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Abstract. We study Schrödinger operators H = −∆ + V in L2(Ω) where Ω
is Rd or the half-space Rd

+, subject to (real) Robin boundary conditions in the

latter case. For p > d we construct a non-real potential V ∈ Lp(Ω) ∩ L∞(Ω)

that decays at infinity so that H has infinitely many non-real eigenvalues
accumulating at every point of the essential spectrum σess(H) = [0,∞). This

demonstrates that the Lieb-Thirring inequalities for selfadjoint Schrödinger

operators are no longer true in the non-selfadjoint case.

1. Introduction

In three seminal papers [15, 16, 17] from the 1960s, Pavlov studied Schrödinger
operators H = −∆+V in L2(0,∞) with real-valued rapidly decaying potentials V ,
subject to a non-selfadjoint Robin boundary condition f ′(0) = hf(0) for some
h ∈ C. In contrast to the selfadjoint case, for non-real h the discrete eigenvalues
are complex and can, in principle, accumulate at a non-zero point of the essen-
tial spectrum [0,∞). Using inverse spectral theory, Pavlov proved the existence
of a potential V and a boundary condition so that H has infinitely many non-
real eigenvalues that accumulate at a prescribed point λ of the essential spectrum
σess(H) = [0,∞). He further studied the structure of the set of accumulation points.
Since then, it has been an open question whether these results can be modified so
that the non-selfadjointness is not coming from the boundary conditions but from
a non-real potential V .

The aim of the present paper is to fill this gap by proving the following two
results. In the first theorem we address non-selfadjoint Schrödinger operators in
L2(Rd) for any dimension d ∈ N.

Theorem 1. Let p > d and E > 0. There exists V ∈ L∞(Rd) ∩ Lp(Rd) with
max{‖V ‖∞, ‖V ‖p} ≤ E that decays at infinity so that the Schrödinger operator

H := −∆ + V, D(H) := W 2,2(Rd),

has infinitely many eigenvalues in the open lower complex half-plane that accumulate
at every point in [0,∞).

In the second main result we replace the whole Euclidean space Rd by the half-
space Rd+ := {x = (x1, . . . , xd)

t ∈ Rd : xd > 0} and impose (real) Robin boundary
conditions.

Theorem 2. Let p > d and E > 0, and let φ ∈ [0, π). There exists V ∈ L∞(Rd+)∩
Lp(Rd+) with max{‖V ‖∞, ‖V ‖p} ≤ E that decays at infinity so that the Schrödinger
operator

H := −∆ + V, D(H) :=
{
f ∈W 2,2(Rd+) : cos(φ)∂xdf + sin(φ)f = 0 on ∂Rd+

}
,

has infinitely many eigenvalues in the open lower complex half-plane that accumulate
at every point in [0,∞).
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Theorem 1 is also relevant in the context of Lieb-Thirring inequalities (after Lieb
and Thirring [14], see also [12] for an overview) and their (possible) generalisation to
complex potentials [8, 13, 5]. In the selfadjoint case the Lieb-Thirring inequalities
state that, if

p ≥ d

2
for d ≥ 3; p > 1 for d = 2; p ≥ 1 for d = 1, (1)

then there exists Cd,p > 0 so that for every real V ∈ Lp(Rd) the negative eigenvalues
of the Schrödinger operator H = −∆ + V satisfy∑

λ∈σ(H)\[0,∞)

|λ|p− d2 ≤ Cd,p‖V ‖pp (2)

where in the sum each eigenvalue is repeated according to its algebraic multiplicity.
In fact, the inequality remains true if V on the right hand side is replaced by the
negative part V− := max{0,−V }. Now Theorem 1 demonstrates that, if p > d,
an inequality like (2) cannot hold in the non-selfadjoint case since, for the con-
structed V in Theorem 1, the left hand side is infinite whereas the right hand side
is finite (and, in fact, arbitrarily small). The sharpness of p > d (in relation to p
in (1)) is discussed in Remark 1 below. For possible modifications of Lieb-Thirring
inequalities see [6] and the references therein.

Theorem 1 is proved in Section 2, and Theorem 2 in Section 3. In contrast to
Pavlov’s inverse spectral theory approach using an elaborate analysis of Weyl m-
functions, our proofs are constructive. For both Ω = Rd and Ω = Rd+ the proof
relies on the following two main ingredients (see Lemmas 1, 2 and 3, 4 for the
precise formulation):

(I) For an arbitrary λ ∈ (0,∞) we construct V0 ∈ L∞(Ω) ∩ Lp(Ω) with arbi-
trarily small ‖V0‖∞, ‖V0‖p and that decays at infinity so that −∆ + V0 in
L2(Ω) has an eigenvalue µ close to λ.

(II) For two potentials V1 ∈ L∞(Ω), V2 ∈ L∞(Rd) decaying at infinity, consider
the corresponding Schrödinger operators

H1 := −∆ + V1 in L2(Ω), H2 := −∆ + V2 in L2(Rd),

and assume that there exists µ ∈ σ(H2)\σ(H1). If we shift V2 in direction
of the d-th coordinate vector ed to V2(· − ted) for a sufficiently large t > 0,
then H1 + χΩV2(· − ted) in L2(Ω) has an eigenvalue µt close to µ.

The potential V in Theorems 1, 2 is then an infinite sum of functions Vj , j ∈ N,
that we construct inductively using (I) and (II) above.

Since we do not know the exact value of the “sufficiently large” shift t in (II),
we cannot control the exact decay rate of V at infinity. For Ω = R3 or Ω = (0,∞),
subject to the boundary condition f(0) = 0 or f ′(0) = hf(0), h ∈ C, in the half-line
case, Pavlov [15] proved that if

∃ ε > 0 : sup
x∈Ω
|V (x)|eε

√
|x| <∞, (3)

then −∆ +V in L2(Ω) has only finitely many eigenvalues. Therefore, the potential
V in Theorem 1 (for d = 3) and Theorem 2 (for d = 1) has to decay so slow to
violate (3). The condition (3) for Ω = (0,∞) is sharp; Pavlov [16] proved that it

cannot be relaxed to supx∈(0,∞) |V (x)|eεxβ <∞ for any β ∈
(
0, 1

2

)
. For an arbitrary

odd dimension d, see [9] and the references therein for conditions guaranteeing a
finite number of eigenvalues. In addition, in [18] are conditions, for an arbitrary
d ≥ 2, that prevent a dissipative Schrödinger operator (where ImV ≤ 0) to have
discrete eigenvalues accumulating at zero.
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We employ the following notation and conventions. Let N := {1, 2, 3, . . . } and
N0 := N ∪ {0}. The open ball in Rd with radius r > 0 around v ∈ Rd is B(v, r) :=
{x ∈ Rd : |x − v| < r}, and analogously B(z, r) ⊂ C denotes the open disk of
radius r > 0 around z ∈ C. For a subset Λ ⊂ C the complex conjugated set is
Λ∗ := {λ : λ ∈ Λ}, and for z ∈ C its distance to Λ is dist(z,Λ) := infλ∈Λ |z − λ|.
Take a domain Ω ⊂ Rd and p ∈ [1,∞]. A function f ∈ Lp(Ω) is viewed as an element
of Lp(Rd) by extending it by zero outside Ω, with Lp norm ‖f‖p; conversely, if we
multiply a function g ∈ Lp(Rd) with the characteristic function χΩ of Ω, then
χΩg ∈ Lp(Ω). If not specified by an index, the norm ‖ · ‖ always refers to the one of
the Hilbert space L2(Rd). The operator domain, spectrum and resolvent set of an
operator H are denoted by D(H), σ(H) and %(H), and the Hilbert space adjoint
operator is H∗. An identity operator is denoted by I, and scalar multiples λI for
λ ∈ C are written as λ. Analogously, in L2(Rd) the operator of multiplication
with an L∞(Rd) function V is simply V ; its adjoint operator is the multiplication
operator with the complex conjugated function V . Weak convergence in L2(Rd) is

denoted by fn
w→ f , and strong operator convergence is Hn

s→ H.

2. Schrödinger operator in L2(Rd)

Throughout this section, all operator domains are W 2,2(Rd). The functions Vj ,
j ∈ N, mentioned in the introduction will be of the form

Uc,t,a(x) :=

c, x ∈ B(ted, a),

− (d− 3)(d− 1)

4|x− ted|2
, x ∈ Rd\B(ted, a),

where c ∈ C, t ∈ R and a > 0. Note that in dimension d = 1 and d = 3 the function
Uc,t,a vanishes outside the ball B(ted, a).

Before we study finite or infinite sums, we reduce our attention to a potential of
the form Uc,t,a.

Lemma 1. Let λ ∈ (0,∞) and p > d. For any ε, δ, r > 0 there exist a > 0, c ∈ C
and µ ∈ C with Imµ < 0 such that, for every t ∈ R,

‖Uc,t,a‖p < ε, ‖Uc,t,a‖∞ < δ, |µ− λ| < r,

and µ is an eigenvalue of −∆ + Uc,t,a.

Proof. Define ν :=
√
λ > 0 and

am :=
dπ
4 + πm

ν
> 0, m ∈ N0. (4)

For m ∈ N0 let ηm > 0 be the unique solution of

ηme2ηmam = ν. (5)

Note that am →∞ and ηm → 0 as m→∞. We set

τm := ν + iηm, m ∈ N0,

and

km := −i
J d

2−2(τmam)

J d
2−1(τmam)

τm +
i(d− 3)

2am
, m ∈ N0, (6)

where Jn is the Bessel function of the first kind of order n (see [2, Chapter 9]). It
satisfies

J ′n(z) = Jn−1(z)− nJn(z)

z
, z2J ′′n(z) + zJ ′n(z) = (n2 − z2)Jn(z),
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see [2, Equation 9.1.27]. For a fixed m ∈ N0, define the function

gm(r) :=



eikmam

√
amJ d

2−1(τmam)

τ
d
2−1
m

2
d
2−1Γ(d2 )

, r = 0,

eikmam

√
amJ d

2−1(τmam)

J d
2−1(τmr)

r
d
2−1

, 0 < r ≤ am,

eikmr

r
d−1
2

, r > am.

Using (6) and [2, Equation 9.1.10], one may check that both gm and g′m are contin-
uous; for small r > 0 we expand gm(r) = gm(0) +O(r2), hence limr→0 g

′
m(r) = 0.

Let t ∈ R be arbitrary. Then fm(x) := gm(|x− ted|), x ∈ Rd, belongs to W 2,2
loc (Rd)

and

−∆fm(x) = −g′′m(|x− ted|)−
d− 1

|x− ted|
g′m(|x− ted|)

=

{
τ2
mfm(x), 0 < |x− ted| ≤ am,
k2
mfm(x) + (d−3)(d−1)

4|x−ted|2 fm(x), |x− ted| > am.

Hence

−∆fm + Ucm,t,amfm = µmfm with µm := k2
m, cm := k2

m − τ2
m.

In order to ensure fm ∈ W 2,2(Rd) = D(−∆ + Ucm,t,am), we need Im km > 0. We
use the asymptotics of the Bessel function for z ∈ C with | arg z| < π and large |z|
(see [2, Equation 9.2.1]),

Jn(z) =

√
2

πz

(
cos

(
z − (2n+ 1)π

4

)
+ e| Im z|O(|z|−1)

)
.

A straight forward calculation reveals that, if

Re z ∈ (n+ 1)π

2
+ πZ, Im z > 0, (7)

then for large |z| we have

Jn−1(z)

Jn(z)
= −e− Im z + ieIm z + eIm zO(|z|−1)

ie− Im z + eIm z + eIm zO(|z|−1)

= −2e−2 Im z + i(e−4 Im z − 1) +O(|z|−1).

The point z = τmam satisfies (7) for n = d
2 − 1, and hence, for large m, (6) yields

km = −iτm
(
− 2e−2 Im τmam + i(e−4 Im τmam − 1) +O(|τmam|−1)

)
+O(a−1

m )

= −ν(1− e−4ηmam)− 2ηme−2ηmam

+ i
(
2νe−2ηmam − ηm(1− e−4ηmam)

)
+O(a−1

m ).

Using that (5) implies e−2ηmam = ηm
ν and am = ln(ν/ηm)

2ηm
, we arrive at

km = −ν + iηm

(
1 +O

((
ln

ν

ηm

)−1))
.

Since ηm > 0 and ln(ν/ηm)−1 → 0 as m→∞, we conclude that Im km > 0 for all
sufficiently large m ∈ N0. In addition, for large m ∈ N0 the eigenvalue µm = k2

m

satisfies

µm = λ− i2νηm

(
1 +O

((
ln

ν

ηm

)−1))
,
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and hence Im µm < 0 for all sufficiently large m ∈ N0. One may check that

µm − λ = O(ηm), cm = k2
m − τ2

m = O(ηm)

converge to 0 as m→∞. Further note that

‖Ucm,t,am‖pp = Vol(B(0, 1))

(
|cm|padm

d
+
|d− 3|p|d− 1|p

4p(2p− d)a2p−d
m

)
= O

(
ηp−dm

(
ln

ν

ηm

)d)
,

‖Ucm,t,am‖∞ = max

{
|cm|,

|d− 3||d− 1|
4a2
m

}
= O(ηm).

Since p > d by the assumptions, both norms converge to 0 as m→∞. Altogether,
we see that the claim is satisfied if we set a := am, c := cm, µ := µm for a sufficiently
large m ∈ N0. �

Remark 1. In dimension d = 1 the assumption p > d = 1 of Lemma 1 is sharp.
In fact, due to Abramov et al. [1], for every V ∈ L1(R) every eigenvalue µ ∈
σ(−d2/dx2 + V )\[0,∞) satisfies

|µ| 12 ≤ 1

2
‖V ‖1; (8)

hence ε > 0 cannot be chosen arbitrarily small as in Lemma 1. In addition, in
Theorem 1 for d = 1 it is impossible to construct V ∈ L1(Rd) since then (8) forces
the non-real eigenvalues to lie in the disk B(0, E2/4), so they cannot accumulate at
every point in [0,∞).

For dimension d ≥ 2 the sharpness of the assumption p > d is directly related
to the following conjecture of Laptev and Safronov [13]: For p ∈

(
d
2 , d
]

there exists
Cd,p > 0 such that

|µ|p− d2 ≤ Cd,p‖V ‖pp (9)

for every V ∈ Lp(Rd) and every µ ∈ σ(−∆ + V )\[0,∞). In [10] the conjecture was
proved for radial potentials. Note that the potential in Lemma 1 is radial, so p > d
is sharp. In general (for non-radial potentials) the conjecture has been confirmed
for p ∈

(
d
2 ,

d+1
2

]
(see [7]) and is still open for p ∈

(
d+1

2 , d
]
. If the conjecture is

false, then it may also be possible to modify Lemma 1 for a non-radial potential
and hence prove Theorems 1, 2 for a p ≤ d.

Lemma 2. Let V1, V2 ∈ L∞(Rd) be decaying at infinity and such that there exists
µ ∈ σ(−∆ + V2)\σ(−∆ + V1). Then there are

µt ∈ σ
(
−∆ + V1 + V2(· − ted)), t > 0,

with µt → µ as t→∞.

Proof. First note that

σ
(
−∆ + V1 + V2(· − ted)

)
= σ

(
−∆ + V1(·+ ted) + V2

)
, t > 0. (10)

Next we prove that, for every z ∈ C with dist(z, [0,∞)) > ‖V1‖∞+‖V2‖∞, we have
strong resolvent convergence(

−∆ + V1(·+ ted) + V2 − z
)−1 s−→

(
−∆ + V2 − z

)−1
, t→∞, (11)
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and the same holds for the adjoint operators. To this end, first note that a Neumann
series argument yields

z ∈
⋂
t>0

%
(
−∆ + V1(·+ ted) + V2

)
∩ %(−∆ + V2),

sup
t>0

∥∥(−∆ + V1(·+ ted) + V2 − z
)−1∥∥

≤ ‖(−∆− z)−1‖ sup
t>0

∥∥(I + (V1(·+ ted) + V2)(−∆− z)−1
)−1∥∥

≤ 1

dist(z, [0,∞))

1

1− ‖V1‖∞+‖V2‖∞
dist(z,[0,∞))

=
1

dist(z, [0,∞))− (‖V1‖∞ + ‖V2‖∞)
.

The space C∞0 (Rd) is dense in W 2,2(Rd) and hence a core of −∆ + V2. Let f ∈
C∞0 (Rd). Then f ∈W 2,2(Rd), and the assumption V1(x)→ 0 as |x| → ∞ yields∥∥(−∆+V1(·+ted)+V2

)
f−(−∆+V2)f‖ ≤ sup

x∈(suppf+ted)

|V1(x)|‖f‖ −→ 0, t→∞.

Now the strong resolvent convergence in (11) follows from [3, Theorem 3.1, Propo-
sition 2.16 i)], and the strong resolvent convergence of the adjoint operators(

−∆ + V1(·+ ted) + V2

)∗
= −∆ + V1(·+ ted) + V2, t > 0,

to (−∆ + V2)∗ = −∆ + V2 is proved analogously.
By [4, Theorem 2.3 i)], in the limit t→∞ the isolated eigenvalue µ ∈ σ

(
−∆ +

V2

)
\σ(−∆ + V1) is approximated by points µt ∈ σ

(
−∆ + V1(·+ ted) + V2), t > 0,

provided that the so-called limiting essential spectrum satisfies

µ /∈ σess((−∆ + V1(·+ ted) + V2)t>0) ∪ σess(((−∆ + V1(·+ ted) + V2)∗)t>0)∗. (12)

This, together with (10), then proves the claim. So it is left to prove (12).
By definition (see [4]), the point µ belongs to set on the right hand side of (12)

only if there exist an infinite subset I ⊂ (0,∞) and ft ∈ W 2,2(Rd), t ∈ I, with

‖ft‖ = 1, ft
w→ 0 and, in the limit t→∞,∥∥(−∆ + V1(·+ ted) + V2 − µ

)
ft
∥∥ −→ 0

or
∥∥(−∆ + V1(·+ ted) + V2 − µ

)
ft
∥∥ −→ 0.

(13)

It is easy to see that the latter implies that ‖ft‖W 1,2(Rd), t ∈ I, are uniformly

bounded. Since, for any r > 0, the space W 1,2(B(0, r)) is compactly embedded

in L2(B(0, r)) by the Rellich-Kondrachov theorem, the weak convergence ft
w→ 0

implies ‖χB(0,r)ft‖ → 0 and hence ‖χB(0,r)V2ft‖ → 0 as t → ∞. Moreover, the
assumption V2(x)→ 0 as |x| → ∞ yields

sup
t>0
‖χRd\B(0,r)V2ft‖ ≤ sup

|x|>r
|V2(x)| −→ 0, r →∞.

Altogether, in the limit t→∞ we obtain ‖V2ft‖ → 0 and hence, by (13),∥∥(−∆ + V1 − µ
)
ft(· − ted)

∥∥ =
∥∥(−∆ + V1(·+ ted)− µ

)
ft
∥∥ −→ 0

or
∥∥(−∆ + V1 + µ

)
ft(· − ted)

∥∥ =
∥∥(−∆ + V1(·+ ted) + µ

)
ft
∥∥ −→ 0.

Therefore, in either case µ needs to belong to σ(−∆ + V1) = σ(−∆ + V1)∗, which
is excluded by the assumptions. This proves the claim (12). �

Now we are ready to prove the main result.

Proof of Theorem 1. Consider an enumeration of (Q ∩ (0,∞)) × N, i.e. a bijective
map

N 3 n 7→ (qn,mn)t ∈ (Q ∩ (0,∞))× N.
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Set γ0 :=∞. By induction over n ∈ N we construct cn, tn, an and γn such that

Hn := −∆ +

n∑
j=1

Ucj ,tj ,aj

satisfies the following:

i) The norms of the functions are bounded by

‖Ucn,tn,an‖p < εn :=
6E
π2n2

,

‖Ucn,tn,an‖∞ < δn :=
6 min{γn−1, E}

π2n2
,

(14)

and

∃µn ∈ σ(Hn) : Imµn < 0, |µn − qn| <
1

2mn
. (15)

ii) We have 0 < γn ≤ γn−1 and for any Un ∈ L∞(Rd) with ‖Un‖∞ < γn there
is λn ∈ σ(Hn + Un) such that

|λn − µn| < dist(µn, [0,∞)).

We start with n = 1. By Lemma 1 applied to

λ = q1, ε = ε1, δ = δ1, r =
1

2m1

and an arbitrary t1 ∈ R, there exist c1 ∈ C, a1 > 0 and an eigenvalue satisfying (15)
for n = 1. By [11, Theorems IV.2.14, 3.16], there exists γ1 satisfying claim ii) for
n = 1.

Now assume that for j = 1, . . . , n − 1 the constants cj , tj , aj and γj have been
constructed. We construct cn, tn, an and γn so that Hn satisfies i) and ii). We
apply Lemma 1 to

λ = qn, ε = εn, δ = δn, r = min

{
dist

(
λ, σ(Hn−1)

)
,

1

4mn

}
.

In this way we obtain cn ∈ C and an > 0 such that, for any t ∈ R, the Schrödinger
operator −∆ + Ucn,t,an has an eigenvalue µ ∈ σ(−∆ + Ucn,t,an)\σ(Hn−1) with
Imµ < 0 and

‖Ucn,t,an‖p < εn, ‖Ucn,t,an‖∞ < δn, |µ− qn| <
1

4mn
.

Lemma 2 implies that, for tn := t sufficiently large, the operator Hn = Hn−1 +
Ucn,tn,an has an eigenvalue µn with Imµn < 0, |µn − µ| < 1/(4mn) and hence
|µn − qn| < 1/(2mn). This proves claim i), and claim ii) follows again from [11,
Theorems IV.2.14, 3.16].

Finally we prove that the potential

V :=

∞∑
j=1

Ucj ,tj ,aj

satisfies the claims of the theorem. By Minkowski’s inequality and (14),

max{‖V ‖p, ‖V ‖∞} <
∞∑
j=1

max{εj , δj} ≤
6E
π2

∞∑
j=1

1

j2
= E .

Moreover, for n ∈ N the L∞(Rd) norm of Un :=
∑∞
j=n+1 Ucj ,tj ,aj is estimated as

‖Un‖∞ <

∞∑
j=n+1

δj ≤
6γn
π2

∞∑
j=n+1

1

j2
< γn.
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So the above claim ii) implies for Hn + Un = H that

∃λn ∈ σ(H) :
∣∣λn − µn∣∣ < dist(µn, [0,∞)).

Hence Imλn < 0 and

|λn − qn| ≤
∣∣λn − µn∣∣+ |µn − qn| < dist(µn, [0,∞)) + |µn − qn| <

1

mn
,

i.e. λn ∈ B(qn,
1
mn

), n ∈ N. Now it is easy to see that every point in [0,∞), which

is the closure of Q ∩ (0,∞), is an accumulation point of {λn : n ∈ N}. �

3. Schrödinger operator in L2(Rd+)

In this section we study Schrödinger operators on the half-space Rd+, and for the

proof of Lemma 4 below also on the shifted half-space Rd+ + ted for some t ∈ R. We
fix an angle φ ∈ [0, π) which determines the Robin boundary condition. Throughout
this section, every operator in L2(Rd+ + ted) for some t ∈ R is assumed to have the
operator domain{

f ∈W 2,2(Rd+ + ted) : cos(φ)∂xdf + sin(φ)f = 0 on ∂(Rd+ + ted)
}
,

and operators in L2(R) have domains W 2,2(R).
The following result is almost the same as Lemma 1; note that here t is not

arbitrary but needs to be sufficiently large, and the eigenvalue µt depends on t.

Lemma 3. Let λ ∈ (0,∞) and p > d. For any ε, δ, r > 0 there exist a > 0 and
c ∈ C with

‖Uc,t,a‖p < ε, ‖Uc,t,a‖∞ < δ, (16)

and such that, for every sufficiently large t > 0, the operator

−∆ + χRd+Uc,t,a in L2(Rd+)

has an eigenvalue µt with Imµt < 0 and |µt − λ| < r.

For the proof we use the following result, which is the analogue of Lemma 2.

Lemma 4. Let V1 ∈ L∞(Rd+), V2 ∈ L∞(Rd) be decaying at infinity, and define the
operators

H1 := −∆ + V1 in L2(Rd+), H2 := −∆ + V2 in L2(Rd).

Assume that there exists µ ∈ σ(H2)\σ(H1). Then, for any t > 0, the operator

H1 + χRd+V2(· − ted) in L2(Rd+)

has an eigenvalue µt with µt → µ as t→∞.

Proof. Define operators

H2,t := −∆ + χ(Rd+−ted)V2 in L2(Rd+ − ted), t > 0.

Note that

σ
(
H1 + χRd+V2(· − ted)

)
= σ

(
H2,t + V1(·+ ted)

)
, t > 0. (17)

Analogously as in the proof of Lemma 2, one can show that for every z ∈ C with
dist(z, [0,∞)) sufficiently large, we have strong resolvent convergence(

H2,t + V1(·+ ted)− z
)−1 s−→

(
H2 − z

)−1
, t→∞,

and the same holds for the adjoint operators; note that here we use that every
f ∈ C∞0 (Rd) belongs to D(H2,t) for all t > 0 so large that suppf ⊂ (Rd+ − ted).
Therefore, by [4, Theorem 2.3 i)], in the limit t → ∞ the isolated eigenvalue
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µ ∈ σ(H2)\σ(H1) is approximated by points µt ∈ σ
(
H2,t + V1(· + ted)

)
, t > 0,

provided that

µ /∈ σess

((
H2,t + V1(·+ ted)

)
t>0

)
∪ σess

(((
H2,t + V1(·+ ted)

)∗)
t>0

)∗
.

Similarly as in the proof of Lemma 2, one may check that the set on the right is
contained in σ(H1) = σ(H∗1 )∗, and µ /∈ σ(H1) by the assumptions. This, together
with (17), proves the claim. �

Proof of Lemma 3. First we return to the problem on the whole Rd. By Lemma 1
applied to t, ε, δ and r/2, there exist a > 0 and c ∈ C such that Uc,t,a satisfies (16),
and so that the operator −∆ + Uc,t,a in L2(Rd) has an eigenvalue µ (independent
of t) with Imµ < 0 and |µ− λ| < r/2. By Lemma 4 applied to V1 ≡ 0, V2 = Uc,0,a,
for every t > 0 sufficiently large, the operator −∆ + χRd+Uc,t,a in L2(Rd+) has an

eigenvalue µt with Imµt < 0 and |µt − µ| < r/2, hence |µt − λ| < r. �

Now the proof of the main result is straight forward.

Proof of Theorem 2. We proceed analogously as in the proof of Theorem 1 but use
Lemmas 3, 4 instead of Lemmas 1, 2. Note that here t1 is not arbitrary but given
(sufficiently large) by Lemma 3. �
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