NON-NEGATIVELY CURVED 5-MANIFOLDS WITH ALMOST
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ABSTRACT. We show that a closed, simply-connected, non-negativetyec
5-manifold admitting an effective, isometri? action is diffeomorphic to one
of §%, 8% x S, 5% S? or the Wu manifoldSU (3)/SO(3).

1. INTRODUCTION

The classification of Riemannian manifolds with positivadanore generally,
non-negative sectional curvature, is a long-standing gpehlem in Riemannian
geometry. As a step towards general classification resoésmay consider man-
ifolds whose isometry group is large. This has been a friugenue of research
(see, for example, the surveys [20] 47,[49, 21]). It is walbwn that the isometry
group of a compact Riemannian manifold is a compact Lie gréaghe context
of this paper, the measure for the “size” of an isometry grsuis rank. In partic-
ular, we are interested in manifolds with non-negative ature that have almost
maximal symmetry rank, where tlsymmetry ranlof a Riemannian manifold/
is defined to be the rank of the isometry group\éf

Grove and Searlé [22] showed that the symmetry rank of a ¢)gsesitively
curved, Riemanniam-manifold is bounded above Hyn + 1)/2] and classified
closed, positively curved Riemannian manifolds with maadisymmetry rank up
to diffeomorphism. For a closed, positively curved Riemanm-manifold of al-
most maximal symmetry rank, that is, one whose isometry gias rank(n —
1)/2], Rong [40] found topological restrictions for all dimensso(distinguishing
the cases for even and odd) and showed that a closed, simphected, posi-
tively curved Riemanniai-manifold with almost maximal symmetry rank, that is,
with an effective isometri@? action, must be homeomorphic to thesphere (in
fact, it will be diffeomorphic, as a consequence of the Gealimxd Poincaré conjec-
ture). Later, Wilking [46] improved these results signifidg for closed, positively
curved, simply-connected-manifolds of dimensiom > 10, considering actions
of rank approximately: /4.

The maximal symmetry rank for closed, simply-connectethanifolds with
non-negative curvature and dimension< 9 is [2n/3] (see [15]). Kleiner[[26]
and Searle and Yan@ [42] independently classified up to homgghism closed,
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simply-connected-manifolds of non-negative curvature with an effectivenied-
ric circle action, corresponding to the almost maximal syatrnrank case in di-
mension4. In [15], the authors classified up to diffeomorphism clgssichply-
connected, non-negatively curved Riemannian manifolddimiensionss, 4, 5
and6 with maximal symmetry rank. In this paper we address the oasémost
maximal symmetry rank for closed, simply-connected, negatively curved Rie-
mannian manifolds in dimensiols4 and5. Our main result is the following:

Theorem A. Let M° be a closed, simply-connected, non-negatively cusvetin-
ifold. If T2 acts isometrically and (almost) effectively 8f°, thenM® is diffeo-
morphic to one of°, S x 52, §3%.S? (the non-trivial S3-bundle overS?) or the
Wu manifoldSU (3)/SO(3).

We remark that thé-manifolds listed in Theorem A are all the known examples
of closed, simply-connected-manifolds with non-negative curvature and these
manifolds are all the closed, simply-connecledimensional homogeneous spaces
or biquotients of Lie groups (cf[ 7, 34]). We also point obat the5-manifolds
listed in Theorem A coincide with the closed, simply-cortedd-manifolds that
are elliptic (cf. [33]). Further, each one of thesemanifolds M is rationally
elliptic, that is, dimr,. (M) ® Q < oo, thus satisfying the Ellipticity Conjecture,
which states that all closed, simply-connected manifofdglonost) non-negative
curvature are rationally elliptic (cf.[[20]). It is also whrnoting that these are
exactly the5-dimensional topological manifoldd/ for which cat: (M) = 2,
that is, M can be covered by two open subs@ts, W5 such that the inclusions
W; < M factor homotopically through maps; — S (cf. [18]).

This paper is divided into seven sections. The first two easticomprise the
introduction and basic tools we will use throughout. In gecB, using classi-
fication results for smooth circle actions 8nand 4-manifolds, in combination
with restrictions imposed by non-negative curvature, vassfy closed, orientable
manifolds with non-negative curvature and almost maxingedraetry rank in di-
mension3 and recall the classification of closed, simply connectedifolas with
non-negative curvature and almost maximal symmetry radknensiond. In sec-
tion 4 we consider the problem of almost maximal symmetrk iardimension5
from a purely topological perspective and in section 5 we fegdrictions imposed
by non-negative curvature. In section 6 we classify closedply-connected, non-
negatively curved-manifolds of almost maximal symmetry rank by applying the
results of the previous three sections. Finally, in secilome give examples of
actions of almost maximal symmetry rank on some of the métsflisted in The-
orem A.

Acknowledgements. The authors thank both Karsten Grove and Burkhard Wilk-
ing for pointing out an omission in an earlier version andHeipful conversations
and suggestions for improvements. Both authors would &edd thank the ref-
eree for helpful comments and suggestions for improvemenis the American
Institute of Mathematics (AIM) for its support during a wetop where the work
on this paper was initiated. F. G. G. also thanks the MathemBepartment of the



NON-NEGATIVELY CURVED 5-MANIFOLDS WITH ALMOST MAXIMAL SYMMETRY RANK 3

University of Maryland, for its financial support, and thegaetment of Mathemat-
ics of the University of Notre Dame, as well as the IMATE-UNARuernavaca,
for their hospitality while part of this work was carried o@. S. was supported in
part by CONACYT Project #SEP-106923, CONACYT Project #32RB71.

2. DEFINITIONS AND TOOLS

In this section we gather several definitions and resultsvileawill use in sub-
sequent sections.

2.1. Transformation groups. Let G be a Lie group acting (on the left) on a
smooth manifoldM/. We denote byG, = {g € G : gz = x} theisotropy
groupatxz € M and byGx = {gx : ¢ € G} ~ G/G, theorbit of z. The
ineffective kernebf the action is the subgrouf’ = N, ey G,. We say thatz
actseffectivelyon M if K is trivial. The action is callecilmost effectivaf K
is finite. The action idree if every isotropy group is trivial anélmost freeif
every isotropy group is finite. We will denote tfiged point setM“ = {z ¢
M : gx = z,9 € G} of this action by Fix)M/; G) and define its dimension
as dimFix(M; G)) = max{dim(N) : N is a component of FiX\/; G) }. When
convenient, we will denote the orbit spadé/G by X. We will denote byp the
image of a poinp € M under the orbit projection map: M — M/G. Given a
subsetA ¢ M, we will denote its image X under the orbit projection map by
A* and when convenient, we shall also denote the orbit space by M *.

One measurement for the size of a transformation g@up M — M is the
dimension of its orbit spacé&//G, also called theeohomogeneityf the action.
This dimension is clearly constrained by the dimension efftked point sef\/¢
of G'in M. Infact, dim M /G) > dim(M©) + 1 for any non-trivial action. In light
of this, thefixed-point cohomogeneitf an action, denoted byohomfix(M; G),
is defined by

cohomfix M; G) = dim(M/G) — dim(M) —1 > 0.

A manifold with fixed-point cohomogeneityis also called dixed point homoge-
neous manifold We will use the latter term throughout this article. We olee
that the fixed point set of a fixed point homogeneous actiorchdsnension 1 in
the orbit space.

Remark 2.1. Throughout the rest of the paper we will assume all manifaddse
smooth. We will only consider smooth (almost) effectiva@ts and all homology
and cohomology groups will have coefficientsZnunless otherwise stated.

2.2. Alexandrov geometry. Recall that a finite dimensional length sp&ég dist)
is anAlexandrov spacé it has curvature bounded from below (cf! [3]). Whéih
is a complete, connected Riemannian manifold @id a compact Lie group act-
ing on M by isometries, the orbit spaceé = M /G is equipped with the orbital
distance metric induced frod/, that is, the distance betweprandg in X is the
distance between the orbifsp and Gq as subsets al/. If, in addition, M has
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sectional curvature bounded below, thatsis; M > k, then the orbit spacé is
an Alexandrov space witturv X > k.

Thespace of directionsf a general Alexandrov space at a pairis by defini-
tion the completion of the space of geodesic directions. an the case of orbit
spacesX = M/G, the space of directions;X at a pointp € X consists of
geodesic directions and is isometric to

Sy /Gy,

WhereS][,L is the unit normal sphere to the orlgifp atp € M.

We now state Kleiner’s Isotropy Lemma (cf._[26]), which wdlwise to obtain
information on the distribution of the isotropy groups ajominimal geodesics
joining two orbits and, in consequence, along minimal gs@dgoining two points
in the orbit spaceX = M/G.

Isotropy Lemma 2.2. Letc : [0,d] — M be a minimal geodesic between the
orbits Ge(0) and Ge(d). Then, for anyt € (0,d), G, = G. is a subgroup of
Gc(O) and OfGC(d).

Recall that thej-extentxt, (X ), ¢ > 2, of a compact metric spageX, d) is the
maximum average distance betwegpoints in.X:

-1
xty(X) = <g> max{ Z d(zs, zj)  {xi}im; C X}

1<i<y<q

The Extent Lemma (cf[[23]) stated below provides an uppenidmn the total
number of isolated singular points X = M/G.

Extent Lemma 2.3. Letp,, ...,p, be ¢ + 1 distinct points inX = M/G. If
curv X > 0, then

1 q
i=0
We remark that in the case of strictly positive curvature, ithequality is also
strict.
We will also use the following analogue for orbit spaces ef@heeger-Gromoll
Soul Theorem to obtain information on the geometry of thétegmceX = M /G

(cf. [23,[35])).

Soul Theorem 2.4.Let X = M/G. If carv X > 0 and9X # (), then there
exists a totally convex compact subsetc X with 9S = (), which is a strong
deformation retract ofX. If curv M/G > 0, thenS = 3 is a point, ando X is
homeomorphic t&s X ~ S&/Gs.

When M is a non-negatively curved, fixed point homogeneous Rieinar(-
manifold, the orbit spacé&’ is a non-negatively curved Alexandrov space arid
contains a componen¥ of Fix(M;G). LetC C X denote the set at maximal
distance fromN C 90X and letB = 7~(C). The Soul Theoreri 2.4 implies
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that A/ can be written as the union of neighborhodd&V) and D(B) along their
common boundary, that is,

M = D(N) Ug D(B).

In particular, whenG = T and C is another fixed point set component with
maximal dimension, one has the following result frami[42].

Double Soul Theorem 2.5.Let M be a complete, non-negatively curved Riemann-
ian manifold admitting an isometri€® action. If Fix(M;T") contains two codi-
mension2 componentsV; and N,, with one of them being compact, théh is
isometric toN,, Fix(M;T') = Ny U N, and M is diffeomorphic to ars?-bundle
over N; with T'! as its structure group. In other words, there is a principal-
bundle, P, over N7 such thatM is diffeomorphic taP x ;1 S2,

2.3. Closed3-manifolds with a smooth 7™ action. We recall the list of closed-
manifolds with a smooth cohomogeneity dfié action (cf. [28[29]), as they will
appear throughout the paper. They a8; a lens spacé,, ,, 5? x S, RP? x S1,

T3, 52%S1, KI x S and A. Here Kl denotes the-dimensional Klein bottle and
52x 81 the non-trivial S2-bundle overS'. The manifoldA is obtained by gluing
Mb x S' andS' x Mb along their boundary torus, where Mb denotes the Mobius
band.

3. NON-NEGATIVELY CURVED 3- AND 4-MANIFOLDS WITH ALMOST
MAXIMAL SYMMETRY RANK

In this section we classify closed, oriental3lananifolds and closed, simply-
connectedi-manifolds, assuming they have non-negative curvatureaainait an
isometric action of a circlg™.

3.1. Dimension 3. In the case of &' action, we have the following result, which
follows from the Orlik-Raymond-Seifert classification 8tmanifolds with a
smoothT* action [30/31].

Theorem 3.1. Let T act isometrically onM3, a closed, orientablg-manifold
of non-negative curvature. Thed? is equivariantly diffeomorphic to a spherical
3-manifold,S? x S', RP3#RP3, T3 or one of fourT?-bundles overS!.

Proof. We break the proof into three cases: case 1, where the astitgej case 2,
where the action is almost free, and case 3, where the aci®mdn-trivial fixed
point set.

Case 1:T" acts freely

In this caseX? = M3/T! is a closed, orientablg-manifold of non-negative
curvature and thu(? = S? or X? = T2 by the Gauss-Bonnet theorem. Since
the action is freeM? is a principal circle bundle ovek? and thereforeM? is
diffeomorphic to one of?, L, ,, S? x S' or T3.

Case 2:T" acts almost freely
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Here M3 is a Seifert manifold supporting a smooth circle action. c8ime
have assumed that® has non-negative curvaturg/? admits a geometric struc-
ture modeled or$3, S? x R or Euclidean spac&? (cf. [41]). Closed, orientable
Seifert manifolds withS3, E2 or S? x R geometry supporting a smodil action
have been classified (cf. [41,130]). Whaf® hasS? geometry, M/ must be diffeo-
morphic to a spherical-manifold, that is, a quotient 8> by a finite subgroup of
SO(4) acting freely onS3. We denote these manifolds in the usual fashion by their
2-dimensional orbit spaces. THesphereS? is denoted bys? andL,, , by S?(p) or
S2(p, q). The remaining manifolds witls® geometry are denoted 87 (2, 2, n),
S2(2,3,3), 5%(2,3,4) andS?(2, 3,5), wheren > 2 is an integer.

When M? hasS? x R geometry, M/® must beS? x S! and, when)M? has
E3 geometry, it must be diffeomorphic ©° or to one of four of the remaining
five possible orientable, closed flat manifolds covered By The fifth possibility
is excluded immediately since it does not admit a circleoacti These four flat
manifolds covered by are7? bundles overS', described in[[30]. Their orbit
spaces ares?(2,2,2,2), S%(2,4,4), S%(2,3,6) and S%(3,3,3). Further, all of
these closed, orientablemanifolds withE?3, S2 or 52 x R geometry, with a Seifert
fibration induced by an almost free circle action, do adnaitristric circle actions
inducing the given Seifert fibration (cf. [41,130]).

Case 3:T'! has non-trivial fixed point set

By definition, the action is fixed point homogeneous. Closeeldfipoint homo-
geneous manifold8-manifold with nonnegative curvature were classified in] [13
and we recall their classification in the orientable casesedle first that the fixed
point set isl-dimensional, with at most two components, and these coeren
are circles. If Fix)/3; S') contains two components, then by the Double Soul
Theoreni 26 we see that'3 is one of the twaS? bundles overS! and sinceM?
is assumed to be orientable, it must$ex S!. If Fix(M?3; S1) consists of a sin-
gle component!, thenX? = M?3/S' is a2-dimensional Alexandrov space of
non-negative curvature with boundaf} = S'. ThusX? is an orientable, non-
negatively curved topological manifold with boundary ahé pbnly possibilities
areD? andS' x I. We may excludes’ x I sinceM? is assumed to be orientable.
Thus D? is the only possible orbit space. The non-negative cureatypothesis
implies that the interior o2 has either no points with non-trivial finite isotropy,
one point with finite isotropyZ,, or two points with finite isotropyZ,. These cor-
respond, respectively, t6°, a lens spacé,, , andRP3#R P3.

It follows from the three cases analyzed above tdtcan only beS3 /T", where
I' is a finite subgroup 0fO(4), S? x S, T3, one of the four flaf™2-bundles over
S1 covered by or, finally, RP3#RP3. Each of these manifolds supports only
one isometricI"! action with non-negative curvature yielding the possitieito
space structures (cf. [B9]). O
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3.2. Dimension 4. Given Perelman’s work on the Poincaré conjectlire [36, 37,
[38], the classification of closed, simply-connected, negatively curvedi-man-
ifolds admitting an isometri@ action follows from earlier classification results
in a curvature-free setting and a restriction on the Eularatteristic, which is a
simple consequence of the non-negative curvature assompflihe first theorem

is due to work of Fintushel [11, 12] in combination with work Bao [32] and
Perelman’s proof of the Poincaré conjecturel [36/ 37, 38].

Theorem 3.2. A closed, simply-connected smodtmanifold with aT'* action is
equivariantly diffeomorphic to a connected sunséf +CP? and S? x S2.

Let M4 be a closed, simply-connected, non-negatively curdanifold and
let x(M*) be its Euler characteristic. It follows from work done indagently by
Kleiner [26] and Searle and Yang [42] thia x(M*) < 4. Combining this with
theoren{ 3.P yields the following result in the case of nogatiee curvature (cf.

[13)).

Theorem 3.3. A closed, simply-connected, non-negatively cudadanifold with
an isometricT’" action is diffeomorphic t&*, CP?, 5% x S? or CP?# 4+ CP2.

4. COHOMOGENEITY THREE TORUS ACTIONS ON SIMPLXCONNECTED
5-MANIFOLDS

Here we gather general facts about smooth cohomogeneég tbrus actions
T" x M™+3 — M"™*+3 on simply-connected, smooth manifolds and then consider
the specific case whel/ is 5-dimensional. The main goal of this section is to
understand the structure of the singular sets, that is,ghefgoints in the orbit
spaceM* corresponding to orbits with non-principal isotropy greup

4.1. General considerations. We begin with the following theorem from Bredon
[2], which characterizes the orbit space of a cohomogetleige action.

Theorem 4.1. Let G be a compact Lie group acting by cohomogeneity three on
M, a compact, simply-connected smooth manifold. If all sriite connected,
thenM* is a simply-connected topologicaimanifold with or without boundary.

It follows from the resolution of the Poincaré conjectucé ([36,[37,38]) that
M* is homeomorphic to one &3, D3, S? x I or, more generally, t&> with a
finite number of disjoint opeB-balls removed. We will see in the next section that
non-negative curvature implies that* can only be one of the first three manifolds
from this list.

We also recall the following general result of Bredbh [2] abitne fundamental
group of the orbit space:

Theorem 4.2. Let G be a compact Lie group acting on a topological spacelf
eitherG is connected o6 has a nonempty fixed point set, then the orbit projection
map~ : X — X/G induces an onto map on fundamental groups.

The next theorem, again from Bredaén [2], implies the absehspecial excep-
tional orbits and, in particular, allows us to conclude thafixed point set of finite
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Zo-isotropy has codimension one . This result will be used in the proof of
lemmad4.4.

Theorem 4.3. Let M be a smooth, simply-connected manifold admitting an action
by a compact Lie group. If a principal orbit is connected (drahce all orbits are
connected) then there are no special exceptional orbits, i) the set of points
belonging to exceptional orbits is of codimension gredt@antor equal t@.

Lemma 4.4. LetT" act onM"+3, a closed, simply-connected smooth manifold.
Then some circle subgroup has non-trivial fixed point set.

Proof. If all circle subgroups were to act freely, this would implyfrae circle
action on a closed, simply-connectéemanifold //* = M"+3 /7™~ which is
impossible. Likewise, if the action is almost free, therréhare finitely many finite
isotropy groups. Lel" be the finite group generated by all these finite groups and
consider the action of™/T" on M™*3/I". Note first that we may consider the
successive quotients

M— M/Ty —...— M/Ty=MJT,

wherel’ = T'y, D ... D I'y is a filtration with prime-order quotients; /T";_;.
Such a filtration exists becauseC T™ is abelian. Then each quotient is a closed,
simply-connected topological space by theofem 4.2 anden&fit"3 /T is as well.
We claim thatd/™+3 /" must be a topological manifold. Note that the fixed point
set of any subgroup of finite isotropy must be at leaslimensional since it is in-
variant under thg™ action and it will be at mogin+1)-dimensional because there
are no special exceptional orbits by theofeni 4.3. The sphd&extions normal

to the projection of a codimensidhfixed point set inV/"*3/T" is a circle. In the
codimensior8 case, the isotropy subgroup will be a finite subgroup©f3)N7™,

n > 2; hence it must be a cyclic group of rotationsZr x Z,. In both cases the
guotient of the isotropy action on the norn2asphere will be again a topological
2-sphere. Hencd/"3/T" must be a closed, simply-connected topological mani-
fold. Now, 7" /I" must act freely on\/"*3/T" and we have just seen that this is
impossible. Therefor&™ cannot act almost freely a3 either. O

Let M™*+3 be a closed, simply-connectéd -+ 3)-manifold with a cohomogene-
ity three T™ action. By the previous lemma, there is a circle subgrdtpc 7"
with non-trivial fixed point set. In the case whek¢* = D3, there is a unique
codimensiore fixed point set component. In general, wheft is homeomorphic
to S? with & disjoint open3-balls removedk > 1, the k boundary components
correspond to the quotients of unions of fixed point sets sbjtdy different cir-
cles.

In the case wher&/* is homeomorphic t&?, the components of F@/™+3; T'1)
are of codimension greater than or equadttdn this case, the following proposi-
tion, generalizing a result of Rong’s in dimensio(cf. [40]), shows there must be
a minumum number of codimensidnfixed point set components, corresponding
to isolated singular orbit&™ 1.
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Proposition 4.5. Let 7" act onM"*3, a closed, simply-connected, smooth mani-
fold. Suppose that/* is homeomorphic t&? and that there are exactly two orbit
types: principal orbitsI™ and isolated singular orbit§™ !, that is, the isotropy
subgroups are either trivial or isomorphic t6'. Then there are at least + 1
isolated singular orbitg™ 1.

Proof. Let M, denote the manifold with boundary obtained by removing allsma
tubular neighborhood around each isolated singular @ibit'. Let M denote the
quotient spacé/,/T2. By a standard transversality argument we know that

m1(Mo) = m(M) = {1}
and
o (M) = 7o (M).
Since there is no isotropy group of finite order we obtain afibn
T" — My — Mg,
and therefore a long exact sequence in homotopy
0 — mo(My) — mo(M§) — m(T") = m1(Mp) — m1(Mg) — 0.

Sincem (M) = w1 (M) = 0, it follows thatr (M) = 0. SinceM* is a 3-sphere
and applying the Mayer-Vietoris sequence to the adg;, cl(M*\M)), noting
that c M *\ M) is a disjoint union of closed-discs, we obtain thatls (M) =
Z", where(r + 1) is the number of isolated singular orbits. It follows froneth
Hurewicz isomorphism thaty (M) = Hy(Mj) = Z" and the above exact se-
guence in homotopy becomes

0— m(My) = Z" = 7Z" — 0.

We conclude that < r and thus there are at least- 1 isolated singular orbits.
O

Corollary 4.6. Proposition 4.5 remains valid in the presence of finite ispy

Proof. Let I" be the finite group generated by the finite isotropy groupsiefaic-
tion. As we saw earlier in the proof of Iem@M,"”/F is a closed, topological
manifold. Moreover,M"*3/T" is simply-connected. Finally, observe tr&t /T
acts without finite isotropy od/"*+3/T" and the isolated™~! /(T"~! N T) orbits
in M™+3 /T correspond to isolate@™ ! orbits in M"+3.

O

Remark 4.7. We observe that in the case where we havB2aaction onM?°,
proposition 4.6 implies that whel* = S3, there are at least three isolated circle
orbits.
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4.2. Possible isotropy groups.In this subsection, we use the isotropy representa-
tion of the possible isotropy groups to better understaretfpoint components of
finite isotropy and their corresponding images in the ontétceM *.

By a theorem of Chang and Skjelbred [6], components of HixZ;) are
smooth submanifolds. When # 2 these components are orientable and of even
codimension. If: = 2, components of Fi§\/; Z-) may also be non-orientable and
by theoreni 413, of codimension at le@stIn the case of a smooth? action on
a closed, simply-connected smodimanifold M/°, components of Fig\°; Z;,)
must be at leas2-dimensional, as we saw in the proof of lemmal 4.4. An analy-
sis of the isotropy representations will show that for abesthe components of
Fix(M?3; Z;,) must be3-dimensional.

Proposition 4.8. Let T2 act smoothly on\/®, a closed, simply-connected smooth
5-manifold. IfA/* = S3, then the following hold.

(1) The singular orbits of the action afE' andT*/Zy, k € Z7.
(2) The exceptional orbits aré?/Z;., k > 2, andT?/(Zy x Zs).

(3) In all cases where there is finite cyclic isotropy, the copawding fixed
point set of finite isotropy is of dimensién

Proof. Since we have assumed thdt* is homeomorphic t&?3, there are no points
with 72 isotropy. Observe that the normal sphere at any point of aemional
orbit will be of dimension two. Thus the finite isotropy groopan exceptional
orbit must be a subgroup &fO(3) and of 72. Hence the only possible finite
isotropy groups aréy, k > 2, andZs x Zs. This proves parts (1) and (2).

Now we prove part (3). We first consider the singular orbitssesving that if
we have a singular orbit of the forffi' /Z;, then we have &' x Z; action on
the normal3-sphere to any point of the orbit. In particular, there wil & finite
cyclic subgroup of ordek in T x Z, fixing circles in this normaB-sphere and
therefore this orbit is contained in a fixed point set of finsetropy of dimension
3. If the singular orbit i/, then the action of the circle on the norns&lis either
free or almost free. In the latter case, a finite cyclic subpgriixes a3-dimensional
submanifold which contains the singular orbit.

We now consider the exceptional orbits. FoTé/Zk orbit, & # 2, the Zy
action onS? is never free and thus this exceptional orbit will be corgdirin a
3-dimensional submanifold fixed 5, & = 2. It remains to show that for the ex-
ceptional orbitl?/Z,, the Z, isotropy group also does not act freely on its normal
52. This follows from the fact that the antipodal map, whiche®ses orientation,
generates the only fre®, action onS? and it is not a subgroup &fO(3).

Finally, we consider the exceptional orlii®/(Z, x Zy). The action of the
isotropy subgroupZs x Zs, on the normalS? produces a quotient space equal
to the double right-angled spherical triangle with thrediges, each of which is
fixed by a differentZ, subgroup ofZ, x Z,. Each fixed vertex corresponds to
a 3-dimensional submanifold fixed by the correspondifigsubgroup. For each
T?/(Zy x Zs) orbit we will have exactly three such fixed point sets intetisg
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in this orbit. Thus, we conclude that the fixed point set of #@dinyclic group is
always of dimensior.
O

4.3. The singular sets inM* = S3. We now determine the structure of the sin-
gular sets in the orbit space in the particular case whkers 5-dimensional and
M* = S3,

Proposition 4.9. Let 72 act smoothly on\/®, a closed, simply-connected smooth
5-manifold. If M* = S3, then the set of points iA/* with non-trivial isotropy
corresponds to a graph and the following hold:

(1) The vertices of the graph correspond to isolated singulduitsror to iso-
lated exceptional orbits with isotrod#, x Z.

(2) The graph must contain at least three vertices correspantinisolated
singular orbits.

(3) The vertices corresponding to isolated singular orbitséndegree), 1 or
2.

(4) The vertices corresponding to isolated exceptional orhitth isotropy
Zo X Zs have degres.

(5) The edges of the graph correspond to points with non-triviaite, cyclic
isotropy.

(6) Every edge must meet two different vertices.

(7) The points in the edges meeting an isolated exceptionat withi isotropy
Zo X Zs have isotropyZs.

(8) The pre-image of the closure of an edge corresponds 3alemensional
manifold fixed by a non-trivial finite cyclic group admittiagl™ action of
cohomogeneity one.

Proof. Parts (1), (3), (4), (5) and (7) follow from the proof of praition [4.8 by
looking at the isotropy representation at the correspandibits. Part (2) follows
from theoreni 415 and its corollary 4.6. To prove (6), obséirgethat the existence
of simple closed curves in/* whose points correspond to exceptional orbits with
non-trivial finite cyclic isotropyZ,, is ruled out by work of Montgomery and Yang
(cf. [27] Lemma 2.3). By Kleiner’s isotropy lemma_[26], theotropy type on a
cycle on a cycle with one vertex and one edge must be constdimy out this
configuration. Therefore, there cannot be cycles of (gthpbretic) lengthl and,

in particular, any edge must connect two different vertices O
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We will denote byarc the closure of an edge with finite cyclic isotropy in the
set of orbits with non-trivial isotropy id/*. Since the graphs corresponding to the
singular set inM* carry isotropy information, we will refer to them ageighted
graphs We further note that in the figures we will use the followirdheme to
distinguish the possible weighted graphs:

e Black verticewill correspond to singular orbits and have degbeé or 2.

e White verticeswill correspond to exceptional orbits witly, x Zs isotropy
and have degreg

e Edgeswill correspond to non-isolated exceptional orbits witistdvial,
finite, cyclic isotropy.

We now begin the process of determining wBahanifolds may actually occur
as fixed point set components of a finite cyclic isotropy groBmce these com-
ponents admit an (almost) effecti& action, they must be one of the manifolds
listed in subsectioh 2.3. We will eventually show, in secff that the only such
3-manifolds that can occur ai®®, L, 4, S* x S' andS%x S,

We first observe that we may immediately rule @i, since its orbit space
would correspond to a simple closed curvelific with finite cyclic isotropy and,
as mentioned above, simple closed curves with finite cystitrtopy will not occur.

Of the possible3-manifolds on the list, the non-orientable onesBi* x S!,

S52x 81, KIx S andA, and as such, they may only be fixed point set components of
Zo isotropy. All have at least one exceptional orbit and cqoesl to the possible
pre-images of arcs containing a vertex of degree three.

If the singular set in\/* contains a vertex of degree three, then it may contain
different types of trees as subgraphs. Two types of treesaoayr. The first type
occurs if eithelR P2 x S! or $2x S is the pre-image of an arc @, isotropy, in
which case, the singular set contains a tree with one veftdegree three joined
to three vertices of degree one or two only. The second typersdf Kl x S' or
Ais the pre-image of an arc @, isotropy, in which case the singular set contains
a tree with an edge terminating in two vertices of degreeetheach of which is
joined to two more vertices of degree one or two. We will sext ththen we take
into consideration the lower curvature bound this secopd tf tree cannot occur,
allowing us to exclude Kk S* and A as possible fixed point set component&.ef
isotropy.

The first type of tree is the bipartite gragty 3, commonly known as alaw
(cf. [8,[19]). Since vertices and edges carry isotropy imfation, we shall refer
to this configuration as aweighted claw(see Figur¢ll). An example of the second
possible tree appears in Figlide 2. We will refer to such ggagsweighted trees
These graphs will appear in our analysis of the finite isgtregse in Section 61.2.

Finally, we point out that the weighted graph could also aona cycle. More-
over, this cycle could potentially be knottedifi* = S3. We will see in section 5l4
that when the orbit space is hon-negatively curved the aentemot be knotted.
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FIGURE 1. Weighted claw: The central vertex has isotr@pyx
Zs, the external vertices have isotropy conjugateStoand the
edges have isotrop¥,.

FIGURE 2. Weighted tree: The two central vertices have isotropy
Zo x 7o, the external vertices have isotropy conjugatestcand
the edges have isotro#s.

5. RESTRICTIONS ON THE ORBIT SPACE IMPOSED BY NOMWEGATIVE
CURVATURE

In this section we will see how non-negative curvature iestthe structure of
the orbit space of an isometric action on a closed, simply-connectednanifold.
Throughout this section we will Iet/® be a closed, simply-connectéemanifold
of non-negative curvature with an isometfié action.

5.1. Topology of orbit spaces with non-negative curvature.As we noted earlier,
the quotient space of a smodii action on a closed, simply-connected smasth
manifold is homeomorphic to one ¢ or S with a finite number of disjoint
open3-balls removed. For every opénball we remove we obtain as? bound-

ary component. In the presence of non-negative curvaturbawve the following
proposition.

Proposition 5.1. Let M° be a closed, simply-connected, non-negatively cubved
manifold. If7"? acts isometrically or/®, thenA* is homeomorphic to one of the
following:
(1) S3,if for any T* T for which Fix(M®°; TV) # 0, dim(Fix(M?; T')) =
1

(2) D3 or S? x I, if dim(Fix(M?; T')) = 3 for someT* c T2.
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Proof. Part (1) follows easily since only points belonging to a ceelision two
fixed point set of a circle will correspond to boundary pointthe orbit spacé/*.
Note that part (1) is independent of the curvature assumpBart (2) follows from
the Double Soul theorem 2.5.

O

5.2. Upper bound on the number of isolated circle orbits inA/°. In the previ-
ous section, in propositidn_4.5, we found a lower bound aéehfior the number
of isolated circle orbits inV/® for the case wherd/* = S3. We now propose
to determine an upper bound on the number of isolated cirtiggsovhen/® is
non-negatively curved. Theordmb.2 below will show thatérean be at most four
such orbits.

A simple application of the Extent lemma tells us thafifi = M /G, whereG
acts isometrically o/, a closed manifold of positive curvature, there are at most
3 singular points with space of directions isometricSt1,/2) or a “thin” $2(1/2),
that is, the quotient of>(1) by an almost free5! action. If M is non-negatively
curved, the Extent lemma tells us that there will be at Magich singular points.
A closer analysis of the geometry will allow us to show thatha case wheré/
is 5-dimensional, non-negatively curved and admits an isam@tt action, there
will be at most4 isolated circle orbits.

This upper bound follows from a triangle comparison arguimerthe orbit
space, generalizing an argument used in Kleiner's the€i$ §Bowing that an
isometric circle action on a closed, simply-connected,-negatively curvedi-
manifold has at most four isolated fixed points. These bauindsirn, are a par-
ticular instance of the more general fact that a three-dsio@al non-negatively
curved Alexandrov space can have at most four points whasmesgf directions is
not larger thanS?(1/2) (cf. [24]). We remark that the same result as in Kleiner’s
thesis was obtained in [42], but the argument used to prozedhult was spe-
cific to dimension4 and does not generalize to higher dimensions. The key ob-
servation that allows us to apply the techniques_in [26] tosswation is that the
normal sphere at a point to each one of the circles fixed by s8ine 772 is 3-
dimensional. We include the proof of the theorem here fostie of completeness
since Kleiner’s result was never published.

Theorem 5.2. Let M° be a closed non-negatively curvgdananifold with an iso-
metricT? action. Then there are at most 4 isolated circle orbits of fReaction.

The proof of theorem 512 will occupy the remainder of thissadtion. We begin
by fixing some notation and recasting several lemmas frofjtf2@eet our needs.

Let {p; }?_, be four distinct points i/® and let{p;}_, be their corresponding
projections in the orbit spac&3 = M?® /T2, which is a non-negatively curved
Alexandrov space and a topological manifold. Given twoinstpointsp;, p;,
1 < 4,5 < 4, lety,; be a minimizing geodesic from; to p;. For each triple of
distinct pointsp;, p;, Py, 1 < 4,7,k < 4, and a pair of minimizing geodesies;,
Vir» let

Qijk = L(Vijs Vik)-
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This angle is the distance I;, = S®/G,, between the directions of the mini-
mizing geodesicy;;, 7;;,. Finally, letT;;;, denote the (possibly degenerate) tetra-
hedron determined by the four poimts p;, by, p; and minimal geodesics between
these.

Before proceeding with the proof of theoréml5.2, we recadl fitilowing fact

(cf. [42]).

Lemma 5.3. Supposes! acts isometrically and fixed point freely ¢ (1). Then
5%/5% is smaller thans?(1/2) = S°/Sl, That is, there is a surjective-
Lipschitz maps?(1/2) — S3/S1.

We have the following lemma.

Lemma 5.4. If there are4 isolated circle orbits{ N;}*_,, then, for distinct points
p; € N; ,1 < i <4, and every quadruple of distinct integers< i, j, k,l < 4,
a tetrahedronTj;;,; in the orbit space with verticeg;, 1 < i < 4, and edges
corresponding to minimal geodesic between the vertica®yic in the following
sense:

(1) Qi+ Q41 + Qg = T
and
(2) Ok + Qjks + Qg = T,

that is, the sum of angles at each vertex and the sum of anfyesch face off;
are bothr.

Proof. In the orbit spaceX® = M®/T?, the4 circles {N;}}_, correspond to 4
points {p;}%_,. By Toponogov’'s theorem for Alexandrov spaces (dfl [4]), we
know that the sum of the angles of a geodesic triangl& #rwill be greater than
or equal torr. Connecting each pair of distinct points {@,}}_, by a minimal
geodesic we obtain a configuration of four triangles anddted sum of the angles
in this configuration will be greater than or equalto.

For each one of the four pointg;}?_, the coresponding isotropy group acts
freely or almost freely on the normal speﬁf@Nil and the quotient of the unit
normal spheres® C T, N;- is 52(%), the round sphere of radiug2 in the first
case or a “thin’s%(1/2) in the second case. Hengg, (35, X?) < xt,(5%(3)) for
anyq > 2.

Using the fact thakt;(S%(3)) = 7/3, it is easily seen that for any triple of
distinct pointsz;, zy, 2; € S%(3), we have

dist(x;, xy) + dist(z;, z;) + dist(xy, ;) < 7.

Thus summing over all the triangles formed by the poits_, we find that the
sum of their angles should be less than or equéktoT herefore this sum of angles
must be exactlyir.

O
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Lemma 5.5. If there are5 isolated circle orbits;{NZ-}?:1 then, for fixedl <: <5
and pointsp; € N;, 1 < 5 <5, j # 1, the following hold.
(1) For eachi and eactp; € N;, we havel,, = S! and its slice representa-
tion is the Hopf action.
(2) The directions ik, = S3/G,, corresponding to minimal geodesics from
p; top;, j # i, come in mutually orthogonal pairs, that is, giverior each
set of distinctj, £, [, m, up to reordering, we can assume that

aijk = Q4lm = 7'('/2.

Proof. For convenience, let = 5. Fors = j, k,[,m, letvy € X5, be the initial
direction of the minimizing geodesig;, from p to p,. By lemmd5.4, we have

55k + Qg + Q515 = T,

for the 4 pointsp,, by, by, b5, With j, k, 1 # 5.

We have already seen in the proof of lenimd 5.4 that the sunedfighances be-
tween any set of three distinct points3y; is equal tor for any: € {1,2, 3,4, 5}.
Consider now the three points, vg, v; in Xj,. In the case wherE;, = 52(1/2)
then either two of them are antipodal or all three of them ie@reat circle. Note
that in this last case the three points cannot lie in half efgreat circle. In the sec-
ond case, whergj, is a “thin” S%(1/2), two of the points must be at distancg2.
Since this is true for any choice of three of the four possilidectionsv,, one may
conclude thab:;, cannot be smaller thaf?(1/2). In particular, this implies that
the isotropy group of each isolated circle orbiisand that the action is the Hopf
action. This proves part (1) of the lemma. Finally, one camctude that the four
directionsuvs, s = j, k,, m in the space of directions must lie on a great circle and
consist of two pairs of antipodal points, thus proving pajtdf the lemma. [

Proof of theorem 5]2Suppose that there afesingular pointg;, 1 < i < 5, inthe
orbit spaceX? corresponding to isolated circle orbits. Lemrhas 5.4[ankrbgy
that every triangle determined by any three such points xextlg one angler/2.
It follows from the discussion of the equality case in thegbrof Toponogov’s
theorem (cf. [[5]) that these triangles must be flat. Assunfter aelabeling if
necessary, that digt;,p,) is the minimum of the distances digf,p;) between
distinct pointsp;,p;, 1 < 4,j < 5. That is, assume that the geodesic edge from
P, to P, is the shortest in the configuration with vertiggs1 < ¢ < 5, and edges
corresponding to minimal geodesigg between distinct points;, p;. Now choose
p; in {D3,D4,D5 } such that neither one of the angles;, a1, is equal tor/2.
This choice implies that the minimal geodeSig is the hypothenuse of the triangle
determined byp,, 7, andp,. On the other hand, digi,,7,)? = dist(p,,7;)% +
dist(p,, p;)?, which contradicts the choice pf andp, as determining the shortest
geodesic edge of the configuration determined in the orhitespy the five isolated
circle orbits.

O

Corollary 5.6. Let M"*3 be a closed, non-negatively curved manifold with an
isometricT™ action. Suppose that/* = S3 and that there are isolated™ !
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FIGURE 3. Weighted graph containing a claw. The solid vertices
correspond to isolated circle orbits. The vertex of degreerre-
sponds to an exceptional orbit with isotrofiy x Zs.

orbits. Then there are at most four such isolafEti—! orbits. In particular, if
n > 7 then there are none.

Proof. The first result follows directly from the proof of theorén®5The second
result follows by proposition 415. O

5.3. Possible components with finite isotropy.The following lemma, easily gen-
eralized from Rong [40], allows us to calculate the Betti twens withZ,, coeffi-
cients of M.

Lemma 5.7. Supposel™ acts isometrically om/°, a closed, simply-connected
5-manifold. If there are exactly 3 isolated circle orbitsethH,(M°) has trivial
free rank. If there are exactly isolated circle orbits, theri{,(M°) has free rank
equal tol.

We will now show that a weighted graph containing a tree witkrdex of degree
three, that is, a weighted graph containing a weighted claaweeighted tree, may
occur only when there are exactyisolated circle orbits. With this result, we may
then conclude that neither K4 S* nor A can never occur as the fixed point set of
a finite group.

Proposition 5.8. LetT™ act isometrically om/°, a closed, simply-connected, non-
negatively curved-manifold. If M/* = S3 and there exists a non-orientabfe
manifold F3 fixed by aZ, subgroup, then the projection & in A/* must belong
to a weighted claw and there can be no other singular point&/incorresponding
to an isolated circle orbit, besides the three external iced of the claw.

Proof. Let W be the weighted graph corresponding to the set of orbits moti
trivial isotropy in M*. There are two cases we must exclude. The first case is
wherelV contains a weighted claw as a subgraph and a vertex of dégtear 2

(see, for example, figufé 3). The second case is Wherontains a weighted tree

as a subgraph (see, for example, figure 4).

We begin with the first case. Let; denote the center point in/* of the
weighted claw, that is, whose space of directidl)s is the double right-angled
spherical triangleS?/(Zy x Zs), and letp;, i = 2, 3,4, denote the points id/*
corresponding to the vertices of the weighted claw, eachlho€hlivcorresponds to
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FIGURE 4. Weighted graph containing a tree. The solid vertices
correspond to isolated circle orbits. The two vertices afrde3
correspond to exceptional orbits with isotrapy x Z.

an orbit with 7" or T x Z, isotropy. We note that the space of directions for
each of these external vertices is eitherS&l /2)/Z,, that is a “thin”2-sphere of
diameterr /2 or a possibly thinne2-sphere of diameter /2. If there is a fourth
singular pointp; corresponding to an isolated circle orbitin®, then, is either
an$?(1/2) or a “thin” S%(1/2). SinceS?(1/2) is the “largest” of these spaces of
directions (cf[5.B), we will assume tha, = 52(1/2).

It is clear that inX;, the vertices of the spherical triangle correspond to the
geodesic directions to the points, p3 andp4, and consequently o3 = 104 =
aq34 = /2. Without loss of generality, we will assume thats + o145 = a+8 =
/2, in which case it follows thatv 95 = 7/2.

Now, by lemmd5.H4, the tetrahedrdhs,s is rigid, in the sense that the angles
of every face sum toar and the angles at every vertex sumsto In particular,
because of this rigidity and because each of the pgintss andp, has space of
directions a thins?(1/2), it follows that at every one of the verticgs, p3 andp,
of T,345 there will be an angle of /2. Further, the maximal configuration for the
spaces of directions of the poinis, p3 andp, will be where the remaining angles
at each vertex iffy345 are allw /4, that is,a;1, = /4 for for all j € {2, 3,4} and
k € {2,3,4,5}, wherej # k, whereass;; will be equal tor/2 for one value
of j € {2,3,4} and for the remaining values it will be equaltg4. Without loss
of generality we may choose specific values for all angles@formay;y, 5, k €
{1,3,4,5}. Once these choices are determined, the rigidit§,gf; will determine
the remaining angles.

It now follows by Toponogov’s theorem that the angle sum of &irangle in
any tetrahedron formed by these five singular points mustéater than or equal
to 7. When we consider the tetrahedrdiiss, we see that when we substitute all
the known values for the angles the lower bound on the sumeoétigles for any
triangle forces the following two inequalities:

as13 + Q315 +a > T,
as14 + g5 + B >
As we saw previouslyy15 = as15 = 7/4 and one ofvsi3 Or as14 is equal to
7 /2 and the other is equal to/4. In particular this tell us that one of the angles
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or (3 is greater than or equal to/2 and the other is greater than or equalrtl.
Sincea + 8 = /2 this immediately gives us a contradiction and thus this case
cannot occur.
For the second case, where the weighted graph contains &teeigee, we
observe that the addition of the singular pgigtcorresponding to &2 /(7o x Z-)
orbit will produce an analgous contradiction and thus thseccannot occur either.
O

We summarize the results of this subsection in the followireprem:

Theorem 5.9. Let T2 act isometrically onM/®, a closed, simply-connected, non-
negatively curved-manifold. IfM* = S3, then the fixed point set components of
finite cyclic isotropy (if they exist) are:
(1) 83, L4, S? x S, RP? x S' or $2xS! when there are three isolated
circle orbits;

(2) S3, L, 0r S* x S* when there are four isolated circle orbits.
We recall the following theorem of Bredoln| [2]:

Theorem 5.10. Suppose thap is a prime and thatG = Z, acts on the finite-
dimensional spac&X with B C X closed and invariant. Suppose thatacts
trivially on H*(X, B;Z) and letF' = Fix(X;Z,). Then, for any > 0, we have

>tk HM(F,FNB;Z,) <> rk H(X, B; Z,).
i>0 i>0

We observe that any diffeomorphismit is homotopic to the identity, since it
is contained in a torus. Thus we may apply this theorem toithaten at hand to
obtain the following corollary:

Corollary 5.11. Let7? act isometrically on\/?, a closed, simply-connected, non-
negatively curved-manifold. IfM/* = S2 and the orbit space contains a weighted
claw, then)M® is not S°.

Proof. This follows directly by applying the inequality in theoré®ilQ, observing
that if eitherS?x St or RP? x Sl is contained in FikM®; Z,), then Hy(M®) #
0. O

5.4. Unknottedness of cyclesWe will now analyze the special case where the
singular set in the orbit space contains a cycle. Followiraygkwof Grove and
Wilking [24, [48], we will show that this cycle is unknotted if* = S3. Recall
that the arcs in a cycle correspond to the projection of fixeittpsets of finite
isotropy. We have the following result.

Theorem 5.12. Let M be a closed, simply-connected, non-negatively cufved
manifold with an isometrid@’? action and orbit spacé/* ~ S3. If the singular set
in the orbit spaceV/* contains a cyclds!, then the following hold:

(1) The cycleK! is the only cycle in the singular set i *.



20 F. GALAZ-GARCIA AND C. SEARLE

(2) If there are four isolated circle orbits, thei ' comprises all of the singu-
lar set, i.e.,M* \ K" is smooth.

(3) Suppose there are exactly three isolated circle orbitsctloée X' contains
only two of them, and there are no exceptional orbits of @IZ, x Zo.
Then the finite isotropy fixing one of tAemanifolds corresponding to one
of the arcs of the cycle must @&.

(4) The cycleK! is unknotted im\/*.

Proof. We will first prove parts (1) and (2) of the theorem. Note fitsattthe
weighted graphi? C M* corresponding to the set of singular orbits can contain
two cycles only iflV has four vertices, since a cycle must contain at least two iso
lated singular orbits (cf.[[27][26]). In particular, thihows Part (1) when there
are only three isolated singular orbits. To then obtaindP@nt and (2) when there
are4 isolated singular orbits we will employ the following stgy. For any given
weighted graph containing a cyclé' in M* we will construct a branched double
coverx : B — M* with branching sef! and show thaf3 is a simply-connected
Alexandrov space of non-negative curvature (see lenima%[5.14 and 5.15 be-
low). By lemmd5.14 below and the proof of theorem| 5.2, theec@/can contain

at most four points projecting down to isolated circle agltA/*. This then shows
us that if we have a cycle containing fewer thaisolated singular orbits id/*,
then inB we will have more than isolated singular orbits, a contradiction.

To construct the branched cover, first observe that a gemeohtH(M* \
K':7Z) = Zis given by a normal circle t&'. Recall that index two subgroups of
Hy(M*\ K';7Z) = 7Z are in one-to-one correspondence with two-fold covers of
M*\ K'. Hence there is a unique two-fold covf of M* \ K. Let B,(K*') be
a tubular neighborhood at! in M* ~ S3. Observe thaB3,(K') is a solid torus
and therefordd (B, (K"') \ K';7Z) = 7. It follows that B, (K!) \ K' also has a
two-fold cover. Now letB = B’ U K'! so thatx : B — M* is a two-fold branched
cover, with branching sek’!. Further,B admits aZ, action, which is isometric
with respect to the metric induced by the orbital distancérimé&om A™, with
fixed point setk!.

Lemma 5.13. The spaceB is a hon-negatively curved Alexandrov space.

Proof of lemm&5.130bserve thatB is locally isometric toM* outside of the
branching sefs!. Let Cy be the union of arcs ! with isotropy Zy, k # 2.
We have two cases: case one, where the cicleontains all the singular points
corresponding to isolated circle orbits, and case two, vithere are exactly three
isolated circle orbits and of the corresponding singulantsconly two belong to a
cycle.

For case one, proceeding as in the proof of lemma 2.3in [2,werifies that
the setB \ Cs is convex inB. The conclusion follows after observing that any
geodesic triangle iB is the limit of geodesic triangles iB \ C.

For case two, there are only two graphs that correspondda#se: graph 4 of
figure[§ and graph 2 of figufé 6. For graph 4 of figure 5, we mayg@da@s in case
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one. Here we verify that the sBt\ {CoU{p1, p2} } is convex inB, wherep; andps
are the lifts of the poinp corresponding to the isolated circle orbitif* that does
not belong to the cyclé!. For graph 2 of figur&l6, letl; be the arc ink’! with
isotropyZy., k # 2, and letAs be the lift in B of the arc in the claw with isotropy
7, not contained ik '. Observe thatl, is a minimal geodesic between the lifts of
the isolated circle orbit not contained in the cyéé. As above, one verifies that
the setB \ (A; U As) is convex inB and the conclusion follows after observing
that geodesics triangles B are limits of geodesic triangles i8 \ (A1 U As).

O

Lemma 5.14. Letp € K' c M* be a point corresponding to an isolated circle
orbitin M° and considef as a point inB. ThenX;B is smaller than or equal to
S%(1/2).

Proof of lemm&5.14There is a two-fold branched covel,B — ¥;M*. We
know that the space of direction$; M * is a “thin” S2(1/2). We will denote this
space byX; ;. Observe thakt;M* = X, ; can be written as the join of a circle,
S1 /7y, of diameterr /kl and.S°, of diameterr /2, where the former is the normal
space of directions td* at the pointg and the latter corresponds to the tangent
space of directions atof ' in M*. SinceB is a two-fold branched cover o *
with branching locug<!, the corresponding space of normal directiongBimvill
be of twice the diameter as the space of normal directioddinIn particular, this
means thak; B corresponds to the orbifold’,;, ; or X, ;. Since at least one of
k,lis greater thaa, it follows that this orbifold is smaller than or equal$8(1/2),
as we saw earlier (cf. lemnia’®.3). O

Lemma 5.15. The spaceB is simply-connected.

Proof of lemm&5.15We will prove this by contradiction, so assume thatB)
contains at least two elements. Observe fRathe universal cover aB, is a com-
pact Alexandrov space of non-negative curvature. Theratdeast three singular
pointsp; in B, corresponding to isolated circle orbitsiti*. Therefore, inB there
will be at least six pointg;, covering these pointd/*. By lemmd5.14, the spaces
of directionsX;, B are smaller than or equal 187 (1/2). On the other hand, the
Extent lemma implies that there can be at most five such painis, yielding a
contradiction. O

Now we prove part (3). LeZ;,, andZ; be the finite isotropy groups fixing the
two 3-manifolds corresponding to the two arcs of the cyklé. Without loss of
generality, we may assume that< k < [. In this case we may take fafold
branched cover ofi/* with branching locusik*. It follows from the proof of
theoren 5. that = 2, since otherwise the branched cover would have more than
four singular points.

Finally, we prove part (4). Observe th& is a topological3-manifold and,
by lemmd5.Ib B is simply connected. Hence, by the resolution of the Po@ncar
conjecture,B must be homeomorphic t6%. Recall that we have an isometric
7, action onB fixing K'. By the equivariant version of the Poincaré conjecture
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[9], it follows that this action is equivalent to a linear iact on a standard?®(1).

ThereforeZ, C SO(4). Note thatZ, is not equivalent to the action efld, since
there is a branching locus, that is a unique circle fixed byZhection. Thus,
without loss of generality,

~1
Zo=A{ B ) uld}.
1

ThereforeK' ¢ M* = B/Z, is not knotted. This concludes the proof of theo-
rem5.12. O

6. NON-NEGATIVELY CURVED 5-MANIFOLDS WITH ALMOST MAXIMAL
SYMMETRY RANK

We can now classify closed, simply-connected, non-negjgtiourved5-man-
ifolds with an isometric™ action, corresponding to the almost maximal symmetry
rank case in dimensioh We summarize our results in the following theorem.

Theorem 6.1.Let M be a closed, simply-connect&dananifold with non-negative
curvature admitting an isometri€? action. Then)M?® is diffeomorphic toS?,
3 x §%,83%5% or SU(3)/S0(3).

By lemma[4.4, thel? action is neither free nor aimost free. In particular, this
tells us that there is always some circle subgroup with maptg fixed point set.
We then have two cases to consider: case A, where some citmeaip acts fixed
point homogeneously and therefaké* is D3 or S? x I, and case B, where no
circle subgroup acts fixed point homogeneously and hante= S3. Throughout,
our main goal will be to computél,(M?). The conclusions of theoreim 6.1 will
then follow by the Barden-Smale classification of simplyweected5-manifolds
[T, [43]. We remark that it is only in case B, wheké* = S3 and we have finite
isotropy, that the Wu manifoldSU (3)/SO(3), may occur. Observe also that if
one circle subgroup acts freely, thé® fibers over one of the four manifolds
CP?,5% x S? or CP?# + CP? (cf. theoreni.3.8B). The corresponding total space
is diffeomorphic toS°, S3 x S? or $3x S? (cf. [10]). It follows that in the case
where we obtain the Wu manifold, no circle subgroup may sl

6.1. Case A:9M* # (). Let M be a non-negatively curved manifold with a fixed
point homogeneou®' action. By definition, this means that there is a component
F of Fix(M;T") of codimensior2. We begin with the following proposition.

Proposition 6.2. Let M™ be a closed, simply-connected, non-negatively curved
manifold of dimensiom > 4 with an isometricT" action and suppose that
Fix(M™; T") contains an(n — 2)-dimensional componert”—2. Let C* be the
set at maximal distance fro#"~2 in the orbit spacex™ ! = M™/T*.
(1) Ifdim(F) = dim(C) = n — 2 and we further suppose that ! (C) = Bis
a topological manifold without boundary, théhis fixed by th&™ action,
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is isometric toF™~2 and F'"~2 = C"~2 is simply-connected.

(2) If C* has dimensiork < n — 4, thenF™~2 is simply-connected.

Proof. First we prove (1). If we suppose thatis not fixed by theS! action, then
B = 7m~Y(C) has dimensiom — 1. We may decompos&/ as a union of neigh-
borhoods ofN"~2 and B, which we will denoteV and U, respectively. Their
common boundary is a circle bundle ow&~2 which we denote by)V. Ob-
serve that bothV anddV are orientable, but that' is not (this follows from the
Mayer-Vietoris sequence of the tripl@/, V, U)). SinceM™ is simply-connected it
follows by duality thatH,,_, (M) = 0 and that the torsion subgroup &f, (M)

is trivial. Further, sincéV is a compact, orientable manifold of dimension- 1,
the torsion subgroup off,,_»(0V') is also trivial. Likewise, sincd” deformation
retracts ontaV"—2, H, (V) = Z. SinceB is non-orientable, the torsion sub-
group of H,,_o(U) is equal toZ,. If we write down the first few elements of the
Mayer-Vietoris sequence of the tripl@/, V, U) we have:

0— H,(M)— H,1(0V) = H,1(U)® Hy,—1(V) = Hp—1(M)
— H,2(0V) = Hpo(U) ® Hp—o(V) = Hp—o(M).

Substituting known values we obtain:

0—-Z—-7Z—-080—=0
— Fr(H,—2(0V)) — (Fr(H,—2(U)) ® Z3) ® Z — Fr(H,_o(M)).

The sequence is not exact and thus this case cannot occis.inTtirn implies
that the inverse image @f”~2 in M must be exacthyC"~? and thusC"~2 is a
component of FikM; T'1). It then follows from the Double Soul TheorémP.5 that
M is anS? bundle overF"~2 and henceV"~? must be simply-connected.

To prove (2), lety be a loop inF™"~2 ¢ M™. SinceM™ is simply-connected,
~ bounds &-disc D?. Let B¥ = 7—!(C*) and observe that’ < n — 3. By
transversality, we can perturb? so as to lie in the complement d(B*'), a
tubular neighborhood aB*’, while keepingy = D2 in F"~2. The conclusion
follows after observing thab? is now contained irD(F"~?2), which deformation
retracts onta™" 2. O

Remark 6.3. Propositior 6.2 holds trivially in dimensidh since in this case the
fixed point set components of codimensi@are isolated points. In dimensian
however, the conditions of Partsand2 of Propositio 6.2 cannot occur, since a
1-dimensional fixed point set component, being a closed saliola of M, must
be a circle and thus has infinite fundamental group.

Simply connected-manifolds with non-negative curvature and a fixed point
homogeneous isometric circle action were classified in [[74, To obtain the
classification, it suffices to show that there is some conubsset of the sef’ at
maximal distance from a fixed point set compon&nt: dM°/S* whose inverse
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image inM? is a smooth manifold? without boundary. In particular, one shows
that the dimension off is always eitherl or 3 and M can be decomposed as a
union of disc bundles. One may then conclude tHat)°; Z) is either trivial or

7 and using the Barden-Smale classification [1, 43], the tésobtained.

We note that the case where dif) = dim(F") is simplified somewhat by the
use of Proposition_612; indeed, whéhhas no boundary, it is the soul M/S1
and the orbit type o’ must be constant, so that }(C') = H is a smooth mani-
fold. The cases wher@C # () are then considered individually and in those cases
where H has boundary, one can easily produce a convex sulyset C, where
dim(C") < dim(C) and whose inverse image i is a smooth manifold (seg [1L6]
or Chapters of [44] for details).

The following theorem summarizes the result.

Theorem 6.4. Let S! act isometrically and fixed point homogeneously\dn, a
closed, non-negatively curved, simply-connectedanifold. Then)/? is diffeo-
morphic toS%, $3 x S or $3x S2.

6.2. Case B:M* = S3. We consider now the case where no circle acts fixed point
homogeneously, that i8/* = 53, and there are either three or four isolated circle
orbits. We will prove the following theorem:

Theorem 6.5. Let M° be a closed, simply-connected, non-negatively cubred
manifold admitting an isometri€? action. If A/* = S3, thenM/? is diffeomorphic
to S°, SU(3)/S0(3), S% x 5% or §3xS2.

We first consider the case where there is no non-trivial fisié&opy.

Proposition 6.6. Let M° be a closed, simply-connected, non-negatively cubved
manifold admitting an isometri€? action. Supposa/* = S? and that there is no
non-trivial finite isotropy.

(1) If there are exactly three isolated circle orbits, thé#® is diffeomorphic
to S°.

(2) If there are four isolated circle orbits, thel/® is diffeomorphic ta53 x 52
or §3xS2.

Proof. This follows directly from the proof of Propositidn_4.5 andetBarden-
Smale classification of closed, simply-connected sméatranifolds [1[43]. O

We now consider the case where fi€action admits non-trivial finite isotropy
groups. We will devote the rest of this section to the proaheffollowing propo-
sition:

Proposition 6.7. Let M° be a closed, simply-connected, non-negatively curved
5-manifold with an isometric™ action. Suppose that/* = S% and there is
non-trivial finite isotropy.

(1) If there are exactly three isolated circle orbits, théf® is diffeomorphic
to S° or the Wu manifoldSU(3)/SO(3).
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(2) If there are four isolated circle orbits, thel/® is diffeomorphic ta53 x 52
or $3xS2.

Before we proceed with the proof of Propositionl 6.7 we sunmean the propo-
sition below the properties of the weighted graphs we neetbtwider. Recall
that in these graphs, as convened in Sedtioh 4.3, blaclkcesrtiorrespond to iso-
lated singular orbits, white vertices correspond to exoept orbits withZs x Zs
isotropy, and edges correspond to non-isolated exceptiwhés with non-trivial,
finite, cyclic isotropy.

Proposition 6.8. LetT™ act isometrically om/°, a closed, simply-connected, non-
negatively curved-manifold. IfA//* = S3 and there is non-trivial finite isotropy,
then the graphs corresponding to the possible singular aetcharacterized by
the following properties:

(1) The number of black vertices is either three or four.

(2) Black vertices have degrée 1 or 2 and white vertices have degr8e
(3) The graph contains at least one edge.

(4) Every edge must connect two different vertices.

(5) The isotropy associated with each edge meeting a whitexvisr.

(6) Every edge connecting a white vertex and a black vertex beleo a
weighted claw.

(7) If a weighted graph contains a claw, then the graph has exactlack
vertices.

(8) The graph contains at most one cycle. Moreover, if a cyclt®ii a graph
with 4 black vertices, then the cycle contains every vertex and adthe
graph.

Proof. Part (1) follows from proposition 4.9 and theoréml5.2. P&2)s (4) and
(5) follow from propositiorf 4.9. Part (3) follows from progition[4.9 and the fact
that we are assuming that the action has non-trivial findgrapy. Parts (6) and (7)
follow from propositior[ 5.B. Finally, part (8) follows by ¢oren{5.1P. O

We may now make a complete list of all the graphs that can dectire case
where we have three isolated circle orbits and in the caseemve have four
isolated circle orbits. The graphs are listed in figlulds Hdi A

Recall now that, by theorem 5112, if the weighted graph doata cycle, then
this cycle must be unknotted i/* = S2. We will now show in all cases where
we have a cycle that we may decompose the manifold as a unidismbundles,
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where at least one of the disc bundles is over one arc of tHe.cytle have the
following proposition:

Proposition 6.9. Let M° be a closed, simply-connected, non-negatively curved
5-manifold with an isometric™? action. Suppose that/* = S and there is
non-trivial finite isotropy.

Suppose, in addition, that the weighted graph, corresponding to the singu-
lar set of the action contains a cycl§!, corresponding to graphs (3) and (4) in
figure[8, graph (2) in figur€l6, and graph (5) in figure 7. Then fbéowing are
true.

(1) If W is graph (3) in figuréb, thed/> decomposes as the union of a disc
bundle over &-dimensional submanifold?  M?® fixed by non-trivial
finite cyclic isotropy, corresponding to the pre-image ofeanin K, and
a disc bundle over the remaining circle orbit not containad\i3.

(2) If W is graph (4) in figure b, then/®> decomposes as a union of disc
bundles over twa-dimensional submanifolds. One of thelsenanifolds
corresponds to the fixed point setZf isotropy,k > 2, and the other cor-
responds to the pre-image of the arc between the remainaigtésl circle
orbit and an exceptional orbif? /Z, which projects to an interior point of
the arc ofZ isotropy.

(3) If W is graph (2) in figurd b, thed/® decomposes as the union of disc
bundles over tw@-dimensional submanifolds. One of thélsenanifolds
corresponds to the pre-image of the arc witp isotropy, £ > 2, and the
other to the pre-image of the arc wity isotropy containing the remaining
isolated circle orbit.

(4) If W is graph (5) in figuré 17, thed/> decomposes as the union of two disc
bundles over two disjoirt-dimensional submanifolds fixed by non-trivial
finite isotropy (although not necessarily the same group).

Proof. We will first prove parts (1) and (4) corresponding, respetyi to graph
(3) in figurel® and graph (5) in figuké 7. In both cases the weigjgraph is a cycle
K.

Fix an arcA?} in K corresponding to a fixed point set component of non-trivial
finite cyclic isotropyZ;. Note that whether we have three or four isolated circle
orbits, the corresponding edges of the weighted cyclein M * form the angle
/2. Thus, at isolated circle orbits corresponding to the emdp®f the arcAj,
the normal space to tigedimensional submanifoldfgk = 1 1(AY), fixed byZy,
will be the tangent space to tl#edimensional submanifold fixed by non-trivial
finite cyclic isotropy, corresponding to the lift of arcs acignt toA7. In graph (3)
in figure[3 the cyclek’! contains three edges, and there are ti@émensional
submanifolds fixed by non-trivial finite isotropy, each oweresponding to the lift
of an arc ink.



NON-NEGATIVELY CURVED 5-MANIFOLDS WITH ALMOST MAXIMAL SYMMETRY RANK 27
1) 2
A zi :
3) 4)
FIGURE 5. Possible weighted graphs when there are exactly three
isolated circle orbits and only non-trivial finite cyclicisopy.

(1) )

FIGURE 6. Possible weighted graphs when there are exactly three
isolated circle orbits and an isolated exceptional orbit.

1) (2) 3

(4) ®)

FIGURE 7. Possible weighted graphs when there are exactly four
isolated circle orbits and non-trivial finite cyclic isopy
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ConsiderN; = n~'(A}) and letC; be the remaining isolated circle orbit not
contained inNgk, so thatC; projects to the vertex oi! not contained inA%.

The decomposition af/ as a union of disc bundles ov€fi and overN: follows
from an argument analogous to the one given by Grove and @/ikif24, Section
3], where it is applied to obtain a double disc bundle decasitipm of closed,
simply connectedi-manifolds of nonnegative curvature with an isometric leirc
action. Our situation is analogous to the onelinl [24] andrtaegument, which
we now recall, carries over to our case. LLéte a smalk neighborhood of the
preimage ofK’'. In U one may construct a smooff? invariant horizontal vector
field V' which is normally radial neaNgk and C and tangential to the inverse
image of the remaining two edges of the cy&@é in M *. This vector field can
be taken to be the horizontal lift of a smooth (in the orbifekhse) vector field
V* on U* which is normal near the image of the boundaries of suffiiesthall
tubular neighborhoods dﬁgk and C; and for which the remaining two edges of
K are integral curves. Since theneighborhoods of the images mgk andC;
are3-balls, as well as their complements, aiid is unknotted) * can be extended
to a smooth nonvanishing vector field on the complemeitfofespecting the ball
decomposition of\/* This extension uniquely lifts to an invariant extensiori/gf
thus yielding the desired decomposition/df.

The same argument in the preceding paragraph works for g&ph figure[T7,
corresponding to the case of four isolated circle orbitsreHee will isotope the
boundary of a tubular neighborhood arouig, corresponding to the pre-image
of an arcA} C M* in the cycleK!, to the boundary of a tubular neighborhood
aroundN3, corresponding to the pre-image of the arc opposité:to

We now prove part (2), corresponding to graph (4) in figure &cdf that in this
case one of the edgesIn' corresponds to orbits with isotrof#s, while the other
one corresponds to orbits with isotrofdy,, & > 2. We will denote the arc i
corresponding to a fixed point set component of isotrdpyby A;, and we will
let A% be the arc inK'! corresponding to the fixed point set component with finite
isotropy Zx. We now form an arcd3 in M* by joining the vertex not contained
in K! to A% via a shortest geodesic i/*. The interior of this arc consists of
principal orbits and the pre-image of this arc is a cohomedgrone3-manifold,
N3. Proceeding as in cases (1) and (4), we may decompbsas a union of disc
bundles overV; = 7—1(A%) and N3,

To prove part (3), we lefl} be the arc not contained in the weighted claw, that is,
the arc containing two isolated circle orbits and corresidmn to a fixed point set
component of isotrop¥;, k£ > 2. We let A3 be the arc in the claw containing the
isolated circle orbit not contained . Proceeding as above, we may decompose
M? as a union of disc bundles ovaE = 71 (A}) and N3 = 7~ 1(A3).

O

We are now ready to prove propositibn16.7. Our strategy vélltd analyze
the weighted graphs grouped into three separate casese wieefirst two cases
correspond to part (1) of propositién 6.7 and the third caseesponds to part
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(2) of propositiol 6.J7. The first case will be all the graphdigure[3, with the
exception of graph (4). The second case will consist of gi@plof figure[% and
graphs (1) and (2) of figufd 6. The third case will be the graghigyure[7.

Proof of propositiod 617 - (1)The weighted graph corresponding to the singular
set of the action is one of those listed in figlite 5 or figdre Gollows from the
discussion in sectidn 3.3 that if the weighted graph is orteasge in figuréb, then

a fixed point set component of non-trivial finite isotropy aamly be one ofS?,
Ly, 0r 5? x S1; if the weighted graph is one of those in figlile 6, then the fixed
point set components of non-trivial finite isotropy corr@s@ing to arcs in the claw
can only beS?x S or RP? x S' and the corresponding isotropy subgroup %,a
subgroup off? in each case.

As mentioned above, we have divided the proof of proposiiah (1) into two
cases: case A, where the graphs are all those from figure Shéthxception of
graph (4); case B, corresponding to graphs (4) from figureds(apand (2) from
figure[8.

Case AWe have the following lemma.

Lemma 6.10. Let 72 act isometrically on)M?®, a closed, simply-connecte®
manifold of non-negative curvature and suppose fadt= S3. If there are exactly
3 isolated circle orbits and the weighted graph of the actisrome of graphs (1),
(2) or (3) from figurd’b, then neithe,, , or 5 x S' may be a component of a fixed
point set of non-trivial finite isotropy.

Proof. If the weighted graph is one of graphs (1) or (2), which do raitaontain a
cycle, then we may complete it to a cycle by adding edges sporaling to curves
consisting of regular points in the orbit space, so that e&ctex in the graph has
degree2 (see figuré18). We choose these curves so that they are gepdesir
the vertices and any two edges meet at the maximal anle We may then de-
composeM?® as the union of a disc bundle over a fixed point set component of
non-trivial finite isotropy and the remaining isolated t@rorbit. A tubular neigh-
borhood around the isolated circle orbit will bé4-bundle overS' with boundary

an S? bundle overS®. A tubular neighborhood around the fixed point set compo-
nent of non-trivial finite isotropy will be @?-bundle overL, , or $* x S! and
therefore the boundary of both tubular neighborhoods mess®ox S'. When

we consider the Mayer-Vietoris sequence of this decomiposite immediately
obtain a contradiction and therefore neither of these twoifolas may occur as a
fixed point set component of non-trivial finite isotropy. O

Case BWe have the following lemma.

Lemma 6.11. Let 72 act isometrically onM?°, a closed, simply-connectei
manifold of non-negative curvature and suppose that = S3, there are exactly
three isolated circle orbits and the singular set corresp®mo graph (4) of figure
or graph (2) of figuré 6. Then a fixed point set component défieotropyZ,
k > 2, can only be one o or RP3.
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FIGURE 8. Completing a weighted graph with three vertices to
form a cycle. The solid edge corresponds to orbits with mat
finite cyclic isotropy, while the dotted edges correspongrtoci-

pal orbits.

Proof. We must rule out.,, ,, where(p, q) # (2,1), andS? x S! as fixed point set
components of isotrop¥%, £ > 2. Recall that, for both graphs under considera-
tion, M5 decomposes as a union of disc bundles over onlg,gfor S? x S*, and
over one ofS? xS or RP? x S*. It follows from the Mayer-Vietoris sequence of
this decomposition that only two possibilities do not giserto a contradiction:
that /> may be the union of disc bundles ov@P? and S?x S! or overS® and

S2x St O

With these two lemmas we may now complete the proof of paro{proposi-
tion[6. 7. From lemm&_6.10 above we conclude that the onlyilplesixed point
set components for graphs (1), (2), and (3) of figure 5%keln this case, it fol-
lows from the Mayer-Vietoris sequence théb(M°) = 0 and thereforeM® is
diffeomorphic toS® by work of Smale and Bardeh [43, 1].

From lemma6.711 we note that for graphs (4) of figdre 5 or gr&plof(figure[6
that Hy(M®) = 0 whenR P? is the fixed point set component of isotroy, k >
2, and Hy(M?®) = Z, when S3 is. Both graphs (1) and (2) of figufé 6 contain a
weighted claw and in the case of graph (1), we may completgrdgzh, joining two
disjoint arcs via edges corresponding to shortest geaslesigsisting of regular
points in the orbit space. We may then decompose the marafo&lunion of disc
bundles over the pre-image of the arc joining two edge&-ofsotropy and the
remaining edge of., isotropy.

We further note that in these last two cases it follows fronoltary [5.11 that
Ho(M?) = Z5 and from theorern 5.10 that the arcs correspondirigtitwanifolds
of Z isotropy must bes?x S!. It now follows by [43,1] that for graph (4) of
figure[3M° is diffeomorphic toS® or the Wu manifold and for graphs (1) and (2)
of figure[8./° is diffeomorphic to the Wu manifold.

We have now completed the proof of part (1) of proposition 6.7

O

It remains to prove (2) of propositidn 6.7. To do this, it st to show that
Ho(M?) = 7 for every possible fixed point set of non-trivial finite isapy and
thus, by [43[11],M5 is diffeomorphic to one of the tw§? bundles overs?.

Proof of propositiod 617 - (2)In this case the possible weighted graphs are shown
in figure[Z. For graphs (1) through (4), we may complete theghted graph
by joining disjoint isolated circle orbits or arcs via edgesresponding to curves
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FIGURE 9. Completing a weighted graph with edges correspond-
ing to principal orbits to obtain a cycle. The solid edge eerr
sponds to orbits with finite cyclic isotropy, while the dattedges
correspond to principal orbits.

consisting of regular points in the orbit space. As before,clvoose these curves
so that they are geodesics near the vertices and any two s st the maximal
angler/2. In this way we obtain a graph that is an unknotted cycle (spe€i9)
and now for all the possible graphs we may decompdsSes the union of two disc
bundles over th&-dimensional manifolds that correspond to opposite ardbef
cycle. In this particular case, tBedimensional manifold may be one ¢, L,, , or
S% x S, In all cases and for all possible combinations, we seefhal/°) = Z
and the result follows. O

7. SOME EXAMPLES OF ISOMETRICT? ACTIONS ON SIMPLY-CONNECTED,
NON-NEGATIVELY CURVED 5-MANIFOLDS

7.1. Examples of actions with codimension 2 fixed point setlt is easy to find
examples of such actions and we list a few here.

Example 7.1. Given (01,65) € T? and(z1, 20, 2z3) € S° C C3, let
((01,02), (21, 22, 23)) > (€¥™01 21, €¥™2 29, 23).

Here both circle®); and s fix a 3-sphere. The corresponding singular set in the
orbit space i$} isolated singular points.

Example 7.2. Given (6, 602) € T? and(z1, 22, 11, 72, 23) € S x S? C C2 x R3,
let

627ri91 e27ri92

((91,92),(2’1,22,1'1,1'2,%3)) — ( 2’2,1'1,1'2,1'3).
Here both circle®; and 6, fix an S? x S and the action is the product of the
cohomogeneity one action o$* combined with the trivial action o$?. The
corresponding singular set in the orbit spac¢ isolated singular points.

21,

7.2. Examples of actions with finite isotropy. We give examples of actions on
S5 and onS? x S? with finite isotropy and with3 and 4 isolated circle orbits,
respectively. The action of® was given by Rong [40] and we include it here for
the sake of completeness.

Example 7.3. Given (1, 6,) € T? and(zy, 20, 2z3) € S° C C3, let

((91’ 02)’ (zh 2o, 23)) — (62’”(91”92)731, e27ri(91+q92)z2’ e27ri(91+7"92)z3).
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Here there ar@ isolated circle orbits. Ip, ¢, are pairwise relatively prime and
the differencesp — q), (p — ) and(q — r) are also pairwise relatively prime, then
the singular set of the action is a cycle in the orbit spacethadlosure of each

edge corresponds to & fixed by finite isotropy.

Example 7.4. Given (61,0;) € T? andv = (z1, 29,21, 22,73) € S° x §% C
C? x R3, we let(61, 62) act onv by

((91, 92), U) —> A(@l, 92)2},

whereA(61, 62) is the matrix

e2mi(01-+p02) 0 0 0 0
0 e27ri(91 +q02) 0 0 0
0 0 cos(01 +rbs)  sin((6y +7163) 0 |,
0 0 —sin((6y +r62) cos(61 +162) 0O
0 0 0 0 1

p, ¢, r are pairwise relatively prime integers, as are the diffeesfp — ¢), (p — )
and(q — r), and, without loss of generality, > ¢ > r. Here there ard isolated
circle orbits and the finite grougs,_,, Z,—, each fix a distincts? x S! that has
empty intersection with the other whereas the finite grédyp, fixes two disjoint
copies ofS?, intersecting each of the fixes? x S! in an isolated circle orbit.
The corresponding singular set in the orbit space is a qoglirawith vertices
corresponding to isolated circle orbits and edges corretipg to arcs with finite
isotropy.

Example 7.5.LetT? c SU(3) act canonically or5U (3)/SO(3). There are three
involutions given by the diagonal matrices with entriesl, —1,1), (—1,1,—1)
and(1,—1,—1). Each of these involutions will fix af(U(2) x U(1))/S(O(2) x
0O(1)) = %% S, each of which intersects in®(U (1) x U(1) x U(1))/S(O(1) x
O(1) x O(1)) = T?/(Zs x Zs). The corresponding singular set in the orbit space
is a weighted claw.

One can generate further examples by observing$hat S? and S®x S? can
be described as normal biquotients®f x S3 by the free action of a circle (cf.
[7,[14,[34]45]). The standard effective, isometric actibri’d on the Lie group
53 x S% induces a maximal rank, effective, isometric torus actioreach of these
biquotients. This in turn induces effective, isomefficactions on these manifolds.
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