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Abstract

This paper introduces the nonparametric predictive inference approach for reproducibil-
ity of likelihood ratio tests. The general idea of this approach is outlined for tests be-
tween two simple hypotheses, followed by an investigation of reproducibility for tests
between two Beta distributions. The paper reports on the first steps of a wider research
programme towards tests involving composite hypotheses and substantial computa-
tional challenges.
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1 Introduction

In recent years, reproducibility of statistical hypotheses tests has received increasing at-
tention. The issue involves a straightforward question: if a statistical test were repeated,
under the same circumstances, would it lead to the same conclusion with regard to re-
jection or non-rejection of the null-hypothesis? Or, more precisely, what would be the
probability of the test conclusion for the repeated test to be the same as for the original
test? This is called the reproducibility probability (RP). The issue was first raised by
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Goodman (1992), who pointed out that among practitioners there appeared to be a mis-
understanding about the meaning of the p-value. Senn (2002) provided an extensive
discussion of Goodman’s paper, from a statistical perspective, emphasizing the differ-
ence between RP and the p-value. Of course, as explained by Senn, upon rejection of
a null-hypothesis, a smaller value of the p-value suggests a larger RP. But, remarkably,
it was not clear at all how RP could be computed or estimated. Traditionally, a test is
designed for a specified level of significance, and the power of the test for a precisely
specified alternative hypothesis, also called a ‘simple hypothesis’, can also be taken
into account for the sample size or more general aspects of the test design. But it re-
mains somewhat vague how the concept of a repeat of a test, and hence reproducibility
of the test results, fits in to the classical frequentist framework of statistics.

The power of a test is the probability that the null-hypothesis is rejected if a simple
alternative hypothesis is true. Due to the typical test formulation where a strong indica-
tion is being sought in favour of the alternative hypothesis, it is the correct rejection of
the null-hypothesis that is often considered to be the target of the test. For example, in
development of new medication one may test its superior effect on patients compared
to existing medication by formulating a null-hypothesis of there being no difference
and an alternative hypothesis specifying a specific level of improvement for the pa-
tients by using the new medication. This led Shao and Chow (2002) to focus on the
power of the test, and they suggested to call an estimate of the power, based on the data
of the original test, the ‘reproducibility’ of the test. In this approach, if the hypotheses
involve a value for a parameter for an assumed model, and the original null hypothesis
is rejected, then the data are used to estimate the parameter value, and this estimated
parameter is then considered to be the simple alternative hypothesis parameter value
for which the power of the test is computed, hence overall this leads to an estimate for
the power of the test which is interpreted as an estimate of RP. This approach was also
followed by De Martini (2008), who in addition proposed to use the estimated RP to
design tests, and following work by De Capitani and De Martini (2011). While it is of
course necessary to base inference on RP on the data of the original test, the explicit
focus on the power of the test, hence on the assumption that the simple alternative hy-
pothesis is true, is somewhat restrictive. In this ‘estimated power’ approach, RP can
be regarded as a ‘within the model’ concept in the sense that the data of the original
are used to estimate a parameter of the model, which in turn is linked to the power and
then interpreted as RP. While such a power estimate is of interest, we do not think that
it is in line with the natural interpretation of test reproducibility, both because it only
considers cases where the null-hypothesis is rejected and because it does not really
consider repeat application of the test, which would lead to different data. We should
emphasize that there have been quite a few further attempts to specify RP, but they are
less convincing than the approach by Shao and Chow (2002), a short introduction was
provided by Coolen and Bin Himd (2014).

Coolen and Bin Himd (2014) presented a different perspective on test reproducibil-
ity, using the nonparametric predictive inference (NPI) framework of frequentist statis-
tical methods (Augustin and Coolen, 2004; Coolen, 2006, 2011). The main difference
to the estimated power approach of Shao and Chow (2002) is that the NPI approach for
the reproducibility probability of a test (NPI-RP) is explicitly predictive, so it consid-
ers the test result for a predicted future sample of the same size as the original sample.
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This approach seems to be well aligned to the nature of test reproducibility, which
is more naturally considered as a prediction problem than as an estimation problem.
Given the observed data from the original test, the NPI-RP approach first predicts fu-
ture data sets, this is accomplished nonparametrically and without any consideration of
the model assumed for the test. Then the same test as performed on the original data
is considered for the random future data sets, and the proportion of these that lead to
the same conclusion as the original test is investigated. Due the NPI being only based
on few modelling assumptions, there is imprecision in this process as will be explained
in more detail later within the context of the specific test scenario considered in this
paper.

Coolen and Bin Himd (2014) introduced NPI for RP by considering some basic
nonparametric tests, namely the sign test, Wilcoxon’s signed rank test, and the two-
sample rank sum test (Gibbons and Chakraborti, 2010). For these inferences NPI for
Bernoulli quantities (Coolen, 1998) and for real-valued observations (Augustin and
Coolen, 2004) were used. Recently, Coolen and Alqifari (2018) presented NPI-RP for
two basic nonparametric tests based on order statistics, namely a quantile test (Gibbons
and Chakraborti, 2010) and a precedence test (Balakrishnan and Ng, 2006), using NPI
for future order statistics (Alqifari, 2017; Coolen et al, 2018). These basic tests all en-
abled analytical results for NPI-RP. To enable NPI for more complex test scenarios, the
NPI-bootstrap method can be used, as introduced by Bin Himd (2014) who illustrates
the use of NPI-bootstrap for NPI-RP for the Kolmogorov-Smirnov test. Computational
aspects for more complex test scenarios are briefly commented on in this paper; they
are an important topic for future research towards real-world implementation of NPI-
RP.

This paper introduces NPI-RP to the important setting of likelihood ratio tests
(LRT). These tests were introduced by Neyman and Pearson in 1928 and since then
have been widely applied in the most different fields of statistics, for example, appli-
cations can be easily found in engineering, economics, medicine and ecology (Chen
et al, 2013; Nandakumar et al, 2008; Pirie et al, 2015; Zhang et al, 2010). Their good
large sample properties and Wilks’ theorem (Wilks, 1983) which states, for composite
hypotheses, that the distribution of the logarithm of the LRT statistic can be approxi-
mated by a χ2 distribution allows the simple use of this testing procedure and makes
it an attractive and commonly used tool. However, as already stated by several authors
(see for example Johansen (2000) and Marques et al (2016)) this approximation, al-
though simple and easy to use, does not provide precise results in many situations, for
example in the multivariate setting, it often does not perform well in scenarios with
large number of variables or for small sample sizes. For these more complex scenarios
other more precise approximations can be considered, namely the so-called near-exact
approximations (Coelho, 2004). In this paper, one will consider mainly the case of
simple hypotheses but the case of composite hypotheses will be addressed in a possible
follow up paper. For simple hypotheses, where all the parameters are specified, one
will have, for a random sample X1, . . . , Xn extracted from a population X , the null
and alternative hypotheses specified in the following form

H0 : X ∼ f0(x) vs H1 : X ∼ f1(x)

where f0 and f1 stand for the densities of the model considered under the null and
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alternative hypotheses respectively. The LRT statistic is given by

LR =

n∏
i=1

f0(xi)

f1(xi)
.

As already mentioned before, we will be interested in studying the RP of the LRT for
some introductory examples. Along the way one will also derive the exact distribution
of the LR statistics which will allow us to determine exact quantiles. Therefore, Section
2 of this paper introduces the general idea of NPI-RP for LRT through the case of a test
between two simple hypotheses. This is then illustrated, first with a simple scenario, in
Section 3, where one considers tests between a distribution with an increasing density
in (0,1) versus the Uniform distribution, and then, in Section 4, for a test between two
Beta distributions. Section 5 provides some concluding remarks and outlines impor-
tant challenges for future research related to the generalization of this methodology to
composite hypotheses, and the computational problems involved.

2 NPI-RP for LRT with simple hypotheses

Nonparametric predictive inference (NPI) (Augustin and Coolen, 2004; Coolen, 2006,
2011) is a frequentist statistical method based on Hill’s assumption A(n) (Hill, 1968).
This assumption considers a single future real-valued observation Xn+1, given n data
observations, with the assumption that there are no ties among the data (this assumption
is made throughout this paper), and assigns probability 1/(n + 1) for Xn+1 to each
open interval between consecutive data observations (and −∞ and∞ for the left- and
right-most intervals). We denote the n data observations by x1 < x2 < . . . < xn and
for ease of notation we define x0 = −∞ and xn+1 = ∞. Of course, if finite bounds
are known for the observation values then we can use these bounds as x0 and xn+1.
It should be emphasized that no further assumptions are made, in particular not on the
distribution of the probability 1/(n+ 1) within each interval. As a generalization, NPI
for m ≥ 1 future real-valued observations, based on n ≥ 1 data observations, uses
the sequential assumptions A(n), . . . , A(n+m−1) (Arts et al, 2004), and by doing so
it explicitly takes the interdependence of the future observations into account. These
assumptions lead to the following inferential method: given n data observations and
m future observations, the

(
m+n
m

)
different orderings of all these observations are all

equally likely, with again no further assumptions on where future observations would
be within intervals between consecutive data observations. In this paper, we restrict
attention to the casem = n, as this is most logical for studying reproducibility of a test
based on n observations.

We denote the
(

2n
n

)
different orderings of the n future real-valued observations

among the n data observations, by Oj for j = 1, . . . ,
(

2n
n

)
. Each ordering Oj can be

represented by (sj1, . . . , s
j
n+1), where sji is the number of future observations in the

interval (xi−1, xi), according to ordering Oj . Here sji ≥ 0 and
∑n+1

i=1 s
j
i = n.

The general idea of the NPI-RP approach is as follows. Given n real-valued ob-
servations for which the original test is performed, we consider the

(
2n
n

)
different or-

derings of the n future observations among the n data observations; these orderings all
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have the same probability
(

2n
n

)−1
to occur. For each such future ordering Oj , we do

not know precise values of the future data, but Oj specifies the number sji of observa-
tions in interval (xi−1, xi), for each i = 1, . . . , n + 1. For these future observations
nothing more is assumed, so they can take on any value within the specific interval. We
wish to perform the same test on the future data than was applied to the real data, and
hence we wish to compute the likelihood ratio based on the future data, for each given
ordering Oj . This is not possible, but we can find bounds for the likelihood ratio by
minimizing and maximizing it over the ranges of values that the observations can have,
given the specific ordering. This leads to three groups of orderings. First, orderings
for which we certainly do not reject H0, so for all possible locations of the n future
observations within the respective intervals, the resulting value of the likelihood ratio
leads to non-rejection of H0. Secondly, and following from similar arguments as for
the first case, there are orderings for which we certainly reject H0. Thirdly, orderings
for which the minimum and maximum values of the LR lead to different conclusions
with regard to rejection of H0. All the orderings Oj are equally likely, so to calculate
the NPI lower RP, if for the original data we do not rejectH0 then we count the number
of orderings in the first group, and to calculate the corresponding NPI upper RP in this
case we count the number of orderings in the first and third groups. Similarly, if for the
original data we reject H0 then we count the number of orderings in the second group
to calculate the NPI lower RP, and to calculate the corresponding NPI upper RP in this
case we count the number of orderings in the second and third groups.

Clearly, imprecision in NPI-RP results from future orderings for which it is both
possible thatH0 would be rejected or not rejected, given the ranges of values the obser-
vations can have within the intervals created by the original data. The main challenge
for the NPI-RP approach to LRT is the derivation of the minimum and maximum values
of the LR for each ordering of future observations. We start exploring this method, in
Section 3, by considering a basic scenario for NPI-RP for the likelihood ratio test with
two simple hypotheses. Suppose we have independent and identically distributed ran-
dom quantitiesXi on [0, 1] and wish to testH0 : Xi ∼ f(x) versusH1 : Xi ∼ U [0, 1],
with probability density function (pdf) f(x) > 0 increasing on [0, 1] and U [0, 1] denot-
ing the uniform distribution on [0, 1]. Due to the specific choice of H1, the likelihood
ratio based on data x1 < x2 < . . . < xn is

LR(x) =

n∏
i=1

f(xi)

The LRT is such that H0 is not rejected if LR(x) > K, for some K depending on the
chosen level of significance for the test, and H0 is rejected if LR(x) ≤ K. With this
specific support for the probability distribution of the random quantities of interest, we
define x0 = 0 and xn+1 = 1.

Due to the assumption that the pdf f is increasing on [0, 1], the NPI lower and
upper reproducibility probabilities are relatively straightforward to derive. For ordering
Oj , the likelihood ratio LR(Oj) has minimum possible value LR(Oj) and maximum
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possible value LR(Oj) derived by

LR(Oj) =

n+1∏
l=1

f(xl−1)s
j
l (1)

LR(Oj) =

n+1∏
l=1

f(xl)
sjl . (2)

Suppose that the LRT for the original data x1, . . . , xn leads to non-rejection of H0, so
LR(x) > K. Then the NPI lower RP is derived by counting all of the

(
2n
n

)
orderings

Oj for which LR(Oj) > K, while the corresponding NPI upper RP is derived by
counting all orderings for which LR(Oj) > K. Similarly, if the LRT for the original
data leads to rejection of H0, so LR(x) ≤ K, then the NPI lower RP is derived by
counting all of the

(
2n
n

)
orderingsOj for which LR(Oj) ≤ K, while the corresponding

NPI upper RP is derived by counting all orderings for which LR(Oj) ≤ K. In this
methodology the computation of all possible orderings, Oj , may be time consuming
and an obstacle to its implementation when large samples are considered. However,
this problem may be overcome by using bootstrap techniques (Bin Himd, 2014) or by
sampling the orderings. The authors intend to extend and apply these techniques to
NPI-RP for LRTs in future works.

In Section 4, one considers a more general setting where the densities may not be
increasing functions and may assume the value zero in the extremes of their support.
In this case, for independent and identically distributed random quantities Xi, i =
1, . . . , n, on [0, 1], we wish to test H0 : Xi ∼ f0(x) versus H1 : Xi ∼ f1(x). In the
example provided in Section 4, f0 and f1 are the densities of Beta distributions. The
LR based on the observed data x1 < x2 < . . . < xn is

LR =

n∏
i=1

f0(xi)

f1(xi)
=

n∏
i=1

f(xi)

with f(xi) = f0(xi)/f1(xi). Then, if f is a monotone function, for an ordering Oj ,
the likelihood ratio LR(Oj) will have minimum possible value LR(Oj) and maximum
possible value LR(Oj) given respectively by

LR(Oj) =

n+1∏
l=1

f(x−l )s
j
l (3)

LR(Oj) =

n+1∏
l=1

f(x+
l )s

j
l (4)

where, for a given l, with l = 1, . . . , n+ 1

x−l =

{
xl−1 if f(xl−1) < f(xl)
xl if f(xl−1) ≥ f(xl)

and

x+
l =

{
xl−1 if f(xl−1) > f(xl)
xl if f(xl−1) ≤ f(xl) .
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For the general case with any two likelihood functions, we need to find lrl and lrl,
the infimum and supremum, respectively, of the (likelihood) ratio of the probability
density functions over (xl−1, xl); while this may not be trivial, it only needs to be
done once for a given data set, and perhaps some approximate results may be possible,
note that for large data sets it is likely that for most of these intervals the ratio of the
pdf values within it do not change much. These lrl and lrl then replace the pdfs in
Equations (1) and (2) above.

To avoid possible issues related with the fact that the densities functions of the
models under the null and alternative hypotheses may assume the value zero in the
extremes of interval (0,1) we propose a basic and initial approach to this problem,
which is to consider x0 = 0+x1

2 and xn+1 = xn+1
2 . Other possible techniques as well

as the possible effects of this choice will be studied in future works.

3 A first simple example

In our first example we consider the following hypotheses

H0 : Xi ∼ f0(x) vs H1 : Xi ∼ U [0, 1]

with

f0(x) =

{
x+ 1

2 , x ∈ [0, 1]
0 , otherwise

(5)

the LR, for an observed sample of size n, is given by

LR =

n∏
i=1

f0(xi) .

The exact distribution of the LR statistic, under the null hypothesis, is given in the
following theorem.

Theorem 3.1 Let X1, . . . , Xn be independent and identically distributed with density
given in (5). Then, the cumulative distribution function of LR =

∏n
i=1(Xi + 1/2) is

given by

1−
n∑

k=0

(−1)k32(n−k)
(
n
k

)
23n

FΓ(n,2) [−(n log(2)− log(3)(n− k))− log(x)]

where FΓ(n,2)(.) represents the cumulative distribution function of Gamma distribution
with shape parameter n, rate parameter 2.

Proof It is easy to note that Yi = Xi + 1/2 has density given by

fYi(y) =

{
y , y ∈ [1/2, 3/2]
0 , otherwise

.

and that the h-th moment of Y is given by

E[Y h
i ] =

2−h−2
(
3h+2 − 1

)
h+ 2

.
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Using the equality E[e−it log(Yi)] = E[Y −it
i ] it is easy to obtain the characteristic func-

tion of − log(Yi) as

Φ− log(Yi)(t) =
2−2+it

(
−1 + 32−it

)
2− it

.

If we consider the random variable W = − log(
∏n

i=1 Yi) =
∑n

i=1− log(Yi), given
the properties of characteristic functions, we have that the characteristic function of W
is given by

ΦW (t) =

(
2−2+it

(
−1 + 32−it

)
2− it

)n

which after some algebraic manipulation and using the binomial expansion it is possi-
ble to write as

ΦW (t) =

n∑
k=0

(−1)k32(n−k)2int
(

2
2−it

)n (
n
k

)
3−it(n−k)

23n
.

The previous expression, is the characteristic function of a mixture of shifted Gamma
distributions. After the necessary transformations the cumulative distribution function
of the LR can be written as

1−
n∑

k=0

(−1)k32(n−k)
(
n
k

)
23n

FΓ(n,2) [−(n log(2)− log(3)(n− k))− log(x)]

where FΓ(n,2)(.) represents the cumulative distribution function of Gamma distribution
with shape parameter n, rate parameter 2. �

Using the previous results one may determine the exact quantiles for the LR statistic
and develop numerical simulations to study the RP of this test. In the following simula-
tions we consider samples of sizes n = 5 and n = 10 and for each case we consider 15
and 50 replications simulated underH0. The 0.2 exact quantiles were determined using
the cumulative distribution function given in Theorem 3.1, and are equal to 0.7267 and
0.7240 respectively for n = 5 and n = 10. We have considered the 0.2 significance
level in order to make it easier to analyse the figures. In Figure 1, the filled circle dots
are the upper RP and the filled square dots are the lower RP evaluated for each simu-
lated value of the LR statistic. The vertical line marks the value of the exact quantile.
From Figure 1 one may observe that the values of the RP tend to increase when the
simulated value of the LR statistic moves away from the quantile considered, this was
already expected and it is also observed in the next examples.

4 A test between two Beta distributions

In this section we will consider a more complex case using the procedure illustrated in
Section 2. We are interested in testing

H0 : Xi ∼ Beta(a, 1) vs H1 : Xi ∼ Beta(b, 1)
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Figure 1: Simulated values of the RP
15 replications and n = m = 5 50 replications and n = m = 5
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for a 6= b, the LR, for a sample of size n, is given by

LR =

n∏
i=1

f0(xi)

f1(xi)

with

f0(x) =
xa−1

B(a, 1)
and f1(x) =

xb−1

B(b, 1)

thus

LR =

n∏
i=1

a

b
xa−b
i .

The following theorem specifies the distribution of the LR statistic. In this theorem one
will consider just the case a > b, however the case a < b can be considered using a
similar procedure.

Theorem 4.1 For a sample X1, . . . , Xn, independent and identically distributed, with

Xi ∼ Beta(a, 1), the cumulative distribution function of LR =
(a
b

)n n∏
i=1

Xa−b
i with

a > b is given

1− FΓ(n, a
a−b )

(
− log

(
x

(a/b)n

))
where FΓ(n, a

a−b )(.) is the cumulative distribution function of a Gamma distribution
with shape parameter n and rate parameter a

a−b .
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Proof Following a similar procedure to the one used in two previous cases, we will
use the random variable W = − log(

∏n
i=1X

a−b
i ) =

∑n
i=1−(a − b) log(Xi). Since

we know that − log(Xi) has an Exponential distribution with parameter a and that the
hth moment of Xa−b

i is given by

E
[
X

(a−b)h
i

]
=

a

a+ h(a− b)

the expression of the characteristic function of −(a− b) log(Xi) will be given by

Φ−(a−b) log(Xi)(t) =
a

a− it(a− b)

and the characteristic function of W by

ΦW (t) =

(
a

a−b
a

a−b − it

)n

which is the characteristic function of a Gamma distribution with shape parameter n
and rate parameter a

a−b . Therefore it is, again, straightforward to determine, with
the necessary transformations, the cumulative distribution function of the LR which
is given by

1− FΓ(n, a
a−b )

(
− log

(
x

(a/b)n

))
where FΓ(n, a

a−b )(.) is the cumulative distribution function of a Gamma distribution
with shape parameter n and rate parameter a

a−b . �

For example, when a = 5 and b = 1/5, for samples of sizes n = 5 and n = 10, the
0.2 exact quantiles, were determined using the cumulative distribution function given
in Theorem 4.1, and are respectively 15401.8 and 5.755× 108 . The simulations were
performed considering 15 and 50 replications of data generated under H0.

In Figure 2 we observe similar features to the ones already described in Figure 1; (i)
the values of the lower and upper RPs tend to increase with increasing distance between
the observed LR and the quantiles considered, (ii) if the observed values of the LR are
close to the quantile, the lower RP decreases substantially and may even assume values
below 0.5, (iii) these figures show some oscillation of the values of the RPs which is,
essentially, due to randomness and to the products involved in the expression of the LR
which are reflected in the process for computing the minimum and maximum possible
values of the LR.

5 Concluding remarks

This paper introduced nonparametric predictive inference methods for reproducibility
of likelihood ratio tests. The main idea is exemplified with two examples of testing pro-
cedures. The simulations carried out show the increasing trend of the lower and upper
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Figure 2: Simulated values of the RP
5 replications and n = m = 5 50 replications and n = m = 5
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RPs together with the decreasing trend of the difference between these probabilities, for
increasing values of the distance between the observed LRs and the quantiles. The sim-
ulations were performed for small samples due to the computational time required for
the computation of the number of possible orderings. However, this difficulty may be
overcome by using bootstrap techniques (Bin Himd, 2014) or sampling of orderings.
Further research challenges include discussion of significance level (p-value), power
and RP to be taken into account for test designs, and the development of a general set
up for composite hypotheses.
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