red domain provide winding contributions to the sum, as indicated in the Figure. Panel (b), the winding
contribution obtained by spatially decomposing the field B inside the two-point correlation function. It represents the
winding of the red curve γ (localised in the plane as represented by the vector B at that point) and the field lines in the
sub-plane indicated in green.

Scale Intervals (Locality)
0 [0, 1]

1 [0, 12 ], [ 12 , 1]

2 [0, 14 ], [ 14 ,
1
2 ], [ 12 ,

3
4 ], [ 34 , 1]

3 [0, 18 ], [ 18 ,
1
4 ], [ 14 ,

3
8 ], [ 38 ,

1
2 ], [ 12 ,

5
8 ], [ 58 ,

3
4 ], [ 34 ,

7
8 ], [ 78 , 1]

Table 1: Illustrative examples of scales and locality

dilated and translated, that is,

∫ 1

0

√
2sφ(2sx− i)

√
2sψ(2sx− j) dx = 0, (27)∫ 1

0

√
2sφ(2sx− i)

√
2sφ(2sx− j) dx

=

∫ 1

0

√
2sψ(2sx− i)

√
2sψ(2sx− j) dx = δij . (28)

A common notation for these dilation/translation combi-
nations is to write

φsi(x) = 2s/2φ (2sx− i) and ψsi(x) = 2s/2ψ (2sx− i) (29)

so that

∫ 1

0

φsi(x)ψsj(x) dx = 0,∫ 1

0

φsi(x)φsj(x) dx =

∫ 1

0

ψsi(x)ψsj dx = δij . (30)

One can also see some of these conditions can be extended
for comparisons between scales,∫ 1

0

φsi(x)ψs′j(x) = 0,∀s′ ≥ s and

i ∈ 0, 1, . . . 2s − 1, j ∈ 0, 1, . . . 2s
′
− 1,

(31)

as well as∫ 1

0

ψsi(x)ψs′i′(x) = δss′ii′ . (32)

Thus if we pick some base scale sb the orthogonality condi-
tions (30), (31) and (32) ensure it is possible to write

f(x) =

2sb−1∑
i=0

〈φsbi|f〉φsbi(x)

+

∞∑
s=sb

2s−1∑
i=0

〈ψsi|f〉ψsi(x), (33)

where

〈g, f〉 =

∫ 1

0

fg dx, (34)
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for square integrable functions on [0, 1] (Jawerth &
Sweldens 1994). It is a celebrated result of Ingrid
Daubechies (Daubechies et al. 1993) to demonstrate that
there are various classes of functions φ and ψ with compact
support which satisfy the conditions (30, 31, 32), such that
(33) can be used to represent square integrable functions.
The specific choice of φ and ψ can often be quite important
(for discussions on the matter see e.g. Farge et al. (1996);
Zhang et al. (2004)). The example calculations detailed in
this study were performed with various wavelet choices, but
no significant differences were observed, so these compara-
tive calculations were omitted for brevity. In what follows
all example calculations use the Haar basis.

In practice the series (33) will be truncated at some
maximum scale sm and the most common choice is to
have sb = 0, which prioritises the number of spatial scales
used in the expansion, so that we have the following multi-
resolution approximation:

f(x) ≈ 〈φ0|f〉φ0(x) +

sm∑
s=0

2s−1∑
i=0

〈ψsi, f〉ψsi(x). (35)

In what follows we use the equality sign for series such as
(35) on the assumption it is understood this is actually an
approximation.

The approximation (35) implies the varying behaviour
of the function f on scales 2t with t > sm cannot be prop-
erly represented. More formally it can be shown that each
sm yields a set of representable functions which are a sub-
set of the square integrable functions, and further that as
sm is increased each previous set of representable functions
is a subset of the current set of representable functions ob-
tained by increasing sm (Jawerth & Sweldens 1994). That
is to say increasing sm will always increase the set of func-
tions representable.

There is an analogy with the truncation of Fourier se-
ries which means one cannot represent frequencies below a
given scale. This is particularly clear for the Haar wavelet.
As with Fourier series truncation, the quality of represen-
tation is dependent on the degree of small scale behaviour
in the function f . In practice, the target applications in so-
lar physics would involve simulations on a numerical grid.
Thus the minimum scale 2sm would be determined by the
size of the grid on which the magnetic field is resolved, so
the approximation would be able to resolve the same scale
of function variation as the numerical grid used to resolve
the field.

5.2. Three dimensional multi-resolution analysis

In a three-dimensional Cartesian domain V , we expand the
function’s behaviour along each direction via a one dimen-
sional multi-resolution expansion. We assume a 3-D func-
tion H(x) can be written as Hx(x)Hy(y)Hz(z) (Jawerth
& Sweldens 1994). By writing each function as a multi-
resolution expansion one obtains encounter eight types of

combinations (four in 2-D) for each scale s:

ψµslmn(x) =



φsl(x)φsm(y)φsn(z) if µ = 1,

ψsl(x)φsm(y)φsn(z) if µ = 2,

φsl(x)ψsm(y)φsn(z) if µ = 3,

φsl(x)φsm(y)ψsn(z) if µ = 4,

ψsl(x)φsm(y)ψsn(z) if µ = 5,

ψsl(x)ψsm(y)φsn(z) if µ = 6,

φsl(x)ψsm(y)ψsn(z) if µ = 7,

ψsl(x)ψsm(y)ψsn(z) if µ = 8.

(36)

Writing the respective coefficients as

Hµ
slmn =

∫
V
H(x)ψ µ

slmn(x) dx, (37)

the ensuing multi-resolution decomposition will be

H(x) = H1
0ψ0(x)

+

sm∑
s=0

2s−1∑
l=0

2s−1∑
m=0

2s−1∑
n=0

8∑
µ=2

Hµ
slmnψ

µ
slmn(x), (38)

see for instance Farge et al. (1996).

5.2.1. Compacted notation

Throughout this study no particular attention was paid to
the contributions of individual µ terms, thus for each l,m, n
we shall assume the µ summation has been performed. Fur-
ther, for brevity we define an index k which, when summed
over will be assumed to indicate a sum over l, m and n (or
just l and n in 2-D). Thus we write (38) as

H(x) =

sm∑
s=0

2s−1∑
k=0

Hskψsk(x). (39)

5.2.2. Relative scale contributions

For a function H one can define the total (relative) contri-
bution Qs(H) to the multi-resolution decomposition at a
scale s as

Qs(H) =

2s−1∑
k=0

Hsk. (40)

Similarly we define the relative power Ps(H) at scale s as:

Ps(H) =

∑2s−1
k=0 |Hsk|∑sm

s=0

∑2s−1
k=0 |Hsk|

. (41)

For comparison, if the function has the required periodicity
we can calculate the power contained at each Fourier scale
k through the quantity

Hk =
∑
|k|=k

Hk(k). (42)

where the Hk are the coefficients of the appropriate Fourier
series of H.
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5.3. Helicity formulae

We consider multi-resolution expansions (39) forB (one per
component) and the multi-resolution expansion of C,

C =

sm∑
s=0

2s−1∑
k=0

Cskψsk(x), (43)

and substitute them into the helicity integral
∫
V
C ·B dV .

Using the orthogonality relationships (30), (31) and (32) we
obtain a summation over the coefficients of the two series

H =

sm∑
s=0

2s−1∑
k=0

Csk ·Bsk =

sm∑
s=0

2s−1∑
k=0

Hsk. (44)

So Hsk is the helicity contribution at scale s at position
k = lmn (summing over all directions µ). As indicated in
Figure 4(a) the geometrical interpretation of this coefficient
corresponds to the winding of the compact domain of scale
s, centred at the coordinates indicated by the triplet k, with
the field in the z-slice of the volume containing this domain.

5.4. Decompositions of classical magnetic helicity

We wish to stress that the above expression (44) is equally
valid for the classical definition of magnetic helicity:

H =

sm∑
s=0

2s−1∑
k=0

Ask ·Bsk =

sm∑
s=0

2s−1∑
k=0

Hsk. (45)

for a well–defined magnetic vector potential A. Similarly,
we can define (following Finn & Antonsen (1985)) a spatial
decomposition of gauge-invariant relative helicity:

HR =

sm∑
s=0

2s−1∑
k=0

(A + A0)sk · (B−B0)sk

=

sm∑
s=0

2s−1∑
k=0

HR,sk, (46)

where A0 and B0 are the so-called references fields, whose
normal boundary components are the same as those of B
and A. The physical intuition of local winding is, however,
only retained when using the winding gauge AW .

6. Multi-resolution analysis of magnetic helicity:
illustrative examples

In this section we present two examples which illustrate the
benefits of the spatial decomposition offered by a multi-
resolution analysis of magnetic helicity. Unless otherwise
stated, all quantities in this section have arbitrary units.
Both examples are equally valid in either the winding cor-
relation regime introduced here, or by using the classical
definition of helicity (with the winding gauge), as the mag-
netic field B is tangent at the side boundaries.

6.1. Oppositely twisted flux tubes

The first of our illustrative examples is that of a pair of
oppositely twisted flux tubes whose vector field takes the

Fig. 5: Magnetic field vector plot of equation (47) at z =
0, red indicates positive twist, and blue indicates negative
twist.

form

B =
100

a
exp

[
−((x+ 0.55)2 + y2)

a2

]
(−y, x, 0)

− 100

a
exp

[
−((x− 0.55)2 + y2)

a2

]
(−y, x, 0) + (0, 0, 10),

(47)

where we have taken a = 0.2. This field (independent of z)
is visualised for the domain [−1, 1] × [−1, 1], in Figure 5.
Making an assumption of periodicity (which can be inter-
preted as an infinite repeating pattern of the form shown
here), Fourier analysis indicates that that this magnetic
field has zero overall helicity at every scale, even when the
sum over k = k is taken with absolute values, as shown in
Figure 6.

By contrast, in Figure 7, we plot the Hsk for the wavelet
multi-resolution analysis of the magnetic helicity at spatial
scales r = 0→ 6 (along with the associated power Ps(H)).
The plotting style is that of a "bubblegram": each sub-
domain of helicity given by the multi-resolution analysis
is allocated a three-dimensional sphere at its centre. The
radius of this sphere is dependent upon the absolute mag-
nitude of the helicity of the sub-domain, and its colour, red
or blue, indicating a positive/negative sign respectively. In
this case the magnetic field, and thus the magnetic helicity,
is independent of z, but we provide the full z range as a
visual indicator of the three–dimensional localising nature
of wavelets.

The bubblegrams indicate that the helicity is well lo-
calised in space in accordance with Figure 5, presenting
with the correct sign of twist. It can be seen that the total
helicity Qs(H) at each scale is zero. The absolute magnetic
helicity power Ps(H) is well localised in scale, as indicated
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Fig. 6: Fourier decomposition Hk of magnetic helicity for
the field (47).

in Figure 8. Peak magnetic helicity occurs at half the spa-
tial scale of the domain, which is in good agreement with
the distribution of the twist in the magnetic field itself.

6.2. Linked rings

The magnetic helicity associated with two flux tubes, with
linking number L, identical individual internal twists T and
magnetic fluxes Φ is

HL = 2(L+ T )Φ2, (48)

following Berger (1999). A simple example of such linked
rings, R1 and R2 can be parametrised as

R1(r, θ, φ) = (R cos(θ) + r cos(θ) cos(φ),

R sin(θ) + r sin(θ) cos(φ), r sin(φ)), (49)

and

R2(r, θ, φ) = (Cx, Cy, Cz) + (R cos(θ) + r cos(θ) cos(φ),

− r sin(φ), R sin(θ) + r sin(θ) cos(φ)), (50)

for major radius R, minor radius r ∈ [0, rm], toroidal angle
θ and poloidal angle φ. The set Cx, Cy, Cz denote the centre
of R2. An example with rm = 0.3 and R = 1 is shown in
Figure 9. We define the magnetic fields BRi of each ring as
the sum of toroidal BRit and poloidal BRip components,

with

BR1,t(x, y, z) = B0

(
− y√

(x2 + y2)
,− x
√
q1
, 0

)
, (51)

BR1,p(x, y, z) = T B0

(
xz

rxy
,−yz

q1
, 1− R

√
q1

)
,

BR2,t(x, y, z) = B0

(
− z
√
q2
, 0,−x+ 1

√
q2

)
,

BR2,p(x, y, z) = T B0

(
(x+ 1)y

q2
,−1 +

R
√
q2
,
yz

q2

)
,

where q1 = (x2 + y2) and q2 = ((x+ 1)2 + z2).
We choose R = 1 and Cx = 1, Cy = Cz = 0. Such an

arrangement has an associated linking number of L = 1,
and we assign T = −5, B0 = 7 and rm = 0.3, giving total
magnetic helicity

HL=1,T =−5 = (2− 10)Φ2 = −31.3, (52)

where Φ = 1.98. In Figure 10, we plot the magnetic helicity
coefficients H4k. The bubblegram indicates a distribution
of magnetic helicity in correspondence to the distribution
of the magnetic fields themselves, which we can attribute
to the magnetic twist.

In Figure 12, we calculate the ratio of the multi-
resolution expansion of helicity with that of the analytical
result (from equation (48)) as a function of scales included,
which we define by the measure

Ns(H) =

∑s
s′=0Qs′(H)

HL
(53)

(with and without internal magnetic twist). Naturally
Ns → 1 in the limit s → ∞ as the multi-resolution analy-
sis would be exactly the magnetic helicity. Here we see the
scales at which Ns gets significantly close to 1 differ in the
two cases. This is as we would expect due to the differing
spatial scales between twist (small scale) and linking (large
scale). We see in Figure 11 the regions of compact support
for the Haar wavelet’s at scales s = 1, 2. The s = 1 and
s = 2 scales tend to cover both tubes to some degree whilst
the scales s = 3 and higher generally only cover one tube.
This is reflected in Figure 12 where we see the T = 0 field
is dominated by scales s = 1, 2, as scales s = 3 and higher
will reflect that on the single tube interior scale there is no
complex topology. By contrast the T = −5 case has a more
balanced distribution across the scales.

7. Helicity, energy and topology

We insert the full three-dimensional mutliresolution decom-
position of the field B into the correlation function C (15)
to obtain,

C(x) =
1

2π

sm∑
s=0

2s−1∑
k=0

Bsk ×
∫
S′
z

r

r2
ψsk(x′, y′, z) dx′ dy′

r = (x− x′, y − y′, 0), (54)

where the parameter dependence of the wavelet function ψ
indicates the integration is over only the in-plane functions
of the 3–D wavelets. In order to directly compare the helic-
ity to the energy (helicity has an extra dimension of length)
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Fig. 7: Hsk for s = 0→ 6 applied to (47). The largest scale is a measure of the numerical round-off. At the two smallest
scales 2−5,6, the visual appearance of the bubblegram is distorted by the frequency of data points. The magnetic field
and its associated helicity is independent of z.

we note that if the planes Sz have x and y widths L and
aL respectively then we can write x = uL and y = avL
(0 ≤ u, v ≤ 1) so that rL = L(u− u′, a(v − v′), 0), then

C(x) =
L

2π

sm∑
s=0

2s−1∑
k=0

Bsk

×
∫
U ′

z

arL
r2L

ψsk(x(u′), y(v′), z) du′ dv′, (55)

where Uz is the unit square in the x–y plane. Inserting
this into (16) we obtain the helicity in terms of the multi-
resolution expansion of the field B alone. This calculation
is most parsimoniously represented as a quadratic form, so
we introduce some notation. We assume a Cartesian do-
main Uz × [0, h], with Uz a unit plane at height z, then the
following quantities are dependent only upon the chosen
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Fig. 8: Ps(H) for s = 0→ 6 applied to (47).

Fig. 9: Linked flux tubes R1 (red) and R2 (green).

wavelet, not the magnetic field itself.

W s′sk′k
i =

L

2π

∫ h

0

∫
Sz×U ′

z

ariL
r2L

ψs′k′ (x(u′), y(v′), z)

ψsk(x, y, z) du′ dv′ dx dy dz, (56)
The cross-product in (54) can be represented using a skew-
symmetric matrix Ms′sk′k

ij which takes the form

Ms′sk′k
ij =

 0 0 −W s′sk′k
2

0 0 W s′sk′k
1

W s′sk′k
2 −W s′sk′k

1 0

 . (57)

Then, using the Einstein summation convention we have

H =

∫
V

C ·B dV = Mss′kk′

ij Bjs′k′B
i
sk. (58)

Fig. 10: H4k for linked tubes with T = −5.

We note that in general the wavelet orthogonality relation-
ships cannot be applied to (56) as the in-plane integrals
are over different copies of Uz. However, the z integration
is over the same domain so W s′sk′k

i will vanish if n′ 6= n
(from the vectors k = l′m′n′ and k = lmn).

7.1. Helicity as a skew symmetric operator

We note that the helicity is being represented as a prod-
uct of the field at differing positions and scales through a
skew-symmetric operatorM. This is analogous to the result
that the helicity in periodic domains can be represented as
the skew symmetric part of the Fourier transform, as dis-
cussed in Section 2.3. In this case we use the decomposition
Ms′sk′k

ij = LIs
′sk′k
ij +Os′sk′k

ij , where Is
′sk′k
ij (the superscript

labelling is for notational convenience) is the identity ma-
trix (one such matrix for each ss′kk′) and

Os′sk′k =

 −1 0 −W s′sk′k
2

0 −1 W s′sk′k
1

W s′sk′k
2 −W s′sk′k

1 −1

 , (59)

so that

H = LIs
′sk′k
ij Bjs′k′B

i
sk + Os′sk′k

ij Bjs′k′B
i
sk. (60)

The sum of contributions to the first term for which
(s′, k′) = (s, k) give the energy of the field (the multi-
resolution approximation of the energy to be precise), and
we can thus decompose the sum as follows

H = LE +N, (61)

N = LIij(1− δs
′sδk

′k)Bjs′k′B
i
sk + Os′sk′k

ij Bjs′k′B
i
sk, (62)

where δs
′s is the Kronecker delta function. The operator

N contains additional topological information which con-
stitutes the helicity. In the limit which the maximum scale
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(a) Scale s = 1 (b) Scale s = 2 (c) Scale s = 3

Fig. 11: Geometrical extent of Hsk at various scales (Haar wavelet). Panels (a) s = 1 and (b) s = 2 indicate the overlap
of the two tubes is contained within the region of compact support. Panel (c) (s = 3), the region of compact support will
generally only cover one tube.

Fig. 12: Ns(H) calculated for two linked flux tubes. Cal-
culations are shown with either T = −5 (blue) or without
(T = 0) internal twist (red).

parameter sm (i.e. the smallest spatial scale) tends to ∞
this relationship is exact so there is a linear sum

H(B) = LE(B) +N(B), (63)

where N is the multi-resolution representation of a func-
tional of the field which contains the topological informa-
tion through the quantities W s′sk′k

i . A field evolution for
which H is conserved requires that

dE

dt
= − 1

L

dN

dt
(64)

which would (approximately) apply in significantly low
plasma β resistive MHD simulations.

7.2. Field line helicity

Using (16) and (55) the fieldline helicity of a field line γ at
scale s and position k = lm can be written as

A(γ) =
L

2π

sm∑
s=0

2s−1∑
k=0

∫
γ

B

|B|
·Bsk(z(s))

×
∫
U ′

z

arL
r2L

ψsk(x(u′), y(v′), z) du′ dv′ ds, (65)

where the summation over k implies a 2-D multi-
resolution decomposition, which is why the coefficient
Bsk(z) of the multi-resolution expansion has z dependence.
The contribution to A(γ) from one individual scale is then
denoted As(γ), which is then further decomposed to indi-
vidual localities by Ask(γ).

Under ideal evolutions A(γ) is preserved so the sum of
As(γ) must be preserved and changes in As(γ) must be
balanced across the scales.

7.3. Helicity preserving field evolution

A particular class of fields of significant interest in the so-
lar physics community are braided fields for which Bz >
0, ∀x ∈ V , and hence all field lines pass through the do-
main from the bottom to top boundary. In such cases each
field lines γ can represented by the points x0 ∈ S0 where
they are rooted, such that Ask(γ) ≡ Ask(x0) and

H(B) =

∫
S0

A(x0) dx dy

=

sm∑
s=0

2s−1∑
k=0

∫
S0

Ask(x0) dx dy. (66)

If the evolution is not ideal but such that the helicity is con-
served (low plasma β resistive relaxations) the distribution
A(γ) changes but the summation (66) must be preserved.
In particular we have an alternative means of calculating
the value of the operator N(B),
N(B) = H(B)− LE(B)

=

sm∑
s=0

2s−1∑
k=0

∫
S0

Ask(x0) dx dy − LE. (67)
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The advantage is that the field line helicity representation
of N is linear in both s and k so, for example, we can
decompose the contributions to N as the difference H−LE
at each scale s, and this decomposition is orthogonal. It is
this form which we choose to utilise in this study.

8. Fieldline helicity example: analytical magnetic
reconnection (the Dundee braid)

Following the resistive MHD based braiding experiments
in Wilmot-Smith et al. (2009, 2011); Russell et al. (2015)
we define a field composed of exponential twist units
Bt(b0, k, a, l, xc, yc, zc) given by

Bt(b0, k, a, l, xc, yc, zc) =

2b0k

a
exp

(
− (x− xc)2 + (y − yc)2

a2
− (z − zc)2

l2

)
R, (68)

where

R = (−(y − yc), x− xc, 0). (69)

The parameter b0 determines the strength of the field, a the
horizontal width of the twist zones, l their vertical extent,
and k the handedness of the twist (k = 1 is right handed).
The centre of rotation is (xc, yc, zc). The braided field is
then defined as a superposition of n pairs of positive and
negative twists and a uniform vertical background field

Bb(1, a, l, d, z0, sd, n) =
n∑
i=1

[
Bt(1, 1, a, l,−d, 0, z0 + sd(i− 1))

+ Bt(1,−1, a, l, 0, d, 0, z0 + sd(i− 1))

]
+ ẑ, (70)

where d is the offset from the central axis, and sd is the ver-
tical spacing between consecutive twists (of the same sign)
and z0 the height of the first twist unit. In the literature,
this is sometimes referred to as a “Dundee Braid". By al-
tering the extent of the twist units (the parameters a and
l) one can control the overlap. The field lines in the region
of overlap show significant entanglement (Figure 13(a)) a
property very well captured by the field line helicity dis-
tribution A(γ) (Figure 13(b)). The helicity of this field is
(with a suitable choice of parameters) essentially zero ow-
ing to the balance of positive and negative twisting. It was
found that under a high magnetic Reynold’s number resis-
tive MHD relaxation, under which the helicity is approxi-
mately conserved (Wilmot-Smith et al. 2011; Russell et al.
2015), that the field was able to simplify via localised re-
connection into (roughly) a pair of oppositely twisted flux
ropes.

To keep matters simple in this first application of the
multi-resolution decomposition Ask, we define a rough an-
alytic approximation of this relaxation process with the fol-
lowing parameterised magnetic field:

B = Bb(1, D1(t), D2(t), 1,−20, 8, 3) (71)

where

D1(t) =
√

2(1− t),
D2(t) = 2(1 + 2t).

(a)

(b)

Fig. 13: Topological measures of (70). Panel (a) indicates
a subset of the field lines in the region where the fields
opposing twist units overlap. The field line helicity of the
green field line indicated would have contributions due to
its own complex geometry as well as its entanglement with
the field. (b) the field line helicity distribution (calculated
using the code used in Prior & Yeates (2018)) of (71) with
t = 0, there is significant small scale structure indicating
he field’s complex entanglement.
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This field is considered in a domain x, y ∈ [−4, 4], z ∈
[−24, 24], which are the dimensions (and parameters for
t = 0) used in Wilmot-Smith et al. (2009, 2011); Russell
et al. (2015). As t increases the twisted units become more
and more separated in the horizontal direction, as shown
in Figure 14. The twist units (with the same sign) also
merge vertically to form two non overlapping twisted flux
tubes at t = 1. The decrease in overlap between the op-
positely twisted units tends also reduces the complex field
entanglement (as we shall shortly see this is not true for
low t). It was checked numerically that the total helicity
H(B, x, y, z, t) (essentially) remains zero for all t, a prop-
erty designed to approximate the numerically observed con-
servation of helicity in the low plasma β MHD simulations.
The Fourier expansion of the magnetic helicity of this field
is zero throughout (even when an absolute magnitude sum
is used). In Figure 15, we present the field line distribu-
tion of the scale decomposed field line helicity decompo-
sition As(x0), which involves a summation over the spa-
tial parameter k. We remind the reader that for the field
line helicity there is one such summation for each point x0

(i.e. each field line) - hence this is still a spatial distribu-
tion. The evolution of these distributions is shown at times
t = 0, 0.2, 0.4, 0.6, 0.8, 0.95.

A couple of observations are worth making. Firstly, at
t = 0 all scales As(x0) show (to varying degrees) the com-
plex mixing pattern present in the full distribution. This is
a result of the field line geometry (i.e. the geometry of the
green curve in Figure 13(a)). Eventually this pattern dis-
appears as the field lines reconnect and disentangle, again
this is true of all scales. Secondly, there is a surrounding
distribution which is most clear at the scales s = 1, 2; this
persists throughout the relaxation. This is the twisted field
structure of the field itself, as indicated in the twisted tube
example of Section 6.1 twisted tube structures (which al-
ways compose the field in some manner) are dominated by
contributions at these scales. Over the whole sum (over s
at each t) these contributions cancel.

To quantify the entanglement variation highlighted in
the first point we define a mixing parameter M as

M =

(∣∣∣∣∂As(x0)

∂x

∣∣∣∣2 +

∣∣∣∣∂As(x0)

∂y

∣∣∣∣2) 1
2

, (72)

which will highlight the regions in which we see a rapid
change in sign between positive and negative field line helic-
ity As(x0). Admittedly this will also capture simpler radial
decay, but such contributions should be sufficiently weaker.
The mixing associated with each scale, in the style of Figure
15, is shown in Figure 16. There are two observations. First
that the mixing actually increases at first up to t = 0.4
then it decays. Second that the decay is more pronounced
at larger length scales (smaller s).

In Figure 17 we plot the total signed contribution per
scale

QS(A) =

∫
S0

As(x0) dx0 dy0, (73)

, spatial integrals over the distributions shown in Figure 14.
Note that we use the Qs notation used to indicate spatial
summation earlier, here it includes the spatial integration
over all fieldlines, that is all x0. There is always (approxi-
mately) as much negative as positive contribution, reflect-
ing the total helicity conservation of the field. These values

are dominated by the lower scale. Their relative magnitudes
increase up to about t = 0.4 then decrease over time. It is
interesting that the balance of positive and negative val-
ues is always maintained by the same scales (albeit with
decreasing magnitudes).

In Figure 18 we plot the absolute power Ps(A):

PS(A) =

∫
S0
|As(x0)| dx0 dy0∑sm

s=0

∫
S0
|As(x0)| dx0 dy0

, (74)

associated with each spatial scale for time steps t = 0 to t =
0.95. For early times the the values (mostly) decrease with
s. However, as the twisting units separate and merge the
scale s = 2 becomes more prevalent, reflecting the coherent
development of the twisted flux ropes. In figures 19 and 20
we see the total power normalised power across all scales
of both the field line helicity A and the mixing M as a
function of time, given by

PT (H) =
Ps(H)

maxtPs(H)
. (75)

Qualitatively the plots are very similar, showing a peak
around 0.35 and then a relatively large drop as the twist
units properly separate.

We can also directly compare the evolution of the
scaled–fieldline helicity with that of magnetic energy, as
shown in Figure 21, where we plot the absolute normalised
magnetic energy against that of fieldline helicity, normalised
within each scale (PT (A) versus PT (E)).

The correlation between the two time series is seen to
decrease as the spatial scale decreases in size. Their relative
decay is most strongly aligned at scales 20 − 2−2. Whilst
the decay associated with fieldline helicity power is fairly
consistent at all scales, the decay of magnetic energy is op-
posite to that of field line helicity at scales 2−5 and 2−6. It
is no surprise that the scales s = 0, 2 are the most aligned.
As we see in Figure 17 these are the dominant contributors
to the field line helicity variations in the field. As the mag-
nitude of these peaks rise (up to t = 0.3) and fall t > 0.3
(Figure 17) so concurrently does the energy. This is a po-
tentially important observation: that the variations in the
the multi-resolution decomposition of the field line helicity
Ask are intimately correlated with the variations in energy
in the field. In future studies it would be interesting to see
whether this correlation is maintained in resistive relaxation
simulations.

9. Flux of magnetic helicity

The flux of magnetic helicity through a surface is typically
defined by

dH

dt
= −2

∫
V

E ·B d3x

+

∫
S

(
(A0 · v)B + (A0 ·B)v

)
· n̂ d2x, (76)

for a reference field A0 (as in relative helicity) uniquely de-
fined by the appropriate boundary conditions of magnetic
field B, and velocity field v. The first term refers to dissi-
pation within the volume, which has been shown to have
an effective time scale less than energy dissipation, and we
thus disregard it. The second expression can be interpreted
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Fig. 14: Vector plots of (71). From top left four time steps t = 0, 0.3, 0.6, 0.9 at z = 0. Red (blue) denotes the positively
(negatively) twisted regions.

as the sum of two individual fluxes: the effect of twisting
motions on the boundary, and secondly the movement of
magnetic field through the boundary.

Wavelet analysis allows us to define a fourth measure
of helicity flux, giving an indication of how helicity moves
spatially within the volume. An intuitive example of this
could be a study of a coronal loop expanding through a
simulated region, for which the twist associated with the
flux rope would be seen to move spatially. multi-resolution
analysis measures helicity as a set of coefficients Hsk at-
tributed to a given scale and spatial domain (with compact

support). We can then simply define
dHt,sk

dt
=
Ht,sk −Ht−δt,sk

δt
, (77)

in the form of a finite difference approximation, for the
multi-resolution analyses of two adjacent time snapshots.

Further, we can perform a direct (2-D) multi-resolution
analysis on each term of the analytical measure of flux. For
instance,
dH

dt sk
=

∫
S

(A0 · v)ψsk(x)d2x ·
∫
S

Br(x)ψskd2x, (78)
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Fig. 15: Field line helicity distributions As(x0) of (71). The columns from left to right represent time steps t =
0, 0.2, 0.4, 0.6, 0.8, 0.95 integrated on a domain [−4, 4]2 in x, y and [−24, 24] in z, with 400× 400 field lines. The vertical
direction indicates increasing scale s (except for the top line which is the total sum over s (it is the actual distribution
A)).

where we note that the z-spatial co-ordinate has been
dropped again (k = lm). This is a multi-resolution form
of the helicity flux used in studies of the solar helicity flux
through the photosphere (Hawkes & Berger 2018). Using
the surface flux transport model simulations of Jiang et al.
(2011), we calculate the helicity flux associated with seven
spatial scales in Figure 22 (the non–integer powers of two
for the spatial scales is dependent on the resolution of the
data). This data covers their simulations for Solar Cycles

21 and 22, where time is counted from the beginning of cy-
cle 21. As each cycle develops, the helicity flux associated
with the largest scale (2−1,−2 in (cos(θ), φ), which equates
to a hemispherical split), drops in line with an increase in
helicity flux associated with Br of a smaller scale. This can
be interpreted as the decreasing relative importance of po-
lar (large scale) field relative to small-scale emerging active
regions. This behaviour is seen to repeat over the course of
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Fig. 16: Mixing distributions M corresponding to Figure 15. The distributions are shown at time steps t =
0, 0.2, 0.4, 0.6, 0.8, 0.95 on a domain [−4, 4]2 in x, y and [−24, 24] in z, with 400 × 400 field lines. The vertical direc-
tion indicates increasing scale s (except for the top line which is the total sum over s (it is the actual distribution
A)).
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Fig. 17: Total fieldline helicity power QS(A) attributed
to each spatial scale. The distribution for s ∈ [0, 6] is
shown for time periods t = 0 to t = 0.95 for the Dundee
braid relaxation.

Fig. 18: Total fieldline helicity absolute normalised
power PS(A) attributed to each spatial scale. The dis-
tribution for s ∈ [0, 6] is shown for time periods t = 0
to t = 0.95 for the Dundee braid relaxation.

Fig. 19: Temporal evolution of PT (A). Calculations are
performed from t = 0 to t = 0.95 for the Dundee braid
relaxation.

Fig. 20: Temporal evolution of PT (M). Calculations
are performed from t = 0 to t = 0.95 for the Dundee
braid relaxation.

two solar cycles (the end of the figure corresponds to the
end of Cycle 22).

10. Conclusions and future directions

10.1. Conclusions

We have demonstrated how a multi-resolution decomposi-
tion can be applied to the magnetic helicity and field line he-
licity, crucial topological quantities in astrophysical appli-

cations of the MHD equations. This approach is compared
to spectral helicity decompositions, which require periodic
domains. The method of multi-resolution analysis has some
significant advantages over this purely spectral approach:

Firstly, it requires no periodicity conditions on the do-
main thus has a far wider range of potential applications.
Secondly, it yields information on the spatial decomposition
of helicity in the field. This is particularly useful for fields
with significant heterogeneity of their entanglement.
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Fig. 21: Temporal evolution of PT for A (field line helicity) and E (magnetic energy). Each panel represents a scale s
(except the first with is the total over all scales). The normalisation is scale dependent.

Fig. 22: Example Helicity flux dH/dtsk multiresolution cal-
culations. Equation (78) is applied to a portion of the simu-
lations of Jiang et al. (2011). The scale 2−a,b refers to spatial
scale 2−a2 in cos(θ) and 2−b2π in φ. Carrington rotations
are counted from the beginning of Solar Cycle 21.

On the first point the we have circumvented any issues
regarding gauge choice by instead using a concrete geomet-

rical definition of helicity. This definition combines the re-
sults of Prior & Yeates (2014) and Berger & Hornig (2018)
to give a topologically meaningful definition of the helicity
in terms of two–point correlation functions of B only (we
need not calculate a vector potential). It has no require-
ments on the boundary conditions of the field to be valid.
The second point is a direct consequence of decomposing
the magnetic field B using a wavelet (multi-resolution) ex-
pansion, rather than a Fourier series expansion. The follow-
ing explicit theoretical results were obtained.

Frstly that the helicity can be written as a sum of the
components of the multi-resolution expansions of the field
B and the correlation integral C, given by equation (44).
There is an explicit geometrical interpretation of the co-
efficients Hsk (at scale s and position vector k) as indi-
cated visually in Figure 4(a). We demonstrate the efficacy
of this method with the multi-resolution analysis correctly
identifying the opposing twisting two flux tubes in Section
6.1 (where the Fourier decomposition does not). In Section
6.2 we show there is a clear scale separation of twisting
and writhing components of helicity of a pair of linked flux
ropes.

Secondly, we showed it is possible to express the helicity
as a linear sum:

H(B) = LE(B) +N(B) (79)

where the operator N is a sum over various contributions to
the total winding (entanglement) of the field from the vari-
ous scale and spatial components of the multi-resolution ex-
pansion of the field B, and L is the characteristic horizontal
length scale of the domain. This can be seen as a signifi-
cant extension of the two-point field correlation Fourier en-
ergy/helicity decomposition applicable for fields in periodic

Article number, page 20 of 22



C. Prior et al.: Spatial Scales and Locality of Magnetic Helicity

domains (see e.g Brandenburg et al. (2016)). This decom-
position not only places no requirement on the boundary
conditions of the field but also gives information about the
spatial distribution of contributions to this sum.

Thirdly it was shown that the field line helicity A(γ),
the average entanglement of the field line γ with the rest
of the field, can be composed into both spatial and scale
components using a multi-resolution analysis (see equation
(65)). Under an ideal evolution, when the distribution of
field line helicity is conserved, this decomposition could be
used to provide insight as to how the field’s topology re-
distributes both spatially and across scales (e.g. flux ropes
kinking/expanding or buoyantly rising through the convec-
tion zone of the sun). In this initial study we applied the
field line helicity decomposition to an analytic representa-
tion of a resistively relaxing magnetic braid whose total
helicity is conserved (mimicking well known numerical ex-
periments of low plasma β resistive MHD relaxation of the
same magnetic braid configuration (Russell et al. 2015)). In
this case the spatially integrated sum of the field line helic-
ity at each scale, which is equal to the helicity and hence
conserved, indicated that the conservation was maintained
by a varying balance of entanglement on scales which re-
flected the varying field line entanglement and the twisted
structure of the underlying magnetic field. It was also seen
that the variance in these contributions strongly correlated
with the variations in energy of the field during its relax-
ation.

Finally, we demonstrated how to apply this multi-
resolution decomposition to helicity fluxes through a planar
boundary. An example application of this to a surface flux
transport model over two solar cycles is used to indicate
the varying contributions from the large-scale polar field
and the smaller scale active regions.

In addition to these results and findings we have de-
veloped a number of simple methods/quantities which can
be used to draw conclusions from the expansions, such as
the scale total and power coefficients Qs and Ps, and the
mixing measure M used to interpret the varying degree of
complexity of the field line helicity decompositions in Sec-
tion 8.

10.2. Future directions

The next step of this study would be to apply these tech-
niques to Resistive MHD simulations. Based on the results
of this study, we propose that the following lines of inquiry
should be a priority.

Firstly, it is known that there is a clear relationship
between the Fourier energy and helicity spectrum in ho-
mogeneously driven turbulence (e.g. Brandenburg et al.
(2016)). The question to answer is whether there is a similar
relationship in highly heterogeneous systems for a multi-
resolution decomposition of the energy and helicity. The
energy scale/field line helicity scale correlation, found in
the analytically driven braid relaxation of Section 8 offers
some promise, but it should be investigated as to whether
this same behaviour manifests in the resistive MHD relax-
ations of Wilmot-Smith et al. (2009, 2011); Russell et al.
(2015).

Secondly, what information can be obtained from the
helicity energy decomposition? In particular, under a field
evolution which preserves helicity, the product represented
by the operator N must oppose that of the energy. Further,

N contains the topological information of the field. Since
this decomposition applies at each spatial point of a dis-
cretised field an in–depth analysis of the transfer between
these two quantities may be able to yield information as
to how reconnection activity can lead to a field relaxing to
force free equilibrium. Of particular interest will be simula-
tions which do not follow the Taylor relaxation hypothesis
(those which relax to a non linear force free equilibrium),
as they imply the assumption that the helicity is the only
topological quantity not destroyed during relaxation is not
true in general.

Thirdly, can the decomposition be used to identify rela-
tively large spatial scale substructure in heterogeneous tur-
bulence ? for example partial flux rope type structures.
Finally, does the decomposition, applied to flux transport
type simulations or magnetogram data indicate anything
about the variations in behaviour of solar cycles?
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