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Abstract

Over the last decade, the γ–H2AX focus assay, which exploits the phosphorylation of the

H2AX histone following DNA double–strand–breaks, has made considerable progress

towards acceptance as a reliable biomarker for exposure to ionizing radiation. While the

existing literature has convincingly demonstrated a dose–response effect, and also pre-

sented approaches to dose estimation based on appropriately defined calibration curves, a

more widespread practical use is still hampered by a certain lack of discussion and agree-

ment on the specific dose–response modelling and uncertainty quantification strategies, as

well as by the unavailability of implementations. This manuscript intends to fill these gaps,

by stating explicitly the statistical models and techniques required for calibration curve esti-

mation and subsequent dose estimation. Accompanying this article, a web applet has been

produced which implements the discussed methods.

1 Introduction

For retrospective biological dosimetry following the exposure, or suspected exposure, of indi-

viduals to ionizing radiation, a range of viable biomarkers have been identified over the last

decades. The most commonly used technique, based on counts of dicentric chromosomes, is

well documented by a solid body of literature including the IAEA manual [1], and also well

supported by statistical software, including DoseEstimate [2] and CABAS [3]. The dicentric

assay enjoys “gold–standard” status due to its good adherence of the aberration counts to the

Poisson model, with a stable quadratic dose–response curve which takes very similar shapes

for both X– and γ–rays [4], and which is robust to inter–individual [1] and inter–laboratory

variation [5]. Overdispersion can still arise, for instance from partial body exposure, which can

be dealt with through Dolphin’s contaminated Poisson method [6]. Deviation from the Pois-

son property may also occur under densely ionising radiation or when using automatic scoring
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procedures, among other causes [7, 8]. The latter types of overdispersion will usually have

more serious impact on the uncertainty quantification (UQ) than on the dose estimate itself.

The question of how to assess quantitatively the uncertainty related with radiation dose esti-

mates has only started gaining interest very recently, with Bayesian approaches emerging as an

interesting device [9, 10]. A comparative study of several UQ techniques including the Bayes-

ian approach was provided in [11].

However, the reason why research on alternative radiation biomarkers continues lies not

primarily in the limitations of the dicentric assay mentioned above. A major problem with this

assay is the massive resource required to produce a dose estimate. From the moment of expo-

sure, lymphocytes need to be cultured for at least two days until chromosomes reach the meta-

phase stage of mitosis. Only then can dicentrics be counted, but this process needs to be

carried out by skilled and experienced cytogeneticists, and is once more time–intensive. Maz-

nyk et al. [12] estimated that even in ‘triage mode’, where only 50 cells per individual are

scored resulting in a detection limit of 0.5Gy [13], the worldwide capacity does not exceed

3000 dose estimates a week, which would clearly be far from sufficient in the case of a large

scale radiation accident. Hence, there is a need for alternative biomarkers which allow for

higher throughput and arrive at dose estimates, or at least triage classifications, in a quicker,

cheaper, and less labour–intensive manner.

Protein–based biomarkers have recently emerged as a potential alternative which possesses

all these characteristics. It is known for at least two decades that certain proteins, including the

phosphorylated H2AX histone and the p53 binding protein 53PB1, can serve as markers for

radiation–induced double strand breaks [14, 15]. The exploration of this property for radiation

biodosimetry was discussed from a biomedical viewpoint in Rothkamm and Horn [16]. Fur-

ther work was subsequently carried out to quantify the dose–response relationship [17, 18]

and to assess inter–laboratory variation [13, 19]. In practice the two markers are often co–

localized [20]; in this work we concentrate on H2AX only.

Within minutes after exposure of cell cultures to ionizing radiation, the DNA–damage

response mechanisms lead to the production of γ-H2AX foci, which can be counted through

immunofluorescence microscopy in form of little dots (typically, these are red or green,

depending on the fluorophore used). Manual, automated, and semi–automated scoring tech-

niques have been investigated for the γ–H2AX assay in the literature [13, 19]. Rogakout et al.

[14] reported that a maximum 1% of the H2AX proteins become phosphorylated per gray of

ionizing radiation. Hence, for low doses, the number of such counts per cell is typically small,

and individual foci can usually be well separated under the microscope. A roughly linear rela-

tionship between experimental dose and focus counts has been frequently reported [13, 17,

19]; this is physically justified since increasing the dose linearly increases the number of elec-

tron tracks and ionisations that produce double–strand breaks [17]. However, when the dose

becomes larger than about 3Gy, the H2AX foci have an increasing propensity to overlap,

which leads to a saturation effect [19], and may suggest a quadratic rather than linear shape

[13]. We will revisit this question in this manuscript from an UQ point of view, but will also

settle on linear calibration curves eventually.

Assuming consensus on the shape of the dose–response curve, it needs to be recognized

that the parameters of this curve may vary considerably. Beside the well–understood depen-

dence on time after exposure due to focus loss [17], the curve parameters may also depend on

different scoring mechanisms [13], the laboratory [13, 19], the technician who is carrying out

the scoring [21], the temperature at exposure [22], shipment [23], as well as the cell type inves-

tigated [16, 24]. Furthermore, it has been reported that H2AX focus counts exhibit consider-

able inter–individual variation [13, 17], which can be partly attributed to covariates like age,

smoking, or genetic factors [23]. However, Moquet et al. [19] argued, referring to [24], that
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this variation only makes a “small contribution” towards the estimation of calibration curve

parameters and their uncertainties. Furthermore it has been found that the inter–individual

variation operates on a similar scale to the intra–individual variation [22, 25]. We will argue in

this article that both sources of sampling variation can be accounted for simultaneously

through standard procedures for handling overdispersion.

Given the availability of an adequate calibration curve, it has been recommended that

typically 20 (manually scored) or 50 (automated) cells need to be examined from a poten-

tially exposed individual in order to arrive at a dose estimate [19]. This does not require

more than 0.1ml of blood which can be conveniently collected through a finger prick sample

[26].

Statistical methodology enters into this process twice: Firstly, in order to estimate the cali-

bration curve from laboratory data, and secondly, in order to use this calibration curve to

relate the focus count obtained from a potentially exposed individual to the actual dose. While,

as outlined above, the biological background literature on the dose–response relationship for

the γ-H2AX assay is now quite extensive, the development of appropriate statistical methodol-

ogy has not kept up with this. Even though the statistical techniques required to obtain the

dose estimates through the mentioned two steps are relatively basic (weighted least squares

and inverse regression, respectively), and of rather similar nature to the methodology used for

the dicentric assay [16, 17], the actual challenge resides in the quantification of uncertainty in

this process. Ainsbury et al. [11] have recently emphasized that, by ignoring these uncertain-

ties, individuals may get incorrectly triaged with probabilities of up to 50%, with potentially

severe consequences for the concerned individual. The computation of these uncertainties is,

however, challenging, which has its reasons in (i) the difficulty of the required mathematical

and statistical concepts as such (ii) the need to incorporate several different types of uncer-

tainty (iii) the fact that, partly as a consequence of (ii), focus counts are usually strongly over-

dispersed relative to the mean–variance equality inherent to the Poisson model, and hence

standard techniques available for the dicentric assay no longer apply. While it is the case that

some methods have been developed to deal with overdispersion in the context of the dicentric

assay, such as the consideration of zero–inflated models, [6, 8], it should be stated that the

mechanisms which generate overdispersion for the γ-H2AX assay are of quite different nature,

and also require adjusted methodology to deal with.

It is the purpose of this paper to present and illustrate such methodology, through two pre-

viously unpublished H2AX data sets recorded at Public Health England, one of which we will

use for calibration curve estimation, and the other one for dose estimation purposes. Both data

sets represent homogeneous exposure scenarios, and we do not consider partial exposure in

this work. The remainder of the manuscript is organized as follows. In Section 2, we begin

with a brief, rather informal, illustration of some features of the calibration data set which

motivates qualitatively the modelling decisions that are going to be formally introduced in the

two sections which follow: Section 3 describes the statistical modelling techniques used for the

estimation of the calibration curve, and Section 4 describes the methodology for dose estima-

tion including uncertainty quantification. Specifically, Sections 4.2 and 4.3 describe how to val-

idate the calibration curve via reference samples, and how to replace the calibration curve by a

reference curve if required. Section 5 applies this methodology onto the two mentioned data

sets, and also illustrates the web applet that has been developed alongside this article. The man-

uscript finishes with a Conclusion in Section 6. Since some of the material presented in this

paper is inherently technical, a separate ‘tutorial’ has been produced for applied users which

illustrates the use of the web applet. The tutorial and the calibration data are available as S1

and S2 Files, respectively.

Radiation dose estimation from the γ-H2AX assay
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2 Motivation

We motivate the developments which are to come through a data set consisting of a total of

339 foci/cell measurements taken from 32 individuals (staff volunteers of Public Health

England at Chilton). Heparinized venous blood was taken with written informed consent and

the ethical approval of the Berkshire research ethics committee (Ref 09/H0505/87). All samples

were anonymized and were ex–vivo irradiated with X–radiation (AGO X-ray limited: 250

kVp, 13 mA at a dose rate of 0.5Gy/min, with 1mm copper and 1mm aluminium filtration).

The number of measurements per individual varies between 1 and 32, which is graphically dis-

played in Fig 1, and all focus counts are out of n = 500 cells. The design dose points were taken

to be 0Gy, 0.05Gy, 0.1Gy, 0.25Gy, 0.5Gy, 1Gy, and 4Gy, and foci were counted manually, 1h

and 24h after exposure. Table 1 gives a breakdown of numbers of measurements per time and

dose point. Note that, for most individuals, one only has measurements for a few specific dose

and time combinations; for instance for individual H53 for which nine measurements are

available, two of them are for 0Gy at 1h, four of them are for 0.5Gy at 1h, and three of them are

for 4Gy at 24h. The full data set is made available in .xls and .dat format in S2 File.

From a modelling point of view, the quantity of interest will be the ‘yield’, hereafter denoted

by y, which is defined by the number of foci per cell. We fit initially linear and quadratic Pois-

son regression models of type E(y) = A + Bdose and E(y) = A + Bdose + Cdose2, respectively,

to the yields, separately for 1h and 24h. The resulting four calibration curves are depicted

along with the raw data in Fig 2. It is obvious that the focus counts at 24h are much smaller

than at 1h—this is in line with previous literature, which observed that foci disappear at a rate

which is consistent with the repair of double–strand breaks [27]. The patterns for both 1h and

24h appear roughly linear, however in each case with a slight saturation effect for large doses

which is picked up by the quadratic models. The upper part of Table 2 lists the parameters of

all four fitted calibration curves obtained from the Poisson regression, along with standard

errors calculated through methodology as explained in the next section. It is worth noting that

the saturation effect leads to negative quadratic terms in both cases—this is different to calibra-

tion curves for dicentric data where the quadratic parameter is usually positive (and has a very

different physical justification: dicentrics are created through interactions of pairs of chromo-

somes [28]). The current implementation of DoseEstimate [2] would in fact not allow such a

negative quadratic term [29].

A relevant question is whether the quadratic term is actually needed. The graph in Fig 2

does not give particularly strong evidence to support this. One would expect that the saturation

effect, and hence the significance of the quadratic term, is stronger for the 1h than for the 24h

data, simply because there are more foci available for the 1h data. It is clear from the parameter

estimates and standard errors of the quadratic terms that this is indeed the case. In fact, all p-

values of parameters given in Table 2 turn out to be< 10−9 except the one for Ĉ for the 24h

data which is equal to 0.00151. While of course even this ‘larger’ p–value still means signifi-

cance at any reasonable nominal level, it is worth noting that the variance that these quadratic

terms contribute can be detrimental to the dose estimation process. Indeed, by expanding the

variances of the dose estimates into the contributions of Â; B̂; Ĉ and the sampling variance,

one finds that dose estimates can become considerably more imprecise under inclusion of the

quadratic term. This is illustrated in Fig 3 for dose estimation after 1h and 24h using the four

individual calibration curves from the top part of Table 2. For instance, the top left panel of

this figure decomposes the variance of a dose estimate into the uncertainty contributed by the

sampling variance, the estimation of Â and the estimation of B̂. Detailed methodology for

these calculations will be provided in the next section. One finds that, for the linear model, the

contribution by the sampling variance dominates and the uncertainty contributed by the

Radiation dose estimation from the γ-H2AX assay
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Table 1. Numbers of measurements (foci counts/cell) of the data introduced in Section 2.

time design doses (Gy) Total

0 0.05 0.1 0.25 0.5 1 4

1h 56 16 16 16 55 28 0 187

24h 22 16 16 16 19 27 36 152

339

https://doi.org/10.1371/journal.pone.0207464.t001

Fig 1. Number of measurements (focus counts over 500 cells) per individual, where the labels on the vertical axis are the anonymized codes of

the individuals (donors).

https://doi.org/10.1371/journal.pone.0207464.g001
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Fig 2. Linear (solid) and quadratic (dashed) calibration curves fitted to 1h and 24h data.

https://doi.org/10.1371/journal.pone.0207464.g002

Table 2. Parameter estimates of linear model and quadratic model fitted to the yields (foci/cell). Standard errors

are given in round brackets.

separate models Â B̂ Ĉ
1h linear 0.131 (0.016) 12.559 (0.161)

quadratic 0.112 (0.013) 15.507 (0.368) -4.169 (0.467)

24h linear 0.179 (0.021) 1.937 (0.038)

quadratic 0.141 (0.021) 2.278 (0.110) -0.0943 (0.029)

joint model Â B̂
1h linear 0.150 (0.013) 12.518 (0.158)

24 linear 0.150 (0.013) 1.956 (0.037)

https://doi.org/10.1371/journal.pone.0207464.t002

Radiation dose estimation from the γ-H2AX assay

PLOS ONE | https://doi.org/10.1371/journal.pone.0207464 November 28, 2018 6 / 24

https://doi.org/10.1371/journal.pone.0207464.g002
https://doi.org/10.1371/journal.pone.0207464.t002
https://doi.org/10.1371/journal.pone.0207464


parameter estimates remains negligible compared to that. However, once the quadratic term C
is included, the variance of this term swamps all other sources of uncertainty and actually

grows over all reasonable bounds for the 24h case. Therefore, we will not use quadratic models

further in this manuscript.

The role of the intercept parameter, A, requires some further discussion. One can consider

this parameter as an experiment–specific constant which represents the ‘background yield’,

that is the expected yield under zero dose. In the absence of radiation exposure, it is meaning-

less to speak of ‘time after irradiation’, and hence this constant A should be the same for each

calibration curve, whatever the time gap considered. In practice, this may be difficult to ensure

Fig 3. Decomposition of variance of dose estimates for a yield of y = 5 foci/cell from n = 500 samples, obtained from expansions as in (8). The

vertical axis, labelled var, gives the additive contributions of Â; B̂ [and where applicable Ĉ], as well as the sampling variance, towards the overall

variance of the dose estimate. The contribution of the sampling variance is denoted by y on the horizontal axis.

https://doi.org/10.1371/journal.pone.0207464.g003
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since calibration curves will often be obtained independently of each other in unrelated experi-

ments, but in our case, where we have 1h and 24 data available obtained under the same exper-

imental conditions, one can fit a joint model

EðyÞ ¼ aþ b1doseþ b2dose1ftime ¼ 24hg ð1Þ

so that for the 1h data, one has A = a, B = b1, and for the 24h data, one finds A = a and B = b1 +

b2. This leads to the estimates in the bottom part of Table 2, where it is noted that the new,

joint, value for Â lies within two standard errors of the individual estimates. Beside the inter-

pretational advantage, this procedure also leads to smaller parameter standard errors as com-

pared to the separate models. We will use the calibration curves in the bottom part of Table 2

for the remaining analyses in this paper.

Two questions still need to be discussed. Firstly, as touched upon in the introduction, if

the focus counts were Poisson distributed one would assume to observe equality of mean and

variance. We therefore computed, for each time and dose point, the means and variances of

observed focus counts. The resulting variances are plotted against means in Fig 4. If there was

equidispersion, then both the 1h and the 24h data should follow the unity line. It is clear that

this is not the case, and that in fact the variances are of a magnitude of 50 to 60 times the

mean. This variance/mean ratio, which is also known as the (index of) dispersion, needs to be

quantified and taken into account in the modelling, as otherwise uncertainties will be grossly

underestimated [29]. Secondly, it has been previously reported in the literature that H2AX

focus counts feature stronger inter–individual variation compared to, say, dicentrics [30]. The

question is hence whether inter– and intra–individual variation needs to be distinguished in

the modelling process. To shed some light on this aspect, we carry out an analysis of deviance

on the joint Poisson regression model (1) under inclusion of a factor for donor ID, and we

report results in Table 3. We firstly see from this table that a ‘quick–and–dirty’ estimate of the

dispersion stands at �̂ ¼ 17230=ð339 � 34Þ � 56:49; in fact the output using R function glm

[31] delivers �̂ ¼ 57:64 using Eq (5) displayed later in this manuscript. Hence, to assess the

significance of the donor terms, the statistic DðDevÞ=�̂ ¼ 1786=57:64 ¼ 30:99 needs to be

compared to w2
31;0:95

¼ 44:99, which can be alternatively expressed as a p-value of 0.467. This

indicates that the inter–individual variation does not contribute a significant amount of varia-

tion, given that variation in dose and time are accounted for. Hence we conclude that the

intra-individual variation swamps the inter–individual variation, and both types of variation

can be jointly addressed by accounting for overdispersion.

Summarizing, in this section we have motivated through a real data set the modelling strat-

egies which shall be implemented later on. Specifically, we suggest that appropriate models for

the yield should be linear in dose, should account for the overdispersed count data character of

the focus counts, and do not need to distinguish between intra–and inter–individual variation.

We provide a mathematical formulation of the required methodology in the next section, and

return to the data example in Section 5.1.

3 Calibration curve

3.1 Modelling and estimation

To fix terms, assume that, in some laboratory, lymphocyte blood samples were obtained from

one or more donors according to standard procedures such as outlined in [19]. This blood was

divided into d parts, and each of these parts exposed to radiation (usually γ– or X–rays) at dif-

ferent dose levels, x1, . . . xd (typically, these are three to eight values in the range from 0Gy to

4Gy). For each dose level i = 1, . . ., d, we examine ni samples of n cells each, and count the total

Radiation dose estimation from the γ-H2AX assay
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Fig 4. For each dose point, empirical variances vs means for the 1h and 24h data, plotted on the scale of absolute focus counts.

https://doi.org/10.1371/journal.pone.0207464.g004

Table 3. Analysis of deviance for Poisson linear model involving factors for time (1h/24h) and donor ID (1, . . .,

32).

Source df Deviance explained Residual deviance

1 1 – 700064

dose 1 273705 426358

time 1 407343 19016

donor 31 1786 17230

https://doi.org/10.1371/journal.pone.0207464.t003
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number of foci over all n cells within each sample. Common choices are n = 200 or n = 500.

The number ni of available replicates for each dose level may vary strongly between and within

different experiments; in the context of the data from Section 2 the ni correspond to the values

given in Table 1.

Following our reasoning from the previous section, it is secondary for our developments

whether these ni repeated samples are taken from the same individuals, from different individ-

uals, or from blood mixed from several individuals—the intra-individual variation will usually

swamp the inter–individual variation. Also, in principle, the number of cells n investigated for

each sample could be different for each sample or dose level (and hence depend on i and j),
though there is no advantage of doing so, and the calibration data set that we have available for

analysis also does not have this feature. Hence, for simplicity of presentation we assume that

this number is constant across the full experiment, but the equations below can be adjusted

straightforwardly if this is not the case.

For a specific time point after exposure, we denote by Yij the absolute focus count obtained

from the n cells under the j–th sample (j = 1, . . ., ni) for the i–th dose level. It is often more

practicable to work with means yij = Yij/n rather than absolute numbers, which are also

referred to as the yield of the experiment. We denote the collection of the N ¼
Pd

i¼1
ni avail-

able yields by Y ¼ ðyijÞ, 1� i� d, 1� j� ni.
Following our discussion in Section 2, we discard quadratic dose models, and hence relate

the yields linearly to dose, via a model

mi � EðyijjxiÞ ¼ Aþ Bxi ð2Þ

Since the Yij = nyij are count data, their character needs to be appropriately accounted for in

the modelling strategy. A first and natural candidate for their distribution is the Poisson distri-

bution. Rothkamm et al. [13] argue that this assumption is also biologically plausible, namely

that “the underlying rationale is that DNA double–strand breaks, and therefore foci, are ran-

domly induced, resulting in a Poisson distribution of foci among the irradiated cell population

in case of a whole body exposure”. Hence, under this model the counts Yij would be described

as

Yij � PoisðA� nþ B� ðnxiÞÞ: ð3Þ

Note that obviously (3) entails (2). However, this model also implies the very strong assump-

tion of equidispersion; namely that μi = Var(Yij|xi). It is clear from our preliminary consider-

ations that this assumption is not fulfilled for the type of data under consideration, due to

considerable intra– and inter–individual variation. Fortunately, there is a simple solution to

this problem. The Poisson distribution is a member of the simple exponential family, which

possesses two parameters: the so-called natural parameter, θ, which relates to the mean, and

the dispersion parameter, ϕ. In the particular case of the Poisson model, one has θ = log(μ)

where μ is the expected response which may depend on covariates as in (2), and ϕ is the disper-

sion parameter which is equal to 1 for the Poisson model. However, it is clear from generalized

linear model theory [32] that, if the parameter ϕ was allowed to move freely for the Poisson

model, the score equations (i.e., the first derivatives of the log–likelihood set equal to 0) for the

regression parameters would be a simple multiple of 1/ϕ; in our case

1

�

Xd

i¼1

Xni

j¼1

1

xi

� �

Yij � nA � nBxiÞ
� �

= Aþ Bxið Þ ¼
0

0

� �

: ð4Þ

Hence, the parameter ϕ can again be cancelled out and so the estimates of the parameters A
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and B are unaffected by the unconstrained dispersion. The actual estimates, Â and B̂ are then

obtained by an iteratively weighted least squares technique known as Fisher Scoring, details of

which are irrelevant for this presentation [32]. Any software routine which can fit generalized

linear models can be used for this estimation. The model (3), when equipped with a flexible

dispersion parameter, is referred to as a quasi–Poisson model, motivated by the fact that a Pois-

son density with non–unity dispersion does not integrate to 1 and hence the data likelihood is

not an actual likelihood. Such a quasi–Poisson model is very useful for our purposes since it, as

mentioned, simply reproduces the usual Poisson–based estimates. The standard errors of Â
and B̂ do, however, depend on ϕ, and therefore the dispersion does need to be estimated.

3.2 Dispersion and standard errors

The dispersion associated to model (3) can be estimated consistently [32] via

�̂ ¼
1

N � 2

Xd

i¼1

Xni

j¼1

ðYij � nm̂ iÞ
2

nm̂i
¼

n
N � 2

Xd

i¼1

Xni

j¼1

ðyij � m̂iÞ
2

m̂i
ð5Þ

where m̂ i ¼ Â þ B̂xi. Note that, if additional covariates are used, such as a quadratic term or

an indicator variable as in model (1) then the value 2 which is subtracted from N in the

denominator of (5) needs to be increased by the value 1 for each added model parameter.

The dispersion–corrected standard errors of Â and B̂ can be computed from the uncor-

rected (Poisson–based) standard errors, say SEPðÂÞ and SEPðB̂Þ (which are just the square

roots of the diagonal of the inverse Fisher information matrix) via

SEðÂÞ ¼
ffiffiffiffi

�̂

q

SEPðÂÞ SEðB̂Þ ¼
ffiffiffiffi

�̂

q

SEPðB̂Þ: ð6Þ

Hence, in practice it is sufficient to fit a simple Poisson regression model (3) to the yields Y
and then compute (5) retrospectively to restore the standard errors via (6). We denote the

information C ¼ fÂ; B̂; SEðÂÞ; SEðB̂Þg as calibration curve from now on.

While at some occasion, the value �̂ will be produced alongside with the calibration curve

(and can thus be considered as part of the calibrative information), often this will not be the

case, so that the use of a general consensus value may be required. For the calibration curves

obtained in Table 2, �̂ took the values 59.6 (at 1h), 57.5 (at 24h), and 58.7 (joint model). Values

of similar magnitude (between 20 and 60) have been obtained in our experiments when using

other data sets to calculate the calibration curve, including the one studied in Section 5.1. In

many cases the true dispersion of a new sample will be unknown and not estimable or testable,

so the consensus value settled on should be a conservative value which represents the ‘worst

possible’ overdispersion of focus counts with respect to their Poisson mean. The parameter ϕ
is, hence, of quite different character to A and B, which we consider as experiment–specific

constants depending on lab, scorer, technology, etc, and which therefore should be determined

as precisely as possible. For the remainder of this exposition, we have settled on the value

�̂ ¼ 60, which leads to virtually identical parameter standard errors as when using the exact

dispersion estimates mentioned earlier in this paragraph. Note in this context that a possible

misspecification of ϕ is somewhat alleviated through the fact that it enters through a square

root in all relevant equations. The value �̂ ¼ 60 is also used as default value in the web applet

that we have produced, but this can be overridden by the user.
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4 Dose estimation

We consider now the scenario that a given calibration curve C is available. A blood sample has

been taken from a potentially exposed individual, and a number n� of cells of this sample have

been examined for H2AX foci. One will usually have n�< n; it has been argued that for the

purpose of triage it is sufficient to have n� � 50 [13, 27]. These n� cells deliver a total focus

count Y� and hence a yield y� = Y�/n�. We summarize this new information by N ¼ fy�; n�g.
The task is to arrive at an estimate of dose, x�, and its uncertainty, in form of a standard error

SE(x�), using C and N .

The modelling Eq (2) motivates immediately the dose estimator

x� ¼
y� � Â

B̂
: ð7Þ

We assess the uncertainty attached to this estimate in the following subsection.

4.1 Uncertainties

The uncertainties involved in dose estimate (7) can be decomposed via

SE2ðx�Þ ¼
@x�
@Â

� �2

SE2ðÂÞ þ
@x�
@B̂

� �2

SE2ðB̂Þ þ
@x�
@y�

� �2

SE2ðy�Þ; ð8Þ

which is the MULTIBIODOSE simplification (‘MBD method’) of the delta–method; i.e. it is

omitting the covariance terms, the magnitude of which compared to the variance terms can be

considered to be “very small” [11]. The partial derivatives in Eq (8) can be worked out to be

@x�
@Â

¼ �
1

B̂
ð9Þ

@x�
@B̂

¼
y� � Â
B̂2

ð10Þ

@x�
@y�

¼
1

B̂
: ð11Þ

That is, in Eq (8), all quantities are immediately known from either C or N , except the sam-

pling error of the yield of the new individual, SE(y�). To work out this quantity, assume (for a

moment) that Y� is a sum of n� Poisson distributed random variables with mean λ� (this does

not assume necessarily that this is the same Poisson model as (3), but of course it could be the

case). Hence, one can write Var(Y�) = n�λ�, and now estimating l̂� ¼ Y�=n�, one has the Pois-

son sampling error SEPðY�Þ ¼
ffiffiffiffiffi
Y�
p

, or equivalently SEPðy�Þ ¼
ffiffiffiffiffi
Y�
p

=n� ¼
ffiffiffiffiffiffiffiffiffiffiffi
y�=n�

p
. However,

this does ignore the overdispersion stemming from intra– and inter–individual variation. We

know again from the theory of the simple exponential family that under the presence of disper-

sion, one has VarðY�Þ ¼ �SE
2

PðY�Þ, and so SEðy�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�̂y�=n�
q

[32]. Summarizing, we get

from (8)

SE2ðx�Þ ¼
1

B̂2
SE2ðÂÞ þ

ðy� � ÂÞ2

B̂4
SE2ðB̂Þ þ

1

B̂2

�̂y�
n�

: ð12Þ

It is noted once more that this approach is for situations in which, as is common for H2AX

data, the focus information is provided by a single number per cell—the yield y�, that is the
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number of foci per cell over n� cells. If full frequency distributions of focus counts are available,

an alternative way of modelling their variability could be to estimate the scale or shape parame-

ter of an appropriate two–parameter model (such as a negative binomial model). Some further

comments in this respect are provided in the Discussion (Section 6).

4.2 Reference samples

The preceding discussion assumes that the calibration curve C is actually fit for purpose. While

the standard errors mentioned above account for inter– and intra-individual variation as well

as measurement and random error with mean 0 around the calibration curve, they do not

account for systematic deviations (bias) from this curve, for instance by different technology

used in laboratories, different conventions of focus scoring by different scorers, etc. It has

therefore been proposed in the literature to produce reference samples [13, 11]. These are sam-

ples irradiated at known doses and scored under the same conditions as the data N . We

assume for ease of presentation that there are only two of such reference samples, taken at

doses x0 = 0Gy and xr = rGy, with resulting yields y0 and yr, where typically r = 1.5. (If more

than one reference sample has been obtained for a given dose point, the resulting yields can be

added so that one has again only one reference sample each.) We assume that n0 and nr cells

have been scored, respectively, and denote the information {y0, n0, yr, nr} by R.

It then needs to be worked out whether R is consistent with C. One approach is to compare

y0 and y1.5 with prediction intervals (PI) around the calibration curve. There is no ultimate

consensus in the statistical literature on how prediction intervals for quasi-Poisson regression

models are to be obtained, but using the same line of thinking as above, it is plausible to find

approximate prediction intervals for yield y at dose x (under the assumption that C is true) via

Â þ B̂x� qcrit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n0
�̂ðÂ þ B̂xÞ

r

; ð13Þ

where n0 2 {n0, nr} is the respective reference sample size, and qcrit is an appropriate critical

value corresponding to the required level of confidence. Hence, a 95% PI for y0 would be

approximated by Â � 2
ffiffiffiffiffiffiffiffiffiffiffiffi
�̂ � Â

n0

q
, and similarly a 95% PI for yr would be obtained by setting

x = xr and n0 = nr in (13). It is impractical to compute the value �̂ from the reference samples

(one would require at least three reference yields to obtain an estimate via (5), which even then

would be unreliable), so this value should be taken from ‘general consensus’ or the calibration

curve.

Fig 5 gives approximate prediction intervals obtained in this way for the (jointly modelled)

data from Section 2, using �̂ ¼ 60 and nr = 500. If the reference yields falls outside the predic-

tion intervals, the curve C is discarded. We observe that the width of the PI relative to the yield

curve at r = 1.5 is about 30%, which corresponds to Public Health England’s internal working

practice to discard a calibration curve if yr deviates more than 30% from the curve. Note that

there are two reference yields to check—the positive and the negative control—but only one

decision to make, namely to discard or to accept the calibration curve. One will usually be

more concerned with the slope, B̂, as its misspecification can have very severe consequences.

In contrast, the value of Â will usually be small, as will be its standard error, and one would not

want to throw away an established calibration curve for a minor mismatch of a negative con-

trol sample. Hence, for our purposes we decide to give more leeway to Â than to B̂, that is we

set qcrit = 3 for the negative sample (y0) and qcrit = 2 for the positive sample (yr), and discard

the entire calibration curve if any of them falls outside their respective prediction interval.
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4.3 Reference curves

We will turn now to the question of how to proceed if the reference yields R disagree with the

calibration curve C, that is if y0 or (more importantly) yr fall outside their prediction intervals.

Here we start with a trivial but important observation: A straight line is determined already by

two points. Hence, the two reference points determine a calibration curve in their own right.

Of course, the ‘reference curve’ parameters obtained this way will generally have larger vari-

ance than the calibration curve parameters, but, more importantly, they can reasonably

assumed to be unbiased. The reference curve is then defined by

EðyÞ ¼ y0 þ
yr � y0

r
x ð14Þ

Fig 5. Linear calibration curves with approximate 95% prediction intervals.

https://doi.org/10.1371/journal.pone.0207464.g005
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that is EðyÞ ¼ ~A þ ~Bx with ~A ¼ y0 and ~B ¼ ðyr � y0Þ=r. Standard errors of these parameters

can be immediately obtained along previous lines as

SEð~AÞ ¼ SEðy0Þ ¼

ffiffiffiffiffiffiffiffi

�
y0

n0

r

; ð15Þ

SEð~BÞ ¼
1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2ðy0Þ þ SE2ðyrÞ
q

¼

ffiffiffi
�
p

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y0

n0

þ
yr
nr

r

ð16Þ

where the quasi-Poisson assumption has been exploited to estimate the variance of focus

counts per cell. As mentioned before, it is not practical to estimate ϕ from the reference data,

so this value again has to come from the calibrative data or general consensus.

So, summarizing, we propose to initially check whether the reference samples are consistent

with the calibration curve, and if so, use the calibration curve. If the reference sample is incon-

sistent with the calibration curve then the reference data can be used to obtain a ‘reference

curve’, which still allows dose estimation, albeit with much higher uncertainties. These uncer-

tainties will swamp the dose estimates on some occasions, but often they will still be precise

enough to at least enable triage of the sample N under consideration. One could also contem-

plate using hybrid versions where the reference data are used to ‘update’ the calibration curve,

either in a Bayesian or empirical Bayesian framework [9], or through appropriate weighting

schemes, but such approaches are not considered herein.

If no reference data are available then the only option left is to use the available calibration

curve uncontested, which will still allow the production of dose estimates. It is important that

any software or output which reports estimates in such cases also gives a corresponding warn-

ing message (our web applet does so). The whole process is implemented in a web applet

which is introduced in Section 5.2.

4.4 Reference sample ratios

In practice, it has been observed that reference sample yields tend to exceed the calibration

curve yields. The reason for this is that reference samples are not subject to focus loss due to

shipment. Hence, it can be argued that reference yields which fall below the calibration curve

are suspicious either way, even if they fall within the range of the prediction interval (or a 30%

range, for that purpose). It has been suggested [11] to multiply the dose estimate obtained

from (7) with the reference sample ratio ðÂ þ B̂xrÞ=yr to adjust for this effect. Mathematically,

this amounts to pulling the calibration curve down so that it passes through Â and (approxi-

mately) yr, where several variants of this scheme are possible. Individual laboratories will be

best placed to decide whether such adjustments (which are, to repeat this, operating within

the range of the sampling variation) are necessary. Our web applet does not make such

adjustments.

5 Case study and web applet

5.1 Data analysis

We now apply the methodology introduced in Section 4 to a manually scored γ-H2AX foci

data set obtained in an in vitro setting at Public Health England after irradiation of blood lym-

phocytes with 250kVp X-rays (with identical technical specifications as for the previous data

set). Venous blood was taken with informed consent and the ethical approval of the West Mid-

lands–Solihull Research Ethics Committee (REC 14/WM/1182). This is part of a much larger

data set which also contained focus counts 4h after exposure, some measurements for doses at
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4Gy, as well as partial exposure measurements which we have excluded from this discussion

for different reasons. It leaves a total of 12 aggregated measurements, as displayed in Table 4.

We split these into four observations to be used as reference samples (bold), and eight observa-

tions from which to estimate doses (and which are for this purpose assumed unknown).

It is noted that the data labelled with a � were collected through a different scorer, and that

the 0Gy data still carry a time label of 1h and 24h which means that this time span ‘was waited

after not exposing the data to radiation’. We mentioned before that in this case the time span

is essentially meaningless, and hence we use the first of each of the three measurements to con-

struct a joint reference sample. However, when estimating the dose of the non–reference sam-

ples we still assume that these yields are allocated to the respective 1h or 24h curves, since in

this case we do not know that the true dose is 0Gy and so one still needs to make use of a full

calibration curve.

We assume for this analysis that the available calibration curves are the ones provided in

the bottom of Table 2, with �̂ ¼ 60. The next step is to check for the compatibility of the

reference information with the calibration curve. For the control yield at dose zero,

we have y0 = (68 + 117)/400 = 0.4625. This is compared with a prediction interval

0:150� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
60� 0:150=400

p
¼ ½� 0:3; 0:6� so we accept the value Â of the calibration curve.

For the positive control samples at 1.5Gy, one has at 1h the reference yield of 5.02 which is

outside the 95% prediction interval

0:150þ 12:518� 1:5� 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
60� ð0:150þ 1:5� 12:518Þ=200

p

¼ ½14:2; 23:7�:

ð17Þ

So, the 1h curve is rejected as a whole, and replaced by ~A ¼ 0:4625 with

SEð~AÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
60� 0:4625=400

p
¼ 0:263, as well as ~B ¼ ð5:02 � 0:4625Þ=1:5 ¼ 3:038 with

SEð~BÞ ¼
ffiffiffi
60
p

1:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:4525

400
þ 5:02

200

q
¼ 0:837. At 24h, we have the reference yield of 2.92 which lies just

in the middle of the prediction interval [1.160, 5.007] which is centered at the fitted value of

0.150 + 1.5 × 1.956 = 3.084. So, here the curve is clearly accepted. We proceed now with esti-

mating the remaining doses. For the 1h data, we have the yields of y� = 0.72, 0.35, 5.53, and

6.53 available, and we need to use the reference curve 0.4625 + 3.038x to estimate the doses.

Table 4. Data from Section 5.1. Rows in bold print are considered as reference information. The first column gives

the true, known doses (which are only made use of for the reference samples). Dose estimates and standard errors are

provided in the final two columns. Yields associated with a � symbol were obtained by a different scorer, in the same

laboratory.

x time n Y y x� SE(x�)
0 1h 200 68 0.34

0 1h 200 143 0.72 0.08 0.18

0 1h 200 69 0.35 −0.04 0.14

0 24h 200 117 0.59

0 24h 200 64 0.32 0.09 0.16

0 24h 200 �16 �0.08 �-0.04 �0.08

0.75 1h 53 293 5.53 1.67 0.94

0.75 24h 200 153 0.77 0.32 0.24

1.5 1h 200 1004 5.02

1.5 24h 200 583 2.92

3 1h 200 1305 6.53 2.00 0.72

3 24h 200 �552 �2.76 �1.33 �0.46

https://doi.org/10.1371/journal.pone.0207464.t004
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For the 24h data, taking the results by the second scorer aside for a moment, we have the

yields of y� = 0.32 and 0.77 available, and we can use the calibration curve 0.150 + 1.956x,

with appropriate standard errors as reported earlier. The results after application of Eqs (7)

and (12) are provided in the columns for x� and SE(x�) in Table 4. One can see from this

that—as expected—most of the dose estimates are not very precise, but all of them are within

two standard errors of the true values, where it is noted that the standard errors tend to be

larger when the reference curve has been used (1h) rather than the calibration curve (24h).

Despite their imprecision, all dose estimates appear useful enough to enable triage.

The data from the second scorer are more challenging to deal with. The change of scorer

implies a change in experimental conditions so that the previous reference data cannot be used

to judge the adequacy of the calibration curve. Since no reference sample is available for this

scorer, all what can be done is to use the uncontested calibration curve, and produce a corre-

sponding warning message, which we again highlight by a � in Table 4. It is clear that in this

case one of the two estimates turned out to be reasonable but the other one was compromised

by the lack of adequate reference data, being more than 3 standard errors away from the true

value.

Finally, we compute dose estimates and their variances for a grid of yields in order to get a

more complete picture of the variability in this process. Initially, let us assume the 1h calibra-

tion curve to be ‘correct’, and take the grid of yields from 0 to 10 with step size 1. Then, we

compute dose estimates and variances according to (7) and (12), assuming measurements

from n� = 50 and 200 cells, respectively. The results are visualized through the black and blue

curves (connected by circles) in Fig 6 (left). Recall firstly that dose estimates do not depend

on n�, so each two circles or crosses are always perfectly vertically aligned. Now, if the 1h

Fig 6. Plots of standard errors, SE(x�), versus dose estimates, x�, for 1h (left) or 24h (right) after exposure, for n� = 50 (black) or 200 (blue) available cells,

respectively. Measurements symbolized through circles � assume that the given calibration curve is true, while those displayed through a + symbol assume that it is

rejected and hence a reference curve is used. The yields corresponding to the circles/crosses along the curves are given by 0, 1, 2, . . ., 10.

https://doi.org/10.1371/journal.pone.0207464.g006
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calibration curve was adequate for our data, we would see that the standard errors of dose esti-

mates were consistently below 0.3Gy. But, of course, this calibration curve was not validated

and it is also clear from the figure that this ‘wrong’ curve would lead to tiny dose estimates. If

the reference curve is used instead, the dose estimates and their standard errors are inflated

considerably (curves connected by + symbols). The right hand panel shows the standard errors

arising from the (validated) 24h calibration curve, using the same grid of yields as before. We

see that standard errors can come close to 1Gy for n� = 200 and 2Gy for n� = 50.

5.2 Web applet DoseEstimateH2AX

A web applet is available at http://asapps.bcamath.org:5054/ which allows one to perform bio-

dosimetric dose estimations from H2AX data, following the methodology proposed in Section

3. This applet has been developed using Shiny RStudio technology [33]. This applet can be

used to reproduce the examples from this manuscript, but of course it can also be applied to

any other data set (calibration data, reference samples, and customer yields), and it is hoped

that laboratories and public health institutions will find this tool useful.

In its current version, only two H2AX calibration curves, namely PHE’s 1h and 24h curves

according to the bottom part of Table 2, are implemented as ‘built–in’ curves. However, usu-

ally laboratories will want to use their own calibration curves, and it is in fact recommended to

do so. The applet allows for entering such calibration data. In either case, whether built–in or

user–supplied, the calibration curve should be validated via reference samples (one control

and another irradiated) which can be entered by the user into the system. If the calibration

curve is validated then it is used in the following dose estimation step, but if it is not validated

then the reference samples are used to construct a new calibration curve as previously

explained. If no reference samples are provided then dose estimates will still be produced,

accompanied by adequate warning messages.

In the event the user introduces the fitted calibration curve parameters but does not provide

their respective standard errors, they are taken as 0 in expression (6). Analogously, if the dis-

persion index is not introduced by the user, this is taken as 60. Warning messages are dis-

played accordingly.

Fig 7 shows the activity diagram of the applet, representing the different paths through

which a user can get a H2AX based biodosimetric dose estimation. The authors encourage the

users to give feedback for updating the applet to improve their user experiences (the applet’s

‘Information’ tab describes how to do this). Through the same route the users are also encour-

aged to make their calibration data available to the developers so that they can be included into

later versions of the applet and thus increase its capabilities.

An example for the use and graphical output of this applet, for the case of the 24h calibra-

tion curve as elaborated in detail in Subsection 5.1, is provided in Fig 8. A tutorial on how to

use this applet, which contains several further examples addressing different scenarios, is pro-

vided in S1 File.

6 Discussion

For retrospective dosimetry using the γ–H2AX assay, ready–to–use methodology and software

(in form of a publicly available web applet) has been developed for the estimation of radiation

doses. As part of its workflow, the methodology checks for validity of the supplied calibration

curve and produces a substitute calibration curve from the reference samples otherwise, hence

ensuring that in either case the point and interval estimates of dose are ‘correct’, with variabil-

ity bounds not larger than necessary. This new methodology takes the specific character of
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H2AX data into account, rather than relying on dicentric techniques which turned out to be

not fully fit for purpose in this context.

A specific feature of H2AX which has been frequently reported is the poor reproducibility

of experimental results [19, 21, 27]. There are several layers of this reproducibility problem. In

the outer layer, one could ask whether different laboratories are able to reproduce each other’s

results. A systematic study in this direction was carried out in the framework of the RENEB

network [19]. The key question that this boils down to is whether the laboratories use a valid

calibration curve. Hence, it is essential for this purpose that laboratories use appropriate refer-

ence samples to validate their curves. Our work in subsections 4.2 and 4.3 provides methodol-

ogy to carry out this check, and also provides a way forward in case the calibration curve could

not be validated. To some extent, this step will also account for shipment effects, or for situa-

tions where the ‘time after exposure’ is incorrectly assessed as these, when significant, will

cause the calibration curve to be rejected.

Somewhat more interesting (and more challenging) is the problem of ‘internal reproduc-

ibility’, which we define as the ability of a specific laboratory, having scored foci from a given

blood sample, to reproduce their own result. There are two types of variation which impact

adversely on reproducibility in this sense; namely variation due to the focus scoring process,

and variation related to the individual. For the former, we need to distinguish further. Firstly,

there are physical and chemical aspects relating to the measurement process itself (Moquet

et al. [19] cite staining quality [20] and microscope settings [16]). This variation could be

Fig 7. Activity diagram for web applet DoseEstimateH2AX.

https://doi.org/10.1371/journal.pone.0207464.g007
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minor and random (in which case it gets absorbed by the overdispersion), but also substantial

and systematic. Secondly, visual (manual) H2AX focus scoring is difficult even for trained

technicians, and can lead to ‘dramatic variations’ [21]. We have ourselves observed (in the sec-

ond data set introduced in this paper) systematic and significant differences in the amount of

foci scored by different scorers. Such variation is of discrete (in our case binary) nature and

will not necessarily be captured by allowing for overdispersion. Under our approach, system-

atic effects of this or other type would be identified in the validation process of the calibration

curve: If the reference samples produced by the scorer are not compatible with the calibration

curve, then the curve will be discarded and replaced by a new one obtained from the reference

samples. It is, therefore, paramount that the reference samples are obtained by the same scorer

as the one who will actually score the sample of interest—otherwise the procedure will break.

Concerning variation due to the individual, this can be distinguished into inter– and intra–

individual variation, as carefully elaborated on in Section 2. The latter one especially is of some

conceptual concern, since it implies that even if one could control all previously mentioned

types of variation, and even if samples are collected from the same individual, the results are

still not reproducible. But, as we have demonstrated in this manuscript, this lack of reproduc-

ibility is in fact nothing other than high variability, which is captured (along with the inter–

individual variation) through the dispersion parameter. Hence, we do believe that our

approach addresses the main reproducibility issues one way or the other.

Fig 8. Illustration of web applet using the 24h curve with y� = 0.77 and n� = 200, as well as reference samples according to Table 4. The point estimate x� and the

interval estimate x� ± 1.96SE(x�) of dose are highlighted through a red dot and line, respectively. Numerical output can be obtained by clicking on the “Main” button,

see the Tutorial in S1 File for details.

https://doi.org/10.1371/journal.pone.0207464.g008
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One central building block of our approach is the estimation of the dispersion index, which

may be refined in further studies. The recommended value of �̂ ¼ 60 reflects the ‘maximum’

dispersion under manual focus scoring. It has been noted that automated scoring techniques

increase the overdispersion in the scored counts [13]. Hence, it would appear plausible that

the dispersion estimate under automated scoring needs to be considerably higher. A related

question is whether partial body exposure can be detected from the level of overdispersion.

Rothkamm et al. [13] suggest that this may still be possible under manual scoring but will

become impractical under automated scoring due to the extreme overdispersion which is then

encountered. The present study sheds some slight doubt on the ability to detect partial expo-

sure even under manual scoring, since also in this case the focus counts under homogeneous

exposure are far from equidispersed. Assuming that partial body exposure can be detected, the

next question is to estimate the dose and exposure fraction. An instance of a successful applica-

tion of Dolphin’s contaminated Poisson method [6] in this context has been presented in [17].

While partial body exposure is beyond the scope of our work, further research on this matter

still appears desirable, since real life exposures are virtually always heterogeneous.

Readers who are familiar with the the literature on radiation dose estimation through the

dicentric assay will be used to the presentation of the data in the form of frequency tables,

which give, for each calibration dose point, the full count distribution of observed abberations

[6, 8, 9, 34]. Such raw frequency data have been, originally, also available in our context, and in

principle they could be similarly displayed. However, note that the maximal counts for H2AX

data are usually on a considerably larger level (say 20–24) compared to dicentric data, where

this maximum is typically 6 or 7 (the maximum number of biologically possible dicentric chro-

mosomes in a cell is 23; for γ−H2AX foci there is no such limit).

In the methodology outlined in Section 3.1, we have aggregated the individual cell-by-cell

counts to obtain counts per cell, or yields, yij. This procedure implies an information loss as

compared to the use of full frequency distributions. However, the yields constitute the suffi-

cient statistic for the estimation of the Poisson mean function μi, and this property does carry

over to the quasi–Poisson case. So, any loss of information would only come into play as far as

as variance, or dispersion, estimates are concerned. We are able to estimate the dispersion

parameter consistently via (5) from the fitted Poisson model (which used only the yields).

However, an alternative way to allow for overdispersion would be the use of a two-parameter

model such as the negative binomial model [35], for which one would indeed need the

full frequency distribution in order to estimate its shape parameter (which determines the dis-

persion), see [36] for the explicit formula of this estimator. The relative advantages and disad-

vantages of quasi-Poisson and negative binomial modelling strategies have been discussed in

[37]. To our knowledge, analyzing frequency distribution data in a γ−H2AX context has not

been systematically attempted yet, and we also do not consider this question further in this

paper.

We believe that a very attractive direction forward for the field of biodosimetry is the com-

bination of biomarkers. The idea would be to use a quick and cheap biomarker with potentially

high but quantifiable variance, for instance one based on gene expressions [38] or proteins, for

the initial triage step. Depending on the outcome of the triage, a more elaborated biomarker

such as the dicentric assay can be subsequently carried out. If a Bayesian approach [9] is

adopted for the dose estimation in the second step, then this idea appears particularly appeal-

ing as the triage outcome could be used directly as a prior in the Bayesian analysis.

Perhaps it is also time to reconsider the fixation of the community on always estimating

dose. There appears to be no immovable reason why triage would always need to go via a dose

estimate. Assuming that a well–defined set of triage categories can be specified, these could be
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linked with much simpler statistical methodology (effectively, multi–category logistic regres-

sion) directly to the γ-H2AX focus counts, which would circumvent the need for the compli-

cated inverse regression techniques entirely. Of course, fitting such models would require

the production of appropriate training data to start with. We leave such thoughts to further

research.
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