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Abstract

Realistic stochastic modeling is increasingly requiring the use of bounded noises.

In this work, properties and relationships of commonly employed bounded stochas-

tic processes are investigated within a solid mathematical ground. Four families

are object of investigation: the Sine-Wiener (SW), the Doering-Cai-Lin (DCL), the

Tsallis-Stariolo-Borland (TSB), and the Kessler-Sørensen (KS) families. We ad-

dress mathematical questions on existence and uniqueness of the processes defined

through SDEs, which often conceal non-obvious behavior, and we explore the be-

havior of the solutions near the boundaries of the state space. The expression of the

time-dependent probability density of the Sine-Wiener noise is provided in closed

form, and a close connection with the Doering-Cai-Lin noise is shown. Further re-

lationships among the different families are explored, pathwise and in distribution.

Finally, we illustrate an analogy between the Kessler-Sørensen family and Bessel

processes, which allows to relate the respective local times at the boundaries.
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1 Introduction

The dynamics of a number of phenomena of the physical world, especially in biology, are

affected by intrinsic or extrinsic randomness, and in some cases by both. In biophysics

and mathematical biology, the influence of extrinsic sources of stochasticity in otherwise

deterministic biological systems is frequently taken into account by elementarily perturb-

ing a deterministic system. Namely, the deterministic dynamical system that is adopted

in the absence of the above-mentioned sources is often perturbed by adding stochastic

fluctuations modeled with a Gaussian white noise or a colored Gaussian perturbation.

This approach frequently allows to make analytical or semi-analytical inferences. How-

ever, it can lead to artifacts, sometimes hidden. To give an example, as stressed in [1, 2, 3],

modeling the extrinsic perturbations affecting an anti-tumor cytotoxic therapy by means

of a white noise can allow the possibility that the therapy adds tumor cells instead of

killing them, as a consequence of the unbounded stochastic fluctuations. The unbound-

edness of the perturbation implies a second more subtle but equally relevant artifact in

the above model: the possibility of an excessive instantaneous killing of tumor cells.

Another important limitation is the fact that white noise perturbations only apply to

parameters on which a system depends linearly, which severely limits their applicability.

The Ornstein-Uhlenbeck noise is an alternative to white noise which does not require

linear dependence; however, in many cases it is not a correct choice, e.g. see the models

described in [2]. Such examples suggest that, in many applications, Gaussian noises should

not be employed to model the real world randomness, due to their unboundedness. An

alternative strategy which is becoming increasingly important [3] consists in modeling

parametric perturbations by bounded noises: these allow to preserve the positiveness

and boundedness of the perturbed parameters and can also be employed to model the

fluctuations on which a system depends nonlinearly.

In the last two decades, a large literature has been devoted to the application of

bounded stochastic processes to many scientific areas. For example: noise-induced transi-

tions [4], stochastic resonance [5], Kramers problem [6], bifurcation theory [7], parametric

resonance [8], fractional mechanics [9], nonlinear mechanics [10], chaotic systems [11],

tumor biophysics [2, 12], cell biology [13], ecology [14], environmental sciences [15], inter-

acting cellular populations [16], delayed systems [17], neurosciences [18], chemistry [19],

and population genetics [20]. However, the best known and oldest example of bounded

stochastic process is probably the dichotomous Markov noise, also known as telegraph

noise [15]. This process is not continuous, thus it is optimally suited to model stochastic

transitions of a system between two or more discrete states, as in the important case of

gene activation/deactivation [21].
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In order to realistically model continuous stochastic fluctuations of a parameter, con-

tinuous stochastic processes are needed. The simplest recipe to get a continuous bounded

noise is to apply a continuous bounded function to any continuous stochastic process.

This is the approach used to generate one of most widely employed bounded noises, the

so called Sine-Wiener (SW) noise [22, 23]. Other popular families of bounded stochastic

processes are the Doering-Cai-Lin (DCL) [24, 25], the Tsallis-Stariolo-Borland (TSB) [4]

and the Kessler-Sørensen (KS) [26] families, which are generated by means of appropri-

ate stochastic differential equations. Given the above-summarized increasing relevance

of bounded stochastic processes, and since the vast majority of works on these classes of

models are of heuristic nature, in the following we apply rigorous methods of stochastic

analysis to investigate their properties and to make new analytical inferences of practical

interest.

After introducing the above-mentioned families and their main properties (Section 2),

in Sections 3 and 4 we investigate the well-posedness of the SDEs defining the TSB and

DCL noises and the boundedness of their solutions, for different values of the relevant

parameters. In Section 5 we obtain the analytical expression of the time-dependent density

of the SW noise and hence assess the characteristic autocorrelation time, needed for the

process to be considered stationary in practical applications. Sections 6 and 7 explore

similarities and differences among the first three families, both in the strong (pathwise)

and in the weak (in distribution) sense. In the last section, we show that the KS family

can be obtained as a transformation of the DCL family, but that the relationship is not

one-to-one. Uniqueness and boundedness of the SDE can be lost after the transformation,

a fact that shares similarities with the theory of Bessel processes, as we shall show.

2 Different Families of Bounded Noises

Let us first set the basic notation used throughout. Given a filtered probability space(
Ω, F , P, (Ft)t≥0

)
, in this paper with the term Bounded Noise we denote a real stochastic

process X : Ω× [ 0 ,∞)→ R of nonzero finite quadratic variation which takes values on

a bounded interval I ⊂ R with probability one:

∃B > 0 : P
[
|Xt| < B ∀ t ≥ 0

]
= 1 . (1)

For the sake of simplicity, we shall always rescale X so that B = 1. Throughout this

work, we will denote by I the closed interval [−1, 1] and by
◦
I its interior,

◦
I = (−1, 1).

Remark. We have included the condition on the quadratic variation to identify stochastic

processes with a certain, quite canonical, level of roughness, so that it is reasonable to call
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them “noise”. However, this definition does not aim to be comprehensive. It is equally

meaningful to call noise other irregular processes with different levels of roughness, for

instance bounded processes based on fractional Brownian motion in place of Brownian

motion; in such a case the quadratic variation may be zero or infinite or could not exist,

so the definition requires to be enlarged.

We now introduce different families of bounded noises generated via different methods,

and concisely list their key properties. Proofs are provided in later sections.

2.1 The Sine-Wiener Noise

A first simple method to generate a bounded noise X is to apply a bounded deterministic

function f to a stochastic process Y . In the recent literature of bounded noises [3, 23],

the case where f(y) = sin(y) and the process Y is a rescaled Wiener process has mainly

been considered:

Xt = sin

(√
2

τ
Wt

)
, τ > 0 . (2)

This bounded stochastic process has first been introduced by Dimentberg [22] and will

be hereafter referred to as Sine-Wiener (SW) noise. The autocovariance function of the

process (also termed un-normalized autocorrelation function – see Appendix A, also for

the definition of characteristic autocorrelation time) can be computed from first principles.

Its expression is as follows [23]:

RXX(s, t) = E[XsXt] =
1

2

(
1− exp

(
−4s

τ

))
· exp

(
−t− s

τ

)
, s < t . (3)

Hence, the parameter τ is the characteristic autocorrelation time of the process. The

stationary density of the Sine-Wiener noise is instead the following, shown in Figure 1:

pst
SW

(x) =
1

π
√

1− x2
. (4)

2.2 The Doering-Cai-Lin Family

Another way of generating bounded noises is by means of Stochastic Differential Equations

(SDEs):

dXt = µ(Xt)dt+ σ(Xt)dWt . (5)

A summary on existence and uniqueness of the solutions of SDEs is provided in Ap-

pendix B. In this section, we concentrate on the case where the drift is linear and de-

creasing: µ(x) = −αx, α > 0 [25]. In order to get a solution bounded in I = [−1, 1],
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Figure 1: Stationary probability density (4) of the Sine-Wiener noise.

the diffusion σ must vanish at the boundaries. The most popular choice - introduced in

[24, 27] and adopted in [25] - is the following:

σ(x) ∝
√

1− x2 . (6)

Together with the introduction of appropriate parameters θ and δ, this yields the following

family of SDEs which will be hereafter referred to as the Doering-Cai-Lin (DCL) family:

dXt = −1

θ
Xt dt +

√
1−Xt

2

θ(δ + 1)
dWt , θ > 0, δ > −1 . (7)

For any value of δ and θ as above, and any initial condition X0 ∈ I = [−1, 1], this equation

admits a unique strong solution bounded in I. The stationary probability density of the

DCL family depends on the parameter δ only and reads as follows [24, 25]:

pst
DCL

(x) = Z−1 (1− x2)δ , Z =

√
π Γ(1 + δ)

Γ(1.5 + δ)
. (8)

Notice the transition from unimodality to bimodality when going from positive to negative

values of δ (Figure 2). A closed analytical form of the autocovariance function of the DCL

family is probably not available. However, as we shall prove in Section 4, the characteristic

autocorrelation time is equal to the positive parameter θ.

2.3 The Tsallis-Stariolo-Borland Family

A different family of bounded noises, the Tsallis-Stariolo-Borland (TSB) family, can again

be obtained as solution to a parametric SDE. In the case considered here, the diffusion
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Figure 2: Stationary probability density (8) of the Doering-Cai-Lin family for different values

of δ > −1.

of the process is constant, while the drift tends to infinity (thus repelling the solution) as

long as the boundaries of
◦
I = (−1, 1) are approached [4]:

dXt = −1

θ

Xt

1−Xt
2 dt +

√
1− q
θ

dWt , θ > 0, q < 1 . (9)

Questions of existence, uniqueness and boundedness of the solution to the above SDE

are strongly related to the particular value of q. In [28] it is shown that uniqueness

and boundedness are lost for q < 0, and a physical interpretation of the phenomenon is

provided. For q ∈ [0, 1), instead, equation (9) admits a unique strong solution bounded

in
◦
I (as shown in Section 3), whose stationary density is given by

pst
TSB

(x) = Z−1 (1− x2)
1

1−q , q ∈ [0, 1). (10)

Notice that this has the same functional form of the DCL stationary density (8): here,

however, only unimodal densities are allowed by the condition q ∈ [0, 1), as Figure 3 shows.

Moreover, an approximate formula is available for the characteristic autocorrelation time

of the process [4]:

τ
TSB
' 2

5− 3q
θ . (11)

We conclude by only noticing that, by choosing the drift of equation (9) proportional

to tan(x), the following SDE is obtained, introduced in [26]:

dYt = −α tan
(π

2
Yt

)
dt + C dWt , α, C > 0 . (12)
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Figure 3: Stationary probability density (10) of the Tsallis-Stariolo-Borland family, for different

values of q ∈ [0, 1).

In Section 8 we recover this equation as a transformation of the DCL equation (7). The

properties of the SDE and its solution will be explored for the different values of α.

3 Well-posedness and Boundedness of TSB Equation

(q ∈ [0, 1))

The SDEs (7) and (9) defining the DCL and the TSB families share an important fea-

ture: their coefficients do not satisfy Lipschitz conditions. Hence, questions such as their

existence and uniqueness, as well as the boundedness of their solutions, need to be in-

vestigated. We consider here the case of TSB equation, and investigate in detail the

DCL equation in Section 4. For the sake of self-containment, most of the stochastic tools

employed in the the following analyses are summarized in Appendix C.

Theorem 3.1. Suppose q ∈ [0, 1) and set
◦
I = (−1, 1). Then, for any x0 ∈

◦
I, there exists

a unique, strong solution Xt of the TSB equation (9) with initial condition x0. Moreover,

the solution does never leave the interval
◦
I with probability one.

Proof. While the diffusion of (9) is extremely regular, the drift presents two asymptotes

in ±1 and hence is not Lipschitz on
◦
I. However, it is locally Lipschitz: together with the

non-reachability of the boundaries, this will yield strong existence and uniqueness. Let

us formalize the reasoning.
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For small ε > 0, define µε as the following continuous extension of µ outside the interval

(−1 + ε, 1− ε):

µε(x) =


µ(x) if |x| ≤ 1− ε
µ(1− ε) if x ≥ 1− ε
µ(−1 + ε) if x ≤ −1 + ε

(13)

Since µε is Lipschitz on R, the stochastic differential equation

dXt = µε(Xt)dt+

√
1− q
θ

dWt (14)

has a unique (global in time) strong solution with initial condition x0. Now take ε such

that |x0| < 1 − ε and denote by X(ε) the solution of (14) corresponding to such ε and

with initial condition x0. Moreover, set

Tε = inf
{
t ≥ 0

∣∣ |X(ε)
t | ≥ 1− ε

}
.

Till the random time Tε, the process X(ε) is also a solution of the original TSB equation

(9). Hence, at least till Tε, a solution to (9) exists and is unique (uniqueness is intrinsically

a local problem). However, by means of the tools and results summarized in Appendix C,

we now show that with probability one a solution of the TSB equation does never reach

the endpoints of I, which will yield a unique global strong solution of (9).

The scale function of the TSB equation (9), as computed in [28], reads as follows:

s(x) =

∫ x

0

(
1− z2

)− 1
1−q dz. (15)

Set α = (1− q)−1: hence α ≥ 1 since q ∈ [0, 1). We have:

s(1) =

∫ 1

0

1

(1− z2 )α
dz =

∫ 1

0

1

(1 + z )α (1− z )α
dz ≥ 2−α

∫ 1

0

1

(1− z)α
=∞ ,

since α ≥ 1. Similarly, s(−1) = −∞. Now, denote by T the first exit time from
◦
I of the

- locally well defined and unique - solution of the TSB equation: theorem C.3(i) assures

that T is almost surely infinite. Hence, the locally unique strong solution of (9) starting

from x0 does never reach the endpoints of
◦
I with probability one, which translates into

the fact that the local strong solution is global in time, and it does never leave
◦
I. This

completes the proof.

The case q < 0 has been investigated in detail in [28], where it is shown that the

solution Xt would in this case reach the endpoints ±1 in finite time, almost surely. Notice

that the result of Theorem 3.1 can be extended to any random initial condition X0 with

state space in
◦
I.
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4 Properties of the DCL Noise

In this section we investigate questions concerning the strong existence, uniqueness and

boundedness of the DCL equation (7). Some technical results provided in [29] will be

exploited, but we shall discover in the end that the equation does not present irregular

and unexpected behavior as in the case of the TSB equation. Although the sign of the

parameter δ affects the behavior of the DCL trajectories near the boundaries ±1, it has

no consequences on the uniqueness of the SDE and on the boundedness of its solution.

4.1 Strong Existence, Uniqueness and Boundedness

Let us first extend the coefficients of the DCL SDE (7) to the whole real line in a bounded

and Hölder-continuous way, where results of Appendix B can be applied. Once proven

that the auxiliary equation has solutions which never leave the interval I = [−1, 1], it

will become clear that also the original SDE (7) has the desired properties, and that the

particular extension of drift and diffusion outside I plays no role. Hence, let us consider

dXt =
1

θ
µ(1)(Xt) dt + β σ(1)(Xt) dWt , (16)

where

µ(1)(x) =


1 for x ≤ −1

−x for |x| ≤ 1

−1 for x ≥ 1

(17)

and

σ(1)(x) =

{ √
1− x2 for |x| ≤ 1

0 for |x| ≥ 1
. (18)

The constant β is β = [θ (δ + 1)]−
1
2 , as in (7). This equation has the desired properties of

existence and uniqueness.

Theorem 4.1. For any given random variable X0 with state space I = [−1, 1], strong

existence and uniqueness hold for the auxiliary equation (16) with initial condition X0.

Proof. The diffusion (18) is, on I, the product of two bounded 1/2-Hölder continuous

functions (
√

1− x and
√

1 + x), and it is constant outside I. It is therefore 1/2-Hölder

continuous itself, that is

|σ(x)− σ(y)| 2 ≤ C |x− y | ∀ x, y ∈ R , (19)
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for some constant C > 0 (C = 2 works). The same condition can be rewritten as

|σ(x)− σ(y)| 2 ≤ ρ( |x− y|) ∀ x, y ∈ R , (20)

where the function ρ(z) = Cz is such that 1/ρ in not integrable in any neighborhood

of zero. Hence Proposition B.5 in Appendix applies (the drift (17) is trivially Lipschitz-

continuous), which yields strong uniqueness for equation (16).

In order to prove the existence of a strong solution for the same equation, thanks to

the Yamada-Watanabe theorem, it is enough to prove the existence of a weak solution.

Now, since X0 has support in I = [−1, 1], for any choice of m > 1 we have

E[ |X0|2m] ≤ 1 <∞ .

Moreover, both µ(1) and σ(1) are bounded and continuous, as per their definition in (17),(18).

Hence, Proposition B.6 ensures that a weak solution to (16) exists. Together with the

already proved pathwise uniqueness, Yamada-Watanabe yields strong existence as well.

This completes the proof.

In order to prove strong existence and uniqueness of the original DCL equation (7), we

want to show that the unique strong solution of the slightly different equation (16) never

leaves the interval I, where the coefficients of both equations coincide. The boundedness

of the solution for positive values of δ might be deduced from the results of Section 4.2,

where we show that in this case the trajectories do not even attain the boundaries ± 1.

However, for the remaining values of δ the boundaries are reached, and proving directly

that the solution is reflected to the interior of I is not straightforward.

Therefore, in order to provide a more unified treatment, in Theorem 4.2 we prove the

boundedness of the DCL trajectories for all values of δ, positive and negative, by means

of the so-called Comparison Theorem proposed in [29] (see Appendix, Proposition B.8).

Then, in Section 4.2, we analyze the behavior of the DCL trajectories near the boundaries

of its state space, for the different values of δ.

Theorem 4.2. Let X0 be a random variable taking values in I = [−1, 1]. Then a unique

strong solution of the Doering-Cai-Lin SDE (7) with initial condition X0 exists and sat-

isfies:

P[Xt ∈ I for all t ≥ 0] = 1 .

Proof. Let us first prove the boundedness of the auxiliary equation (16), by means of

the comparison theorem in Appendix, Proposition B.8. To this end, let us denote by

X(1) the unique strong solution (Theorem 4.1) of equation (16), with starting random
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variable X
(1)
0 = X0. Let us also denote by µ(1)(x) the drift coefficient of such equation, as

in (17).

Now consider µ(2)(x) as follows

µ(2)(x) =


1 for x ≤ −1

−x for −1 ≤ x ≤ 0

0 for x ≥ 0

, µ(1)(x) ≤ µ(2)(x) ∀x ∈ R ,

and X
(2)
0 the constant random variable X

(2)
0 ≡ 1. With a proof similar to the one of

Theorem 4.1, one shows that there exists a unique strong solution of the following system: dYt =
1

θ
b(2)(Yt) dt + β σ(Yt) dWt

Y0 = X
(2)
0

. (21)

Indeed, notice that the only difference in the new system is the drift, which is however

still Lipschitz-continuous and bounded as it is needed in the proof.

The process X
(2)
t ≡ 1 is a solution of (21), since µ(2)(1) = σ(1) = 0 and clearly

dX
(2)
t = 0. Thus, X(2) is the unique solution of that system. As already done earlier

in the proof, denote by X(1) the solution of (16). All the hypotheses of the Comparison

Theorem B.8 hold (X
(1)
0 ≤ X

(2)
0 clearly holds since |X(1)

0 | ≤ 1 by assumption) and we

therefore get

P
[
X

(1)
t ≤ X

(2)
t ∀ t ≥ 0

]
= 1 , (22)

namely

P
[
X

(1)
t ≤ 1 ∀ t ≥ 0

]
= 1 . (23)

By means of a symmetrical reasoning, one shows that X
(1)
t ≥ −1 holds with probability

one as well. Thus, the unique strong solution X
(1)
t of the auxiliary equation (16) with

starting condition X
(1)
0 = X0 satisfies

P
[
X

(1)
t ∈ I ∀ t ≥ 0

]
= 1 .

Since the dynamics in I of the original DCL equation (7) coincides with that of equation

(16), and since we have just proven that the unique solution X
(1)
t to (16) starting in I

never leaves the interval, it follows that Xt ≡ X
(1)
t is also the unique strong solution of

the DCL equation (7), and that Xt is confined in I. This completes the proof.

4.2 Behavior near the Boundaries

It has just been shown that the unique solution of SDE (7) starting in I = [−1, 1] remains

confined in I, independently of the value of δ (provided of course δ > −1). Whether the
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solution reaches the boundaries ±1 depends however on the value of the parameter δ, as

we are going to show.

First, however, a comparison with the TSB case is crucial. In that case, as shown

in [28], attaining the boundaries (q < 0) has major consequences on the uniqueness and

boundedness of the solution. In the case of the DCL SDE, instead, both the drift and the

diffusion of the SDE are well defined at ±1, and the unique solution of the SDE remains

bounded for any value of δ and θ (Theorem 4.2), even if the boundaries are attained.

However, knowing whether ±1 are attainable is of interest in itself as well as in applied

contexts, and will also be used in later sections of this work (e.g. Section 8).

In order to study the behavior of the noise near the boundaries of the state space,

results and tools summarized in Appendix C are employed. The scale function of the

DCL noise can easily be obtained by substituting the drift and diffusion of equation (7)

into expression (C.2). One gets:

s(x) =

∫ x

0

1

(1− z2)δ+1
dz . (24)

It can be noticed that this has the same functional form of the scale function of the

TSB noise for q ∈ [0, 1), as in (15).

Theorem 4.3. Let
◦
I = (−1, 1) and Xt be the unique solution of the DCL SDE (7) with

initial condition X0 ∈
◦
I. Then:

(i) If δ ≥ 0, the solution Xt will a.s. never reach the endpoints ±1

(ii) If −1 < δ < 0, the solution Xt will a.s. reach one of the endpoints ±1 in finite time.

Proof. To prove the statement in the case δ ≥ 0, it is enough to observe that, in this case,

s(±1) = ±∞ , (25)

where s(x) is as in (24). The claim then follows from Theorem C.3(i).

As far as the case −1 < δ < 0 is concerned, we have

|s(±1)| <∞ . (26)

This is not enough to conclude that the endpoints of I are reached in finite time, and

one needs to resort to Theorem C.6, involving the speed measure of the noise and the

function v(x) as introduced in Definitions C.4 and C.5. A simple calculation reveals that

the speed measure associated with (7) is as follows:

m(dy) =
2dy

σ2(y)s′(y)
= C

(
1− y2

)δ
dy . (27)
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Hence, neglecting for simplicity the constant C, the function v(x) in (118) satisfies:

v(1) =

∫ 1

0

(
s(1)− s(y)

)
m(dy)

=

∫ 1

0

(∫ 1

y

(
1− z2

)−(δ+1)
dz

) (
1− y2

)δ
dy

≤
∫ 1

0

(1− z)−δ

−δ

∣∣∣∣∣
y

1

(
1− y2

)δ
dy (28)

= −1

δ

∫ 1

0

(1− y)−δ
(
1− y2

)δ
dy (29)

= −1

δ

∫ 1

0

(1 + y)δ dy <∞

The hypotheses δ + 1 > 0 and δ < 0 have been exploited, respectively, in (28) and (29).

Being v(x) an even function, we also have

v(−1) = v(1) <∞ . (30)

By Theorem C.6(a), the time to reach one of the boundaries ±1 is almost surely finite.

This proves the second point of the statement, and completes the proof.

5 Time-dependent Density of the SW Noise

Differently from the case of the TSB and the DCL noises, both defined as solutions to an

SDE, the SW noise (2) has an explicit analytic expression. We recall it below:

Xt = sin

(√
2

τ
Wt

)
, τ > 0 . (31)

The form of the SW stationary density is provided in Section 2, equation (4). Here, we

derive the time-dependent density of the noise, from which the stationary density can be

recovered as limit as t tends to infinity. For convenience, we separately recall the following

elementary result of probability theory.

Lemma 5.1 (Transformation of densities). Let I, J ⊆ R be two real intervals, Z : Ω→ I

a random variable on the probability space (Ω,F ,P), and F : I → J a diffeomorphism of

real intervals. If ρ
Z

: I → [0,+∞) is the density of Z, then the random variable X = F (Z)

has density ρ
X

: J → [0,+∞) given by

ρ
X

(x) =
ρ

Z
(F−1(x))

|F ′ (F−1(x))|
. (32)
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Proposition 5.2. Let W : Ω → R be a real random variable with density ρ
W

, and set

X = sin (W ). Then, the density of X is given by:

ρ
X

(x) =
ρ

Z
( arcsin(x) )√

1− x2
, (33)

where

ρ
Z
(z) =

∞∑
k=−∞

ρ
W

(
(−1)kz + kπ

)
. (34)

Proof. Let us first define a random variable

Z : Ω→
[
−π

2
,
π

2

]
(35)

as follows. For each ω ∈ Ω, consider the only z ∈ [−π
2
, π
2
] such that sin(z) = sin(W (ω));

hence define Z(ω) = z. Thus we have:

X(ω) = sin(W (ω)) = sin(Z(ω)) ∀ ω ∈ Ω . (36)

The density of Z can be written as

ρ
Z
(z) =

∑
w∈G(z)

ρ
W

(w) , (37)

where G(z) is the set of all w ∈ R such that sin(w) = sin(z), z ∈ [−π
2
, π
2
]. These are:

• w = z + 2kπ, k ∈ Z (in the first or fourth quadrant);

• w = (π − z) + 2kπ = −z + (2k + 1)π, k ∈ Z (in the second or third quadrant).

With a unifying expression,

G(z) =
{

(−1)kz + kπ
∣∣ k ∈ Z

}
. (38)

Thus, the density of Z takes the form (34). Since the function F (z) = sin(z) is a diffeo-

morphism between the intervals [−π/2, π/2] and [−1, 1], Lemma 5.1 applied to X = F (Z)

yields

ρ
X

(x) =
ρ

Z
( arcsin(x) )

|cos(arcsin(x))|
=
ρ

Z
( arcsin(x) )√

1− x2
,

as it was to be proved.

Remark. Notice that equation (34) can be written as

ρ
Z
(z) = ψ(z) + ψ(π − z) , (39)

where

ψ(z) =
∞∑

k=−∞

ρ
W

(z + 2kπ) . (40)

We will use this later in this section.
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Proposition 5.2 can easily be applied to the case where W is a Gaussian random

variable, in order to obtain an explicit expression of the time-dependent density of the

SW noise. The following Jacobi theta function allows us to write the SW density in a

compact and elegant form.

Definition 5.3. The function

ϑ3(z, q) =
∞∑

k=−∞

qk
2

exp (2 ikz) (41)

is the third version of the Jacobi theta function, where z ∈ C, q ∈ R and |q| < 1 [30].

Theorem 5.4. The time-dependent density of the Sine-Wiener noise (31) has the follow-

ing form:

p
SW

(x, t) =
ϑ3

(
z
2
, e−t/τ

)
+ ϑ3

(
π−z
2
, e−t/τ

)
2π
√

1− x2
, (42)

where z = arcsin(x).

Proof. At time t, the SW noise (31) is the random variable

X = sin (W ) , W ∼ N (0, 2t/τ) . (43)

For convenience of notation, let us set σ2 = 2t/τ . Equation (33) of Proposition 5.2 and

equation (39) then yield

p
SW

(x, t) =
1√

1− x2
[ψσ2(z) + ψσ2(π − z)] , (44)

where z = arcsin(x) and, according to (40),

ψσ2(z) =
1√

2πσ2

∞∑
k=−∞

exp

(
−(z + 2kπ)2

2σ2

)
. (45)

The expression for ψσ2 can be linked to the Jacobi ϑ3 function by means of the Poisson

transform, as shown in formula (4.4) of [31]. This reads:

√
πa

∞∑
k=−∞

exp
(
−a(u+ kπ)2

)
=

∞∑
k=−∞

exp

(
− k2

a

)
exp(2 iku) , a > 0 . (46)

This last equation for u = z/2 reads as follows:

2π

√
a/4

π

∞∑
k=−∞

exp
(
−a

4
(z + 2kπ)2

)
= ϑ3

(z
2
, e−1/a

)
. (47)
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Setting 4/a = 2σ2 and recalling equation (45) yields

2π ψσ2(z) = ϑ3

(z
2
, e−σ

2/2
)
. (48)

Substituting this expression for ψσ2 back into equation (44), and recalling that σ2 = 2t/τ ,

leads to equation (42) and completes the proof.

The analytic expression of p
SW

(t, x) in (42) can also be used to write down the sta-

tionary density of the noise and to assess its characteristic autocorrelation time. If time t

tends to infinity, both addends of the numerator of (42) tend to the constant one: indeed,

lim
q→0

ϑ3(z, q) = 1 ∀ z ∈ C ,

as it can be seen by definition (41). Thus, the stationary density of the SW noise is

pst
SW

(x) = lim
t→∞

p
SW

(t, x) =
1 + 1

2π
√

1− x2
=

1

π
√

1− x2
, (49)

as stated in (4). Moreover, the convergence takes place at the same speed at which

the exponential function e−t/τ attains zero (again by definition in (41), one sees that

the ϑ3 function tends to 1 linearly in q, as q tends to 0). Hence, by definition, τ is the

characteristic autocorrelation time of the process: the full expression of its autocovariance

has been presented in (3).

6 Relationship between SW and DCL

The stationary density (49) of the SW noise is the same as the one of the DCL noise –

equation (8) – in the case δ=−1/2. This raises the question of whether the two noises,

SW and DCL with δ = −1/2, share further properties. To investigate this, it appears

convenient to apply Itô’s formula in order to find the SDE satisfied by the SW noise, and

compare this to the one of the DCL case with δ=−1/2.

Lemma 6.1. The SW process Xt in (31) satisfies the following SDE:

dXt = −1

τ
Xt dt +

√
2

τ

√
1−Xt

2 sgn
(

cos
(√

2/τ Wt

))
dWt . (50)

Proof. Let us apply Itô’s lemma to the process Xt = F (Zt), where F (z) = sin z and

Zt =
√

2/τ Wt. We have: F ′(Zt) = cos(Zt) = sgn (cos(Zt))
√

1− F (Zt)
2

F ′′(Zt) = − sin(Zt) = −F (Zt)

(51)
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and therefore

dXt = F ′(Zt) dZt +
1

2
F ′′(Zt)σ

2
Z
dt

= sgn
(

cos
(√

2/τ Wt

))√
1−Xt

2

√
2

τ
dWt +

1

2
(−Xt)

2

τ
dt . (52)

This coincides with expression (50).

The SDE (50) is very similar to the one of the DCL noise in (7) for δ=−1/2, which

we rewrite for convenience:

dXt = −1

τ
Xt dt +

√
2

τ

√
1−Xt

2 dWt , τ > 0 . (53)

The drift is the same in both cases, while the two diffusions differ by the factor sgn(cos(
√

2/τ Wt)).

However, being the square of this factor constantly equal to one, the two processes share

the same Fokker-Planck equation: this yields the same time-dependent density for the

two processes, if the initial distribution is the same. In fact, this yields the same overall

law for the two processes, as we show in Theorem 6.2.

Theorem 6.2. The SW noise (31) and the DCL noise with δ = 1
2

in (53) are the same

process in distribution.

Proof. Let us define the process

W̃t =

∫ t

0

sgn
(

cos
(√

2/τ Ws

))
dWs , (54)

so that the SW SDE (50) can be rewritten as

dXt = −1

τ
Xt dt +

√
2

τ

√
1−Xt

2 dW̃t . (55)

We can exploit the classical martingale characterization of Brownian Motion due to Paul

Lévy [32], [33, Theorem 3.16], to show that W̃ is still a Brownian Motion. Indeed, W̃t is a

(continuous) martingale, since it is the stochastic integral of a bounded function [29, 33]

and its quadratic variation can be computed as:

[ W̃ , W̃ ]t =

∫ t

0

[
sgn

(
cos
(√

2/τ Ws

))]2
ds =

∫ t

0

1 ds = t . (56)

W̃t is therefore a continuous martingale with quadratic variation equal to t: thanks to

Lévy’s characterization, it is a Brownian Motion.

Equations (53) and (55) therefore represent the same SDE, only driven by different

Brownian Motions. Hence, their unique strong solutions (Theorem 4.2) have the same

law, as it was to be proved.
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As a consequence of Theorem 6.2, any property related to the law of the SW process

also holds for the DCL process Xt with δ = −1/2 and X0 = 0. For example, it follows

that the autocovariance function of Xt is given by expression (3) and its characteristic

autocorrelation time by τ (called θ in the original SDE (7)). This last property holds in

more generality, for all values of δ.

Theorem 6.3. The autocovariance function RXX of the Doering-Cai-Lin noise (7), start-

ing from any symmetric X0 ∈ [−1, 1], satisfies the following inequality for all δ > −1:

|RXX(s, t) | ≤ exp

(
−t− s

θ

)
∀ s ≤ t ∈ [0,∞) . (57)

Hence, the characteristic autocorrelation time of the process is equal to the positive pa-

rameter θ.

Proof. Let us denote the diffusion coefficient of the DCL equation (7) by σ(x), σ(x) ∝√
1− x2. For fixed s ≤ t, we can write equation (7) in its integral form starting from time

s, and then multiply both sides by Xs. We obtain:

XtXs = Xs
2 +

∫ t

s

−1

θ
XrXs dr +

∫ t

s

σ(Xr)Xs dWr . (58)

Since both the diffusion σ(·) and the DCL process Xt are bounded, the stochastic integral

on the right-hand side of (58) has zero mean. Thus, by taking the expectation of both

sides of (58), we get

RXX(s, t) := E [XsXt] = RXX(s, s) +

∫ t

s

−1

θ
RXX(s, r) dr . (59)

Let us now set F (t)=RXX(s, t) as a function of t only, for fixed s. Equation (59) represents

the integral form of the ODE

F ′(t) = −1

θ
F (t) , (60)

which yields

F (t) = F (s) exp

(
−t− s

θ

)
. (61)

Now simply observe that

|F (s)| =
∣∣E [Xs

2
] ∣∣ ≤ 1 (62)

since the process Xs is itself bounded by 1. The claim immediately follows by taking the

absolute value of expression (61).
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7 Relationship between DCL and TSB

Driven by the result of Theorem 6.2, it is natural to investigate whether similar relation-

ships can be found between the DCL noise X and the TSB noise Y . We do not simply

investigate here whether the two processes have the same law; we address the more gen-

eral question of whether a C2 bijection F exists, such that the transformed process F (X)

and the process Y have the same law. To this aim, we preliminary relate the trajectories

of F (X) and Y . Hence, in general, let

dXt = a(Xt) dt + c(Xt) dWt (63)

and

dYt = α(Yt) dt + γ(Yt) dWt (64)

be two stochastic differential equations, each admitting a unique strong solution bounded

in I = [−1, 1]. Let also F ∈ C2(I, I) be a bijection of I. Thanks to Itô’s formula,

if F (Xt) = Yt holds, then F represents a solution to the following system of ordinary

differential equations:

1

2
F ′′(x) c2(x) + F ′(x) a(x) = α (F (x)) (65)

F ′(x) c(x) = γ (F (x)) . (66)

Proposition 7.1 then follows.

Proposition 7.1. Let Xt and Yt denote the DCL and the TSB processes with initial

conditions X0, Y0 ∈
◦
I. There exists no bijection F ∈ C2(

◦
I,

◦
I) such that, almost surely,

Yt = F (Xt) for all t ≥ 0.

Proof. Suppose by contradiction such an F exists. Then, the two ODEs (65) and (66)

hold, where

a(x) = −1

θ
x , c(x) = β

√
1− x2 , (67)

α(y) = −1

θ

y

1− y2
, γ(y) = η, (68)

and

η2 =
1− q
θ

, β2 =
1

θ (δ + 1)
. (69)

Compare indeed with the coefficients of the SDEs (7) and (9). Equation (66) reads

F ′(x) β
√

1− x2 = η , (70)
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which yields

F (x) = F (0) +
η

β
arcsin(x) . (71)

Since F is a bijection of the interval
◦
I = (−1, 1), we immediately deduce that F (0) = 0

and η/β = 2/π:

F (x) =
2

π
arcsin(x) . (72)

Such a function F does not however satisfy the second-order linear ODE (65): after

simplifying, this indeed reads

C

π

x√
1− x2

=
π/2 arcsin(x)

π2/4 − arcsin2(x)
, (73)

where C = (2δ + 1)/(δ + 1): it can be checked that equation (73) cannot hold for all

x ∈
◦
I (for example by checking that the ratio between the two sides of (73) has non-zero

derivative). This completes the proof.

Proposition 7.1 excludes coincidence of the two processes F (X) and Y . This, however,

still allows the possibility that the laws of the two processes coincide, although the two

processes have different paths. The following result excludes this case, hence showing that

both the dynamics and the law of the DCL and TSB processes are intrinsically different,

even after a transformation that is smooth in the interior of I.

Theorem 7.2. Let X and Y denote the DCL and the TSB process, respectively. There

is no bijection F ∈ C2(
◦
I,

◦
I) such that F (X) and Y share the same law.

Proof. Let us denote by a(x) and c(x) the drift and the diffusion of the DCL noise X,

and by α(y) and γ(y) the drift and the diffusion of the TSB noise Y . Explicit expressions

are provided in (67), (68), (69). Define Ỹt := F (Xt). The process Ỹ satisfies an SDE with

drift

α̃(y) =
1

2
F ′′(x) c2(x) + F ′(x) a(x)

∣∣∣∣
x=F−1(y)

(74)

and diffusion

γ̃(y) = F ′(x) c(x)|x=F−1(y) . (75)

The solutions to this SDE and to the SDE defining Yt have the same law if and only if

α̃(y) = α (y) (76)

γ̃ 2(y) = γ2(y) (77)

(see [34]). Equation (77) reads

(F ′(x))
2
β2(1− x2) = η2 . (78)
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This means that at every x ∈
◦
I we must have

F ′(x) = − η

β
√

1− x2
or F ′(x) = +

η

β
√

1− x2
, (79)

the sign possibly depending on the point x. However, the function F ′ is continuous on
◦
I

and it never vanishes, hence it is either always positive or always negative, according to

whether the bijection F is increasing or decreasing. In each of the two cases, the final part

of the proof of Proposition 7.1 applies. Either choice of sign in (79) leads to a solution F

which does not satisfy the second order ODE (76), which indeed in both cases reads as

in (73). By contradiction, this completes the proof.

8 The Kessler-Sørensen SDE

8.1 KS as Transformation of DCL (δ ≥ 0)

In Section 7 we have shown that any deterministic transformation of the DCL noise

cannot have the same law as the TSB noise. However, imposing that the transformed

noise satisfies an SDE with constant diffusion (as the TSB noise does) yields to the SDE

(12), whose properties are investigated in this Section. The hypothesis δ ≥ 0 plays a

crucial role in the following result.

Proposition 8.1. Let Xt be the DCL noise where δ ≥ 0, and define Yt = F (Xt), where

F is a C2 bijection of the open interval
◦
I = (−1, 1). If Yt satisfies an SDE with constant

diffusion, then

F (x) =
2

π
arcsin(x) (80)

and the SDE is

dYt = − f

πθ
tan
(π

2
Yt

)
dt+

2

π
√
θ (δ + 1)

dWt, (81)

where θ is positive and the quantity f = f(δ) reads as follows:

f =
2δ + 1

δ + 1
. (82)

We will refer to equation (81) as to the Kessler-Sørensen SDE [26].

Proof. Let us consider the DCL noise Xt with associated drift a(x) and diffusion c(x) as

follows:

a(x) = −1

θ
x , c(x) = β

√
1− x2 , (83)

where

β2 =
1

θ (δ + 1)
. (84)
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The drift α(y) and diffusion γ(y) of the process Yt satisfy equations (65) and (66): Itô’s

formula indeed applies since Theorem 4.3(i) guarantees that in the case δ ≥ 0 the process

takes values in the open interval
◦
I, where the function F is C2 by hypothesis. By imposing

that the diffusion γ(y) be a constant C, equation (66) reads

F ′(x)
√

1− x2 =
C

β
. (85)

By imposing F (0) = 0 and C/β = 2/π in order for the range of F to be
◦
I = (−1, 1), this

gives

F (x) =
2

π
arcsin(x) and γ(y) ≡ C =

2 β

π
. (86)

These expressions coincide with the function F in (80) and with the diffusion of SDE (81).

It only remains to show that the drift α(y) of the SDE satisfied by Yt is the one of

equation (81): for this, we can use the second order ODE (65). A simple substitution of

a, c, F , F ′ and F ′′ from (83) and (86) leads to:

α

(
2

π
arcsin(x)

)
= − f

πθ

x√
1− x2

, where f =
2δ + 1

δ + 1
. (87)

Hence,

α(y) = − f

πθ

sin(πy/2)

| cos(πy/2)|
= − f

πθ
tan
(π

2
y
)
, (88)

since cos(φ) > 0 if φ ∈ (−π/2, π/2). This completes the proof.

In Proposition 8.1 we assumed δ ≥ 0, hence the process Yt = F (Xt) does not attain±1.

In this case, equation (81) has not only strong existence, but also pathwise uniqueness,

since the coefficients of the SDE are locally Lipschitz in the open interval (−1, 1): see

Section 3 for the proof of the same result applied to the TSB equation. The scenario for

the δ < 0 case is instead different and is investigated in the next section.

8.2 Non-uniqueness after Transformation (δ < 0)

If δ<0, the DCL process X attains the boundaries ±1 almost surely; hence, Itô’s formula

cannot be applied to the function F in (80) since this is not C2 on the closed interval

I = [−1, 1]. Nonetheless, one may still explore the behavior of the SDE (81) for negative

values of δ, acknowledging that this may not be the same SDE obtained after transforming

the SDE (7) through F . A computation of the scale function s(y) and the speed measure

m(dy) associated to the SDE (81) reveals that

s(y) =

∫ y

0

(
cos
(π

2
z
))−(2δ+1)

dz (89)
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and

m(dy) ∝
(

cos
(π

2
y
))2δ+1

dy . (90)

Hence, with the tools summarized in Appendix C, one sees that for

− 1

2
< δ < 0 , (91)

i.e. 0 < f(δ) < 1, the solution to (81) attains the boundaries with probability one.

Following the lines of [28], uniqueness and boundedness are lost. Notice that the same

conclusion holds true even more in the case

− 1 < δ ≤ −1

2
, (92)

where the coefficient f(δ) appearing in the drift of (81) is negative (thus even the deter-

ministic force alone actively drives the noise towards the boundaries).

On the other hand, recall that, under either of conditions (91) or (92), strong unique-

ness holds for the DCL SDE (7), and the solution Xt does attain the boundaries ±1. It

is then possible to investigate which SDE the transformed process Yt = F (Xt) satisfies

in each of the two cases, where F is as in equation (80). In analogy with the theory

of Bessel processes, we think that under condition (91) the process Yt still satisfies the

same SDE (81) as in the case δ > 0, while under condition (92) the process satisfies a

more difficult equation in which a local time appears. We do not enter here all the de-

tails of this more difficult case, which involves the computation of the local time of Xt,

before Itô-Tanaka’s formula for non-smooth functions can be applied. In Section 8.3, we

explain the connection with Bessel processes, and clarify the heuristic reasons behind our

considerations when δ < 0.

Notice, however, that the above provides an explicit example of an interesting stochas-

tic phenomenon. Indeed, if

− 1

2
< δ < 0 , (93)

we saw that equation (7) has strong existence and uniqueness, while uniqueness is lost

for the transformed SDE (81). Boundedness is lost as well after the transformation, as

pointed out immediately after equation (91). However, by calling Xt the unique strong

solution of (7), the process

Yt =
2

π
arcsin(Xt) (94)

does represent a bounded strong solution to the SDE (81). Other solutions, not bounded

in [−1, 1], are also present in accordance with the non-uniqueness.

This result establishes a further analogy with the case of Bessel processes. The squared

Bessel process B2
t satisfies an SDE for which strong uniqueness is well known to hold.
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However, the SDE obtained by transforming the latter through the square root function

is satisfied not only by the process Bt, but also by other processes which are not constrained

in [0,+∞). This is shown by Cherny in [35]. More on the analogy between the KS family

and the Bessel family is provided in the following section. In the following proposition,

we summarize the results of this section about the Kessler-Sørensen SDE.

Proposition 8.2. Consider the Kessler-Sørensen SDE (81) and define
◦
I = (−1, 1).

1. If δ ≥ 0, then the equation has strong existence and uniqueness, and for any initial

condition Y0 ∈
◦
I the solution Yt remains in

◦
I for all times t > 0 with probability

one.

2. If δ < 0, the SDE has neither weak nor strong uniqueness and any solution Yt start-

ing in
◦
I attains of the boundaries of

◦
I in finite time with probability one. However,

if −1/2 < δ < 0, one strong solution is given by

Yt =
2

π
arcsin(Xt) (95)

where Xt is the unique strong solution to the DCL equation (7) with parameter δ.

8.3 Local Time: Analogy with the Bessel Process

In this last section, we provide a justification of the claims which have not been proven in

Section 8.2 about the process Yt in (95) and the SDE (81). Consider the DCL process Xt

in a neighborhood of x = 1, where the function F = 2/π arcsin(x) is irregular (the case

near x = −1 is identical). To emphasize this viewpoint, consider the auxiliary process

Zt = 1−Xt ∈ [0, 2] , (96)

solution of

dZt =
1

θ
(1− Zt) dt+

(
−

√
2− Zt
θ(δ + 1)

)√
Zt dWt . (97)

There is a paradigmatic equation in the literature, similar to (97), for which several facts

have been understood. This is the equation for the squared Bessel process B2
t [29], which

we denote here by Z̃t for convenience of analogy with Zt:

dZ̃t = δ̃dt+ 2

√
Z̃t dWt. (98)

For any initial condition in (0,∞), this equation admits a unique strong solution B2
t taking

values in [0,∞). For integer values of δ̃, the process Bt, square root of such solution, can

be realized as the norm of a δ̃-dimensional Brownian Motion (see [29], Chapter XI §1).

As a preliminary step, therefore, let us apply a time-change to reduce equation (97)

to a form as close as possible to (98).
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Lemma 8.3. For λ = 2θ(δ + 1), the process Z
(λ)
t := Zλt satisfies the equation

dZ
(λ)
t = δ̃

(
1− Z(λ)

t

)
dt+ 2

√
1− Z

(λ)
t

2

√
Z

(λ)
t dW

(λ)
t (99)

where

W
(λ)
t := − 1√

λ
Wλt (100)

is a standard Brownian motion and

δ̃ = 2 (δ + 1) . (101)

Let us now translate known results for the squared Bessel process Z̃t into results for

our process Z
(λ)
t , being sure that, close to z = 0, the drift and the diffusion of Z

(λ)
t behave

as the ones of Z̃t:

δ̃ (1− z) ∼ δ̃ and 2

√
1− z

2

√
z ∼ 2

√
z if z ∼ 0 . (102)

The results claimed here on the squared Bessel process are taken from [29] Chapter XI §1,

in particular Proposition 1.5. We assume to start with an initial condition greater than

zero.

• For δ̃ < 2, namely δ < 0, the point z = 0 is reached almost surely, but it is

instantaneously reflected and the local time at zero, L0
t , is zero.

• For δ̃ ≥ 2, namely δ ≥ 0 , z = 0 is never reached; hence, trivially, L0
t is zero.

Let us continue with a translation of results, for the process Yt in (95). Given the

identity (96), we have

Yt = φ (Zt)

where

φ (z) =
2

π
arcsin (1− z) . (103)

The function φ(z) near z = 0+ behaves like 1− c
√
z for a suitable constant c. Indeed, by

solving φ (z) = r around r = 1−, we find

z = 1− sin
(π

2
r
)

z ∼ 1

8
π2(1− r)2

r ∼ 1− 2
√

2

π

√
z . (104)
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Hence, at the second order,

φ (z) ∼ 1− 2
√

2

π

√
z . (105)

Therefore, investigating Yt = φ (Zt) near z = 0+ (that is, y = 1−) is qualitatively analo-

gous to investigating the process
√
Zt near 0. In turn, the latter has the same behavior

as the Bessel process Bt =

√
Z̃t due to the analogy illustrated in (102).

The following facts are translation of known results about the process Bt (see [29],

Chapter XI, Exercise 1.26) for our process Yt. They recover the claims of Section 8.2

about the SDE satisfied by the process Yt in the case δ < 0.

• For δ̃ > 1, namely δ > −1
2
, the process Yt = φ (Zt) satisfies the equation (81)

expected on the ground of Itô’s formula.

• For δ̃ ≤ 1, namely δ ≤ −1
2
, the process Yt satisfies an identity which involves a local

time.

A short review of similar results about Bessel processes can also be found in [36].

9 Concluding Remarks

Realistic stochastic modeling of natural phenomena is increasingly requiring the use of

bounded stochastic processes. Indeed, these are important to avoid to obtain results that

are mathematically correct but contain artifacts from the application point of view. An

heuristic approach is often adopted in the literature of modeling with bounded noises,

which can however lead to misleading results. An example has been stressed in [28],

where it is shown that an apparently bounded process can in reality be unbounded for

some important range of its parameters. Thus, it is important to put the applications of

bounded noises on firmer mathematical ground. In this work, we pursue this aim in the

case of commonly employed bounded noises: the Sine-Wiener noise, the Doering-Cai-Lin

family, and the Tsallis-Stariolo-Borland family. In the last section, we also investigate

mathematical properties of an additional family, the Kessler-Sørensen family.

Specifically, we have characterized the range of parameters of the DCL and TSB

families which give rise to strongly unique and bounded solutions. In the case of the DCL

family, we have also shown that positive values of the parameter δ generate trajectories

which never even attain the boundary of the state space. Moreover, we have analytically

inferred the time evolution of the SW density for the first time and have shown that the

noise can be recovered as a particular case of the DCL noise. We have investigated the

relationships between the SDEs defining the DCL and the TSB families, showing that
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the two noises are intrinsically different from both a strong (pathwise) and a weak (in

law) point of view. In addition, this investigation has lead to the SDE already introduced

in an example of an earlier work of Kessler and Sørensen [26]. We have shown that the

SDE can be obtained as a deterministic transformation of DCL SDE, only, however, for

positive values of the parameter δ. Boundedness and uniqueness of the transformed SDE

are instead lost in the case δ < 0, in analogy with the case of Bessel processes.

As future lines of research, we mention two interesting points we are investigating.

The first concerns a rigorous mathematical approach to the numerical simulations of SDEs

which generate bounded noises. Indeed, the tendency of the simulated trajectories to go

outside their theoretical bounds, due to the necessary numerical discretization, makes the

simulation stiff. The second one refers to the fact that all processes here investigated are

endowed with symmetric stationary densities, whereas in the real world the stochastic

fluctuations can be asymmetric.
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A Autocorrelation Time

Definition A.1. Let X be a zero-mean stochastic process endowed with second order

moments. The autocovariance function of X is the two variable function

RXX(s, t) = E[XsXt] = Cov(Xs, Xt) , s, t ≥ 0 . (106)

30



Notice that in statistical physics this is also termed (un-normalized) autocorrelation func-

tion [37], which can cause some ambiguities. A stationary autocovariance function is one

where RXX(s, t) only depends on the quantity | t− s |. If

∃ τ >0 : |RXX(s, t) | ≤ |RXX(s, s) | exp

(
− | t− s |

τ

)
(107)

at least for s, t ≥ K (for some K > 0), then the smallest of such τ will be referred to as

the characteristic autocorrelation time of the process X.

B Existence and Uniqueness of SDE Solutions

Definition B.1. We write a Stochastic Differential Equation (SDE) in the form

dXt = µ(Xt) dt + σ(Xt) dWt , (108)

where Wt is a standard Wiener Process on a filtered probability space (Ω,P, (Ft)t≥0) .

The coefficients µ, σ : I → R, where I ⊂ R, are called drift and diffusion, respectively.

Definition B.2. A solution of (108) consists of a filtered probability space and a pair

(X,W ) such that the integral form (109) of the SDE holds with probability one, uniformly

in t:

Xt = X0 +

∫ t

0

µ(Xs) ds +

∫ t

0

σ(Xs) dWs . (109)

A solution of (108) is called a strong solution if the process X is adapted to the filtration

generated by the Brownian motion W . Otherwise, it is simply called a weak solution.

Definition B.3. There is weak uniqueness or uniqueness in law for a SDE if, whenever

two solutions (X,W ) and (X̃, W̃ ) possibly defined on different spaces are such that X0

and X̃0 have the same distribution, then the whole laws of X and X̃ coincide.

Definition B.4. There is strong uniqueness or pathwise uniqueness for a SDE if for

every two strong solutions (X,W ) and (X̃, W̃ ) defined on the same probability space,

and with X0 = X̃0 P-a.s., the processes X and X̃ are indistinguishable (that is, P[Xt =

X̃t ∀ t ≥ 0] = 1).

Although Lipschitz growth of the coefficients is a standard sufficient condition for

strong existence and uniqueness of a SDE, these can also be obtained under weaker

assumptions. We state here some technical results on the case of bounded or Hölder

functions, which are exploited in Section 4. Proofs can be found in [29, 33].
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Proposition B.5 ([29] Theorem 3.5, Chap. IX). Let µ and σ be the drift and diffusion

coefficients of an SDE. Suppose that µ is Lipschitz continuous and that σ satisfies

|σ(x)− σ(y)| 2 ≤ ρ( |x− y|) , (110)

where ρ : (0,∞)→ (0,∞) is such that∫ ε

0

1

ρ(z)
dz =∞ ∀ ε > 0 . (111)

Then, strong uniqueness holds for the SDE.

Proposition B.6. Let µ, σ : R → R be bounded and continuous functions, and X0 a

random variable with

E[ |X0|2m] <∞ (112)

for some m > 1. Then, there exists a weak solution of the SDE

dXt = µ(Xt)dt + σ(Xt)dWt

with initial condition X0.

Theorem B.7 (Yamada-Watanabe, 1971). Suppose pathwise uniqueness holds for a SDE

and that a weak solution also exists. Then, a strong solution of the SDE also exists (such

solution being unique in the strong sense thanks to the first assumption).

Proposition B.8 (Comparison theorem, [29] Chap. IX §3). Let

dXt = µ(i)(Xt) dt+ σ(Xt) dWt for i = 1, 2 (113)

be two stochastic differential equations, whose coefficients satisfy:

i) |σ(x)− σ(y)| 2 ≤ ρ( |x− y|), ρ(z) as in (111),

ii) at least one between µ(1) and µ(2) satisfies a Lipschitz condition, and the inequality

µ(1)(x) ≤ µ(2)(x) holds everywhere.

Further, let X
(i)
0 be two random variables, with X

(1)
0 ≤ X

(2)
0 P-a.s., and let X(i) be solu-

tions of (113) with starting conditions X
(i)
0 , for i = 1, 2. Then,

P
[
X

(1)
t ≤ X

(2)
t for all t ≥ 0

]
= 1 .
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C Attaining the Boundaries of the State Space

In the following we provide necessary and sufficient conditions to establish whether a

stochastic process with bounded state space I does or does not attain the boundaries of

I. We limit ourselves to the definitions and results of interest for this work, and refer the

reader, for example, to [33] Chapter 5.5 and [29] Chapter VII §3 for proofs.

In the following, I ⊂ R denotes a bounded open, semi-open or closed real interval,
◦
I = (l, r) its interior, and x0 ∈

◦
I the deterministic initial condition of a stochastic process

Xt with state space I. For x ∈ I, the first time the process X hits x will be denoted by

Tx = inf{ t ≥ 0 | Xt = x } .

Definition C.1. A function s : I → R is called a scale function for the process X (with

X0 ≡ x0) if it is strictly increasing and, for any a < x0 < b ∈ I, it holds

P
[
Ta < Tb

]
=
s(b)− s(x0)
s(b)− s(a)

.

Remark. If s(x) is a scale function, also s̃(x) = αs(x) +β is a scale function for any α > 0

and β ∈ R. Hence, we can arbitrarily set s(x0) = 0. Monotonicity then implies s(a) < 0,

s(b) > 0.

Roughly speaking, the modulus of the scale function at a point x quantifies the “in-

accessibility” of that point when starting from x0. The bigger |s(x)| is with respect to

|s(y)|, the less likely x is reached before y. The scale function of a process can be eas-

ily calculated if the infinitesimal generator of the process is known, or if the process is

solution of an SDE. Here, we consider the second case, and suppose that Xt is a (weak)

solution of

dXt = µ(Xt)dt+ σ(Xt)dWt (114)

where

σ2(x) > 0 for x ∈
◦
I (115)

∀ x ∈
◦
I , ∃ ε> 0 :

∫ x+ε

x−ε

1 + |µ(y)|
σ2(y)

dy <∞ . (116)

Notice that, if the coefficients are continuous in I and (115) holds true, then the local

integrability condition (116) is trivially fulfilled.

Proposition C.2. Let X be a weak solution of (114) where µ and σ satisfy (115) and

(116). Then, the scale function s(x) can be computed as

s(x) =

∫ x

c

exp

(
−
∫ y

c

2
µ(z)

σ2(z)
dz

)
dy , c ∈

◦
I . (117)
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Theorem C.3, proved in [33], Chap. 5, Prop. 5.22, relates the finiteness of the scale

function to the attainability of the boundaries. Even if the endpoints l or r are not in I,

we shall use the following notation:

s(l) = lim
x→l+

s(x) , s(r) = lim
x→r−

s(x) .

Theorem C.3. Let X be a weak solution of SDE (114), under conditions (115), (116),

with initial condition x0∈
◦
I. Moreover, call T the random time

T := inf
{
t ≥ 0

∣∣ Xt /∈
◦
I = (l, r)

}
= Tl ∧ Tr .

Then:

(i) if both |s(l)| , |s(r)| =∞,

P
[
T =∞

]
= 1 = P

[
inf
t≥0

Xt = l
]

= P
[

sup
t≥0

Xt = r
]

;

(ii) if both |s(l)| , |s(r)| <∞,

P
[

lim
t→T

Xt = l
]

=
s(r)− s(x0)
s(r)− s(l)

= 1− P
[

lim
t→T

Xt = r
]

;

(iii) if |s(l)| <∞, |s(r)| =∞,

P
[

lim
t→T

Xt = l
]

= 1 = P
[

sup
t≥0

Xt < r
]

;

(iv) if |s(l)| =∞, |s(r)| <∞,

P
[

lim
t→T

Xt = r
]

= 1 = P
[

inf
t≥0

Xt > l
]
.

Case (i) of previous theorem guarantees that, if s explodes at both endpoints, then

the process never reaches the endpoints (i.e, T is infinite). However, no conclusion about

the finiteness of T can be drawn in any of the three other cases. To present equivalent

conditions to the almost surely finiteness of T , other two definitions are needed.

Definition C.4. Suppose the process X solves (114), under conditions (115), (116), and

let s(x) be the scale function associated with X. The speed measure associated with the

process X and the scale function s is the measure on (I,B(R)) given by

m(dx) =
2dx

s′(x)σ2(x)
, x ∈ I .
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Definition C.5. By denoting with s(x) the scale function and m(dx) the speed measure

of a process X, we set

v(x) :=

∫ x

c

(
s(x)− s(y)

)
m(dy) , x ∈ I . (118)

Notice that v(x) is always positive and its finiteness does not depend on the choice of c.

The following theorem provides a characterization of the almost sure finiteness of T

([33], Chap. 5, Prop. 5.32).

Theorem C.6. Under the usual assumptions (115), (116), T is almost surely finite if

and only if one of the following mutually exclusive conditions holds:

(a) both v(l) <∞ and v(r) <∞,

(b) v(l) <∞ and v(r) =∞, but also s(r) =∞,

(c) v(r) <∞ and v(l) =∞, but also s(l) = −∞.

Moreover, in case (a), the stronger condition E
[
T
]
<∞ holds true.
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