1	Perovskite U-Pb and Sr-Nd isotopic perspectives on
2	melilitite magmatism and outward growth of the Tibetan
3	plateau
4	Dong Liu ^{1,*} , Zhidan Zhao ^{1,*} , Yaoling Niu ^{1, 2} , Di-Cheng Zhu ¹ , and Xian-Hua Li ³
5	¹ State Key Laboratory of Geological Processes and Mineral Resources, and School of
6	Earth Science and Resources, China University of Geosciences, Beijing 100083, China
7	² Department of Earth Sciences, Durham University, Durham DH1 3LE, UK
8	³ State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics,
9	Chinese Academy of Sciences, Beijing 100029, China
10	*E-mail: d.liu@cugb.edu.cn; zdzhao@cugb.edu.cn
11	ABSTRACT
12	Mantle-derived alkaline magmatism along major strike-slip faults carries
13	important messages on the lateral growth of the Tibetan plateau. Here we use the
14	geochemistry of perovskites from West Qinling melilitite to probe into the nature and
15	dynamics of sub-lithospheric mantle beneath the northeastern Tibetan plateau. The
16	texture and chemical composition of perovskites indicate their early crystallization from a
17	CO2-rich melilitite magma. Most perovskite crystals have moderately depleted Sr-Nd
18	isotopic compositions whereas a few grains exhibit high ${}^{87}Sr/{}^{86}Sr_i$ and low $\epsilon_{Nd}(t)$.
19	Together with the bulk-rock geochemistry of the melilitite, the perovskite Sr-Nd isotope
20	data can be used to show that the primary magma parental to the melilitite must have Page 1 of 19

21	derived from seafloor subduction-modified asthenosphere and underwent interaction with
22	lithospheric mantle during ascent. In situ U-Pb dating of the perovskites demonstrates the
23	temporal correlation between the melilitite magmatism and the Kunlun strike-slip faulting
24	in the early-Miocene. These findings indicate the fundamental importance of continued
25	Indian-Asia convergence in causing outward growth of the Tibetan plateau through
26	strike-slip fault displacement and in reactivating the long-lived lithospheric zones of
27	weakness for draining low-volume asthenosphere-derived melts.
28	
29	INTRODUCTION
30	The outward growth and strike-slip extrusion of the Tibetan plateau are
31	accompanied by formation of low-volume and deeply-rooted alkaline magmatism (e.g.,
32	Wang et al., 2001; Mahéo et al., 2009; Dai et al., 2017). These alkaline rocks can offer
33	valuable insights into the mantle dynamics (Molnar et al., 1993; Tapponnier et al., 2001)
34	and allow a better understanding of the tectonic and topographic evolution of the India-
35	Asia collision zone (see Wang et al., 2013, for a review). However, the inevitable
36	contamination and hydrothermal alteration at crustal levels make it difficult to constrain
37	the nature of sources through bulk-rock data of mantle-derived rocks (Tappe et al., 2012;
38	Sun et al., 2014). The lack of accurate and precise age data on alkaline rocks with mantle
39	affinity also leads to ambiguities in their correlations with tectonic processes on various

40 scales, preventing us from understanding the way in which the Tibetan plateau may have 41 grown laterally in space and time.

42	Perovskite (CaTiO ₃) is a common accessory mineral in SiO ₂ -undersaturated rocks
43	and serves as a major carrier of Th, U, Sr, and rare earth elements (Chakhmouradian et al.,
44	2013). It is thus suitable for U-Th-Pb dating and its radiogenic isotopes can also provide
45	reliable information about magmatic sources and processes (Yang et al., 2009; Tappe et
46	al., 2012, 2018). Here we present a combined study of in situ U-Pb dating, trace element
47	analysis, and Sr-Nd isotope compositions on perovskites extracted from the melilitite in
48	the West Qinling orogenic belt. These data, together with seismic tomography across the
49	Kunlun fault zone, provide insights into the geochemical and dynamic evolution of the
50	upper mantle beneath the northeastern Tibetan Plateau. This study also presents the first
51	perovskite U-Pb ages for melilitite magmatism on the greater Tibetan Plateau, highlights
52	the critical role of trans-lithospheric lineaments in the generation and emplacement of
53	postcollisional alkaline magmatism, and gives a detailed pattern for the outward growth
54	of the plateau in space and time.

55

TECTONIC SETTING AND SAMPLE DESCRIPTIONS

The Qinling orogenic belt stretches eastward through the Dabie orogen, connects 56 with the Kunlun orogen to the west, and preserves numerous metamorphic and magmatic 57 records of Proterozoic-Mesozoic seafloor subduction and continental collision episodes 58 (Dong and Santosh 2016). The western part of the Qinling orogenic belt is a conjunction 59 Page 3 of 19

60	region of the Tibetan plateau, the North and South China blocks (Fig. 1A). Since the
61	Cenozoic, the northeastern Tibetan plateau has undergone significant lithospheric
62	deformation and tectonic rotation, and has developed numerous thrust and strike-slip
63	faults to accommodate the continued India-Asia convergence (Tapponnier et al., 2001;
64	Wang et al., 2013). The Kunlun fault (> 1500 km long) is a prominent left-lateral strike-
65	slip fault zone on the northern and northeastern Tibetan Plateau. It propagates along the
66	plate boundary between the Songpan Ganzi-Hohxil terrane and eastern Kunlun, and
67	extends eastward into the West Qinling orogenic belt (Fig. 1A). A thermochronological
68	study on the exhumation history associated with the Kunlun strike-slip faulting indicates
69	that this sinistral fault may have initiated in the early-Miocene or earlier (20-15 Ma) with
70	a total offset of 100–300 km at a high Quaternary slip rate (\geq 10 mm/yr) (Duvall et al.,
71	2013).
72	Postcollisional potassic and ultrapotassic volcanic centers are scattered along the
73	west segment of the Kunlun fault in the Songpan Ganzi-Hohxil terrane (Fig. 1A), giving
74	varying K-Ar and Ar-Ar ages ranging from 24.6 Ma to 0.30 Ma (Table DR1). To the east,
75	several rhomb-shaped Cenozoic basins have developed along and adjacent to the Kunlun
76	fault. The West Qinling melilitite, which commonly occurs as volcanic pipes and lava
77	flows, are distributed in the Tianshui-Lixian basin (Fig. DR1). Mantle xenoliths and
78	carbonate ocelli can be identified from melilititic lava, and, in some area, it is found to be
79	interbedded with extrusive Ca-carbonatites (Fig. DR2). Melilitite samples have a Page 4 of 19

80	porphyritic texture with phenocrysts dominated by pyroxenes, olivine, and minor
81	phlogopite in a fine-grained groundmass. Their groundmass mineralogy includes melilite,
82	nepheline, leucite, perovskite, and Fe-Ti oxides. The melilitite and shoshonite in West
83	Qinling yield K-Ar and Ar-Ar eruption ages of 23.2–8.7 Ma (Table DR1 and references
84	therein).
85	METHODS AND RESULTS
86	Bulk-rock major and trace element compositions of melilitite samples were
87	measured at China University of Geosciences in Wuhan. Perovskites extracted from the
88	melilitite were mounted in epoxy resin and selected for in situ analysis at the Institute of
89	Geology and Geophysics, Chinese Academy of Sciences. Analytical methods and results
90	were given in the Data Repository.
91	The West Qinling melilitite is a suite of SiO ₂ -undersaturated volcanic rocks with
92	low Al_2O_3 (as low as 7.65 wt.%), high MgO (12.7–18.5 wt.%), and high CaO contents
93	(up to 14.2 wt.%) (Table DR2). They have lower K_2O/Na_2O (0.5–1) and plot in the
94	compositional fields of melilitite and nephelinite (Fig. DR3). The primitive mantle
95	normalized trace element patterns of the melilitite are characterized by relative
96	enrichment of large ion lithophile elements (LILEs) and light rare earth elements
97	(LREEs), with weak negative anomalies in Rb, Zr, Hf, and Ti (Fig. DR3).
98	Melilititic perovskites commonly grow as euhedral and subhedral grains of
99	varying size (50–200 μ m). They are homogeneous and do not show oscillatory zoning in Page 5 of 19

100	back-scattered electron (BSE) images (Fig. DR4). Mineral inclusions are rare, and
101	alterations are not observed in these unzoned grains. The analyzed grains are almost pure
102	CaTiO ₃ (91.3–97.6 mol%) with minor SiO ₂ (<0.17 wt.%) and Na ₂ O (0.21–1.35 wt.%)
103	(Table DR3). All grains exhibit negative Rb, Ba, Pb, Sr, Zr, Hf, and Y anomalies,
104	showing elevated LREEs relative to heavy (H)REEs (Fig. 2).
105	Perovskites have varying Th (10.3–1462 ppm) and U (50.8–333 ppm) contents
106	and a wide range of Th/U (0.09–23.6, Tables DR3 and DR4). The isotopic data for each
107	sample define an array that intercepts the inverse concordia curve in the Tera-Wasserburg
108	diagram and yields lower intercept ages of 15.93 \pm 0.44 Ma to 20.06 \pm 0.84 Ma (Fig.
109	DR5). The weighted mean 206 Pb/ 238 U ages based on the 207 Pb-correction method vary
110	from 16.19 \pm 0.42 Ma to 20.35 \pm 0.89 Ma, which agree well with lower intercept ages for
111	each sample.
112	Unradiogenic Sr and radiogenic Nd isotopic compositions are obvious for the
113	melilititic perovskites (Fig. 3). Except for a few grains (e.g., LX1506@12), the initial Sr
114	isotopic ratios in perovskites (${}^{87}Sr/{}^{86}Sr_i = 0.7026-0.7042$, Table DR5) are lower than the
115	bulk-rock values of the host melilitite (${}^{87}Sr/{}^{86}Sr_i = 0.7037-0.7094$) and mantle xenoliths
116	$({}^{87}Sr/{}^{86}Sr_i = 0.7040-0.7056)$. Both perovskites ($\epsilon_{Nd}(t) = +0.1$ to +7.5, Table DR6) and
117	mantle xenoliths ($\epsilon_{Nd}(t) = +1.3$ to +7.1) have a narrower range in initial Nd isotopic
118	variations than the melilitite ($\epsilon_{Nd}(t) = -4.6$ to +6.1).
119	DISCUSSION

121	Perovskite is an early crystallizing phase in SiO2-undersaturated rocks, and its
122	textural appearance and chemical composition may reflect the nature of primary magmas
123	and rock-forming processes (Yang et al., 2009; Chakhmouradian et al., 2013). Texturally,
124	the groundmass perovskites from the West Qinling melilitite are euhedral to subhedral
125	and show uniform and smooth appearance in BSE images (Fig. DR4), which are in
126	contrast with altered grains with spongy appearance (Yang et al., 2009). The lack of
127	compositional zoning and inclusions of late crystallizing mineral (e.g., calcite and mica)
128	also indicate that these unaltered perovskites were formed in the early stage of
129	crystallization.
130	Geochemical compositions of the melilititic perovskites may provide further
131	evidence for their primary magmatic origin (Fig. 2). The studied perovskites commonly
132	have low SiO ₂ and high CaO contents (Table DR3), which differ from those grains
133	altered by post-crystallization hydrothermal events and preclude the occurrence of
134	secondary alteration/modification (Yang et al., 2009). Moreover, the perovskites from the
135	West Qinling melilitite show compositional similarity to those from kimberlites
136	worldwide (Fig. 2). Experimental studies have showed that trace element systematics of
137	perovskite is mainly controlled by melt composition and substitution mechanisms rather
138	than pressure and temperature (Beyer et al., 2013; Chakhmouradian et al., 2013). We thus
139	modeled their trace element compositions using bulk-rock data of melilitite samples and Page 7 of 19

120 **Textural and Trace Element Constraints on the Origin of Perovskite**

140	partition coefficients (Delement) with katungite (i.e., potassic olivine melilitite,
141	Chakhmouradian et al., 2013). The modeling indicates that the distinctive signatures of
142	the studied perovskites, including the enrichment of LREEs and relative deletions in Rb,
143	Ba, Pb, Sr, Zr, and Hf, can be well reproduced by equilibrium crystallization from a
144	melilitite parental magma (Fig. 2).
145	We also note that the melilititic perovskites display variably lower Th/U and
146	higher HREEs concentrations than the modeled trace element pattern (Fig. 2). Growth in
147	a primary magma with higher concentrations of U and HREEs cannot fully explain the
148	difference between measured and calculated results, because perovskite has strong
149	preference for Th ($D_{Th} = 155$) and LREEs ($D_{La} = 27.9$) and exhibits high D_{Th}/D_U (up to
150	23) and D_{La}/D_{Lu} (up to 14.7) during the crystallization from katungite magma
151	(Chakhmouradian et al., 2013). A likely explanation is that the perovskite/melilitite trace
152	element partitioning was affected by melt structure. Compared with a pure silicate
153	magmatic system, perovskite crystallizing from a carbonatite or a hybrid carbonate-
154	silicate magma would have much lower D_{Th}/D_U (0.57–9.23) and D_{La}/D_{Lu} (0.68–6.25)
155	(Beyer et al., 2013). The low Th/U and La/Yb in the analyzed perovskites thus argue for
156	crystallization from a CO ₂ -rich primitive melilitite magma.
157	Perovskite Sr-Nd Isotopic Insights into the Petrogenesis of Melilitites
158	The early-crystallizing perovskites can better preserve isotopic signatures of the
159	primary magma than the bulk-rock compositions (Tappe et al., 2012; Sun et al., 2014). In Page 8 of 19

160	situ Sr-Nd isotopic analyses indicate that most perovskites display lower ⁸⁷ Sr/ ⁸⁶ Sr _i and
161	slightly higher $\epsilon_{Nd}(t)$ than the melilitite and entrained mantle xenoliths (Fig. 3). The Sr-
162	Nd isotopic variations in mantle-derived rocks may result from source heterogeneities or
163	reflect contamination/alteration during magmat ascent and eruption. The entrainment of
164	various peridotite xenoliths provides convincing evidence for the incorporation of mantle
165	materials into the melilitite magma during ascent through the mantle lithosphere (SCLM)
166	(cf. Su et al., 2012). We modeled the possible assimilation and fractional crystallization
167	(AFC) processes and found that the scatter of bulk-rock Sr-Nd isotopes in the melilitite,
168	as well as their isotopic overlap with mantle xenoliths, can be fully reproduced by
169	incorporating isotopically enriched components from the SCLM (e.g., carbonate- and
170	phlogopite-rich metasomes) into primary melts (in Fig. 3). In this case, the high $^{87}\text{Sr}/^{86}\text{Sr}_i$
171	and low $\epsilon_{Nd}(t)$ observed in some perovskite grains (e.g., LX1506@12) can be best
172	explained as reflecting the chemical interaction between the primary melilitite magma
173	and the metasomatized SCLM. The discrepancy between in situ perovskite data and bulk-
174	rock isotopic compositions thus underscores the potential of early-crystallizing
175	perovskites to probe into the nature of mantle sources and also corroborates the inevitable
176	contamination/assimilation of primary melilitite magma during ascent.
177	A common characteristic for perovskites from the West Qinling melilitite and
178	Group I kimberlites worldwide is their comparable Sr-Nd isotopic co-variations that
179	overlap with the variation range of modern ocean island basalts (OIBs) and form arrays Page 9 of 19

180	extending toward the depleted mantle (Fig. 3). Hence both the heterogeneous SCLM and
181	depleted mantle asthenosphere are possible source regions for generating the primary
182	melilitite magma. However, the entrained mantle xenoliths permit direct insights into the
183	SCLM beneath the northeastern Tibetan Plateau (Su et al., 2012). The pronounced
184	difference in Pb isotopic compositions between the melilitite $(^{206}Pb/^{204}Pb = 18.088 - 18.088)$
185	19.441) and mantle xenoliths (206 Pb/ 204 Pb = 16.083–18.020) (Fig. DR6) thus argue
186	against a derivation from partial melting of the SCLM. Melting within mantle lithosphere
187	is further challenged by thermobarometric calculation performed on peridotite xenoliths
188	because it places these mantle debris at depths of 65–125 km (Su et al., 2012) and limits
189	the minimum depth at which mantle melting and extraction of incipient melilitite melts
190	have occurred. With respect to the lithospheric thickness beneath the northeastern Tibetan
191	Plateau (100–130 km, Li et al., 2013), the primary melilitite magma should originate at a
192	depth greater than the lithosphere-asthenosphere boundary (LAB).
193	Given the Permian-Triassic northward subduction of the Ayimaqin-Kunlun-
194	Mianlue Paleo-Tethyan oceanic lithosphere beneath the West Qinling orogenic belt (cf.
195	Dong and Santosh 2016), we propose that the primary melilitite magma must have
196	ultimately derived from low-degree partial melting of subduction-modified asthenosphere.
197	It can be found that addition of minor amounts (<1 %) of carbonate-bearing pelagic
198	sediments to the depleted mantle is sufficient to reproduce the Sr-Nd isotopic array
199	defined by the melilititic perovskites (Fig. 3). Such interpretation is compatible with the Page 10 of 19

200	OIB-like trace element features (e.g., high Ce/Pb and Nb/U, Fig. DR3) and the radiogenic
201	Pb isotopic compositions (Fig. DR6) shown by the West Qinling melilitite. It is also
202	supported by experimental results in which melilitite melts are generated via small-
203	degree (<1%) melting of CO ₂ -bearing peridotite (<4 GPa, Gudfinnsson and Presnall,
204	2005), particularly if the isotopically light Mg in melilitites (δ^{26} Mg = -0.54‰ to -0.32‰,
205	Dai et al., 2017) are considered to represent carbonate-related metasomatism in their
206	mantle sources. Together with the Neogene-Quaternary (ultra) potassic rocks in northern
207	Tibet (Guo et al., 2006), it is tenable that multiple episodes of oceanic subduction and
208	continental convergence could have given rise to significant heterogeneities in the upper
209	mantle and consequently contributed to postcollisional alkaline magmatism along the
210	Kunlun fault zone.
211	Implications for the Northeastward Growth of the Tibetan Plateau
212	Identification of mantle-derived alkaline magmatism and how it relates to tectonic
213	escape in response to the India-Asia convergence are key to unraveling the outward
214	growth mechanism of the Tibetan plateau (Tapponnier et al., 2001; Wang et al., 2001).
215	Our new perovskite U-Pb ages indicate that the melilitite magmatism is broadly coeval
216	with (ultra) potassic activities on the northern Tibetan Plateau (Fig. 1B), both of which
217	coincide with the onset of Kunlun strike-slip faulting since the early Miocene (Duvall et
218	al., 2013). The linear distribution and long temporal span (~25 Myrs) of these
219	postcollisional magmatic rocks (Fig. 1) argue against a rapid removal of SCLM beneath Page 11 of 19

220	the northern Tibet. Because seismic tomography shows a low-velocity dome right
221	beneath the Kunlun fault zone at depth of 90–150 km (Fig. 4), an alternative explanation
222	is that these volumetrically small alkaline rocks may be formed via decompression
223	melting of mantle asthenosphere and emplaced along narrow conduits of Kunlun fault
224	zone. For the melilitite on the northeastern Tibetan Plateau, carbonatite metasomatism
225	would dramatically lower the solidus temperature in their mantle sources and facilitate
226	mantle melting (Gudfinnsson and Presnall, 2005). Meanwhile, the deeply rooted Kunlun
227	fault system, which propagates along the weakly welded AKMS (Fig. 1A) and cuts
228	through the entire lithosphere (Li et al., 2013), would provide magmatic pathways and
229	allow such volatile-rich magma to migrate rapidly to the surface.
230	Given that the continued India-Asia convergence would reactivate pre-existing
231	zones of weakness in the Asian lithosphere away from the collision zone (Tapponnier et
232	al., 2001), the highly localized decompression melting of refertilized mantle
233	asthenosphere may also explain the formation of alkaline magmatism along Ailao Shan-
234	Red River shear zone (Wang et al., 2001) and Karakorum-Shigar strike-slip fault zone
235	(Mahéo et al., 2009). Therefore, our perovskite U-Pb dating results not only provide a
236	time constraint on the initiation of the Kunlun strike-slip faulting and associated tension
237	gash, but also highlight the controlling role of pre-existing lithospheric weakness in
238	intracontinental deformation, tectonic extrusion, and emplacement of postcollisional
239	magmatism accompanying the outward plateau growth. Page 12 of 19

240 CONCLUSIONS

241	The textural and geochemical features of the perovskite crystals are consistent
242	with their early crystallization from a CO ₂ -rich melilitite magma. The moderately
243	depleted Sr-Nd isotopic signatures in these perovskites, as well as the OIB-like
244	characteristics shown by the West Qinling melilitite, indicate that their primary magma
245	could originate from the low-degree partial melting of refertilized asthenosphere.
246	Perovskite U-Pb dating results corroborate the temporal correlation between the melilitite
247	magmatism and the Kunlun strike-slip faulting. The generation of volumetrically small
248	mantle-derived alkaline magmatism along major strike-slip faults can be best interpreted
249	as resulting from partial melting of metasomatized asthenosphere induced by the
250	reactivation of trans-lithospheric shear zones.
251	ACKNOWLEDGMENTS
252	We thank Chris Clark for editorial handling, and Jörn-Frederik Wotzlaw,
253	Catherine Mottram, and Sebastian Tappe for insightful comments. We are grateful to
254	Yue-Heng Yang, Qiu-Li Li, Xiao-Xiao Ling, and Qian Ma for assistance with in situ
255	analysis. This study was supported by the China 973 Program (project 2015CB452604),
256	the Natural Science Foundation of China (grant 41802058), and the 111 project (B18048).
257	REFERENCES CITED
258	Beyer, C., Berndt, J., Tappe, S., and Klemme, S., 2013, Trace element partitioning
259	between perovskite and kimberlite to carbonatite melt: New experimental constraints: Page 13 of 19

- 260 Chemical Geology, v. 353, p. 132–139,
- 261 https://doi.org/10.1016/j.chemgeo.2012.03.025.
- 262 Chakhmouradian, A.R., Reguir, E.P., Kamenetsky, V.S., Sharygin, V.V., and Golovin,
- A.V., 2013, Trace-element partitioning in perovskite: implications for the
- 264 geochemistry of kimberlites and other mantle-derived undersaturated rocks:
- 265 Chemical Geology, v. 353, p. 112–131,
- 266 https://doi.org/10.1016/j.chemgeo.2013.01.007.
- 267 Dai, L.-Q., Zhao, Z.-F., Zheng, Y.-F., An, Y.-J., and Zheng, F., 2017, Geochemical
- 268 Distinction between Carbonate and Silicate Metasomatism in Generating the Mantle
- 269 Sources of Alkali Basalts: Journal of Petrology, v. 58, p. 863–884,
- 270 https://doi.org/10.1093/petrology/egx038.
- 271 Dong, Y., and Santosh, M., 2016, Tectonic architecture and multiple orogeny of the
- 272 Qinling Orogenic Belt, Central China: Gondwana Research, v. 29, p. 1–40,
- 273 https://doi.org/10.1016/j.gr.2015.06.009.
- 274 Duvall, A.R., Clark, M.K., Kirby, E., Farley, K.A., Craddock, W.H., Li, C., and Yuan,
- 275 D.Y., 2013, Low-temperature thermochronometry along the Kunlun and Haiyuan
- Faults, NE Tibetan Plateau: Evidence for kinematic change during late-stage
- 277 orogenesis: Tectonics, v. 32, p. 1190–1211, https://doi.org/10.1002/tect.20072.
- 278 Gudfinnsson, G.H., and Presnall, D.C., 2005, Continuous gradations among primary
- 279 carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in Page 14 of 19

280	equilibrium with garnet lherzolite at 3-8 GPa: Journal of Petrology, v. 46, p. 1645-
281	1659, https://doi.org/10.1093/petrology/egi029.
282	Guo, Z., Wilson, M., Liu, J., and Mao, Q., 2006, Post-collisional, potassic and
283	ultrapotassic magmatism of the northern Tibetan Plateau: Constraints on
284	characteristics of the mantle source, geodynamic setting and uplift mechanisms:
285	Journal of Petrology, v. 47, p. 1177–1220, https://doi.org/10.1093/petrology/egl007.
286	Li, L., Li, A., Shen, Y., Sandvol, E.A., Shi, D., Li, H., and Li, X., 2013, Shear wave
287	structure in the northeastern Tibetan Plateau from Rayleigh wave tomography:
288	Journal of Geophysical Research. Solid Earth, v. 118, p. 4170–4183,
289	https://doi.org/10.1002/jgrb.50292.
290	Mahéo, G., Blichert-Toft, J., Pin, C., Guillot, S., and Pêcher, A., 2009, Partial Melting of
291	Mantle and Crustal Sources beneath South Karakorum, Pakistan: Implications for the
292	Miocene Geodynamic Evolution of the India-Asia Convergence Zone: Journal of
293	Petrology, v. 50, p. 427-449, https://doi.org/10.1093/petrology/egp006.

- 294 Molnar, P., England, P., and Martinod, J., 1993, Mantle dynamics, uplift of the Tibetan
- 295 Plateau, and the Indian monsoon: Reviews of Geophysics, v. 31, p. 357–396,
- 296 https://doi.org/10.1029/93RG02030.
- 297 Su, B.-X., Zhang, H.-F., Ying, J.-F., Tang, Y.-J., Hu, Y., and Santosh, M., 2012,
- 298 Metasomatized lithospheric mantle beneath the western Qinling, Central China:
- 299 insight into carbonatite melts in the mantle: The Journal of Geology, v. 120, p. 671– Page 15 of 19

- 300 681, https://doi.org/10.1086/667956.
- 301 Sun, J., Liu, C.-Z., Tappe, S., Kostrovitsky, S.I., Wu, F.-Y., Yakovlev, D., Yang, Y.-H.,
- 302 and Yang, J.-H., 2014, Repeated kimberlite magmatism beneath Yakutia and its
- 303 relationship to Siberian flood volcanism: Insights from in situ U–Pb and Sr–Nd
- 304 perovskite isotope analysis: Earth and Planetary Science Letters, v. 404, p. 283–295,
- 305 https://doi.org/10.1016/j.epsl.2014.07.039.
- 306 Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic
- 307 basalts: implications for mantle composition and processes: Geological Society of
- 308 London, Special Publications, v. 42, p. 313–345,
- 309 https://doi.org/10.1144/GSL.SP.1989.042.01.19.
- 310 Tappe, S., Steenfelt, A., and Nielsen, T., 2012, Asthenospheric source of Neoproterozoic
- 311 and Mesozoic kimberlites from the North Atlantic craton, West Greenland: new
- 312 high-precision U–Pb and Sr–Nd isotope data on perovskite: Chemical Geology,
- 313 v. 320, p. 113–127, https://doi.org/10.1016/j.chemgeo.2012.05.026.
- 314 Tapponnier, P., Xu, Z., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., and Yang, J.,
- 315 2001, Oblique stepwise rise and growth of the Tibet plateau: Science, v. 294,
- 316 p. 1671–1677, https://doi.org/10.1126/science.105978.
- 317 Wang, C., Dai, J., Zhao, X., Li, Y., Graham, S.A., He, D., Ran, B., and Meng, J., 2014,
- 318 Outward-growth of the Tibetan Plateau during the Cenozoic: A review:
- 319 Tectonophysics, v. 621, p. 1–43, https://doi.org/10.1016/j.tecto.2014.01.036. Page 16 of 19

320	Wang, JH., Yin, A., Harrison, T.M., Grove, M., Zhang, YQ., and Xie, GH., 2001, A
321	tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision
322	zone: Earth and Planetary Science Letters, v. 188, p. 123–133,
323	https://doi.org/10.1016/S0012-821X(01)00315-6.
324	Yang, YH., Wu, FY., Wilde, S.A., Liu, XM., Zhang, YB., Xie, LW., and Yang, J
325	H., 2009, In situ perovskite Sr-Nd isotopic constraints on the petrogenesis of the
326	Ordovician Mengyin kimberlites in the North China Craton: Chemical Geology,
327	v. 264, p. 24–42, https://doi.org/10.1016/j.chemgeo.2009.02.011.
328	
329	FIGURE CAPTIONS
330	
331	Figure 1. (A) Topographic map of northeastern Tibetan plateau, showing tectonic
332	framework and spatial distribution of postcollisional magmatism along the Kunlun fault.
333	AKMS = Ayimaqin-Kunlun-Mutztagh suture zone, JSS = Jinsha suture zone, BNS =
334	Bangong-Nujiang suture zone; ATF = Altyn Tagh fault, HF = Haiyuan fault, KLF =
335	Kunlun fault, WQF = West Qinling fault; LST = Liupan Shan thrust belt, QS-NST =
336	Qilian Shan-Nan Shan thrust belt, QTT = Qimen Tagh thrust belt. The Cenozoic basins in
337	northeastern Tibet were denoted by gray areas. (B) Variation in the formation ages of
338	melilitites, shoshonites, and (ultra) potassic rocks along the Kunlun fault (Table DR1 in
339	the GSA Data Repository ¹).

340	Figure 2. Primitive mantle (values from Sun and McDonough, 1989) normalized trace
341	element patterns of melilititic perovskites. Trace element patterns of kimberlitic
342	perovskites (Yang et al., 2009; Sun et al., 2014) are shown for comparison.
343	Figure 3. Initial Sr-Nd isotopic compositions of perovskites, melilitites, and mantle
344	xenoliths. The labeled percentages along AFC modeling and binary mixing curves denote
345	the increments of SCLM metasomes and recycled sediments, respectively. D_{Sr} (0.6) and
346	D_{Nd} (0.2) were estimated by assuming cumulates of pyroxene + plagioclase + olivine +
347	phlogopite + perovskite, and R value was set to be 0.99. Details of geochemical end-
348	members were given in Table DR8. Data field of mid-ocean ridge basalts (MORBs) and
349	OIBs (http://georoc.mpch-mainz.gwdg.de/georoc/), kimberlitic perovskites (Tappe et al.,
350	2012; Sun et al., 2014), and (ultra) potassic rocks in northern Tibet (Guo et al., 2006) are
351	shown for comparison.
352	Figure 4. Topographic and seismic profiles across northeastern Tibet in the NE-SW
353	direction (Li et al., 2013), showing a shear wave velocity perturbation beneath the
354	Kunlun fault zone. Arrows denote the possible escape flow and the upward migration
355	trend of asthenospheric melts along Kunlun fault system.
356	
357	1GSA Data Repository item 2018xxx, method description and analytical results (Tables
358	DR1-DR8 and Figure DR1-DR7), is available online at

- 359 http://www.geosociety.org/datarepository/2018/, or on request from
- 360 editing@geosociety.org.

Liu et al. Fig. 1 W175 mm - H62 mm (3-column fitting image)

Liu et al. Fig. 2 W58 mm - H41 mm (1-column fitting image)

Liu et al. Fig. 3 W58 mm - H73 mm (1-column fitting image)

Liu et al. Fig. 4 W58 mm - H40 mm (1-column fitting image)

GSA Data Repository 2018XXX

Perovskite U-Pb and Sr-Nd isotopic perspectives on kamafugitic magmatism and northeastward growth of the Tibetan plateau

Dong Liu* et al.

* Corresponding author, E-mail: d.liu@cugb.edu.cn

Contents

Analytical methods

Figure DR1 Field occurrence and photomicrographs for the West Qinling kamafugites and carbonatites Figure DR2 Classification and spider diagrams for the West Qinling kamafugites Figure DR3 BSE images for perovskites from the West Qinling kamafugites Figure DR4 Tera-Wasserburg concordia diagrams and primitive mantle normalized trace element patterns for kamafugitic perovskites Figure DR5 Pb isotopic compositions of the West Qinling kamafugites and entrained mantle xenoliths Figure DR6 Tera-Wasserburg concordia diagram, primitive mantle normalized trace element pattern, and Sr-Nd isotopic ratios for perovskite standard AFK Table DR1 Ages of the postcollisional magmatic rocks along Kunlun fault system Table DR2 Major and trace element data of kamafugite samples, standards, and procedural blank Table DR3 Major and trace element data of perovskites from the west Qinling kamafugites Table DR4 U-Pb age data of AFK standard and perovskites from the west Qinling kamafugites Table DR5 Rb-Sr isotopic data of AFK standard and perovskites from the west Qinling kamafugites Table DR6 Sm-Nd isotopic data of AFK standard and perovskites from the west Qinling kamafugites Table DR7 Whole-rock Sr-Nd isotopic data of kamafugites and entrained mantle xenoliths Table DR8 Trace element and Sr-Nd isotopic data for end-members used in geochemical modeling References

Analytical methods

Major and trace element analyses of west Qinling kamafugites

Major and trace element analyses were conducted in the State Key Laboratory of Geological Processes and Mineral Resources (GPMR), China University of Geosciences at Wuhan. Analytical results of kamafugite samples, procedural blanks, and international standards were given in Table DR2.

Weathered rock surfaces have been removed before analysis. After extracting mantle xenoliths by handpicking, fresh kamafugite samples were powdered into 200 mesh. Rock powder (~0.5 g) was mixed with 5.0 g compound flux (Li₂B₄O₇ : LiBO₂ = 12 : 22), and then was fused in a Pt-Au crucible by heating at ~1050°C for 11 min. The mixture was swirled repeatedly to ensure complete dissolution and homogenization before pouring into a mold to form a flat-surfaced disc (34 mm in diameter) for further analysis. Major element analysis was conducted using a *Shimadzu XRF-1800* sequential X-ray fluorescence spectrometry. Sample-preparing procedures and operating conditions of the XRF instrument have been described by Ma et al. (2012). The precision and accuracy for major element data are better than 4% and 3%, respectively.

As for trace element analysis, rock powder (~50 mg) was dissolved in a Teflon bomb with $HF + HNO_3$ mixture, and then was heated at 190°C for 48 h. After evaporating the solution to dryness, the dried sample was re-dissolved using ~3 ml 30% HNO₃, and then heated at 190°C for 24 h. Final solution was diluted to ~100 g with 2% HNO₃ for subsequent analysis. Trace element analysis was conducted using an *Agilent 7500a* inductively coupled plasma-mass spectrometry (ICP-MS). Detailed operating conditions of the ICP-MS instrument and data reduction processes have been described by Liu et al. (2008).

Major and trace element analyses of perovskites

Fresh kamafugite samples were crushed to 80 mesh, and then perovskites extracted from the crushed kamafugites were mounted in epoxy resin and polished to expose grain interiors. Back-scattered electron (BSE) images and major element compositions of perovskites were conducted using a *JEOL-JAX8100* electron microprobe with accerlerating voltage of 15 kV and beam current of 12 nA. Trace element compositions of perovskites were conducted using an *Agilent 7500a* ICP-MS equipped with a 193 nm excimer ArF laser-ablation system (*GeoLas Plus*) at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGG-CAS). Helium gas was flushed to minimize aerosol deposition around the ablation site, and mixed

with argon gas downstream of the ablation cell. The diameter of spot size was 40 μ m. The repetition rate of 8 Hz and the laser energy density of 12.9 J/cm² were used in this study. Every ten sample analyses were followed by analyzing one NIST 610 and NIST 612 glasses. Each analysis incorporated a background acquisition of approximately ~20 s (gas blank) and ~40 s sample data acquisition. Trace element concentrations were calculated using *GLITTER 4.0* software (Griffin et al., 2008), and calibrated against NIST 610 as an external standard combined with isotope ⁴³Ca (based on CaO concentration measured by electron probe) as an internal standard. Major and trace element data of perovskite samples were given in Table DR3.

In situ U-Pb dating

Perovskite U-Pb dating were conducted using a CAMECA IMS-1280 secondary ion mass spectrometry (SIMS) at the IGG-CAS. The O^{2-} primary ion beam was accelerated at 13 kV, with an intensity ranging from 9 nA to 14 nA. Positive secondary ions were extracted by a potential of 10 kV. The ellipsoidal spot was about 20 × 30 µm in size.

In this study, perovskites mounted in epoxy resin was coated with 30 nm high purity gold to reach 20 Ω resistance. Sample charging effects were minimized by optimizing the energy offset to maximum transmission in an energy window of 60 eV at the start of each analysis, using the ${}^{40}Ca^{48}Ti_2{}^{16}O_4$ reference peak at mass 200. A mass resolution of ~7000 (defined at 50% peak height) was used to separate ${}^{40}Ca^{48}Ti_2{}^{16}O_4{}^+$ peaks from isobaric interferences (Li et al., 2010), which was enough to separate U, Th, and Pb isotopes from isobaric interferences (e.g. oxides of REE, Williams, 1998). A single electron multiplier was used in the ion-counting mode to measure secondary ion beam intensities by peak jumping sequence. Each measurement consists of 10 cycles, and total data acquisition time is ~12 min. Analytical method and detailed operating conditions for the CAMECA IMS-1280 has been described by Li et al. (2010).

Given that perovskite commonly contains significant amounts of common Pb, we plotted the common Pb uncorrected data on the Tera-Wasserburg concordia diagram to obtain the crystallization age of the analyzed perovskites from the lower intercept. The upper intercept was fixed assuming that the initial common lead isotope composition follows the terrestrial Pb isotope evolution model described by Stacey and Kramers (1975) (i.e. the SK model Pb isotopes). Besides, the ²⁰⁷Pb correction method was also applied for individual analysis, and average ²⁰⁶Pb/²³⁸U ages were calculated using ISOPLOT 3.0 (Ludwig, 2003).

Perovskite Tazh-3 was used as the primary standard (Kinny et al., 1997) to calibrate U-Th-Pb data, and every five or six sample analyses was followed by analyzing a Tazh-3 standard. The in-house AFK perovskite standard was analyzed as an unknown during each analytical session, and yielded a lower intercept age of 379.0 ± 2.9 Ma (MSWD = 1.20) and a weighted average 206 Pb/ 238 U age of 379.1 ± 3.2 Ma (MSWD = 1.06, n = 17) (Fig. DR6), both of which are consistent with the recommended age of 381.6 ± 1.4 Ma (Wu et al., 2013). The SIMS U-Pb isotopic data of perovskite samples and standard were given in Table DR4.

In situ analysis of Sr-Nd isotopes

In situ Rb-Sr and Sm-Nd isotopic analyses on perovskites were conducted using a *Neptune* multi-collector (MC)-ICPMS at the IGG-CAS. The detailed operating conditions for MC-ICPMS instrument, the isotopic measurements, and the data reduction processes have been described by Yang et al. (2009) and Wu et al. (2010). Possible isobaric interferences and their correction methods were reported by Ramos et al. (2004) and have been successfully applied in Yang et al. (2009). Therefore, a brief description is given below.

The Sr isotopic data were obtained in a static multi-collector mode with a low resolution using nine Faraday collectors and the mass configuration array from ⁸³Kr to ⁸⁸Sr aimed at monitoring Kr and Rb (Ramos et al., 2004; Yang et al., 2009). During Sr isotopic analysis, an aliquot of 200 ppb NIST SRM 987 standard solution was used for controlling the quality and optimizing the operation parameters (including torch position, Ar flow rate, and ion lens focus) to get maximum sensitivity. The Neptune MC-ICPMS was configured to monitor Kr in the Ar gas after optimization prior to each analytical session (Yang et al., 2009). The spot size was 32-44 μ m in this study, with a pulse rate of 8 Hz and a laser energy density of 10 J/cm². During each analysis, a 30-second measurement of the gas blank was carried out prior to ablation in order to correct Kr (Ramos et al., 2004). The natural Kr ratios, including ⁸³Kr/⁸⁴Kr of 0.20175 and ⁸³Kr/⁸⁶Kr of 0.66474, were used for overlap correction, and the ⁸⁵Rb/⁸⁷Rb of 2.5926 was used for isobaric correction of Rb through exponential law (Ehrlich et al., 2001). Note that the perovskite samples in this study commonly have extremely low Rb/Sr ratios (< 0.002, Table DR3), the small fraction of Rb in the Sr fraction can be effectively corrected (Yang et al., 2009). No correction was applied for the interference from Fe dioxides, Ga and Zn oxides were negligible because of their low signals (Yang et al., 2009). However, interference from the doubly-charged rare earth elements can not be ignored because of their high concentrations in perovskite. The contributions of ¹⁶⁸Er²⁺ and ¹⁶⁸Yb²⁺ to ⁸⁴Sr, ¹⁷⁰Er²⁺ and ¹⁷⁰Yb²⁺ to ⁸⁵Rb, ¹⁷²Yb²⁺ to ⁸⁶Sr, ¹⁷⁴Yb²⁺ to ⁸⁷Sr (+⁸⁷Rb), and ¹⁷⁶Yb²⁺ to ⁸⁸Sr were calculated according to the isotopic abundances of Er and Yb (Ramos et al., 2004). In this study, the analyzed perovskite samples

are characterized by low Er/Sr (< 0.015) and Yb/Sr (< 0.007) (Table DR3), indicating that the interferences can be effectively corrected. On the other hand, the interferences of $^{176}Lu^{2+}$ and $^{176}Hf^{2+}$ on ⁸⁸Sr are negligible due to their low signals during in situ analysis (Ramos et al., 2004; Yang et al., 2009). The AFK perovskite standard was used as the external standard in this study, yielding an average $^{87}Sr/^{86}Sr$ of 0.703345 ± 0.000144 (2σ , n = 49, Fig. DR6), which agreed well with the recommended value within 2σ error ($^{87}Sr/^{86}Sr = 0.703347 \pm 0.000039$, Wu et al., 2013). The Rb-Sr isotopic data of perovskite samples and standard were given in Table DR5.

The in situ Sm-Nd isotopic data were obtained using an anlytical method similar to the Rb-Sr isotope determinations described above. The La Jolla Nd standard solution was used for instrumental calibration, and the exponential law was applied for mass bias correction by assuming ¹⁴⁶Nd/¹⁴⁴Nd of 0.7219. Because the studied perovskites are enriched in REEs and have high concentrations of Nd (up to 5596 ppm, Table DR3), in situ Sm-Nd isotope data can be obtained using a spot size of 32-60 μ m, with the pulse rate of 5-8 Hz and the laser energy density of 10-11 J/cm². The influence of Ce on Nd isotopic analysis was proved to be negligible (Yang et al., 2009), suggesting that sufficient attention must be paid to the isobaric interference of ¹⁴⁴Sm on ¹⁴⁴Nd (McFarlane and McCulloch, 2007). The mass bias of Sm (β_{Sm}) value directly obtained from the ¹⁴⁷Sm/¹⁴⁹Sm ratio of sample itself in real-time was applied to isobaric interference correction following the method proposed by McFarlane and McCulloch (2007). The ¹⁴⁷Sm/¹⁴⁹Sm of 1.08680 (Dubois et al., 1992) and the ¹⁴⁴Sm/¹⁴⁹Sm of 0.22332 (Isnard et al., 2005) were used for data reduction, and the $^{145}Nd/^{144}Nd$ ratio, with a constant value of 0.348415 (Wasserburg et al., 1981), was used to evaluate the effectiveness of analytical method. The AFK perovskite standard was used for external corrections of ¹⁴⁷Sm/¹⁴⁴Nd and ¹⁴³Nd/¹⁴⁴Nd in this study, yielding average 143 Nd/ 144 Nd of 0.512605 ± 0.000037 (2 σ , n = 51, Fig. DR6). These results agree with the recommended values within $2\sigma \operatorname{error} ({}^{143}\mathrm{Nd}/{}^{144}\mathrm{Nd} = 0.512609 \pm 0.000027$, Wu et al., 2013).

Initial ¹⁴³Nd/¹⁴⁴Nd ratios and $\varepsilon_{Nd}(t)$ values were calculated with reference to the chondritic reservoir (CHUR) at the time of perovskites growth from magma. In situ Sm-Nd isotopic data, detailed calculation formulas, and decay constant used in this work were given in Table DR6.

(A-D) Field occurrence for kamafugites and extrusive carbonatites at west Qinling.(E-H) Photomicrographs for the studied kamafugite samples. Carb = carbonate, Cpx = clinopyroxene, Ol = olivine, Opx = orthopyroxene, Prv = perovskite.

(A) Total alkalis vs. SiO₂ classification diagram (Le Maitre, 2002) for the west Qinling kamafugites. Data field of kamafugites from Brazil, Italy, and Uganda are shown for comparison (Guo et al., 2014 and references therein). (B) Classification diagram of melilitie, nephelinitic rocks, and basanite (Le Bas, 1989). (C) K₂O vs. Na₂O diagram for showing the Na₂O-rich signature in west Qinling kamafugites. Major and trace element data of west Qinling kamafugites are from Yu et al. (2001, 2004, 2009), Wang and Li (2003), Stoppa and Schiazza (2013), Guo et al. (2014), and Dai et al. (2017). (D) Primitive mantle-normalized incompatible trace element distribution patterns for kamafugites.

Back-scattered electron (BSE) images for representative perovskites from west Qinling kamafugites. Solid and dashed circles indicate the locations of SIMS U-Pb dating and in situ Sr-Nd isotopic analyses, respectively.

Tera-Wasserburg inverse U-Pb concordia plots and primitive mantle-normalized trace element distribution patterns (Sun and McDonough, 1989) for perovskites from west Qinling kamafugites.

Tera-Wasserburg concordia plot, primitive mantle-normalized trace element distribution patterns (Sun and McDonough, 1989), 87 Sr/ 86 Sr and 143 Nd/ 144 Nd of perovskite standard AFK. The Sr and Nd isotopic ratios are presented in chronological order, and their error bars represent two standard deviations (2σ).

Whole-rock Pb isotopic compositions of the West Qinling kamafugites and the entrained mantle xenoliths. Bulk Silicate Earth (BSE), enriched mantle components (EM I and EM II), prevalent mantle (PREMA), and global subducting sediment (GLOSS) are from Zindler and Hart (1986) and Plank and Langmuir (1998). Northern Hemisphere Reference Line (NHRL): $^{207}Pb/^{204}Pb = 0.1084 \times ^{206}Pb/^{204}Pb + 13.491$; $^{208}Pb/^{204}Pb = 1.209 \times ^{206}Pb/^{204}Pb + 15.627$. Isotopic data kamafugites and mantle xenoliths are from Yu et al. (2001, 2004, 2009), Dong et al. (2008), and Su et al. (2012).

No.	Area	Locality	Sample No.	Lithology	Dating method	Age (Ma)	$\pm 2\sigma$	Data source
		Canmei Shan	27	Basaltic trachyandesite	WR K-Ar	12.81	0.40	Li et al., 2004
		Canmei Shan	28	Trachyandesite	WR K-Ar	12.85	0.56	Li et al., 2004
		Canmei Shan	36	Trachyte	WR K-Ar	14.51	0.23	Li et al., 2004
		Canmei Shan	169	K-rich Rhyolite	Mus K-Ar	3.65	0.31	Li et al., 2004
1	Yingshi Shan	Jinding Shan	1	Andesite	WR K-Ar	0.30	0.07	Li et al., 2004
I	-Mutztgh	Jinding Shan	2	Trachyandesite	WR K-Ar	1.93	0.10	Li et al., 2004
		Jinding Shan	10-1	Basaltic trachyandesite	WR K-Ar	0.45	0.06	Li et al., 2004
		Jinding Shan	43	Trachyandesite	WR K-Ar	1.08	0.07	Li et al., 2004
		Qiangbaqian	-	Trachyandesite	WR K-Ar	14.90		Deng, 1989
		Yurbo Co	-	Trachydacite	WR K-Ar	9.40		Li et al., 1989
		Hehua lake	K9024	Trachyandesite	WR Ar-Ar	12.90	0.40	Turner et al., 1996
		Hehua lake	K9026	Trachyandesite	WR Ar-Ar	12.40	0.10	Turner et al., 1996
		Hehua lake	K9028	Basaltic trachyandesite	WR Ar-Ar	18.50	0.60	Turner et al., 1996
2	Hehua lake	Hehua lake	K9031	Trachyandesite	WR Ar-Ar	11.60	0.10	Turner et al., 1996
		Hehua lake	K9032	Trachyandesite	WR Ar-Ar	11.80	0.20	Turner et al., 1996
		Hehua lake	K9038	Trachyandesite	WR Ar-Ar	9.60	1.30	Turner et al., 1996
		Hehua lake	K9039	Trachyandesite	WR Ar-Ar	12.50	0.30	Turner et al., 1996
		Xiongyingtai	K3-3	Latite	WR K-Ar	12.80	0.20	Meng et al., 2002
		Xiongyingtai	K3-11	Shoshonite	WR K-Ar	12.20	0.20	Meng et al., 2002
		Xiongyingtai	K7-34	Shoshonite	WR K-Ar	11.10	0.20	Meng et al., 2002
•	Xiongvingtai	Xiangyang lake	HX4-1	Latite	WR K-Ar	7.49	0.17	Deng et al., 1996
3	area	Xiangyang lake	HX4-3	Latite	WR K-Ar	6.95	0.22	Deng et al., 1996
		Xiangyang lake	K9007	Trachyandesite	WR Ar-Ar	11.70	0.30	Turner et al., 1996
		Xiangyang lake	K9016	Trachyte	WR Ar-Ar	8.30	0.10	Turner et al., 1996
		Xiangyang lake	K9018	Trachyte	WR Ar-Ar	9.90	0.30	Turner et al., 1996
		Jingyu lake	AT113	Granite	Ap FT	19.30	1.80	Jolivet et al., 2003
		Jingyu lake	AT118	Granite	Ap FT	17.30	1.80	Jolivet et al., 2003
		Jingyu lake	BJ11	Shoshonite	Ap FT	0.50	0.20	Jolivet et al., 2003
		Jingyu lake	KCS9703b	Shoshonite	Kfs Ar-Ar	14.80	0.61	Jolivet et al., 2003
		Jingyu lake	KCS9704	Shoshonite	Kfs Ar-Ar	9.56	0.34	Jolivet et al., 2003
		Jingyu lake	KCS9708c	Shoshonite	Kfs Ar-Ar	10.57	0.32	Jolivet et al., 2003
4	Jingyu lake	Jingyu lake	KCS9713	Shoshonite	Kfs Ar-Ar	13.27	0.68	Jolivet et al., 2003
-		Jingyu lake	J10	Latite	WR K-Ar	0.60	0.06	Yang et al., 2002
		Jingyu lake	J13	Basaltic trachyandesite	WR K-Ar	1.16	0.20	Yang et al., 2002
		Jingyu lake	K2-12	Tephrite	WR K-Ar	0.69	0.12	Yang et al., 2002
		Jingyu lake	K2-29	Latite	WR K-Ar	15.47	0.53	Yang et al., 2002
		Jingyu lake	K2-3-9	Latite	WR K-Ar	13.77	0.34	Yang et al., 2002
		Jingyu lake	K2-3-13	Latite	WR K-Ar	13.53	0.05	Yang et al., 2002
		Heituofeng	HX5-3	Latite	WR K-Ar	7.09	0.12	Deng et al., 1996
5	Heituofeng	Heituofeng	HX5-4	Latite	WR K-Ar	12.60	0.30	Deng et al., 1996
U	itentuoleng	Heituofeng	KK06038	Trachyte	WR Ar-Ar	7.77	0.26	Jiang et al., 2008
		Heituofeng	GS5035a	Latite	Pl Ar-Ar	22.66	0.11	Zhao et al., 2009
		Taiyang lake	GS2111a	K-rich rhyolite	Sa Ar-Ar	6.63	0.07	Zhu et al., 2005
6	Taiyang lake	Malanshan	KK06032	K-rich rhyolite	Kfs Ar-Ar	8.91	0.18	Jiang et al., 2008
v	area	Luangou Shan	KY7-15	Trachyandesite	WR K-Ar	17.04	0.34	Zheng and Bian, 1996
		Bukadaban	8306-1	K-rich rhyolite	WR K-Ar	8.86	1.20	Zhao et al., 2009
		Wuxuefeng	KY8-22	Trachyandesite	WR K-Ar	21.24	0.28	Zheng and Bian, 1996
7	Wuxuefeng	Wuxuefeng	KK06022	Trachyte	WR K-Ar	17.82	0.34	Jiang et al., 2008
,	area	Wuxuefeng	KK06024	Trachyte	WR K-Ar	12.74	0.28	Jiang et al., 2008
		Kebei lake	KY9-1	Trachyandesite	WR K-Ar	24.55	0.37	Zheng and Bian, 1996

Table DR1	Ages of the	postcollisional	magmatic rocks	along Kunlu	n fault system

No.	Area	Locality	Sample No.	Lithology	Dating method	Age (Ma)	$\pm 2\sigma$	Data source
		Kekao lake	HX1-11	Latite	WR K-Ar	11.70	0.30	Deng et al., 1996
		Kekao lake	HX1-15	Latite	WR K-Ar	14.47	0.22	Deng et al., 1996
	Kekao lake	Kekao lake	HX2-1a	K-rich rhyolite	WR K-Ar	13.20	0.46	Deng et al., 1996
8		Kekao lake	HX2-1b	K-rich rhyolite	WR K-Ar	11.70	0.30	Deng et al., 1996
0	area	Kekao lake	KK06010	Trachyandesite	WR K-Ar	11.49	0.30	Jiang et al., 2008
		Kekao lake	KK06011	Trachyandesite	WR K-Ar	7.89	0.18	Jiang et al., 2008
		Dakanding	KP ₁₈ -17-1	Trachyandesite	Zr U-Pb	13.20	0.60	Wei et al., 2007
		Zhuonai lake	KY9-4	Quartz porphyry	WR K-Ar	11.93	0.19	Zheng and Bian, 1996
		Damao Shan	HX7-4	Trachyte	WR K-Ar	17.30	0.40	Deng et al., 1996
9	Damao	Damao Shan	HX7-7	Trachydacite	WR K-Ar	15.39	0.30	Deng et al., 1996
	Shan	Damao Shan	KP ₂₁ -4-4	Trachydacite	Zr U-Pb	18.30	1.10	Wei et al., 2007
		Damao Shan	302	Trachyte	Zr U-Pb	17.67	0.38	Zhao et al., 2009
		Daheba	DHB92-12	Shoshonite	WR Ar-Ar	11.10		Yu et al., 2011
		Guanjie	GJZ92-13	Shoshonite	WR Ar-Ar	10.80		Yu et al., 2011
		Maquangou	MJG0402	Shoshonite	WR Ar-Ar	9.63		Yu et al., 2011
		Haoti	HT-0309	Kamafugite	Phl Ar-Ar	17.82	0.44	Yu et al., 2006
		Haoti	HT92-1	Kamafugitic agglomerate	WR K-Ar	7.10		Yu et al., 1994
		Haoti	HT92-2	Kamafugite	WR K-Ar	7.90		Yu et al., 1994
		Haoti	HT92-3	Kamafugite	WR K-Ar	18.90		Yu et al., 1994
		Fenshuiling	FSL92-4	Kamafugite	WR K-Ar	18.30		Yu et al., 1994
		Wangping	WP92-5	Kamafugitic breccia	WR K-Ar	8.70		Yu et al., 1994
		Wangping	WP92-6	Kamafugite	WR K-Ar	13.80		Yu et al., 1994
		Niuding Shan	ing Shan NDS92-7 Kamafugite WR K-Ar 8.40 ing Shan ND02-01 Kamafugitic tuff WR K-Ar 11.70 ing Shan ND02-02 Kamafugitic tuff WR K-Ar 13.60		8.40		Yu et al., 1994	
		Niuding Shan			11.70		Yu et al., 2011	
		Niuding Shan			WR K-Ar	13.60		Yu et al., 2011
		Xiaoding Shan	XD-1	Kamafugite	Phl Ar-Ar	23.17		Yu et al., 2006
		Xiaoding Shan	XD-2	Kamafugite	Phl Ar-Ar	22.64		Yu et al., 2006
10	West Oisting	Xiaoding Shan	XDS-8	Kamafugite	WR K-Ar	15.10		Yu et al., 2011
10	west Qinning	Xiaoding Shan	XDS-9	Kamafugitic breccia	WR K-Ar	18.30		Yu et al., 2011
		Xiaoding Shan	XDS01-01	Kamafugitic agglomerate	WR K-Ar	15.70		Yu et al., 2011
		Shangwenjia	SWJ92-10	Kamafugitic agglomerate	WR K-Ar	13.10		Yu et al., 1994
		Shangwenjia	SWJ92-11	Kamafugite	WR K-Ar	14.60		Yu et al., 1994
		Shangdujia	LSS0302	Kamafugite	Phl Ar-Ar	23.09	0.30	Yu et al., 2006
		Shangdujia	STJ01-02	Kamafugitic agglomerate	WR K-Ar	14.70		Yu et al., 2011
		Shangdujia	STJ01-03	Kamafugite	WR K-Ar	14.90		Yu et al., 2011
		Baicao Shan	BCS01-04	Kamafugite	WR K-Ar	19.10		Yu et al., 2011
		Yinggeping	YGP01-05	Kamafugite	WR K-Ar	15.90		Yu et al., 2011
		Longwang Shan	CZ0303	Kamafugite	Phl Ar-Ar	22.31	0.36	Yu et al., 2006
		Longwang Shan	ZJ-0304	Kamafugite	Phl Ar-Ar	22.80	0.22	Yu et al., 2006
		Lixian	LX1506	Kamafugite	Prv U-Pb	16.58	0.46	This study
		Lixian	LX1608	Kamafugite	Prv U-Pb	20.35	0.89	This study
		Lixian	LX1511	Kamafugite	Prv U-Pb	19.92	0.80	This study
		Lixian	LX1525	Kamafugite	Prv U-Pb	16.19	0.42	This study

Table DR1 (continued)

- Ap = apatite, Kfs = K-feldspar, Phl = phlogopite, Pl = plagioclase, Prv = perovskite, Sa = sanidine, WR = whole rock, Zr = zircon

- FT = fission track

	I	Kamafugi	te sample	s	International rock standards and procedural blank								
•	LX1506	LX1508	LX1511	LX1525	AGV-2	Ref.	BHVO-2	Ref.	BCR-2	Ref.	RGM-2	Ref.	Blank*
Major elem	ent (wt.%)												
SiO ₂	40.7	39.8	39.5	39.3									
TiO ₂	3.04	3.14	3.12	2.80									
Al ₂ O ₃	9.58	7.67	7.65	8.91									
TFe ₂ O ₃	11.35	11.37	11.17	10.92									
MnO	0.16	0.15	0.16	0.15									
MgO	12.68	15.72	18.49	15.05									
CaO	14.23	13.09	12.56	13.05									
Na ₂ O	1.61	1.80	0.96	1.53									
K ₂ O	1.06	1.12	0.64	1.09									
P ₂ O ₅	1.11	1.63	1.48	1.19									
LOI	4.54	3.64	3.93	6.07									
Total	100.1	99.1	99.7	100.1									
K ₂ O/Na ₂ O	0.66	0.62	0.66	0.71									
Mg [#]	68.9	73.3	76.6	73.2									
Trace elem	ent (ppm)												
Li	31.1	11.2	7 1 1	12.5	9 74	11.0	3 99	4 80	8 24	9.00	60.4	57.0	0.0180
Be	2.00	2.14	2.19	1 73	2.07	2.30	1.09	1.00	2.00	2.00	2.55	2.37	0.0015
Sc	19.9	17.5	17.5	18.8	11.8	13.0	32.4	32.0	33.9	33.0	4 4 5	4 40	0.0030
V	193	159	158	174	118	120	319	317	417	416	12.0	13.0	0.2198
Cr	346	682	619	434	13.8	16.0	285	280	13.6	16.5	7 89	5 90	0.0448
Co	533	60.5	59.7	52.2	14.3	16.0	46.0	45.0	38.0	37.0	1.85	2.00	0.0068
Ni	326	512	509	376	17.3	20.0	124	119	11.3	13.0	5 46	5 20	0.0230
Cu	66.4	76.4	73.4	59.9	52.2	53.0	130	127	16.9	18.4	9.17	9.60	0.0209
Zn	111	115	109	102	87.1	86.0	103	103	131	133	33.2	32.0	0.0835
Ga	16.8	15.5	14.9	15.5	21.0	20.0	21.5	21.7	22.2	23.0	16.6	16.5	0.0038
Rb	22.3	32.3	16.6	24.4	67.8	66.3	8.5	9.1	46.3	46.9	150	150	0.0142
Sr	1209	1385	1622	1167	660	661	397	396	339	340	109	108	0.0524
Zr	318	383	386	301	230	230	167	172	183	184	226	220	0.0278
Nb	123	142	139	114	13.9	14.5	19.4	18.1	12.3	12.6	8.99	9.30	0.0022
Cs	1.33	0.35	0.26	0.18	1.12	1.16	0.10	0.10	1.10	1.10	9.64	9.60	0.0009
Ва	2936	619	1068	1117	1120	1130	130	131	665	677	835	810	0.1534
Hf	6.67	7.88	7.84	6.54	5.24	5.00	4.38	4.36	4.92	4.90	5.94	6.20	0.0008
Та	5.32	5.81	5.50	5.24	0.87	0.87	1.15	1.14	0.80	0.78	0.92	0.95	0.0159
Pb	4.97	5.04	5.57	4.54	13.5	13.2	1.50	1.60	10.4	11.0	19.7	19.3	0.0116
Th	10.7	16.0	15.1	11.1	5.91	6.10	1.15	1.22	5.65	5.70	15.4	15.1	0.0010
U	1.83	3.28	3.07	2.58	1.94	1.86	0.42	0.40	1.71	1.69	5.68	5.80	0.0003
La	89.0	121	113	90.4	38.2	37.9	15.4	15.2	25.1	24.9	23.4	24.0	0.0035
Ce	170	233	217	167	69.5	68.6	37.2	37.5	53.0	52.9	46.3	47.0	0.0120
Pr	20.6	28.4	26.6	20.4	8.14	7.84	5.25	5.35	6.67	6.70	5.20	5.36	0.0008
Nd	79.5	108	102	79.2	30.6	30.5	24.4	24.5	28.5	28.7	19.2	19.0	0.0045
Sm	13.4	17.4	16.4	13.1	5.64	5.49	6.07	6.07	6.63	6.58	4.11	4.30	0.0007
Eu	4.00	5.17	4.95	3.95	1.56	1.54	2.09	2.07	1.97	1.96	0.61	0.66	0.0004
Gd	10.9	13.8	13.1	10.5	4.71	4.52	6.08	6.24	6.75	6.75	3.69	3.70	0.0010
Tb	1.35	1.65	1.57	1.35	0.66	0.64	0.95	0.92	1.07	1.07	0.61	0.66	0.0002
Dy	6.60	7.87	7.51	6.50	3.63	3.47	5.39	5.31	6.54	6.41	3.78	4.10	0.0007
Но	1.06	1.18	1.13	0.99	0.67	0.65	0.99	0.98	1.30	1.28	0.77	0.82	0.0003
Er	2.43	2.59	2.50	2.23	1.86	1.81	2.50	2.54	3.71	3.66	2.29	2.35	0.0003
Tm	0.30	0.32	0.30	0.28	0.26	0.26	0.34	0.33	0.53	0.54	0.37	0.37	0.0000
Yb	1.60	1.65	1.62	1.59	1.69	1.62	1.97	2.00	3.43	3.38	2.51	2.60	0.0003
Lu	0.23	0.21	0.20	0.21	0.25	0.25	0.28	0.27	0.51	0.50	0.38	0.40	0.0001
Y	29.4	32.5	31.4	27.3	20.2	20.0	26.4	26.0	36.0	37.0	23.6	23.2	0.0036

Table DR2 Major and trace element data of kamatugite samples, standards, and procedural bla
--

- * Units are ppb for procedural blank.

- Recommended trace element compositions of international rock standards are from <u>http://georem.mpch-mainz.gwdg.de/</u>, <u>http://minerals.cr.usgs.gov/geo_chem_stand/</u>, and Govindaraju G. (1994).

	Perovskite sample LX1506												
	1	2	3	4	5	6	7	8	9	10	11	12	
Major ele	ment (wt.%	b)											
SiO ₂	0.17	0.06	0.14	0.03	0.05	0.09	0.06	0.09	0.03	0.05	0.08	0.10	
TiO ₂	54.8	55.5	54.9	55.7	55.8	55.5	55.7	55.7	55.6	54.4	55.4	54.3	
Al ₂ O ₃	0.20	0.19	0.18	0.17	0.21	0.20	0.12	0.15	0.14	0.12	0.18	0.06	
FeO	0.93	1.04	1.02	0.80	0.84	0.76	0.77	0.77	0.75	0.81	0.88	0.78	
MnO				0.01	0.02		0.04	0.02			0.04	0.05	
MgO	0.03	0.06	0.04	0.02	0.00	0.03	0.03	0.01	0.02	0.01	0.01	0.05	
CaO	38.1	38.2	38.5	38.0	37.8	38.3	37.8	38.3	38.3	37.7	38.2	37.4	
Na ₂ O	0.37	0.36	0.45	0.52	0.47	0.45	0.59	0.59	0.49	0.55	0.49	0.60	
K_2O	0.01	0.01	0.01	0.02		0.03		0.01	0.001	0.001	0.03	0.01	
C_2O_3		0.01	0.02	0.03	0.01	0.01	0.06	0.08		0.01	0.001		
NiO	0.05		0.06	0.04	0.02				0.09		0.01		
Total	94.7	95.4	95.3	95.3	95.2	95.5	95.2	95.8	95.5	93.6	95.2	93.3	
Trace eler	Trace element (ppm)												
Rb	4.67	0.81		1.36	3.24	0.13	0.43	6.23	2.64	1.55	0.46		
Sr	6566	3890		3233	3132	4583	3201	3587	2855	3237	5625		
Zr	164	146		175	159	179	154	165	172	153	182		
Nb	4745	4072		2504	3136	4163	2779	3346	2520	3239	5461		
Ba	138	35.8		78.5	84.0	20.2	44.8	73.6	77.5	81.4	30.3		
Hf	3.71	3.72		4.42	3.78	4.38	4.03	4.13	4.84	3.83	4.36		
Та	273	332		239	282	249	295	329	260	291	427		
Pb	7.14	4.96		4.15	5.54	6.21	5.77	4.57	5.96	4.47	7.73		
Th	705	1207		1197	1126	584	1462	1429	1330	1157	1192		
U	158	128		67	84	157	70	86	65	89	179		
La	5679	5522		4697	5272	4288	5487	6001	5034	5459	6640		
Ce	10861	12563		11847	11513	7293	12651	13278	12269	11979	12489		
Pr	1039	1267		1241	1250	712	1412	1431	1339	1309	1249		
Nd	3728	4791		4795	4917	2655	5596	5540	5228	5089	4640		
Sm	591	695		644	718	480	763	769	708	725	718		
Eu	191	189		165	188	151	187	191	176	189	194		
Gd	338	356		298	358	321	369	378	333	369	404		
Tb	40.1	38.4		30.2	37.7	40.8	37.6	39.0	33.7	39.4	45.8		
Dy	166	150		112	146	178	142	148	126	150	191		
Но	22.4	19.6		14.0	18.6	25.1	17.7	19.0	15.6	19.5	25.2		
Er	38.2	32.4		22.9	30.2	44.3	28.5	30.3	25.5	31.7	43.0		
Tm	3.34	2.73		1.91	2.47	3.97	2.31	2.48	2.13	2.71	3.62		
Yb	15.2	12.1		8.32	11.2	17.0	10.0	10.6	9.15	11.3	15.7		
Lu	1.16	0.99		0.70	0.91	1.46	0.84	0.90	0.65	1.01	1.28		
Y	392	326		239	319	456	298	319	263	331	432		
Rb/Sr	0.0007	0.0002		0.0004	0.0010	0.0000	0.0001	0.0017	0.0009	0.0005	0.0001		
Er/Sr	0.0058	0.0083		0.0071	0.0096	0.0097	0.0089	0.0085	0.0089	0.0098	0.0076		
Yb/Sr	0.0023	0.0031		0.0026	0.0036	0.0037	0.0031	0.0029	0.0032	0.0035	0.0028		
Sm/Nd	0.16	0.15		0.13	0.15	0.18	0.14	0.14	0.14	0.14	0.15		

Table DR3 Major and trace element data of perovskites from west Qinling kamafugites

Table DR3 (continued)

	Perovskite sample LX1508											
	1	2	3	4	5	6	7	8	9	10	11	12
Major el	ement (wt.%	6)										
SiO ₂	0.17	0.06	0.14	0.03	0.05	0.09	0.06	0.09	0.03	0.05	0.08	0.10
TiO ₂	54.8	55.5	54.9	55.7	55.8	55.5	55.7	55.7	55.6	54.4	55.4	54.3
Al ₂ O ₃	0.06	0.07	0.07	0.13	0.14	0.09	0.18	0.13	0.07	0.06	0.08	0.08
FeO	0.70	0.79	0.71	0.75	0.70	0.72	0.79	0.80	0.77	0.73	0.65	0.61
MnO			0.03	0.002	0.02		0.01			0.03	0.02	0.01
MgO	0.05	0.01	0.01	0.02	0.03	0.04	0.08	0.04	0.04	0.08	0.02	0.001
CaO	39.5	39.8	39.6	39.5	39.4	39.3	38.9	39.2	38.5	38.9	39.2	38.8
Na ₂ O	0.31	0.25	0.24	0.28	0.24	0.21	0.28	0.32	0.28	0.39	0.35	0.36
K ₂ O	0.03		0.01		0.01	0.02		0.01		0.03		0.01
C_2O_3	0.03	0.03	0.05	0.08	0.20	0.06	0.12	0.17	0.10	0.04	0.03	0.05
NiO	0.04	0.02	0.04	0.03	0.07			0.02	0.01	0.003		
Total	95.7	96.5	95.9	96.4	96.6	96.1	96.1	96.5	95.5	94.6	95.8	94.4
Trace ele	ement (ppm)										
Rb	0.54		1.09	1.51	0.42	0.64	0.60	0.28		< 0.121	0.33	0.34
Sr	3651		3015	3154	3179	3897	2878	2992		3349	2882	3000
Zr	383		260	257	241	353	178	234		311	194	259
Nb	3046		2056	2501	2482	3338	2227	2508		2950	2288	2403
Ba	50.2		130.8	148.7	47.9	50.5	83.1	41.1		23.7	29.5	59.7
Hf	9.45		7.90	7.31	7.16	8.75	5.69	7.19		8.53	6.27	7.75
Та	71.7		155	151	122	66.4	169	172		88.6	185	133
Pb	9.62		3.63	3.99	4.52	5.39	3.41	3.56		4.10	3.59	3.54
Th	17.2		690	520	281	10.3	793	718		42.3	916	345
U	109		50.8	73.6	79.6	120	60.4	68.9		103	59.1	77.4
La	1919		3903	3782	3212	1679	4419	4261		2293	4632	3495
Ce	2035		8446	7369	5785	1891	10383	8716		3048	10446	6582
Pr	193		948	801	592	162	1111	977		281	1154	684
Nd	750		3815	3225	2334	594	4374	3976		1057	4598	2687
Sm	207		573	541	422	165	646	627		256	676	473
Eu	82.0		152	151	130	73.2	171	167		96.3	175	139
Gd	227		296	317	279	188	317	339		237	338	298
Tb	35.5		31.2	36.2	33.5	29.6	32.7	36.6		33.2	34.8	34.9
Dy	182		119	147	138	152	123	144		157	132	144
Но	28.6		14.9	19.3	18.4	23.7	15.2	18.5		23.3	16.2	19.5
Er	53.6		24.8	32.4	31.4	45.4	23.5	30.3		41.7	25.8	32.3
Tm	5.19		2.06	2.89	2.69	4.38	1.97	2.66		3.73	2.12	2.93
Yb	24.9		9.46	13.3	13.2	20.7	8.76	12.1		17.4	9.59	12.5
Lu	2.17		0.78	1.15	1.08	1.81	0.72	0.98		1.55	0.72	1.11
Y	592		270	362	352	496	261	338		458	285	359
Rb/Sr	0.0001		0.0004	0.0005	0.0001	0.0002	0.0002	0.0001			0.0001	0.0001
Er/Sr	0.0147		0.0082	0.0103	0.0099	0.0116	0.0082	0.0101		0.0125	0.0089	0.0108
Yb/Sr	0.0068		0.0031	0.0042	0.0041	0.0053	0.0030	0.0040		0.0052	0.0033	0.0042
Sm/Nd	0.28		0.15	0.17	0.18	0.28	0.15	0.16		0.24	0.15	0.18

Table DR3 (continued)

	Perovskite sample LX1511												
	1	2	3	4	5	6	7	8	9	10	11	12	
Major el	ement (v	vt.%)											
SiO ₂	0.04	0.06	0.04	0.04	0.03	0.02	0.06	0.03	0.03	0.05	0.02	0.04	
TiO ₂	56.4	56.9	56.6	56.2	57.3	57.0	56.3	56.9	56.3	56.6	56.9	56.8	
Al ₂ O ₃	0.02			0.10	0.06	0.06	0.07	0.09		0.01	0.06	0.06	
FeO	0.59	0.53	0.54	0.71	0.67	0.63	0.59	0.50	0.49	0.49	0.57	0.66	
MnO	0.04	0.02	0.03		0.05	0.02	0.04	0.05	0.03	0.04	0.01		
MgO		0.01	0.03	0.04		0.04		0.004	0.02	0.02	0.02	0.03	
CaO	38.7	40.3	39.4	39.6	40.3	40.3	39.7	39.7	39.2	39.2	39.7	39.7	
Na ₂ O	0.70	0.45	0.63	0.32	0.29	0.33	0.45	0.47	0.52	0.48	0.49	0.46	
K ₂ O	0.01	0.01		0.01				0.01	0.01	0.01	0.02		
C_2O_3	0.06	0.02		0.06	0.04	0.03	0.03	0.07	0.002	0.07	0.03	0.06	
NiO			0.05			0.05		0.06		0.02	0.01	0.03	
Total	96.5	98.3	97.3	97.1	98.7	98.4	97.2	97.8	96.6	97.0	97.8	97.8	
Trace element (ppm)													
Rb	U.	< 0.110	< 0.117	< 0.132		0.15	0.21	< 0.150	0.25	0.17	< 0.100	0.24	
Sr		4753	4879	3972		4745	4096	4954	5000	5043	4545	4533	
Zr		326	328	337		380	387	378	365	372	333	379	
Nb		3701	3745	3397		3692	3410	3775	3511	3848	3644	3631	
Ва		41.4	43.7	31.8		41.0	31.7	67.2	276.3	44.3	35.8	37.3	
Hf		8.32	8.15	8.43		9.76	10.16	9.55	9.06	9.07	8.07	9.75	
Та		62.4	61.4	70.2		65.0	63.9	67.5	65.2	67.0	69.6	65.1	
Pb		6.38	6.40	5.72		7.46	6.66	7.55	7.72	6.15	5.04	15.03	
Th		18.5	18.5	19.2		16.0	11.8	22.1	14.7	19.5	23.1	16.9	
U		118	124	117		112	113	120	114	123	129	110	
La		1778	1690	1901		1719	1670	1755	1626	1748	1741	1776	
Ce		2202	2045	2289		1929	1827	1983	1757	1983	2081	2020	
Pr		190	175	200		172	160	179	154	176	181	181	
Nd		677	631	734		635	595	661	560	652	653	671	
Sm		162	153	188		159	161	165	146	162	169	165	
Eu		69.3	67.5	79.1		67.2	69.6	68.0	63.7	69.4	72.7	69.3	
Gd		161	160	197		175	185	182	171	179	183	180	
Tb		24.9	24.9	29.7		27.4	29.5	28.6	27.0	28.1	28.5	27.9	
Dy		129	130	151		144	155	150	141	147	148	145	
Но		20.3	20.4	23.0		22.9	24.7	24.1	22.7	23.5	23.1	23.2	
Er		38.7	39.7	43.4		44.5	47.6	46.5	43.9	45.3	45.0	44.6	
Tm		3.77	3.87	4.15		4.31	4.63	4.54	4.35	4.40	4.30	4.28	
Yb		17.6	18.3	19.4		20.1	21.1	20.8	20.2	21.0	20.3	20.0	
Lu		1.49	1.54	1.70		1.71	1.83	1.83	1.71	1.75	1.75	1.68	
Y		415	425	476		480	518	506	480	489	480	484	
Rb/Sr						0.0000	0.0001		0.0000	0.0000		0.0001	
Er/Sr		0.0081	0.0081	0.0109		0.0094	0.0116	0.0094	0.0088	0.0090	0.0099	0.0098	
Yb/Sr		0.0037	0.0037	0.0049		0.0042	0.0052	0.0042	0.0040	0.0042	0.0045	0.0044	
Sm/Nd		0.24	0.24	0.26		0.25	0.27	0.25	0.26	0.25	0.26	0.25	

Table DR3 (continued)

	Perovskite sample LX1525											
	1	2	3	4	5	6	7	8	9	10	11	12
Major ele	ement (wt.%	6)										
SiO ₂	0.08	0.03	0.05	0.03			0.05	0.05	0.02	0.03	0.02	
TiO ₂	55.8	56.4	54.8	56.5	56.7	55.6	55.6	56.0	56.2	55.6	56.4	55.7
Al ₂ O ₃	0.01	0.08		0.07	0.06			0.08				
FeO	0.65	0.73	0.52	0.68	0.52	0.32	0.64	0.52	0.39	0.36	0.56	0.34
MnO	0.03		0.05	0.03		0.02	0.06	0.05			0.01	0.02
MgO	0.02	0.04	0.04			0.02	0.02	0.01	0.05	0.02		0.02
CaO	37.5	38.3	36.4	37.9	37.9	35.8	37.0	37.2	37.0	36.3	37.1	37.0
Na ₂ O	0.87	0.66	0.98	0.82	0.79	1.35	1.02	1.00	1.27	1.20	1.00	1.20
K ₂ O	0.01	0.01		0.02		0.03		0.03	0.01	0.02	0.01	0.01
C_2O_3	0.01	0.002	0.02	0.01		0.05	0.02	0.01		0.01	0.02	
NiO	0.01		0.06	0.03	0.01		0.05	0.03	0.02	0.03	0.04	0.03
Total	95.0	96.3	93.0	96.1	95.9	93.2	94.5	94.9	95.0	93.6	95.1	94.3
Trace ele	ement (ppm)										
Rb	0.29		< 0.115	0.11	0.39		0.18	1.42	0.54	1.49	0.26	0.21
Sr	3107		3160	4277	3967		2955	6821	9443	4342	10534	10667
Zr	152		152	167	199		151	171	201	187	193	187
Nb	3136		3340	4507	3951		3044	5726	8338	4638	9158	9617
Ba	16.8		33.6	44.1	28.8		14.2	47.1	79.8	24.1	56.9	54.4
Hf	4.40		4.21	4.59	5.28		4.39	4.42	4.38	4.69	4.00	3.95
Та	237.1		225.4	279.3	267.1		222.9	276.5	381.1	295.7	410.6	443.5
Pb	4.60		5.20	7.34	4.93		3.85	14.70	9.39	5.18	12.23	9.95
Th	860		678	707	816		747	592	593	771	608	703
U	89		104	149	127		89	177	289	153	303	333
La	4788		4666	5149	4876		4692	4613	5457	5095	6035	6188
Ce	10327		9749	9736	9763		9794	8239	8371	9583	8884	9020
Pr	1090		977	964	1000		1027	813	741	956	783	807
Nd	4243		3688	3616	3811		3993	3073	2616	3640	2725	2852
Sm	633		581	596	595		611	517	476	593	492	517
Eu	171		168	173	165		168	157	158	170	164	169
Gd	344		332	358	336		344	327	334	363	349	372
Tb	36.7		36.9	42.0	38.2		37.3	40.1	44.9	43.0	46.3	49.9
Dv	145		147	173	154		147	170	204	178	209	223
Ho	18.7		19.2	23.3	20.6		19.0	23.2	29.1	23.8	29.6	31.5
Er	30.8		32.1	38.4	33.8		31.1	39.9	51.3	40.2	51.4	54.9
Tm	2.57		2.72	3.29	2.84		2.71	3.42	4.60	3.53	4.58	4.75
Yb	11.1		12.9	14.3	13.1		11.6	14.8	19.5	15.0	18.8	20.0
Lu	0.94		1.00	1.09	1.09		1.03	1.21	1.50	1.22	1.45	1.54
Y	323		336	403	354		329	407	507	418	512	545
Rb/Sr	0.0001		220	0.0000	0.0001		0.0001	0.0002	0.0001	0.0003	0.0000	0.0000
Er/Sr	0.0099		0.0101	0.0090	0.0085		0.0105	0.0058	0.0054	0.0093	0.0049	0.0051
Yb/Sr	0.0036		0.0041	0.0033	0.0033		0.0039	0.0022	0.0021	0.0035	0.0018	0.0019
0.011	0.15		0.16	0.16	0.16		0.15	0.17	0.19	0.16	0.19	0.19

Analysis spot (ppm) (ppm) (pp) (pp) 2^{30} Pp b^{280} Pp $\pm 1 \sigma$ (%) $\frac{1}{2} \sigma$ (%) <th></th> <th>U</th> <th>Th</th> <th></th> <th colspan="2">Isotopic ratio</th> <th>os uncorrected</th> <th>l</th> <th>²⁰⁷Pb co</th> <th colspan="2">rection</th>		U	Th		Isotopic ratio		os uncorrected	l	²⁰⁷ Pb co	rection	
AFK Standard AFK@2 14.5715 1.8846 0.1644 0.4310 369.1 7.2 AFK@2 145 1180 8.2 15.1509 1.8936 0.1359 1.6107 370.1 8.0 AFK@2 132 1104 8.3 13.8310 1.8233 0.1654 0.6796 387.9 7.6 AFK@4 141 1295 9.2 14.1442 1.7915 0.1690 0.8351 377.5 7.4 AFK@6 141 1295 9.0 14.4083 1.8760 0.1639 0.6594 373.2 7.9 AFK@7 143 1295 9.0 14.4083 1.8760 0.1639 0.6594 373.5 7.5 AFK@1 137 1154 8.4 13.9523 1.5555 0.1696 0.8946 382.2 6.7 AFK@11 139 1193 8.6 13.9777 1.5170 0.1546 0.4388 390.0 7.6 AFK@13 135 1142 8.1	Analysis spot	(ppm)	(ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ(%)	²⁰⁶ Pb/ ²³⁸ U	±1σ(%)	Age (Ma)	±1σ (Ma)	
AFK@1 142 1387 9.8 14.5715 1.8846 0.1644 0.4310 369.1 7.2 AFK@2 145 1180 8.2 15.1509 1.8936 0.1359 1.6107 370.1 8.0 AFK@3 132 1104 8.3 1.8310 1.8233 0.1654 0.6796 387.9 7.6 AFK@6 141 1295 9.2 14.1442 1.7915 0.1690 0.8351 377.5 7.4 AFK@6 141 1295 9.0 14.4083 1.8760 0.1639 0.6694 373.5 7.5 AFK@1 13 1434 13.9523 1.5555 0.1696 0.8846 382.2 6.7 AFK@11 139 1193 8.6 13.9777 1.5170 0.1546 0.4388 390.0 6.2 AFK@11 139 1142 8.5 13.9077 1.5170 0.1546 0.4388 390.0 6.2 AFK@12 142 4.99 3	AFK Standard										
AFK@2 145 1180 8.2 15.1509 1.8336 0.1359 1.6107 370.1 8.0 AFK@3 132 1104 8.3 13.8310 1.8233 0.1654 0.6796 387.9 7.6 AFK@4 141 693 4.9 14.9193 1.9548 0.1257 0.6589 381.1 7.8 AFK@6 141 1295 9.2 14.142 1.7915 0.1639 0.6594 373.5 7.5 AFK@7 143 1295 9.0 1.4083 1.8760 0.1639 0.6594 373.5 7.5 AFK@1 137 1154 8.4 13.9273 1.5555 0.1696 0.8846 382.2 6.7 AFK@11 137 1154 8.4 13.9273 1.5555 0.1696 0.8846 382.2 5.5 AFK@11 137 1142 8.5 13.9097 1.3629 0.1713 0.3557 382.5 5.5 AFK@15 143 100	AFK@1	142	1387	9.8	14.5715	1.8846	0.1644	0.4310	369.1	7.2	
AFK@3 132 1104 8.3 14.8310 1.8233 0.1654 0.6796 387.9 7.6 AFK@4 141 693 4.9 14.9193 1.9548 0.1257 0.6589 381.1 7.8 AFK@5 133 515 3.9 1.1481 1.9633 0.1280 0.9820 373.2 7.9 AFK@6 141 1295 9.0 14.4083 1.8760 0.1639 0.6594 373.5 7.5 AFK@1 137 1346 10.4 13.6602 1.8097 0.1719 0.7419 389.0 7.6 AFK@1 137 1154 8.4 14.4079 1.8136 0.1587 1.0002 376.3 7.7 AFK@11 137 1142 8.5 15.4999 1.3241 0.1240 0.7626 368.0 5.3 AFK@14 138 1112 8.1 1.40626 1.4218 0.1603 0.6419 380.8 5.9 AFK@15 143 10	AFK@2	145	1180	8.2	15.1509	1.8936	0.1359	1.6107	370.1	8.0	
AFK@4 141 693 4.9 14.9193 1.9548 0.1287 0.6589 381.1 7.8 AFK@5 133 515 3.9 15.1891 1.9633 0.1280 0.9820 373.2 7.9 AFK@6 141 1295 9.2 14.1442 1.7915 0.1639 0.6351 377.5 7.4 AFK@7 143 1295 9.0 14.4083 1.8907 0.1719 0.7419 389.0 7.6 AFK@9 121 1062 8.8 14.4079 1.8136 0.1887 1.0902 376.3 7.7 AFK@11 139 1.154 8.4 13.9523 1.5555 0.1696 0.4388 390.0 6.2 AFK@11 133 1142 8.5 13.9097 1.3629 0.1713 0.3557 382.5 5.5 AFK@14 138 11007 7.1 14.2015 1.4144 0.1603 0.6419 380.8 5.9 AFK@16 93	AFK@3	132	1104	8.3	13.8310	1.8233	0.1654	0.6796	387.9	7.6	
AFK@f 133 515 3.9 15.1891 1.9633 0.1280 0.9820 373.2 7.9 AFK@f 141 1295 9.0 14.4083 1.8716 0.1639 0.6594 373.5 7.5 AFK@f 143 1295 9.0 14.4083 1.8760 0.1539 0.6594 373.5 7.5 AFK@f 137 154 8.4 13.9523 1.5555 0.1696 0.8846 832.2 6.7 AFK@f1 139 1193 8.6 13.9777 1.5170 0.1546 0.4846 382.5 5.5 AFK@f1 138 1112 8.1 14.0626 1.4218 0.1609 0.5998 384.2 5.9 AFK@f1 138 1112 8.1 14.0626 1.4218 0.1603 0.6419 380.8 5.9 AFK@f1 137 1.143 8.4 15.0446 1.4172 0.1193 1.3659 381.3 6.2 AFK@f1 137 1.143 8.4 15.0466 2.517 0.4995 374.4 7.9	AFK@4	141	693	4.9	14.9193	1.9548	0.1257	0.6589	381.1	7.8	
AFK@6 141 1295 9.2 14.1442 1.791.5 0.1690 0.8311 377.5 7.4 AFK@7 143 1295 9.0 14.4083 1.8760 0.1639 0.6594 373.5 7.5 AFK@8 129 1346 10.4 13.6602 1.8097 0.1719 0.7419 389.0 7.6 AFK@1 139 1154 8.4 14.4079 1.8136 0.1587 10092 376.3 7.7 AFK@1 139 1154 8.4 13.9523 1.5555 0.1696 0.8846 382.2 6.7 AFK@11 139 142 8.5 13.9097 1.5170 0.1713 0.3557 382.5 5.5 AFK@13 135 1142 8.1 14.0626 1.4218 0.1603 0.6419 380.8 5.9 AFK@15 143 1007 7.1 14.2015 1.4144 0.1603 0.6419 380.8 5.9 AFK@16 93	AFK@5	133	515	3.9	15.1891	1.9633	0.1280	0.9820	373.2	7.9	
AFK@7 143 1295 9.0 14.4083 1.8700 0.1639 0.6594 373.5 7.5 AFK@8 129 1346 10.4 13.6002 1.8097 0.1719 0.7419 389.0 7.6 AFK@9 121 1062 8.8 14.4079 1.8136 0.1587 1.0902 376.3 7.7 AFK@11 139 1193 8.6 13.9777 1.5170 0.1546 0.4388 390.0 6.2 AFK@13 135 1142 8.5 13.9097 1.3629 0.1713 0.3557 382.5 5.5 AFK@14 138 1112 8.1 144.40.2160 0.6419 380.8 5.9 AFK@16 93 1177 12.6 12.4950 1.7548 0.2517 0.8995 374.4 7.9 AFK@17 137 1143 8.4 15.0446 1.4172 0.1193 1.3659 381.3 6.2 Sample LX1506 250 6.71 1.2.6 0.6690 3.6673 89.7585 3.9002 15.2 2.8 <	AFK@6	141	1295	9.2	14.1442	1.7915	0.1690	0.8351	377.5	7.4	
AFK@8 129 1346 10.4 13.6602 1.8097 0.1719 0.7419 389.0 7.6 AFK@9 121 1062 8.8 14.4079 1.8136 0.1587 1.0002 37.6.3 7.7 AFK@10 137 1154 8.4 13.9523 1.5555 0.1666 0.8846 382.2 6.7 AFK@11 139 1193 8.6 13.9777 1.5170 0.1546 0.4388 390.0 6.2 AFK@13 135 1142 8.5 13.9077 1.529 0.1713 0.3557 382.5 5.5 AFK@15 143 1007 7.1 14.2015 1.4144 0.1603 0.6419 380.8 5.9 AFK@17 137 1143 8.4 15.0446 1.4172 0.1193 1.3659 381.3 6.2 X1506@1 46 1082 2.33 0.6420 0.8110 92.9312 1.4028 1.0<0.7	AFK@7	143	1295	9.0	14.4083	1.8760	0.1639	0.6594	373.5	7.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AFK@8	129	1346	10.4	13.6602	1.8097	0.1719	0.7419	389.0	7.6	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AFK@9	121	1062	8.8	14.4079	1.8136	0.1587	1.0902	376.3	7.7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AFK@10	137	1154	8.4	13.9523	1.5555	0.1696	0.8846	382.2	6.7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AFK@11	139	1193	8.6	13.9777	1.5170	0.1546	0.4388	390.0	6.2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AFK@12	142	499	3.5	15.4899	1.3241	0.1242	0.7626	368.0	5.3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AFK@13	135	1142	8.5	13.9097	1.3629	0.1713	0.3557	382.5	5.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AFK@14	138	1112	8.1	14.0626	1.4218	0.1609	0.5998	384.2	5.9	
AFK@16 93 1177 12.6 12.4950 1.7548 0.2517 0.8995 374.4 7.9 AFK@17 137 1143 8.4 15.0446 1.4172 0.1193 1.3659 381.3 6.2 Sample LX1506 LX1506@1 46 1082 23.3 0.6460 2.7387 82.7139 2.8125 18.7 2.3 LX1506@2 50 627 12.6 0.6690 3.6693 89.5785 3.9902 15.2 2.8 LX1506@3 77 759 9.8 0.6420 0.8110 92.9312 1.4028 17.0 0.7 LX1506@4 60 856 14.3 0.6281 2.5565 93.9917 2.2709 18.0 1.8 LX1506@6 68 893 13.1 0.6153 2.8740 92.2548 2.0996 19.5 2.0 LX1506@1 81 916 11.3 0.6211 2.2921 98.2253 1.8136 17.5 LX1506@10 81	AFK@15	143	1007	7.1	14.2015	1.4144	0.1603	0.6419	380.8	5.9	
AFK@17 137 1143 8.4 15.0446 1.4172 0.1193 1.3659 381.3 6.2 Sample LX1506	AFK@16	93	1177	12.6	12.4950	1.7548	0.2517	0.8995	374.4	7.9	
Sample LX1506 Image: space	AFK@17	137	1143	8.4	15.0446	1.4172	0.1193	1.3659	381.3	6.2	
Sample LX1506 I LX1506@1 46 1082 23.3 0.6460 2.7387 82.7139 2.8125 18.7 2.3 LX1506@2 50 627 12.6 0.6690 3.6693 89.5785 3.9902 15.2 2.8 LX1506@3 77 759 9.8 0.6420 0.8110 92.9312 1.4028 17.0 0.7 LX1506@4 60 856 14.3 0.6281 2.5565 93.9917 2.2709 18.0 1.8 LX1506@5 80 770 9.6 0.6474 1.2679 94.6889 1.6373 16.2 1.0 LX1506@5 89 13.1 0.6153 2.8740 92.2548 2.0996 19.5 2.0 LX1506@1 89 13.3 0.6251 2.2921 98.2253 1.6143 17.8 1.5 LX1506@10 81 916 1.3 0.6155 0.8519 9.008 16.5 0.9 LX1506@12 131	Ũ										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample LX1506										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LX1506@1	46	1082	23.3	0.6460	2.7387	82.7139	2.8125	18.7	2.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LX1506@2	50	627	12.6	0.6690	3.6693	89.5785	3.9902	15.2	2.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LX1506@3	77	759	9.8	0.6420	0.8110	92.9312	1.4028	17.0	0.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LX1506@4	60	856	14.3	0.6281	2.5565	93.9917	2.2709	18.0	1.8	
LX1506@66889313.10.61532.874092.25482.099619.52.0LX1506@7895025.60.66241.836779.64601.416417.71.5LX1506@87298113.60.65101.021794.57562.223615.90.9LX1506@97396813.30.62512.292198.22531.813617.51.5LX1506@108191611.30.61602.3953100.62831.614317.81.5LX1506@116993913.70.66891.2304101.29241.767213.40.9LX1506@121317375.60.55601.7225138.15991.900816.50.9LX1506@1379101112.80.61550.851997.60592.839918.41.0LX1506@1476101013.30.64812.2485104.75102.529114.61.5LX1506@15885215.90.65831.656193.17901.644415.51.2LX1506@168283310.10.66782.263886.41962.014915.81.7LX1506@176594314.40.61881.718595.53321.876418.51.3LX1506@181026296.10.66501.241292.68601.785115.01.0LX1506@205789315.80.66793.006283.2653 </td <td>LX1506@5</td> <td>80</td> <td>770</td> <td>9.6</td> <td>0.6474</td> <td>1.2679</td> <td>94.6889</td> <td>1.6373</td> <td>16.2</td> <td>1.0</td>	LX1506@5	80	770	9.6	0.6474	1.2679	94.6889	1.6373	16.2	1.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LX1506@6	68	893	13.1	0.6153	2.8740	92.2548	2.0996	19.5	2.0	
LX1506@8 72 981 13.6 0.6510 1.0217 94.5756 2.2236 15.9 0.9 LX1506@9 73 968 13.3 0.6251 2.2921 98.2253 1.8136 17.5 1.5 LX1506@10 81 916 11.3 0.6160 2.3953 100.6283 1.6143 17.8 1.5 LX1506@11 69 939 13.7 0.6689 1.2304 101.2924 1.7672 13.4 0.9 LX1506@12 131 737 5.6 0.5560 1.7225 138.1599 1.9008 16.5 0.9 LX1506@13 79 1011 12.8 0.6155 0.8519 97.6059 2.8399 18.4 1.0 LX1506@14 76 1010 13.3 0.6481 2.2485 104.7510 2.5291 14.6 1.5 LX1506@15 88 521 5.9 0.6583 1.6561 93.1790 1.6444 15.5 1.2 LX1506@16 82 833 10.1 0.6678 2.2638 86.4196 2.0149 15.8	LX1506@7	89	502	5.6	0.6624	1.8367	79.6460	1.4164	17.7	1.5	
LX1506@97396813.30.62512.292198.22531.813617.51.5LX1506@108191611.30.61602.3953100.62831.614317.81.5LX1506@116993913.70.66891.2304101.29241.767213.40.9LX1506@121317375.60.55601.7225138.15991.900816.50.9LX1506@1379101112.80.61550.851997.60592.839918.41.0LX1506@1476101013.30.64812.2485104.75102.529114.61.5LX1506@15885215.90.65831.656193.17901.644415.51.2LX1506@168283310.10.66782.263886.1962.014915.81.7LX1506@176594314.40.61881.718595.53321.876418.51.3LX1506@181026296.10.66501.241292.68601.785115.01.0LX1506@216081513.60.60722.409695.92031.884819.41.6LX1506@216081513.60.66793.006283.26532.747716.42.4LX1506@23846477.70.63732.628493.38311.768417.31.8LX1506@247998212.40.61502.3762102.376	LX1506@8	72	981	13.6	0.6510	1.0217	94.5756	2.2236	15.9	0.9	
LX1506@10 81 916 11.3 0.6160 2.3953 100.6283 1.6143 17.8 1.5 LX1506@11 69 939 13.7 0.6689 1.2304 101.2924 1.7672 13.4 0.9 LX1506@12 131 737 5.6 0.5560 1.7225 138.1599 1.9008 16.5 0.9 LX1506@13 79 1011 12.8 0.6155 0.8519 97.6059 2.8399 18.4 1.0 LX1506@14 76 1010 13.3 0.6481 2.2485 104.7510 2.5291 14.6 1.5 LX1506@15 88 521 5.9 0.6583 1.6561 93.1790 1.6444 15.5 1.2 LX1506@16 82 833 10.1 0.6678 2.2638 86.4196 2.0149 15.8 1.7 LX1506@17 65 943 14.4 0.6188 1.7185 95.5332 1.8764 18.5 1.3 LX1506@18 102 629 6.1 0.6650 1.2412 92.6860 1.7851 15.0 <td>LX1506@9</td> <td>73</td> <td>968</td> <td>13.3</td> <td>0.6251</td> <td>2.2921</td> <td>98.2253</td> <td>1.8136</td> <td>17.5</td> <td>1.5</td>	LX1506@9	73	968	13.3	0.6251	2.2921	98.2253	1.8136	17.5	1.5	
LX1506@116993913.70.66891.2304101.29241.767213.40.9LX1506@121317375.60.55601.7225138.15991.900816.50.9LX1506@1379101112.80.61550.851997.60592.839918.41.0LX1506@1476101013.30.64812.2485104.75102.529114.61.5LX1506@15885215.90.65831.656193.17901.644415.51.2LX1506@168283310.10.66782.263886.41962.014915.81.7LX1506@176594314.40.61881.718595.53321.876418.51.3LX1506@181026296.10.66501.241292.68601.785115.01.0LX1506@205789315.80.66793.006283.26532.747716.42.4LX1506@216081513.60.60722.409695.92031.884819.41.6LX1506@221129298.30.66901.806178.01772.291317.41.7LX1506@23846477.70.63732.628493.38311.768417.31.8LX1506@247998212.40.61502.3762102.37692.047117.61.5LX1506@2579142518.10.66481.931079.7	LX1506@10	81	916	11.3	0.6160	2.3953	100.6283	1.6143	17.8	1.5	
LX1506@121317375.60.55601.7225138.15991.900816.50.9LX1506@1379101112.80.61550.851997.60592.839918.41.0LX1506@1476101013.30.64812.2485104.75102.529114.61.5LX1506@15885215.90.65831.656193.17901.644415.51.2LX1506@168283310.10.66782.263886.41962.014915.81.7LX1506@176594314.40.61881.718595.53321.876418.51.3LX1506@181026296.10.66501.241292.68601.785115.01.0LX1506@19148248016.80.66931.418576.39051.464117.81.3LX1506@205789315.80.66793.006283.26532.747716.42.4LX1506@216081513.60.60722.409695.92031.884819.41.6LX1506@23846477.70.63732.628493.38311.768417.31.8LX1506@247998212.40.61502.3762102.37692.047117.61.5LX1506@2579142518.10.66481.931079.71781.741417.51.6LX1506@2579142518.10.66481.931079	LX1506@11	69	939	13.7	0.6689	1.2304	101.2924	1.7672	13.4	0.9	
LX1506@1379101112.80.61550.851997.60592.839918.41.0LX1506@1476101013.30.64812.2485104.75102.529114.61.5LX1506@15885215.90.65831.656193.17901.644415.51.2LX1506@168283310.10.66782.263886.41962.014915.81.7LX1506@176594314.40.61881.718595.53321.876418.51.3LX1506@181026296.10.66501.241292.68601.785115.01.0LX1506@19148248016.80.66931.418576.39051.464117.81.3LX1506@205789315.80.66793.006283.26532.747716.42.4LX1506@216081513.60.60722.409695.92031.884819.41.6LX1506@23846477.70.63732.628493.38311.768417.31.8LX1506@247998212.40.61502.3762102.37692.047117.61.5LX1506@2579142518.10.66481.931079.71781.741417.51.6LX1506@2579142518.10.66481.931079.71781.741417.51.6	LX1506@12	131	737	5.6	0.5560	1.7225	138.1599	1.9008	16.5	0.9	
LX1506@1476101013.30.64812.2485104.75102.529114.61.5LX1506@15885215.90.65831.656193.17901.644415.51.2LX1506@168283310.10.66782.263886.41962.014915.81.7LX1506@176594314.40.61881.718595.53321.876418.51.3LX1506@181026296.10.66501.241292.68601.785115.01.0LX1506@19148248016.80.66931.418576.39051.464117.81.3LX1506@205789315.80.66793.006283.26532.747716.42.4LX1506@216081513.60.60722.409695.92031.884819.41.6LX1506@23846477.70.63732.628493.38311.768417.31.8LX1506@247998212.40.61502.3762102.37692.047117.61.5LX1506@2579142518.10.66481.931079.71781.741417.51.6LX1506@2579142518.10.66481.931079.71781.741417.51.6	LX1506@13	79	1011	12.8	0.6155	0.8519	97.6059	2.8399	18.4	1.0	
LX1506@15 88 521 5.9 0.6583 1.6561 93.1790 1.6444 15.5 1.2 LX1506@16 82 833 10.1 0.6678 2.2638 86.4196 2.0149 15.8 1.7 LX1506@17 65 943 14.4 0.6188 1.7185 95.5332 1.8764 18.5 1.3 LX1506@18 102 629 6.1 0.66650 1.2412 92.6860 1.7851 15.0 1.0 LX1506@19 148 2480 16.8 0.6679 3.0062 83.2653 2.7477 16.4 2.4 LX1506@20 57 893 15.8 0.6679 3.0062 83.2653 2.7477 16.4 2.4 LX1506@21 60 815 13.6 0.6072 2.4096 95.9203 1.8848 19.4 1.6 LX1506@22 112 929 8.3 0.6690 1.8061 78.0177 2.2913 17.4 1.7 LX1506@23 84 647 7.7 0.6373 2.6284 93.3831 1.7684 17.3	LX1506@14	76	1010	13.3	0.6481	2.2485	104.7510	2,5291	14.6	1.5	
LX1506@16 82 833 10.1 0.6678 2.2638 86.4196 2.0149 15.8 1.7 LX1506@17 65 943 14.4 0.6188 1.7185 95.5332 1.8764 18.5 1.3 LX1506@18 102 629 6.1 0.6650 1.2412 92.6860 1.7851 15.0 1.0 LX1506@19 148 2480 16.8 0.6693 1.4185 76.3905 1.4641 17.8 1.3 LX1506@20 57 893 15.8 0.6679 3.0062 83.2653 2.7477 16.4 2.4 LX1506@21 60 815 13.6 0.6072 2.4096 95.9203 1.8848 19.4 1.6 LX1506@22 112 929 8.3 0.6690 1.8061 78.0177 2.2913 17.4 1.7 LX1506@23 84 647 7.7 0.6373 2.6284 93.3831 1.7684 17.3 1.8 LX1506@24 79 982 12.4 0.6150 2.3762 102.3769 2.0471 17.6	LX1506@15	88	521	5.9	0.6583	1.6561	93,1790	1.6444	15.5	1.2	
LX1506@17 65 943 14.4 0.6188 1.7185 95.5332 1.8764 18.5 1.3 LX1506@18 102 629 6.1 0.6650 1.2412 92.6860 1.7851 15.0 1.0 LX1506@19 148 2480 16.8 0.6693 1.4185 76.3905 1.4641 17.8 1.3 LX1506@20 57 893 15.8 0.6679 3.0062 83.2653 2.7477 16.4 2.4 LX1506@21 60 815 13.6 0.6072 2.4096 95.9203 1.8848 19.4 1.6 LX1506@22 112 929 8.3 0.6690 1.8061 78.0177 2.2913 17.4 1.7 LX1506@23 84 647 7.7 0.6373 2.6284 93.3831 1.7684 17.3 1.8 LX1506@24 79 982 12.4 0.6150 2.3762 102.3769 2.0471 17.6 1.5 LX1506@25 79 1425 18.1 0.6648 1.9310 79.7178 1.7414 17.5	LX1506@16	82	833	10.1	0.6678	2.2638	86.4196	2.0149	15.8	1.7	
LX1506@18 102 629 6.1 0.6650 1.2412 92.6860 1.7851 15.0 1.0 LX1506@19 148 2480 16.8 0.6693 1.4185 76.3905 1.4641 17.8 1.3 LX1506@20 57 893 15.8 0.6679 3.0062 83.2653 2.7477 16.4 2.4 LX1506@21 60 815 13.6 0.6672 2.4096 95.9203 1.8848 19.4 1.6 LX1506@22 112 929 8.3 0.6690 1.8061 78.0177 2.2913 17.4 1.7 LX1506@23 84 647 7.7 0.6373 2.6284 93.3831 1.7684 17.3 1.8 LX1506@24 79 982 12.4 0.6150 2.3762 102.3769 2.0471 17.6 1.5 LX1506@25 79 1425 18.1 0.6648 1.9310 79.7178 1.7414 17.5 1.6 LX1506@26 69 924 13.4 0.6328 1.7700 97.4101 1.4703 17.0	LX1506@17	65	943	14.4	0.6188	1.7185	95.5332	1.8764	18.5	1.3	
LX1506@19 148 2480 16.8 0.6693 1.4185 76.3905 1.4641 17.8 1.3 LX1506@20 57 893 15.8 0.6679 3.0062 83.2653 2.7477 16.4 2.4 LX1506@21 60 815 13.6 0.6072 2.4096 95.9203 1.8848 19.4 1.6 LX1506@22 112 929 8.3 0.6690 1.8061 78.0177 2.2913 17.4 1.7 LX1506@23 84 647 7.7 0.6373 2.6284 93.3831 1.7684 17.3 1.8 LX1506@24 79 982 12.4 0.6150 2.3762 102.3769 2.0471 17.6 1.5 LX1506@25 79 1425 18.1 0.6648 1.9310 79.7178 1.7414 17.5 1.6 LX1506@26 69 924 13.4 0.6328 1.7700 9.7178 1.7414 17.5 1.6	LX1506@18	102	629	6.1	0.6650	1.2412	92.6860	1.7851	15.0	1.0	
LX1506@20 57 893 15.8 0.6679 3.0062 83.2653 2.7477 16.4 2.4 LX1506@21 60 815 13.6 0.6072 2.4096 95.9203 1.8848 19.4 1.6 LX1506@22 112 929 8.3 0.6690 1.8061 78.0177 2.2913 17.4 1.7 LX1506@23 84 647 7.7 0.6373 2.6284 93.3831 1.7684 17.3 1.8 LX1506@24 79 982 12.4 0.6150 2.3762 102.3769 2.0471 17.6 1.5 LX1506@25 79 1425 18.1 0.6648 1.9310 79.7178 1.7414 17.5 1.6 LX1506@26 69 924 13.4 0.6328 1.7700 97.4101 1.4703 17.0 1.2	LX1506@19	148	2480	16.8	0.6693	1.4185	76.3905	1.4641	17.8	1.3	
LX1506@21 60 815 13.6 0.6072 2.4096 95.9203 1.8848 19.4 1.6 LX1506@22 112 929 8.3 0.6690 1.8061 78.0177 2.2913 17.4 1.7 LX1506@23 84 647 7.7 0.6373 2.6284 93.3831 1.7684 17.3 1.8 LX1506@24 79 982 12.4 0.6150 2.3762 102.3769 2.0471 17.6 1.5 LX1506@25 79 1425 18.1 0.6648 1.9310 79.7178 1.7414 17.5 1.6 LX1506@26 69 924 13.4 0.6328 1.7700 97.4101 1.4703 17.0 1.2	LX1506@20	57	893	15.8	0.6679	3.0062	83.2653	2.7477	16.4	2.4	
LX1506@22 112 929 8.3 0.6690 1.8061 78.0177 2.2913 17.4 1.7 LX1506@23 84 647 7.7 0.6373 2.6284 93.3831 1.7684 17.3 1.8 LX1506@24 79 982 12.4 0.6150 2.3762 102.3769 2.0471 17.6 1.5 LX1506@25 79 1425 18.1 0.6648 1.9310 79.7178 1.7414 17.5 1.6 LX150@26 69 924 13.4 0.6328 1.7700 97.4101 1.4703 17.0 1.2	LX1506@21	60	815	13.6	0.6072	2.4096	95,9203	1.8848	19.4	1.6	
LX1506@23 84 647 7.7 0.6373 2.6284 93.3831 1.7684 17.3 1.8 LX1506@24 79 982 12.4 0.6150 2.3762 102.3769 2.0471 17.6 1.5 LX1506@25 79 1425 18.1 0.6648 1.9310 79.7178 1.7414 17.5 1.6 LX1506@26 69 924 13.4 0.6328 1.7700 97.4101 1.4703 17.0 1.2	LX1506@22	112	929	8.3	0.6690	1.8061	78.0177	2.2913	17.4	1.7	
LX1506@24 79 982 12.4 0.6150 2.3762 102.3769 2.0471 17.6 1.5 LX1506@25 79 1425 18.1 0.6648 1.9310 79.7178 1.7414 17.5 1.6 LX1506@26 69 924 13.4 0.6328 1.7700 97.4101 1.4703 17.0 1.2	LX1506@23	84	647	77	0.6373	2.6284	93 3831	1 7684	17.3	1.8	
LX1506@25 79 1425 18.1 0.6648 1.9310 79.7178 1.7414 17.5 1.6 LX1506@26 69 924 13.4 0.6328 1.7700 97.4101 1.4703 1.7 1.2	LX1506@24	79	982	12.4	0.6150	2.3762	102.3769	2.0471	17.6	1.5	
LX1506@26 60 024 134 0.6228 1.7700 074101 1.4703 1.7 1.2	LX1506@25	79	1425	18.1	0.6648	1 9310	79 7178	1 7414	17.5	1.6	
1/10 - 1/10 -	LX1506@26	69	924	13.4	0.6328	1 7700	97 4101	1 4703	17.0	1.0	
LX1506@27 76 969 12.8 0.5858 2.1894 104.8584 3.0570 19.4 1.6	LX1506@27	76	969	12.4	0.5858	2 1894	104 8584	3 0570	19.4	1.2	
LX1506@28 270 1233 4.6 0.6127 1.0219 1.08.9829 1.2971 1.67 0.7	LX1506@28	270	1233	4.6	0.6127	1.0219	108 9829	1 2971	16.7	0.7	
LX1506@29 179 759 4.3 0.6201 1.4082 100.0615 1.7913 17.6 1.0	LX1506@29	179	759	43	0.6201	1 4082	100.0615	1 7913	17.6	1.0	
LX1506@30 60 824 13.7 0.6583 2.9449 96.3432 2.5896 15.0 2.0	LX1506@30	60	874	13.7	0.6583	2 9449	96 3432	2 5896	15.0	2.0	
LX1506@31 106 596 5.6 0.6296 1.6555 101.4040 1.3002 16.6 1.1	LX1506@31	106	506	56	0.6305	1 6555	101 /0/0	1 3007	16.6	2.0	
LX1506@32 296 1492 5.0 0.6855 1.3029 76.1276 1.3584 16.1 1.2	LX1506@32	296	1402	5.0	0.6250	1 3020	76 1276	1 358/	16.1	1.1	
LX1506@33 55 695 12.7 0.6709 2.6821 84.8010 2.2262 15.8 2.1	I X1506@32	55	605	127	0.6700	2 6821	84 8010	2 3262	15.9	2.1	
LX1500(655 55 075 12.7 0.0707 2.0021 04.0010 2.5202 15.6 2.1 LX1506(634 230 605 2.5 0.6386 1.2680 102.7725 1.2766 15.5 0.0	LX1506@33	220	605	2.5	0.6709	1 3680	103 7725	1 3766	15.0	2.1 0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LX1506@34	122	A75	2.5	0.0380	1.5009	86 57/2	1.3700	13.5	1.0	
LX1506@36 44 1033 23.6 0.6704 2.8540 83.9961 2.4473 16.0 2.2	LX1506@36	44	1033	23.6	0.6704	2 8540	83 9961	2.4473	16.0	2.2	

Table DR4 U-Pb age data of AFK standard and perovskites from the west Qinling kamafugites

Table DR4 (continued)

	U	Th	—	Isotopic ratios uncorrected			l	²⁰⁷ Pb correction		
Analysis spot	(ppm)	(ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ(%)	²⁰⁶ Pb/ ²³⁸ U	±1σ(%)	Age (Ma)	±1σ (Ma)	
Sample LX1508										
LX1508@1	50	59	1.2	0.6699	1.7388	80.7158	2.1365	16.8	1.5	
LX1508@2	87	447	0.1	0.6775	1.3824	61.6489	1.3283	20.9	1.5	
LX1508@3	37	233	11.2	0.6398	0.6513	79.4914	2.2748	20.1	0.9	
LX1508@4	49	229	4.7	0.6220	2.1324	78.8138	2.0522	22.1	1.8	
LX1508@5	45	65	2.0	0.6202	2.8878	74.5923	2.2151	23.5	2.5	
LX1508@6	38	243	13.0	0.6960	3.1954	72.2816	1.9522	15.8	2.8	
LX1508@7	58	384	1.0	0.6249	0.9972	79.4063	1.9410	21.6	1.1	
LX1508@8	48	65	6.7	0.6335	1.3302	73.5818	2.3439	22.4	1.5	
LX1508@9	42	31	7.9	0.6309	2.3621	72.4625	2.4097	23.0	2.2	
LX1508@10	71	12	0.1	0.6750	2.1806	78.0190	1.8965	16.8	1.9	
LX1508@11	50	417	4.0	0.6052	2.6004	83.6080	2.1651	22.5	2.0	
LX1508@12	38	230	11.9	0.6398	3,3595	75,9887	2,7443	21.0	2.9	
LX1508@13	89	89	03	0.6893	1 2497	55 9797	1 3681	21.3	1.5	
LX1508@14	55	497	2.4	0.6168	2.2806	84 5189	3 2160	21.3	2.0	
LX1508@15	66	56	0.1	0.6535	2 7091	79 3697	2 1659	18.7	2.0	
LX1508@16	58	321	0.2	0.6615	2.0592	71 9218	2 8090	19.7	2.1	
LX1508@17	61	335	0.2	0.6870	2.0372	82 0546	1 5832	14.8	1.9	
LX1508@18	63	6	0.4	0.6216	2.4157	77 6112	1.3590	22.5	1.5	
LX1508@10	41	201	11.6	0.6227	2.0007	76.6431	1.8455	22.5	1.0	
LX1508@19	41	201	5.0	0.6237	1 4564	76.8556	1.0455	22.7	1.9	
LX1508@20	40	132	3.0 4.0	0.6720	1.4504	82 7337	2 6141	16.1	1.4	
LX1508@21	40	152	5.0	0.0720	2 0907	72 2557	2.0141	20.7	2.7	
LA1508@22	40	14	5.0	0.0494	2.9007	73.2337	2.7560	20.7	2.7	
LAI 508@25	47	14	1.1	0.6298	2.5500	77.0348	2.5150	21.8	1.2	
LA1508@24	47	22	3.2 8.2	0.0333	2.3112	87.1800	2 5088	18.9	1.0	
LX1508@25	40	50	0.5	0.6230	2.90/4	84.3873	2.3988	20.3	2.5	
LX1508@26	56	4//	1.2	0.6370	3.0094	86.8/9/	2.1462	18.6	2.2	
LX1508@27	63	228	0.5	0.65/3	1.8812	/5.6/29	2.7256	19.2	1.9	
Sample LX1511										
LX1511@1	76	13	0.2	0 7083	2 0252	57 5087	2 4879	18 1	25	
LX1511@2	115	24	0.2	0.6814	1 2520	65 2051	1.8301	19.3	1.4	
LX1511@2	68	45	0.2	0.6202	1 9404	84 7325	2 9959	20.7	1.4	
LX1511@4	80	8	0.1	0.6262	1.7215	69 3738	2.9939	17.5	1.0	
LX1511@5	70	3	0.1	0.6682	0.9736	61 9218	2.0075	22.0	1.0	
LX1511@5	70	12	0.0	0.6200	1.0648	79 7021	2.3350	22.0	1.4	
LX1511@0	×1	12	0.2	0.7026	1.0040	59 5669	1.7760	19.5	2.0	
LX1511@7	86	0	0.2	0.7020	2.0071	65 0025	2 1000	18.5	2.0	
LX1511@0	80	0	0.1	0.6524	2.0071	03.0923	2.1009	18.9	2.1	
LX1511@9	90 76	14 5	0.2	0.0324	1.9603	64 2800	2.0110	20.9	1.9	
LX1511@10	70	14	0.1	0.0981	1.7404	62 2086	2 7750	17.4	1.9	
LX1511@11	91	14	0.2	0.6919	1.9394	63.2086	2.7759	18.5	2.2	
LX1511@12	89	/	0.1	0.6987	1.8100	00.5141	2.1629	10.8	1.9	
LX1511@13	103	18	0.2	0.6675	1.6150	80.0670	2.6351	17.1	1.5	
LX1511@14	94	11	0.1	0.6616	0.9761	68.0044	2.0357	20.9	1.2	
LX1511@15	127	34	0.3	0.6640	1.5803	71.4334	2.4098	19.6	1./	
LX1511@16	71	46	0.7	0.6221	1.1843	76.8118	2.3678	22.7	1.3	
LX1511@17	103	15	0.1	0.6/14	0.9690	69.4667	2.0527	19.3	1.2	
LX1511@18	129	26	0.2	0.6785	1.5333	/1.5003	2.3921	17.9	1.6	
LX1511@19	73	11	0.2	0.6713	1.2474	56.9663	2.4206	23.5	1.8	
LX1511@20	91	12	0.1	0.6687	1.5102	79.7217	3.1348	17.1	1.6	
LX1511@21	90	12	0.1	0.6517	2.6064	72.0482	2.5151	20.8	2.4	
LX1511@22	68	19	0.3	0.6473	2.2555	84.0840	3.0210	18.3	2.0	
LX1511@23	100	21	0.2	0.6511	1.7102	84.7355	4.7200	17.8	1.9	
LX1511@24	79	5	0.1	0.6620	3.1584	78.6064	3.0061	18.0	2.7	
LX1511@25	66	5	0.1	0.6484	1.2045	69.3795	2.8258	22.0	1.5	
LX1511@26	43	446	10.4	0.6265	2.0208	84.4642	3.6519	20.2	2.0	

Table DR4 (continued)	
-----------------------	--

A	U	Th	TL /II	Ì	sotopic ratio	I	²⁰⁷ Pb co	rrection	
Analysis spot	(ppm)	(ppm)	I n/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ(%)	²⁰⁶ Pb/ ²³⁸ U	±1σ(%)	Age (Ma)	±1 σ (Ma)
Sample LX1525									
LX1525@1	61	598	9.8	0.6334	2.0416	101.3029	1.9279	16.3	1.4
LX1525@2	97	392	4.0	0.6152	1.6948	114.9030	2.3493	15.6	1.1
LX1525@3	283	642	2.3	0.5877	1.5637	121.4004	2.1154	16.7	1.0
LX1525@4	59	587	10.0	0.6625	2.4314	98.0981	2.5579	14.4	1.7
LX1525@5	58	544	9.4	0.6406	2.8740	95.2405	2.4999	16.7	2.0
LX1525@6	58	635	11.0	0.6275	2.3827	94.6353	3.1680	17.9	1.9
LX1525@7	167	303	1.8	0.6311	1.1005	108.8383	1.9658	15.3	0.8
LX1525@8	64	557	8.6	0.6130	2.2989	93.3412	2.6368	19.5	1.7
LX1525@9	212	331	1.6	0.6282	1.3274	102.4022	1.9835	16.5	1.0
LX1525@10	50	593	11.8	0.6867	1.8871	90.1095	2.4732	13.5	1.5
LX1525@11	159	323	2.0	0.6507	1.3857	95.5856	1.7997	15.8	1.1
LX1525@12	232	443	1.9	0.6416	1.1495	98.7730	1.9095	16.0	0.9
LX1525@13	90	488	5.4	0.6308	1.2595	107.1643	2.1231	15.6	0.9
LX1525@14	64	540	8.5	0.6622	1.9568	96.9185	2.1589	14.6	1.4
LX1525@15	50	670	13.4	0.6899	2.9857	73.2778	2.5407	16.2	2.7
LX1525@16	227	118	0.5	0.6527	1.6063	96.0409	2.2994	15.5	1.2
LX1525@17	145	462	3.2	0.5918	1.6705	109.7232	2.7252	18.1	1.2
LX1525@18	75	698	9.3	0.6267	1.9434	111.3252	2.0518	15.3	1.2
LX1525@19	324	448	1.4	0.6061	0.8627	117.1862	2.2197	16.0	0.7
LX1525@20	85	402	4.7	0.6729	2.6351	86.3093	3.1432	15.4	2.2
LX1525@21	52	568	10.9	0.6629	1.5749	91.5124	2.4667	15.4	1.3
LX1525@22	233	646	2.8	0.5921	1.5904	114.2602	2.1751	17.4	1.0
LX1525@23	49	609	12.3	0.6448	2.8650	81.1700	2.4631	19.2	2.3
LX1525@24	158	333	2.1	0.6380	2.3263	115.5466	2.4486	14.0	1.4
LX1525@25	107	408	3.8	0.6005	1.7814	99.5940	2.3053	19.3	1.3
LX1525@26	207	521	2.5	0.6169	1.1089	106.5284	2.4905	16.7	0.9
LX1525@27	239	537	2.2	0.6241	0.8101	104.6488	2.2016	16.5	0.8
LX1525@28	183	401	2.2	0.6522	2.6686	89.5473	2.5465	16.7	2.0
LX1525@29	197	454	2.3	0.6468	1.4366	93.2924	2.0398	16.5	1.1

Analysis spot	Age (Ma)	⁸⁴ Sr/ ⁸⁶ Sr	2σ	⁸⁴ Sr/ ⁸⁸ Sr	2σ	⁸⁷ Rb/ ⁸⁶ Sr	2σ	⁸⁷ Sr/ ⁸⁶ Sr	2σ	⁸⁷ Sr/ ⁸⁶ Sr _i	2σ
AFK Standa	ırd										
AFK@1	379	0.05737	0.00020	0.00685	0.00002	0.00007	0.00001	0.70316	0.00006	0.70316	0.00006
AFK@2	379	0.05682	0.00038	0.00678	0.00005	0.00008	0.00001	0.70306	0.00011	0.70306	0.00011
AFK@3	379	0.05764	0.00041	0.00688	0.00005	0.00016	0.00002	0.70349	0.00011	0.70349	0.00011
AFK@4	379	0.05777	0.00038	0.00690	0.00005	0.00011	0.00001	0.70331	0.00011	0.70331	0.00011
AFK@5	379	0.05834	0.00035	0.00697	0.00004	0.00017	0.00002	0.70372	0.00009	0.70372	0.00009
AFK@6	379	0.05727	0.00037	0.00684	0.00004	0.00016	0.00001	0.70342	0.00009	0.70342	0.00009
AFK@7	379	0.05752	0.00036	0.00687	0.00004	0.00009	0.00001	0.70335	0.00010	0.70335	0.00010
AFK@8	379	0.05735	0.00037	0.00685	0.00004	0.00009	0.00001	0.70336	0.00012	0.70336	0.00012
AFK@9	379	0.05710	0.00036	0.00682	0.00004	0.00008	0.00001	0.70345	0.00010	0.70345	0.00010
AFK@10	379	0.05728	0.00033	0.00684	0.00004	0.00008	0.00001	0.70339	0.00010	0.70339	0.00010
AFK@11	379	0.05746	0.00042	0.00686	0.00005	0.00010	0.00001	0.70322	0.00010	0.70322	0.00010
AFK@12	379	0.05743	0.00047	0.00686	0.00006	0.00015	0.00002	0.70346	0.00011	0.70346	0.00011
AFK@13	379	0.05693	0.00039	0.00680	0.00005	0.00009	0.00002	0 70335	0.00009	0 70335	0.00009
AFK@14	379	0.05629	0.00039	0.00672	0.00005	0.00009	0.00002	0 70332	0.00010	0 70332	0.00010
AFK@15	379	0.05730	0.00042	0.00684	0.00005	0.00014	0.00001	0.70344	0.00010	0.70344	0.00010
AFK@16	379	0.05677	0.00037	0.00678	0.00004	0.00010	0.00001	0 70329	0.00010	0 70328	0.00010
AFK@17	379	0.05755	0.00040	0.00687	0.00004	0.00014	0.00001	0.70320	0.00011	0 70330	0.00011
AFK@18	370	0.05700	0.00040	0.00687	0.00005	0.00014	0.00001	0 70337	0.00011	0 70337	0.00010
AFK@10	370	0.05754	0.00040	0.00687	0.00003	0.00014	0.00001	0 70321	0.00010	0 70321	0.00010
AFK@20	370	0.05714	0.00037	0.00007	0.00004	0.00014	0.00002	0.70321	0.00010	0 70320	0.00010
AFK@20	270	0.05702	0.00039	0.00082	0.00005	0.00010	0.00001	0.70330	0.00009	0.70330	0.00009
AFK@21	270	0.05705	0.00040	0.00081	0.00003	0.00011	0.00001	0.70330	0.00010	0.70330	0.00010
AFK@22	270	0.05750	0.00035	0.00085	0.00004	0.00017	0.00002	0.70333	0.00010	0.70333	0.00010
AFK@25	379	0.05/00	0.00036	0.00681	0.00004	0.00009	0.00001	0.70333	0.00010	0.70333	0.00010
AFK@24	379	0.056//	0.00037	0.00678	0.00004	0.00009	0.00001	0.70344	0.00009	0.70344	0.00009
AFK@25	379	0.05722	0.00038	0.00683	0.00005	0.00010	0.00002	0.70330	0.00011	0.70330	0.00011
AFK@26	379	0.05708	0.00033	0.00682	0.00004	0.00008	0.00001	0.70324	0.00009	0.70324	0.00009
AFK@27	379	0.05713	0.00031	0.00682	0.00004	0.00006	0.00001	0.70326	0.00009	0.70326	0.00009
AFK@28	379	0.05661	0.00036	0.00676	0.00004	0.00009	0.00001	0.70341	0.00007	0.70341	0.00007
AFK@29	379	0.05652	0.00052	0.00675	0.00006	0.00012	0.00002	0.70336	0.00013	0.70336	0.00013
AFK@30	379	0.05626	0.00042	0.00672	0.00005	0.00010	0.00002	0.70344	0.00010	0.70344	0.00010
AFK@31	379	0.05673	0.00040	0.00677	0.00005	0.00010	0.00002	0.70330	0.00010	0.70330	0.00010
AFK@32	379	0.05615	0.00038	0.00670	0.00005	0.00007	0.00002	0.70325	0.00011	0.70325	0.00011
AFK@33	379	0.05644	0.00041	0.00674	0.00005	0.00007	0.00002	0.70325	0.00010	0.70325	0.00010
AFK@34	379	0.05675	0.00043	0.00678	0.00005	0.00009	0.00002	0.70343	0.00010	0.70343	0.00010
AFK@35	379	0.05686	0.00040	0.00679	0.00005	0.00008	0.00002	0.70324	0.00010	0.70324	0.00010
AFK@36	379	0.05658	0.00042	0.00676	0.00005	0.00010	0.00002	0.70334	0.00010	0.70334	0.00010
AFK@37	379	0.05692	0.00035	0.00680	0.00004	0.00008	0.00002	0.70336	0.00009	0.70336	0.00009
AFK@38	379	0.05668	0.00040	0.00677	0.00005	0.00010	0.00002	0.70333	0.00010	0.70333	0.00010
AFK@39	379	0.05719	0.00040	0.00683	0.00005	0.00008	0.00002	0.70344	0.00009	0.70344	0.00009
AFK@40	379	0.05685	0.00036	0.00679	0.00004	0.00011	0.00002	0.70336	0.00009	0.70336	0.00009
AFK@41	379	0.05640	0.00037	0.00673	0.00004	0.00006	0.00001	0.70332	0.00010	0.70332	0.00010
AFK@42	379	0.05688	0.00038	0.00679	0.00005	0.00007	0.00001	0.70333	0.00010	0.70333	0.00010
AFK@43	379	0.05673	0.00036	0.00677	0.00004	0.00008	0.00001	0.70332	0.00010	0.70332	0.00010
AFK@44	379	0.05622	0.00037	0.00671	0.00004	0.00006	0.00001	0.70336	0.00010	0.70336	0.00010
AFK@45	379	0.05649	0.00030	0.00675	0.00004	0.00010	0.00002	0.70334	0.00009	0.70334	0.00009
AFK@46	379	0.05708	0.00036	0.00682	0.00004	0.00006	0.00001	0.70342	0.00011	0.70342	0.00011
AFK@47	379	0.05663	0.00046	0.00676	0.00006	0.00006	0.00002	0.70333	0.00011	0.70333	0.00011
AFK@48	379	0.05669	0.00042	0.00677	0.00005	0.00009	0.00002	0.70337	0.00010	0.70337	0.00010
AFK@49	379	0.05696	0.00043	0.00680	0.00005	0.00005	0.00002	0.70343	0.00011	0.70343	0.00011
AFK@50	379	0.05654	0.00040	0.00675	0.00005	0.00003	0.00002	0 70338	0.00010	0 70338	0.00010
AFK@51	379	0.05659	0.00045	0.00676	0.00005	0.00006	0.00002	0 70342	0.00010	0 70342	0.00010
111 15(0) 21	517	0.000000	0.00010	0.00070	0.00000	0.00000	0.00002	0.70342	0.00010	0.70372	0.00010
Sample LX1	506										
LX1506@1	16.58	0.05739	0.00035	0.00685	0.00004	0.00039	0.00005	0.70431	0.00010	0.70431	0.00010
LX1506@2	16.58	0.05728	0.00029	0.00684	0.00003	0.00072	0.00007	0.70357	0.00008	0.70357	0.00008

Table	DR5 Rb-Sr is	otopic data of	AFK standard a	nd perovskites from	n the west (Dinling	[,] kamafugi	tes
		oropie anten or				~		

Table DR5 (continued)

Analysis spot	Age (Ma)	⁸⁴ Sr/ ⁸⁶ Sr	2σ	⁸⁴ Sr/ ⁸⁸ Sr	2σ	⁸⁷ Rb/ ⁸⁶ Sr	2σ	⁸⁷ Sr/ ⁸⁶ Sr	2σ	⁸⁷ Sr/ ⁸⁶ Sr _i	2σ
LX1506@3	16.58	0.05712	0.00022	0.00682	0.00003	0.00080	0.00006	0.70331	0.00007	0.70331	0.00007
LX1506@4	16.58	0.05690	0.00030	0.00679	0.00004	0.00052	0.00016	0.70361	0.00009	0.70361	0.00009
LX1506@5	16.58	0.05706	0.00027	0.00681	0.00003	0.00009	0.00001	0.70322	0.00009	0.70322	0.00009
LX1506@6	16.58	0.05718	0.00033	0.00683	0.00004	0.00009	0.00002	0.70359	0.00009	0.70359	0.00009
LX1506@7	16.58	0.05744	0.00020	0.00686	0.00002	0.00014	0.00006	0.70319	0.00008	0.70319	0.00008
LX1506@8	16.58	0.05765	0.00028	0.00688	0.00003	0.00010	0.00001	0.70349	0.00008	0.70349	0.00008
LX1506@9	16.58	0.05733	0.00032	0.00684	0.00004	0.00010	0.00001	0.70370	0.00009	0.70370	0.00009
LX1506@10	16.58	0.05720	0.00031	0.00683	0.00004	0.00032	0.00001	0.70361	0.00008	0.70361	0.00008
LX1506@11	16.58	0.05705	0.00025	0.00681	0.00003	0.00120	0.00012	0.70327	0.00008	0.70327	0.00008
LX1506@12	16.58	0.05816	0.00051	0.00694	0.00006	0.00031	0.00002	0.70653	0.00012	0.70653	0.00012
LX1506@13	16.58	0.05732	0.00031	0.00684	0.00004	0.00018	0.00002	0.70371	0.00009	0.70371	0.00009
LX1506@14	16.58	0.05709	0.00033	0.00682	0.00004	0.00063	0.00012	0.70355	0.00009	0.70355	0.00009
LX1506@15	16.58	0.05734	0.00022	0.00685	0.00003	0.00011	0.00001	0.70330	0.00008	0.70330	0.00008
LX1506@16	16.58	0.05691	0.00017	0.00679	0.00002	0.00018	0.00004	0.70305	0.00006	0.70305	0.00006
LX1506@17	16.58	0.05763	0.00035	0.00688	0.00004	0.00012	0.00001	0.70374	0.00009	0.70374	0.00009
LX1506@18	16.58	0.05693	0.00026	0.00680	0.00003	0.00094	0.00011	0.70322	0.00008	0.70322	0.00008
LX1506@19	16.58	0.05678	0.00007	0.00678	0.00001	0.00006	0.00001	0.70260	0.00004	0.70260	0.00004
LX1506@20	16.58	0.05696	0.00028	0.00680	0.00003	0.00149	0.00004	0.70328	0.00008	0.70328	0.00008
LX1506@21	16.58	0.05702	0.00026	0.00681	0.00003	0.00039	0.00004	0.70348	0.00008	0.70348	0.00008
LX1506@22	16.58	0.05676	0.00008	0.00678	0.00001	0.00003	0.00000	0.70265	0.00005	0.70265	0.00005
LX1506@23	16.58	0.05749	0.00024	0.00686	0.00003	0.00013	0.00001	0.70345	0.00007	0.70345	0.00007
LX1506@24	16.58	0.05711	0.00031	0.00682	0.00004	0.00012	0.00001	0.70359	0.00008	0.70359	0.00008
LX1506@25	16.58	0.05676	0.00022	0.00678	0.00003	0.00036	0.00001	0.70319	0.00007	0.70319	0.00007
LX1506@26	16.58	0.05719	0.00034	0.00683	0.00004	0.00013	0.00001	0.70362	0.00009	0.70362	0.00009
LX1506@27	16.58	0.05758	0.00029	0.00687	0.00004	0.00121	0.00006	0.70369	0.00008	0.70369	0.00008
LX1506@28	16.58	0.05687	0.00007	0.00679	0.00001	0.00003	0.00000	0.70264	0.00004	0.70264	0.00004
LX1506@29	16.58	0.05728	0.00018	0.00684	0.00002	0.00012	0.00001	0.70329	0.00007	0.70329	0.00007
LX1506@30	16.58	0.05701	0.00013	0.00681	0.00002	0.00030	0.00003	0.70301	0.00005	0.70301	0.00005
LX1506@31	16.58	0.05744	0.00022	0.00686	0.00003	0.00013	0.00001	0.70336	0.00007	0.70336	0.00007
LX1506@32	16.58	0.05674	0.00004	0.00677	0.00001	0.00005	0.00000	0.70257	0.00003	0.70257	0.00003
LX1506@33	16.58	0.05772	0.00043	0.00689	0.00005	0.00126	0.00022	0.70385	0.00010	0.70385	0.00010
LX1506@34	16.58	0.05697	0.00007	0.00680	0.00001	0.00004	0.00000	0.70263	0.00004	0.70263	0.00004
LX1506@35	16.58	0.05717	0.00017	0.00683	0.00002	0.00010	0.00001	0.70315	0.00006	0.70315	0.00006
LX1506@36	16.58	0.05700	0.00029	0.00681	0.00004	0.00063	0.00005	0.70354	0.00008	0.70354	0.00008
Sample LX1508	8										
LX1508@1	20.35	0.05665	0.00036	0.00676	0.00004	0.00053	0.00004	0.70358	0.00008	0.70358	0.00008
LX1508@2	20.35	0.05704	0.00026	0.00681	0.00003	0.00104	0.00003	0.70330	0.00007	0.70330	0.00007
LX1508@3	20.35	0.05686	0.00045	0.00679	0.00005	0.00061	0.00003	0.70355	0.00012	0.70355	0.00012
LX1508@4	20.35	0.05696	0.00036	0.00680	0.00004	0.00013	0.00001	0.70369	0.00009	0.70369	0.00009
LX1508@5	20.35	0.05741	0.00034	0.00685	0.00004	0.00319	0.00017	0.70354	0.00008	0.70354	0.00008
LX1508@6	20.35	0.05721	0.00033	0.00683	0.00004	0.00060	0.00007	0.70366	0.00008	0.70366	0.00008
LX1508@7	20.35	0.05715	0.00031	0.00682	0.00004	0.00092	0.00003	0.70376	0.00008	0.70376	0.00008
LX1508@8	20.35	0.05766	0.00026	0.00688	0.00003	0.00028	0.00002	0.70361	0.00008	0.70361	0.00008
LX1508@9	20.35	0.05723	0.00036	0.00683	0.00004	0.00028	0.00004	0.70382	0.00009	0.70382	0.00009
LX1508@10	20.35	0.05729	0.00023	0.00684	0.00003	0.00013	0.00001	0.70331	0.00008	0.70331	0.00008
LX1508@11	20.35	0.05690	0.00025	0.00679	0.00003	0.00077	0.00006	0.70361	0.00008	0.70361	0.00008
LX1508@12	20.35	0.05730	0.00037	0.00684	0.00004	0.00114	0.00006	0.70378	0.00009	0.70378	0.00009
LX1508@13	20.35	0.05699	0.00013	0.00680	0.00002	0.00016	0.00001	0.70293	0.00005	0.70293	0.00005
LX1508@14	20.35	0.05751	0.00035	0.00687	0.00004	0.00051	0.00007	0.70361	0.00008	0.70361	0.00008
LX1508@15	20.35	0.05721	0.00028	0.00683	0.00003	0.00107	0.00014	0.70351	0.00007	0.70351	0.00007
LX1508@16	20.35	0.05728	0.00030	0.00684	0.00004	0.00096	0.00004	0.70368	0.00008	0.70368	0.00008
LX1508@17	20.35	0.05743	0.00036	0.00686	0.00004	0.00012	0.00002	0.70393	0.00008	0.70393	0.00008
LX1508@18	20.35	0.05724	0.00027	0.00683	0.00003	0.00023	0.00002	0.70353	0.00007	0.70353	0.00007
LX1508@19	20.35	0.05706	0.00041	0.00681	0.00005	0.00599	0.00056	0.70382	0.00010	0.70382	0.00010
LX1508@20	20.35	0.05697	0.00044	0.00680	0.00005	0.00037	0.00002	0.70391	0.00008	0.70391	0.00008

Table DR5 (continued)

Analysis spot	Age (Ma)	⁸⁴ Sr/ ⁸⁶ Sr	2σ	⁸⁴ Sr/ ⁸⁸ Sr	2σ	⁸⁷ Rb/ ⁸⁶ Sr	2σ	⁸⁷ Sr/ ⁸⁶ Sr	2σ	⁸⁷ Sr/ ⁸⁶ Sr _i	2σ
LX1508@21	20.35	0.05683	0.00034	0.00679	0.00004	0.00045	0.00004	0.70358	0.00008	0.70358	0.00008
LX1508@22	20.35	0.05725	0.00033	0.00684	0.00004	0.00068	0.00006	0.70383	0.00008	0.70383	0.00008
LX1508@23	20.35	0.05704	0.00024	0.00681	0.00003	0.00061	0.00008	0.70379	0.00006	0.70379	0.00006
LX1508@24	20.35	0.05762	0.00037	0.00688	0.00004	0.00030	0.00002	0.70378	0.00009	0.70378	0.00009
LX1508@25	20.35	0.05726	0.00035	0.00684	0.00004	0.00667	0.00062	0.70391	0.00009	0.70390	0.00009
LX1508@26	20.35	0.05720	0.00028	0.00683	0.00003	0.00015	0.00001	0.70369	0.00007	0.70369	0.00007
LX1508@27	20.35	0.05769	0.00032	0.00689	0.00004	0.00021	0.00001	0.70385	0.00007	0.70385	0.00007
Sample LX1511											
LX1511@1	19.92	0.05697	0.00015	0.00680	0.00002	0.00131	0.00025	0.70318	0.00006	0.70318	0.00006
LX1511@2	19.92	0.05719	0.00022	0.00683	0.00003	0.00011	0.00001	0.70350	0.00007	0.70350	0.00007
LX1511@3	19.92	0.05702	0.00024	0.00681	0.00003	0.00011	0.00001	0.70374	0.00007	0.70374	0.00007
LX1511@4	19.92	0.05705	0.00020	0.00681	0.00002	0.00010	0.00001	0.70335	0.00006	0.70335	0.00006
LX1511@6	19.92	0.05714	0.00017	0.00682	0.00002	0.00080	0.00003	0.70336	0.00007	0.70336	0.00007
LX1511@7	19.92	0.05695	0.00024	0.00680	0.00003	0.00010	0.00001	0.70380	0.00008	0.70380	0.00008
LX1511@8	19.92	0.05719	0.00027	0.00683	0.00003	0.00015	0.00001	0.70381	0.00007	0.70381	0.00007
LX1511@9	19.92	0.05724	0.00027	0.00683	0.00003	0.00010	0.00001	0.70374	0.00008	0.70374	0.00008
LX1511@10	19.92	0.05675	0.00020	0.00678	0.00002	0.00009	0.00001	0.70356	0.00008	0.70356	0.00008
LX1511@11	19.92	0.05675	0.00013	0.00678	0.00002	0.00019	0.00003	0.70309	0.00005	0.70309	0.00005
LX1511@12	19.92	0.05676	0.00014	0.00678	0.00002	0.00015	0.00001	0.70310	0.00005	0.70310	0.00005
LX1511@13	19.92	0.05665	0.00015	0.00676	0.00002	0.00012	0.00001	0.70326	0.00005	0.70326	0.00005
LX1511@14	19.92	0.05683	0.00013	0.00679	0.00001	0.00017	0.00001	0.70314	0.00006	0.70314	0.00006
LX1511@15	19.92	0.05685	0.00009	0.00679	0.00001	0.00012	0.00001	0.70296	0.00006	0.70296	0.00006
LX1511@16	19.92	0.05673	0.00027	0.00677	0.00003	0.00017	0.00001	0.70406	0.00009	0.70406	0.00009
LX1511@17	19.92	0.05728	0.00016	0.00684	0.00002	0.00010	0.00001	0.70334	0.00006	0.70334	0.00006
LX1511@18	19.92	0.05691	0.00012	0.00680	0.00001	0.00010	0.00000	0.70305	0.00004	0.70305	0.00004
LX1511@19	19.92	0.05692	0.00012	0.00680	0.00001	0.00023	0.00001	0.70311	0.00005	0.70311	0.00005
LX1511@20	19.92	0.05693	0.00015	0.00680	0.00002	0.00009	0.00001	0.70321	0.00006	0.70321	0.00006
LX1511@21	19.92	0.05673	0.00014	0.00677	0.00002	0.00075	0.00004	0.70311	0.00006	0.70311	0.00006
LX1511@22	19.92	0.05717	0.00029	0.00683	0.00003	0.00013	0.00002	0.70394	0.00008	0.70394	0.00008
LX1511@23	19.92	0.05690	0.00016	0.00679	0.00002	0.00009	0.00001	0.70312	0.00006	0.70312	0.00006
LX1511@24	19.92	0.05745	0.00025	0.00686	0.00003	0.00015	0.00001	0.70379	0.00008	0.70379	0.00008
LX1511@25	19.92	0.05708	0.00033	0.00682	0.00004	0.00018	0.00003	0.70415	0.00009	0.70415	0.00009
LX1511@26	19.92	0.05667	0.00033	0.00677	0.00004	0.00113	0.00006	0.70387	0.00009	0.70387	0.00009
LX1511@27	19.92	0.05721	0.00030	0.00683	0.00004	0.00014	0.00001	0.70409	0.00010	0.70409	0.00010
LX1511@28	19.92	0.05716	0.00017	0.00683	0.00002	0.00010	0.00001	0.70324	0.00005	0.70324	0.00005
<u> </u>											
Sample LX1525	;										
LX1525@1	16.19	0.05714	0.00027	0.00682	0.00003	0.00093	0.00010	0.70384	0.00007	0.70384	0.00007
LX1525@2	16.19	0.05679	0.00022	0.00678	0.00003	0.00044	0.00001	0.70358	0.00008	0.70358	0.00008
LX1525@3	16.19	0.05713	0.00016	0.00682	0.00002	0.00010	0.00001	0.70305	0.00005	0.70305	0.00005
LX1525@4	16.19	0.05669	0.00026	0.00677	0.00003	0.00009	0.00001	0.70367	0.00008	0.70367	0.00008
LX1525@5	16.19	0.05679	0.00034	0.00678	0.00004	0.00014	0.00002	0.70400	0.00009	0.70400	0.00009
LX1525@6	16.19	0.05712	0.00019	0.00682	0.00002	0.00014	0.00001	0.70336	0.00007	0.70336	0.00007
LX1525@7	16.19	0.05685	0.00013	0.00679	0.00002	0.00007	0.00001	0.70311	0.00006	0.70311	0.00006
LX1525@8	16.19	0.05725	0.00028	0.00684	0.00003	0.00011	0.00001	0.70400	0.00008	0.70400	0.00008
LX1525@9	16.19	0.05685	0.00010	0.00679	0.00001	0.00006	0.00000	0.70306	0.00005	0.70306	0.00005
LX1525@10	16.19	0.05708	0.00035	0.00682	0.00004	0.00012	0.00001	0.70421	0.00009	0.70421	0.00009
LX1525@11	16.19	0.05691	0.00009	0.00680	0.00001	0.00017	0.00002	0.70297	0.00005	0.70297	0.00005
LX1525@12	16.19	0.05683	0.00009	0.00679	0.00001	0.00006	0.00001	0.70286	0.00005	0.70286	0.00005
LX1525@13	16.19	0.05678	0.00009	0.00678	0.00001	0.00015	0.00001	0.70295	0.00005	0.70295	0.00005
LX1525@14	16.19	0.05705	0.00012	0.00681	0.00001	0.00013	0.00002	0.70316	0.00005	0.70316	0.00005
LX1525@15	16.19	0.05689	0.00014	0.00679	0.00002	0.00008	0.00001	0.70315	0.00006	0.70315	0.00006
LX1525@16	16.19	0.05720	0.00015	0.00683	0.00002	0.00008	0.00001	0.70306	0.00006	0.70306	0.00006
LX1525@17	16.19	0.05720	0.00028	0.00683	0.00003	0.00013	0.00001	0.70381	0.00008	0.70381	0.00008
LX1525@18	16.19	0.05675	0.00028	0.00678	0.00003	0.00013	0.00001	0.70400	0.00009	0.70400	0.00009

Table DR5 (continued)

Analysis spot	Age (Ma)	⁸⁴ Sr/ ⁸⁶ Sr	2σ	⁸⁴ Sr/ ⁸⁸ Sr	2σ	⁸⁷ Rb/ ⁸⁶ Sr	2σ	⁸⁷ Sr/ ⁸⁶ Sr	2σ	⁸⁷ Sr/ ⁸⁶ Sr _i	2σ
LX1525@19	16.19	0.05696	0.00028	0.00680	0.00003	0.00011	0.00001	0.70388	0.00008	0.70388	0.00008
LX1525@20	16.19	0.05695	0.00029	0.00680	0.00003	0.00016	0.00001	0.70387	0.00007	0.70387	0.00007
LX1525@21	16.19	0.05705	0.00024	0.00681	0.00003	0.00018	0.00001	0.70354	0.00007	0.70354	0.00007
LX1525@22	16.19	0.05703	0.00010	0.00681	0.00001	0.00010	0.00002	0.70297	0.00005	0.70297	0.00005
LX1525@23	16.19	0.05698	0.00030	0.00680	0.00004	0.00014	0.00001	0.70417	0.00008	0.70417	0.00008
LX1525@24	16.19	0.05721	0.00015	0.00683	0.00002	0.00007	0.00001	0.70317	0.00005	0.70317	0.00005
LX1525@25	16.19	0.05704	0.00026	0.00681	0.00003	0.00011	0.00001	0.70383	0.00008	0.70383	0.00008
LX1525@26	16.19	0.05684	0.00008	0.00679	0.00001	0.00014	0.00001	0.70279	0.00005	0.70279	0.00005
LX1525@27	16.19	0.05681	0.00005	0.00678	0.00001	0.00004	0.00000	0.70268	0.00003	0.70268	0.00003
LX1525@28	16.19	0.05687	0.00009	0.00679	0.00001	0.00005	0.00000	0.70289	0.00005	0.70289	0.00005
LX1525@29	16.19	0.05677	0.00009	0.00678	0.00001	0.00005	0.00000	0.70288	0.00005	0.70288	0.00005
LX1525@30	16.19	0.05684	0.00016	0.00679	0.00002	0.00007	0.00001	0.70328	0.00006	0.70328	0.00006
LX1525@31	16.19	0.05689	0.00008	0.00679	0.00001	0.00004	0.00000	0.70278	0.00005	0.70278	0.00005
LX1525@32	16.19	0.05671	0.00029	0.00677	0.00003	0.00009	0.00001	0.70380	0.00008	0.70380	0.00008
LX1525@33	16.19	0.05699	0.00008	0.00680	0.00001	0.00048	0.00001	0.70282	0.00004	0.70282	0.00004
LX1525@34	16.19	0.05682	0.00011	0.00678	0.00001	0.00005	0.00000	0.70284	0.00005	0.70284	0.00005
LX1525@35	16.19	0.05698	0.00011	0.00680	0.00001	0.00007	0.00000	0.70291	0.00004	0.70291	0.00004

- ${}^{87}Sr/{}^{86}Sri = {}^{87}Sr/{}^{86}Sr_{sample}$ - ${}^{87}Rb/{}^{86}Sr_{sample} \times (e^{\lambda t}-1)$

- $\lambda = 1.42 \times 10^{-11}$ yr⁻¹ (Steiger and Jäger, 1977), t = crystallization time of perovskite.

Analysis spot	Age (Ma)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	2σ	¹⁴⁵ Nd/ ¹⁴⁴ Nd	2σ	¹⁴³ Nd/ ¹⁴⁴ Nd	2σ	¹⁴³ Nd/ ¹⁴⁴ Nd(t)	e _{Nd} (t)	2σ
AFK Standard										
AFK@1	379	0.07638	0.00018	0.34835	0.00002	0.51258	0.00004	0.51239	4.7	0.7
AFK@2	379	0.07536	0.00009	0.34839	0.00002	0.51260	0.00003	0.51241	5.2	0.7
AFK@3	379	0.07471	0.00010	0.34838	0.00002	0.51260	0.00003	0.51242	5.2	0.7
AFK@4	379	0.07464	0.00010	0.34836	0.00002	0.51261	0.00004	0.51243	5.5	0.7
AFK@5	379	0.07486	0.00011	0.34838	0.00002	0.51260	0.00003	0.51242	5.2	0.6
AFK@6	379	0.07544	0.00008	0.34839	0.00002	0.51263	0.00004	0.51244	5.7	0.7
AFK@7	379	0.07449	0.00010	0.34838	0.00002	0.51260	0.00003	0.51242	5.2	0.6
AFK@8	379	0.06935	0.00005	0.34839	0.00002	0.51260	0.00003	0.51243	5.5	0.6
AFK@9	379	0.07735	0.00005	0.34839	0.00002	0.51264	0.00003	0.51245	5.9	0.6
AFK@10	379	0.08288	0.00009	0.34836	0.00002	0.51263	0.00003	0.51243	5.4	0.7
AFK@11	379	0.07680	0.00022	0.34836	0.00002	0.51263	0.00004	0.51244	5.7	0.7
AFK@12	379	0.07551	0.00014	0.34839	0.00002	0.51263	0.00004	0.51245	5.8	0.7
AFK@13	379	0.07951	0.00009	0.34840	0.00002	0.51261	0.00003	0.51242	5.2	0.7
AFK@14	379	0.07956	0.00009	0.34838	0.00002	0.51260	0.00003	0.51241	5.0	0.7
AFK@15	379	0.07967	0.00009	0.34835	0.00002	0.51259	0.00003	0.51240	4.8	0.7
AFK@16	379	0.07946	0.00009	0.34835	0.00002	0.51259	0.00003	0.51239	4.8	0.6
AFK@17	379	0.07948	0.00009	0.34838	0.00002	0.51260	0.00003	0.51240	4.9	0.7
AFK@18	379	0.07642	0.00013	0.34836	0.00002	0.51259	0.00003	0.51240	4.9	0.6
AFK@19	379	0.08342	0.00007	0.34837	0.00002	0.51262	0.00003	0.51242	5.2	0.6
AFK@20	379	0.08473	0.00007	0.34838	0.00002	0.51263	0.00003	0.51242	5.3	0.6
AFK@21	379	0.07964	0.00012	0.34834	0.00002	0.51261	0.00003	0.51241	5.1	0.6
AFK@22	379	0.07030	0.00004	0 34838	0.00002	0.51259	0.00003	0.51242	5.2	0.6
AFK@23	379	0.08164	0.00012	0 34838	0.00002	0.51260	0.00003	0.51240	49	0.6
AFK@24	379	0.08046	0.00012	0 34840	0.00002	0.51260	0.00003	0.51241	5.1	0.5
AFK@25	379	0.07537	0.00009	0.34835	0.00002	0.51261	0.00003	0.51242	53	0.5
AFK@26	379	0.08592	0.00004	0.34838	0.00002	0.51261	0.00004	0.51240	49	0.7
AFK@27	379	0.08350	0.00016	0.34837	0.00002	0.51261	0.00003	0.51240	5.0	0.6
AFK@28	379	0.07971	0.000010	0 34838	0.00002	0.51261	0.00003	0.51240	5.2	0.6
AFK@29	379	0.07528	0.00008	0.34839	0.00002	0.51261	0.00004	0.51243	5.4	0.7
AFK@30	379	0.07320	0.00000	0.34837	0.00002	0.51264	0.00003	0.51245	6.2	0.7
AFK@31	379	0.07191	0.00004	0.34837	0.00002	0.51264	0.00003	0.51247	5.8	0.0
AFK@37	379	0.07450	0.00010	0.34839	0.00002	0.51265	0.00003	0.51244	5.0 4.8	0.0
AFK@32	379	0.00330	0.00009	0.34839	0.00002	0.51257	0.00003	0.51240	4.0 5.9	0.0
AFK@34	370	0.06993	0.00005	0.34840	0.00002	0.51205	0.00004	0.51245	5.0	0.6
AFK@34	270	0.00882	0.00004	0.34840	0.00002	0.51259	0.00003	0.51242	5.5	0.0
AFK@35	379	0.08200	0.00007	0.34840	0.00002	0.51202	0.00004	0.51242	5.4	0.7
AFK@30	270	0.07998	0.00010	0.34838	0.00002	0.51202	0.00004	0.51243	J.4	0.7
AFK@37	379 270	0.00724	0.00000	0.24839	0.00002	0.51254	0.00003	0.51238	4.3 4.1	0.0
AFK@38	379 270	0.07160	0.00010	0.24839	0.00002	0.51255	0.00004	0.51230	4.1 4.0	0.6
AFK@39	379	0.07169	0.00016	0.34840	0.00002	0.51258	0.00003	0.51240	4.9	0.0
AFK@40	379 270	0.07138	0.00007	0.34840	0.00002	0.51255	0.00003	0.51237	4.5	0.7
AFK@41	3/9	0.07315	0.00009	0.34839	0.00002	0.51257	0.00004	0.51239	4.6	0.7
AFK@42	3/9	0.07482	0.00022	0.34839	0.00002	0.51261	0.00004	0.51243	5.4	0.8
AFK@43	379	0.08207	0.00006	0.34834	0.00002	0.51261	0.00003	0.51241	5.0	0.6
AFK@44	379	0.08046	0.00004	0.34837	0.00002	0.51259	0.00003	0.51239	4.7	0.6
AFK@45	379	0.08003	0.00006	0.34837	0.00002	0.51261	0.00004	0.51242	5.2	0.7
AFK@46	379	0.07361	0.00005	0.34842	0.00002	0.51258	0.00003	0.51240	4.9	0.6
AFK@4/	579	0.07864	0.00011	0.34838	0.00002	0.51260	0.00003	0.51241	5.I	0.7
AFK@48	379	0.08224	0.00007	0.34836	0.00002	0.51262	0.00003	0.51242	5.2	0.6
AFK@49	379	0.0/954	0.00016	0.34835	0.00002	0.51262	0.00004	0.51242	5.4	0.7
AFK@50	379	0.06825	0.00016	0.34838	0.00002	0.51259	0.00003	0.51243	5.4	0.7
AFK@51	379	0.08240	0.00006	0.34839	0.00002	0.51262	0.00003	0.51242	5.2	0.6
AFK@52	379	0.07618	0.00006	0.34838	0.00002	0.51256	0.00003	0.51238	4.4	0.6
AFK@53	379	0.08091	0.00005	0.34840	0.00002	0.51260	0.00003	0.51240	4.9	0.6
AFK@54	379	0.07990	0.00019	0.34839	0.00002	0.51261	0.00004	0.51241	5.1	0.7
AFK@55	379	0.08145	0.00006	0.34839	0.00002	0.51259	0.00003	0.51239	4.7	0.6

Table DR6 Sm-Nd isotopic data of AFK standard and perovskites from the west Qinling kamafugites

Table DR6 (continued)

Analysis spot	Age (Ma)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	2σ	¹⁴⁵ Nd/ ¹⁴⁴ Nd	2σ	¹⁴³ Nd/ ¹⁴⁴ Nd	2σ	¹⁴³ Nd/ ¹⁴⁴ Nd(t)	€ _{Nd} (t)	2σ
Sample LX1506										
LX1506@1	16.58	0.08512	0.00011	0.34835	0.00003	0.51289	0.00004	0.51288	5.2	0.9
LX1506@2	16.58	0.09099	0.00020	0.34833	0.00003	0.51288	0.00005	0.51287	4.9	0.9
LX1506@3	16.58	0.09710	0.00019	0.34837	0.00003	0.51283	0.00005	0.51282	3.9	0.9
LX1506@4	16.58	0.09044	0.00026	0.34839	0.00003	0.51288	0.00004	0.51287	4.9	0.9
LX1506@5	16.58	0.09765	0.00020	0.34833	0.00003	0.51287	0.00005	0.51286	4.8	1.0
LX1506@6	16.58	0.08935	0.00011	0.34837	0.00003	0.51275	0.00005	0.51274	2.5	1.0
LX1506@7	16.58	0.10118	0.00027	0.34833	0.00004	0.51278	0.00006	0.51277	2.9	1.1
LX1506@8	16.58	0.09195	0.00011	0.34837	0.00002	0.51279	0.00005	0.51278	3.2	0.9
LX1506@9	16.58	0.09114	0.00013	0.34833	0.00003	0.51288	0.00005	0.51287	4.9	1.0
LX1506@10	16.58	0.09416	0.00009	0.34833	0.00003	0.51282	0.00005	0.51281	3.8	0.9
LX1506@11	16.58	0.09051	0.00012	0.34837	0.00003	0.51286	0.00004	0.51285	4.5	0.8
LX1506@12	16.58	0.09220	0.00015	0.34843	0.00004	0.51270	0.00006	0.51269	1.5	1.2
LX1506@13	16.58	0.09214	0.00028	0.34832	0.00003	0.51280	0.00005	0.51279	3.3	0.9
LX1506@14	16.58	0.09212	0.00013	0.34836	0.00003	0.51281	0.00005	0.51280	3.7	0.9
LX1506@15	16.58	0.09739	0.00022	0.34838	0.00003	0.51301	0.00006	0.51300	7.5	1.2
LX1506@16	16.58	0.09370	0.00031	0.34841	0.00003	0.51281	0.00004	0.51280	3.7	0.8
LX1506@17	16.58	0.08976	0.00015	0.34839	0.00002	0.51280	0.00004	0.51279	3.3	0.8
LX1506@18	16.58	0.09855	0.00013	0.34839	0.00003	0.51279	0.00005	0.51277	3.1	0.9
LX1506@19	16.58	0.07955	0.00004	0.34838	0.00002	0.51282	0.00003	0.51281	3.8	0.5
LX1506@20	16.58	0.08754	0.00010	0.34837	0.00003	0.51284	0.00004	0.51283	4.1	0.8
LX1506@21	16.58	0.08930	0.00012	0.34838	0.00002	0.51282	0.00004	0.51281	3.9	0.8
LX1506@22	16.58	0.09093	0.00011	0.34837	0.00002	0.51281	0.00004	0.51280	3.5	0.8
LX1506@23	16.58	0.09387	0.00008	0.34835	0.00003	0.51281	0.00005	0.51280	3.6	0.9
LX1506@24	16.58	0.08801	0.00007	0.34838	0.00003	0.51277	0.00004	0.51276	2.8	0.8
LX1506@25	16.58	0.08703	0.00032	0.34836	0.00002	0.51282	0.00004	0.51281	3.7	0.7
LX1506@26	16.58	0.08769	0.00008	0.34836	0.00002	0.51284	0.00004	0.51283	4.1	0.8
LX1506@27	16.58	0.08999	0.00011	0.34838	0.00003	0.51280	0.00004	0.51279	3.4	0.8
LX1506@28	16.58	0.09014	0.00050	0.34837	0.00002	0.51279	0.00004	0.51278	3.1	0.8
LX1506@29	16.58	0.10680	0.00016	0.34834	0.00003	0.51281	0.00005	0.51280	3.6	1.0
LX1506@30	16.58	0.09608	0.00008	0.34835	0.00003	0.51284	0.00005	0.51282	4.1	0.9
LX1506@31	16.58	0.10576	0.00017	0.34835	0.00003	0.51282	0.00006	0.51281	3.8	1.1
LX1506@32	16.58	0.08608	0.00011	0.34837	0.00002	0.51265	0.00003	0.51265	0.6	0.6
LX1506@33	16.58	0.08951	0.00018	0.34835	0.00003	0.51279	0.00004	0.51279	3.3	0.9
LX1506@34	16.58	0.11017	0.00030	0.34835	0.00003	0.51280	0.00004	0.51279	3.3	0.8
LX1506@35	16.58	0.11426	0.00023	0.34831	0.00004	0.51287	0.00007	0.51286	4.8	1.4
LX1506@36	16.58	0.08327	0.00007	0.34836	0.00003	0.51281	0.00004	0.51280	3.6	0.9
Ũ										
Sample LX1508										
LX1508@1	20.35	0.09661	0.00012	0.34836	0.00003	0.51286	0.00006	0.51285	4.6	1.1
LX1508@2	20.35	0.09787	0.00028	0.34836	0.00004	0.51273	0.00006	0.51272	2.1	1.1
LX1508@3	20.35	0.09564	0.00027	0.34832	0.00003	0.51279	0.00005	0.51277	3.2	0.9
LX1508@4	20.35	0.09964	0.00020	0.34838	0.00003	0.51285	0.00006	0.51284	4.4	1.2
LX1508@5	20.35	0.09226	0.00030	0.34832	0.00003	0.51282	0.00005	0.51280	3.7	1.1
LX1508@6	20.35	0.09862	0.00066	0.34838	0.00004	0.51288	0.00005	0.51287	5.0	1.1
LX1508@7	20.35	0.13104	0.00024	0.34829	0.00006	0.51273	0.00009	0.51271	2.0	1.7
LX1508@8	20.35	0.09706	0.00019	0.34835	0.00004	0.51276	0.00005	0.51275	2.7	1.0
LX1508@9	20.35	0.10211	0.00023	0.34832	0.00004	0.51272	0.00005	0.51271	1.9	1.0
LX1508@10	20.35	0.10750	0.00036	0.34835	0.00004	0.51281	0.00007	0.51279	3.5	1.5
LX1508@11	20.35	0.11320	0.00138	0.34834	0.00004	0.51276	0.00007	0.51274	2.6	1.4
LX1508@12	20.35	0.09495	0.00021	0.34838	0.00003	0.51282	0.00006	0.51281	3.8	1.1
LX1508@13	20.35	0.09621	0.00039	0.34830	0.00004	0.51290	0.00006	0.51289	5.5	1.1
LX1508@14	20.35	0.11258	0.00036	0.34840	0.00004	0.51285	0.00007	0.51283	4.3	1.3
LX1508@15	20.35	0.09314	0.00012	0.34838	0.00003	0.51288	0.00005	0.51287	5.0	1.0
LX1508@16	20.35	0.09071	0.00014	0.34836	0.00003	0.51278	0.00005	0.51277	3.1	0.9
LX1508@17	20.35	0.14249	0.00030	0.34836	0.00007	0.51265	0.00013	0.51264	0.5	2.4

Table DR6 (continued)

Analysis spot	Age (Ma)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	2σ	¹⁴⁵ Nd/ ¹⁴⁴ Nd	2σ	¹⁴³ Nd/ ¹⁴⁴ Nd	2σ	¹⁴³ Nd/ ¹⁴⁴ Nd(t)	€ _{Nd} (t)	2σ
LX1508@18	20.35	0.14842	0.00043	0.34832	0.00007	0.51278	0.00013	0.51276	2.9	2.4
LX1508@19	20.35	0.09681	0.00036	0.34832	0.00003	0.51283	0.00006	0.51282	4.0	1.1
LX1508@20	20.35	0.11083	0.00037	0.34835	0.00004	0.51279	0.00006	0.51277	3.1	1.2
LX1508@21	20.35	0.10939	0.00036	0.34838	0.00004	0.51275	0.00007	0.51273	2.4	1.3
LX1508@22	20.35	0.10636	0.00021	0.34841	0.00005	0.51285	0.00006	0.51283	4.3	1.2
LX1508@23	20.35	0.12131	0.00037	0.34839	0.00005	0.51277	0.00007	0.51275	2.7	1.4
LX1508@24	20.35	0.12416	0.00080	0.34836	0.00005	0.51268	0.00008	0.51266	1.0	1.5
LX1508@25	20.35	0.09406	0.00008	0.34837	0.00003	0.51280	0.00005	0.51279	3.4	1.0
LX1508@26	20.35	0.12490	0.00036	0.34833	0.00005	0.51274	0.00008	0.51272	2.1	1.6
LX1508@27	20.35	0.09611	0.00046	0.34837	0.00003	0.51278	0.00005	0.51277	3.1	1.0
Sample LX1511										
LX1511@1	19.92	0.16934	0.00057	0.34829	0.00004	0.51280	0.00008	0.51277	3.1	1.6
LX1511@2	19.92	0.15551	0.00012	0.34833	0.00003	0.51288	0.00005	0.51286	4.7	1.0
LX1511@3	19.92	0.15417	0.00036	0.34834	0.00002	0.51276	0.00005	0.51274	2.6	0.9
LX1511@4	19.92	0.17999	0.00018	0.34834	0.00004	0.51279	0.00006	0.51277	3.1	1.2
LX1511@6	19.92	0.15622	0.00045	0.34840	0.00003	0.51283	0.00005	0.51281	3.9	0.9
LX1511@7	19.92	0.16165	0.00034	0.34832	0.00003	0.51287	0.00006	0.51285	4.7	1.1
LX1511@8	19.92	0.14792	0.00056	0.34831	0.00003	0.51278	0.00005	0.51277	3.0	1.0
LX1511@9	19.92	0.16627	0.00017	0.34838	0.00003	0.51285	0.00005	0.51283	4.2	1.0
LX1511@10	19.92	0.18130	0.00014	0.34833	0.00004	0.51275	0.00006	0.51273	2.3	1.2
LX1511@11	19.92	0.16331	0.00036	0.34838	0.00003	0.51283	0.00006	0.51281	3.8	1.2
LX1511@12	19.92	0.16952	0.00034	0.34836	0.00004	0.51294	0.00006	0.51292	6.1	1.1
LX1511@13	19.92	0.17225	0.00028	0.34838	0.00004	0.51290	0.00006	0.51288	5.2	1.2
LX1511@14	19.92	0.16216	0.00011	0.34836	0.00003	0.51282	0.00005	0.51280	3.6	1.0
LX1511@15	19.92	0.15673	0.00012	0.34841	0.00003	0.51277	0.00005	0.51275	2.7	1.0
LX1511@16	19.92	0.13846	0.00031	0.34831	0.00003	0.51283	0.00004	0.51281	3.9	0.8
LX1511@17	19.92	0.16902	0.00014	0.34836	0.00004	0.51275	0.00005	0.51273	2.2	1.1
LX1511@18	19.92	0.16684	0.00044	0.34821	0.00006	0.51281	0.00006	0.51279	3.4	1.1
LX1511@19	19.92	0.15715	0.00084	0.34828	0.00004	0.51290	0.00006	0.51288	5.2	1.2
LX1511@20	19.92	0.17422	0.00029	0.34839	0.00004	0.51283	0.00006	0.51281	3.8	1.1
LX1511@21	19.92	0.16313	0.00020	0.34838	0.00003	0.51285	0.00006	0.51283	4.2	1.2
LX1511@22	19.92	0.11554	0.00063	0.34839	0.00001	0.51281	0.00003	0.51279	3.5	0.6
LX1511@23	19.92	0.16554	0.00014	0.34834	0.00003	0.51272	0.00006	0.51270	1.7	1.3
LX1511@24	19.92	0.15165	0.00080	0.34838	0.00002	0.51277	0.00004	0.51275	2.7	0.7
LX1511@25	19.92	0.15491	0.00081	0.34836	0.00003	0.51288	0.00004	0.51286	4.8	0.8
LX1511@26	19.92	0.09805	0.00065	0.34835	0.00001	0.51282	0.00002	0.51281	3.9	0.4
LX1511@27	19.92	0.13328	0.00029	0.34842	0.00002	0.51276	0.00003	0.51275	2.6	0.6
LX1511@28	19.92	0.14946	0.00049	0.34836	0.00004	0.51280	0.00005	0.51279	3.4	1.0
Sample LX1525										
LX1525@1	16.19	0.10220	0.00013	0.34832	0.00003	0.51289	0.00004	0.51288	5.2	0.8
LX1525@2	16.19	0.10599	0.00008	0.34835	0.00002	0.51278	0.00004	0.51277	3.0	0.7
LX1525@3	16.19	0.10256	0.00015	0.34835	0.00002	0.51281	0.00003	0.51280	3.5	0.6
LX1525@4	16.19	0.10453	0.00016	0.34838	0.00002	0.51281	0.00003	0.51280	3.5	0.7
LX1525@5	16.19	0.10179	0.00011	0.34838	0.00002	0.51283	0.00003	0.51282	4.0	0.6
LX1525@6	16.19	0.10629	0.00014	0.34836	0.00002	0.51280	0.00003	0.51279	3.4	0.7
LX1525@7	16.19	0.11451	0.00021	0.34836	0.00002	0.51281	0.00004	0.51280	3.5	0.8
LX1525@8	16.19	0.10985	0.00091	0.34836	0.00002	0.51282	0.00004	0.51281	3.7	0.7
LX1525@9	16.19	0.12798	0.00040	0.34832	0.00003	0.51282	0.00005	0.51280	3.7	1.0
LX1525@10	16.19	0.11206	0.00016	0.34837	0.00002	0.51282	0.00003	0.51281	3.8	0.7
LX1525@11	16.19	0.12044	0.00016	0.34836	0.00003	0.51287	0.00005	0.51286	4.7	0.9
LX1525@12	16.19	0.13542	0.00100	0.34829	0.00004	0.51285	0.00007	0.51284	4.3	1.3
LX1525@13	16.19	0.11045	0.00022	0.34834	0.00002	0.51279	0.00004	0.51277	3.1	0.8
LX1525@14	16.19	0.11944	0.00026	0.34834	0.00003	0.51285	0.00005	0.51283	4.2	0.9
LX1525@15	16.19	0.10403	0.00009	0.34838	0.00002	0.51281	0.00004	0.51280	3.5	0.7

Table DR6 (continued)

Analysis spot	Age (Ma)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	2σ	¹⁴⁵ Nd/ ¹⁴⁴ Nd	2σ	¹⁴³ Nd/ ¹⁴⁴ Nd	2σ	¹⁴³ Nd/ ¹⁴⁴ Nd(t)	€ _{Nd} (t)	2σ
LX1525@16	16.19	0.12381	0.00022	0.34836	0.00003	0.51297	0.00006	0.51295	6.6	1.1
LX1525@17	16.19	0.09896	0.00017	0.34837	0.00002	0.51279	0.00003	0.51278	3.2	0.6
LX1525@18	16.19	0.10763	0.00034	0.34835	0.00002	0.51283	0.00004	0.51282	3.9	0.7
LX1525@19	16.19	0.10167	0.00036	0.34840	0.00002	0.51278	0.00003	0.51277	3.0	0.6
LX1525@20	16.19	0.11123	0.00012	0.34835	0.00002	0.51284	0.00004	0.51283	4.1	0.7
LX1525@21	16.19	0.10611	0.00054	0.34834	0.00002	0.51282	0.00003	0.51281	3.7	0.7
LX1525@22	16.19	0.10398	0.00016	0.34835	0.00002	0.51279	0.00003	0.51278	3.1	0.6
LX1525@23	16.19	0.11078	0.00081	0.34834	0.00003	0.51286	0.00004	0.51285	4.5	0.7
LX1525@24	16.19	0.11174	0.00005	0.34835	0.00002	0.51285	0.00003	0.51284	4.4	0.7
LX1525@25	16.19	0.10883	0.00024	0.34839	0.00002	0.51283	0.00003	0.51281	3.8	0.7
LX1525@26	16.19	0.11777	0.00040	0.34836	0.00002	0.51282	0.00004	0.51281	3.7	0.8
LX1525@27	16.19	0.11846	0.00007	0.34838	0.00003	0.51280	0.00004	0.51279	3.3	0.8
LX1525@28	16.19	0.11335	0.00008	0.34839	0.00002	0.51282	0.00004	0.51280	3.6	0.7
LX1525@29	16.19	0.11254	0.00006	0.34837	0.00002	0.51282	0.00004	0.51281	3.8	0.7
LX1525@30	16.19	0.11358	0.00023	0.34835	0.00002	0.51283	0.00003	0.51282	3.9	0.7
LX1525@31	16.19	0.11891	0.00045	0.34840	0.00002	0.51282	0.00004	0.51281	3.7	0.8
LX1525@32	16.19	0.10831	0.00012	0.34837	0.00002	0.51275	0.00004	0.51274	2.4	0.8
LX1525@33	16.19	0.11854	0.00039	0.34837	0.00003	0.51276	0.00004	0.51275	2.5	0.7
LX1525@34	16.19	0.11023	0.00012	0.34839	0.00002	0.51283	0.00003	0.51282	3.9	0.7
LX1525@35	16.19	0.13444	0.00022	0.34836	0.00003	0.51283	0.00005	0.51281	3.8	1.0

 $\label{eq:143} \mbox{-}\ ^{143}\mbox{Nd}/^{144}\mbox{Nd}(t) \ = \ ^{143}\mbox{Nd}/^{144}\mbox{Nd}_{sample} \ \mbox{-}\ ^{147}\mbox{Sm}/^{144}\mbox{Nd}_{sample} \ \mbox{(}e^{\lambda t}\mbox{-}1\mbox{)}$

$$- \epsilon_{Nd}(t) = \left[\frac{{}^{143}Nd/{}^{144}Nd_{sample}}{{}^{143}Nd/{}^{144}Nd_{cHUR}} - {}^{147}Sm/{}^{144}Nd_{sample} \times (e^{\lambda t} - 1)}{{}^{143}Nd/{}^{144}Nd_{cHUR}} - {}^{147}Sm/{}^{144}Nd_{cHUR} \times (e^{\lambda t} - 1)} - 1\right] \times 10^4$$

- $\lambda = 6.54 \times 10^{-12}$ yr⁻¹ (Lugmair and Marti, 1978), ¹⁴⁷Sm/¹⁴⁴Nd_{CHUR} = 0.1967 (Jacobsen and Wasserburg, 1980), ¹⁴³Nd/¹⁴⁴Nd_{CHUR} = 0.512638 (Goldstein et al., 1984). t = crystallization time of perovskite.

Sample	Age (Ma)	Lithology	Rb (ppm)	Sr (ppm)	⁸⁷ Sr/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr _i	Sm (ppm)	Nd (ppm)	¹⁴³ Nd/ ¹⁴⁴ Nd	ε _{Nd} (t)	Data source
SW6*	18	Kamafugite	68.7	1842	0.703974	0.7039	18.7	102	0.512008	3.56	Dong et al., 2008
F1*	18	Kamafugite	23.9	1728	0.704419	0.7044	19.4	109	0.512037	4.13	Dong et al., 2008
F4*	18	Kamafugite	28.5	1546	0.704330	0.7043	19.3	109	0.512047	4.33	Dong et al., 2008
F8*	18	Kamafugite	22.0	1811	0.704461	0.7045	19.4	110	0.512042	4.23	Dong et al., 2008
F17*	18	Kamafugite	26.0	1656	0.704726	0.7047	18.8	106	0.512050	4.39	Dong et al., 2008
F21*	18	Kamafugite	23.5	1940	0.704500	0.7045	18.3	104	0.512048	4.35	Dong et al., 2008
HT7*	18	Kamafugite	71.2	1552	0.703878	0.7038	15.9	85.3	0.512088	5.12	Dong et al., 2008
HT11*	18	Kamafugite	69.2	1601	0.703878	0.7038	17.0	89.4	0.512094	5.23	Dong et al., 2008
DS1*	18	Kamafugite	80.9	1682	0.704172	0.7041	19.5	106	0.512048	4.34	Dong et al., 2008
XD20*	18	Kamafugite	53.0	1900	0.703880	0.7039	22.8	124	0.512049	4.36	Dong et al., 2008
JK6*	18	Kamafugite	94.5	1742	0.703975	0.7039	19.6	101	0.512052	4.40	Dong et al., 2008
JK7*	18	Kamafugite	24.5	1602	0.704549	0.7045	18.7	107	0.512052	4.43	Dong et al., 2008
ND17*	18	Kamafugite	6.18	269	0.704660	0.7046	3.12	17.9	0.512058	4.55	Dong et al., 2008
ND20*	18	Kamafugite	93.7	1699	0.703985	0.7039	19.5	102	0.512007	3.52	Dong et al., 2008
ND23*	18	Kamafugite	81.3	1801	0.704121	0.7041	20.1	105	0.512076	4.88	Dong et al., 2008
DS0305A	18	Kamafugite	131	1913	0.704030	0.7040	27.2	147	0.512830	3.95	Yu et al., 2009
DS0305B	18	Kamafugite	130	1862	0.704110	0.7041	26.3	131	0.512752	2.40	Yu et al. 2009
BGL0315	18	Kamafugite	31.2	1544	0 704730	0 7047	16.8	77.9	0.512943	6.10	Yu et al. 2009
BGL0314	18	Kamafugite	41.8	1447	0 704330	0 7043	15.3	75.6	0.512785	3.04	Yu et al. 2009
CZ0303A	18	Kamafugite	125	1726	0 707490	0.7074	22.2	108	0.512695	1.28	Yu et al. 2009
CZ0303B	18	Kamafugite	125	1726	0.704510	0.7045	22.2	108	0.512099	2.12	Yu et al. 2009
WZB03064	18	Kamafugite	125	2313	0.704510	0.7045	26.7	129	0.512750	2.12	$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{2009}{1}$
WZB0306R	18	Kamafugite	43.0 50.1	1021	0.705050	0.7050	20.7	129	0.512770	2.75	1 u ct al., 2009
DIS0210	10	Kamafugita	26.0	1719	0.703210	0.7032	19.5	121 92.2	0.512775	2.64	Yu et al., 2009
PJ50510	10	Kamafugite	25.6	1/10	0.704150	0.7041	16.5	03.3 72 7	0.512704	2.00	Yu et al., 2009
CIS 0220	10	Kamafugite	33.0 22.6	1155	0.704080	0.7047	15.9	72.1	0.512759	2.32	Yu et al., 2009
GJS_0320 8617	10	Kamafugite	22.0 61.9	1215	0.704709	0.7048	15./	70.6	0.512704	2.01	Yu et al., 2009
8017	10	Kamalugite	01.8	1370	0.704120	0.7041	13.0	/9.0	0.512782	2.99	Y u et al., 2004
8/52	18	Kamafugite	60.1	1284	0.704250	0.7042	10.8	62.0	0.512880	4.93	Yu et al., 2004
8628	18	Kamafugite	66.1	1393	0.704380	0.7043	18.6	101	0.512/94	3.24	Yu et al., 2001
9113	18	Kamafugite	69.0	1003	0.705250	0.7052	20.5	113	0.512911	5.53	Yu et al., 2001
2003	18	Kamafugite	19.6	2180	0.703830	0.7038	16.9	98.3	0.512845	4.25	Yu et al., 2004
2011	18	Kamafugite	51.9	1620	0.704290	0.7043	17.0	96.3	0.512887	5.06	Yu et al., 2004
LN10-001	18	Kamafugite	30.5	1367	0.704336	0.7043	18.0	102	0.512838	4.11	Guo et al., 2014
LN10-002	18	Kamafugite	37.4	1299	0.704281	0.7043	18.2	103	0.512853	4.40	Guo et al., 2014
LN10-015	18	Kamafugite	34.4	1526	0.704779	0.7048	18.7	107	0.512829	3.94	Guo et al., 2014
LN10-029	18	Kamafugite	69.3	1582	0.703996	0.7040	17.9	96.9	0.512856	4.45	Guo et al., 2014
9118	18	Kamafugite	56.3	1722	0.704190	0.7042	12.1	64.3	0.512768	2.73	Yu et al., 2001
9126	18	Kamafugite	57.9	954	0.704340	0.7043	15.0	84.3	0.512773	2.84	Yu et al., 2001
2004	18	Kamafugite	160	1060	0.704430	0.7043	13.6	77.9	0.512894	5.20	Yu et al., 2004
2008	18	Kamafugite	86.4	1410	0.706230	0.7062	18.5	106	0.512924	5.79	Yu et al., 2004
2009	18	Kamafugite	43.8	1350	0.704500	0.7045	15.1	88.6	0.512831	3.98	Yu et al., 2004
2014	18	Kamafugite			0.705400	0.7054			0.512780	2.80	Yu et al., 2004
2016	18	Kamafugite			0.709450	0.7094			0.512464	-3.40	Yu et al., 2004
2017	18	Kamafugite			0.707480	0.7075			0.512911	5.30	Yu et al., 2004
2104	18	Kamafugite			0.704030	0.7040			0.512889	4.90	Yu et al., 2004
2107	18	Kamafugite			0.705160	0.7051			0.512705	1.30	Yu et al., 2004
2108	18	Kamafugite			0.705160	0.7052			0.512787	2.90	Yu et al., 2004
2112	18	Kamafugite			0.704010	0.7040			0.512858	4.30	Yu et al., 2004
2115	18	Kamafugite			0.709240	0.7092			0.512404	-4.60	Yu et al., 2004
14HT01	18	Kamafugite	43.4	1409	0.704082	0.7041	15.5	80.5	0.512891	5.12	Dai et al., 2017
14HT03	18	Kamafugite	79.2	1806	0.704167	0.7041	16.6	87.3	0.512873	4.77	Dai et al., 2017
14HT05	18	Kamafugite	89.3	1685	0.703835	0.7038	16.6	86.5	0.512855	4.42	Dai et al., 2017
14HT08	18	Kamafugite	62.1	1700	0.703776	0.7037	15.3	80.6	0.512878	4.87	Dai et al., 2017
14HT10	18	Kamafugite	74.8	1691	0.703880	0.7038	16.4	87.1	0.512863	4.58	Dai et al., 2017
14LX04	18	Kamafugite	81.1	1304	0.704316	0.7043	13.1	70.6	0.512817	3.69	Dai et al. 2017
14FS03	18	Kamafugite	31.7	1692	0.704747	0.7047	17.1	95.4	0.512818	3.71	Dai et al., 2017

Table DR7 Whole-rock Sr-Nd isotopic data of kamafugites and entrained mantle xenoliths

Table DR7 (continued)

Sample	Age (Ma)	Lithology	Rb (ppm)	Sr (ppm)	⁸⁷ Sr/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr _i	Sm (ppm)	Nd (ppm)	¹⁴³ Nd/ ¹⁴⁴ Nd	€ _{Nd} (t)	Data source
14FS17	18	Kamafugite	43.7	1409	0.704435	0.7044	14.7	83.2	0.512805	3.46	Dai et al., 2017
14FS18	18	Kamafugite	50.4	1483	0.704270	0.7042	14.9	84.1	0.512801	3.39	Dai et al., 2017
14FS23	18	Kamafugite	34.7	1399	0.704262	0.7042	17.3	95.1	0.512807	3.50	Dai et al., 2017
14FS25	18	Kamafugite	20.8	2035	0.704041	0.7040	17.5	96.5	0.512803	3.42	Dai et al., 2017
HT08-1	18	Grt lherzolite	7.14	115	0.704525	0.7045	1.04	5.35	0.512707	1.53	Su et al., 2012
HT08-2	18	Grt lherzolite	12.5	56.3	0.705469	0.7053	0.48	2.14	0.512752	2.36	Su et al., 2012
HT08-9	18	Grt lherzolite	6.41	37.7	0.704410	0.7043	0.37	1.79	0.512800	3.33	Su et al., 2012
HT08-11	18	Grt lherzolite	6.93	132	0.704192	0.7042	1.30	7.08	0.512957	6.42	Su et al., 2012
HT08-6	18	Spl-Grt lherzolite	3.91	94.0	0.704958	0.7049	0.75	4.01	0.512991	7.08	Su et al., 2012
HT08-3	18	Spl lherzolite	3.17	49.4	0.704103	0.7041	0.40	2.08	0.512734	2.06	Su et al., 2012
HT08-4-1	18	lherzolite	3.22	27.9	0.704470	0.7044	0.23	1.13	0.512779	2.92	Su et al., 2012
HT08-5	18	Spl lherzolite	3.92	54.0	0.704076	0.7040	0.45	2.45	0.512964	6.56	Su et al., 2012
BG08-1	18	Spl lherzolite	9.10	139	0.704995	0.7049	0.61	3.14	0.512697	1.33	Su et al., 2012
BG08-2	18	Spl lherzolite	5.10	171	0.705578	0.7056	0.67	3.86	0.512787	3.12	Su et al., 2012
BG08-4	18	Spl lherzolite	6.68	202	0.704413	0.7044	2.54	14.7	0.512782	3.02	Su et al., 2012
HT7-1*	18	Harzburgite	4.13	45.3	0.704161	0.7041	0.37	1.92	0.512058	4.52	Unpublished data

-*Sr and Nd isotopic compositions of these samples were measured at the Center for Isotope Geochemistry, University of California at Berkeley. The $\epsilon_{Nd}(t)$ values were calculated with reference to the ¹⁴³Nd/¹⁴⁴Nd of 0.511836 from the chondritic uniform reservoir (DePaolo, 1978).

- Whole-rock $^{87}Sr/^{86}Sr_i$ and $\epsilon_{Nd}(t)$ values were calculated at 18 Ma.

Table DR8 Trace element and Sr-Nd isot	pic data for end-members used	n geochemical modeling

Geochemical end-members	Sr (ppm)	⁸⁷ Sr/ ⁸⁶ Sr _i	Nd (ppm)	$^{143}{\rm Nd}/^{144}{\rm Nd_i}$
Depleted mantle ¹	6.092	0.70217	0.483	0.51323
Primary kamafugite magma 1 ²	3526	0.70255	56.3	0.51309
Primary kamafugite magma 2 ²	3526	0.70410	56.3	0.51270
Carbonate-rich metasome in SCLM ³	232	0.71052	2.79	0.51220
Phlogopite-rich metasome in SCLM ³	100	0.73	5	0.51185
Carbonate-bearing pelagic sediment 14	170	0.712	30	0.51200
Carbonate-bearing pelagic sediment 2 ⁴	110	0.722	60	0.51170

-¹ Trace element and Sr-Nd isotopic compositions of depleted mantle were from Workman and Hart (2005).

-² Because perovskite is an early-crystalizing phase, we thus calculated the Sr and Nd concentrations of primary kamafugite magma using average values of perovskite trace element data and partition coefficients between with katungite (D_{Sr} = 1.26, D_{Nd} = 51.1, Chakhmouradian et al., 2013). Sr-Nd isotopic compositions of primary melt 1 and 2 were set to be close to mantle sources with minor amounts of carbonate-bearing pelagic sediment.

-³ Trace element and initial Sr-Nd isotopic compositions of carbonate-rich metasome in the SCLM beneath northeastern Tibet were based on the extrusive carbonatite at West Qinling (carbonatite sample 2013, Yu et al., 2004). Because of high Rb/Sr in phlogopite from mantle xenoliths, phlogopite-rich metasome were postulated to have extremely enriched Sr-Nd isotopic compositions due to radiogenic ingrowth.

-⁴ Given that the contents of marine carbonate and prograde metamorphism have profound influence on the composition of subducting pelagic sediments (Ben Othman et al., 1989; Plank and Langmuir, 1998), different trace element concentrations and varying Sr-Nd isotopic compositions were used for modeling mantle metasomatism induced by sediment-derived melts. Because sediment 2 was postulated to have lower content of marine carbonate than sediment 1, it therefore had lower Sr, higher Nd, and more enriched initial Sr-Nd isotopic compositions.

- $^{87}Sr/^{86}Sr_i$ and $\epsilon_{Nd}(t)$ values were calculated at 18 Ma.

References

- Ben Othman, D., White, W.M., and Patchett, J., 1989, The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling: Earth and Planetary Science Letters, v. 94, no. 1, p. 1–21, doi:10.1016/0012-821X(89)90079-4.
- Chakhmouradian, A.R., Reguir, E.P., Kamenetsky, V.S., Sharygin, V.V., and Golovin, A.V., 2013, Trace-element partitioning in perovskite: implications for the geochemistry of kimberlites and other mantle-derived undersaturated rocks: Chemical Geology, v. 353, p. 112–131, doi:10.1016/j.chemgeo.2013.01.007.
- Dai, L.-Q., Zhao, Z.-F., Zheng, Y.-F., An, Y.-J., and Zheng, F., 2017, Geochemical Distinction between Carbonate and Silicate Metasomatism in Generating the Mantle Sources of Alkali Basalts: Journal of Petrology, v. 58, no. 5, p. 863–884, doi: 10.1093/petrology/egx038.
- Deng, W., 1989, Cenozoic volcanic rocks in the northern Ngari district of the Tibet (Xizang)-Discussion on the concurrent intracontinental subduction: Acta Petrologica Sinica, v. 5, no. 3, p. 1–11 (in Chinese with English abstract).
- Deng, W., Zheng, X., and Yukio, M., 1996, Petrological characteristics and ages of Cenozoic volcanic rocks from the Hoh Xil Mts., Qinghai province: Acta Petrologica et Mineralogica, v. 15, no. 4, p. 289–298 (in Chinese with English abstract).
- Dong, X., Zhao, Z., Mo, X., Yu, X., Zhang, H., Li, B., and DePaolo, D.J., 2008, Geochemistry of the Cenozoic kamafugites from west Qinling and its constraint for the nature of magma source region: Acta Petrologica Sinica, v. 24, no. 2, p. 238–248 (in Chinese with English abstract).
- Dubois, J.C., Retali, G., and Cesario, J., 1992, Isotopic analysis of rare earth elements by total vaporization of samples in thermal ionization mass spectrometry: International Journal of Mass Spectrometry and Ion Processes, v. 120, no. 3, p. 163–177, doi: 10.1016/0168-1176(92)85046-3.
- Ehrlich, S., Gavrieli, I., Dor, L.-B., and Halicz, L., 2001, Direct high-precision measurements of the 87Sr/86Sr isotope ratio in natural water, carbonates and related materials by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS): Journal of Analytical Atomic Spectrometry, v. 16, no. 12, p. 1389–1392, doi: 10.1039/B107996B.
- Goldstein, S.L., O'Nions, R.K., and Hamilton, P.J., 1984, A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems: Earth and Planetary Science Letters, v. 70, no. 2, p. 221–236, doi: 10.1016/0012-821X(84)90007-4.
- Griffin, W.L., Powell, W.J., Pearson, N.J., and O'reilly, S.Y., 2008, GLITTER: data reduction software for laser ablation ICP-MS, *in* Sylvester, P., eds., Laser Ablation-ICP-MS in the earth sciences. Mineralogical association of Canada short course series, p 204–207.
- Guo, P., Niu, Y., and Yu, X., 2014, A synthesis and new perspective on the petrogenesis of kamafugites from West Qinling, China, in a global context: Journal of Asian Earth Sciences, v. 79, p. 86–96, doi: 10.1016/j.jseaes.2013.09.012.
- Isnard, H., Brennetot, R., Caussignac, C., Caussignac, N., and Chartier, F., 2005, Investigations for determination of Gd and Sm isotopic compositions in spent nuclear fuels samples by MC ICPMS: International Journal of Mass Spectrometry, v. 246, no. 1, p. 66–73, doi: 10.1016/j.ijms.2005.08.008.
- Jacobsen, S.B., and Wasserburg, G.J., 1980, Sm-Nd isotopic evolution of chondrites: Earth and Planetary Science Letters, v. 50, no. 1, p. 139– 155, doi: 10.1016/0012-821X(80)90125-9.
- Jiang, D., Liu, J., and Ding, L., 2008, Geochemistry and petrogenesis of Cenozoic potassic volcanic rocks in the Hoh Xil area, northern Tibet plateau: Acta Petrologica Sinica, v. 24, no. 2, p. 279–290 (in Chinese with English abstract).
- Jolivet, M., Brunel, M., Seward, D., Xu, Z., Yang, J., Malavieille, J., Roger, F., Leyreloup, A., Arnaud, N., and Wu, C., 2003, Neogene extension and volcanism in the Kunlun fault zone, northern Tibet: New constraints on the age of the Kunlun fault: Tectonics, v. 22, no. 5, p. 1052, doi: 10.1029/2002TC001428.
- Kinny, P.D., Griffin, B.J., Heaman, L.M., Brakhfogel, F.F., and Spetsius, Z.V., 1997, SHRIMP U-Pb ages of perovskite from Yakutian kimberlites: Russian Geology and Geophysics, v. 38, p. 97-105.
- Le Bas, M.J., 1989, Nephelinitic and basanitic rocks: Journal of Petrology, v. 30, no. 5, p. 1299–1312, doi: 10.1093/petrology/30.5.1299.
- Le Maitre, R.W., 2002, Igneous Rocks: A Classification and Glossary of Terms: Cambridge, U.K., Cambridge University Press, p. 236.
- Li, C., Fan, H., and Xu, F., 1989, Lithochemical characteristics of Cenozoic volcanic rocks in Qinghai-Xizang (Tibet) and its structural significance: Geoscience, v. 3, no. 1, p. 58–69 (in Chinese with English abstract).
- Li, J., Bai, D., and Wang, X., 2004, Ages of volcanic rocks and planation surface in the Canmei Mountain area, northern Tibet: Geological Bulletin of China, v. 23, no. 7, p. 670–675 (in Chinese with English abstract).
- Li, Q.-L., Li, X.-H., Liu, Y., Wu, F.-Y., Yang, J.-H., and Mitchell, R., 2010, Precise U–Pb and Th–Pb age determination of kimberlitic perovskites by secondary ion mass spectrometry: Chemical Geology, v. 269, no. 3, p. 396–405, doi: 10.1016/j.chemgeo.2009.10.014.
- Liu, Y., Hu, Z., Gao, S., Günther, D., Xu, J., Gao, C., and Chen, H., 2008, In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard: Chemical Geology, v. 257, no. 1–2, p. 34–43, doi: 10.1016/j.chemgeo.2008.08.004.
- Ludwig, K.R., 2003, Isoplot/Ex Version 3.00: a Geochronological Toolkit for Microsoft Excel, *in*, eds., Berkeley Geochronology Center, Berkeley, CA, USA.
- Lugmair, G.W., and Marti, K., 1978, Lunar initial ¹⁴³Nd/¹⁴⁴Nd: Differential evolution of the lunar crust and mantle: Earth and Planetary Science Letters, v. 39, no. 3, p. 349–357, doi: 10.1016/0012-821X(78)90021-3.

- Ma, Q., Zheng, J., Griffin, W., Zhang, M., Tang, H., Su, Y., and Ping, X., 2012, Triassic "adakitic" rocks in an extensional setting (North China): Melts from the cratonic lower crust: Lithos, v. 149, p. 159–173, doi: 10.1016/j.lithos.2012.04.017.
- McFarlane, C.R.M., and McCulloch, M.T., 2007, Coupling of in-situ Sm–Nd systematics and U–Pb dating of monazite and allanite with applications to crustal evolution studies: Chemical Geology, v. 245, no. 1, p. 45–60, doi: 10.1016/j.chemgeo.2007.07.020.
- Meng, F.-C., Yang, J.-S., Shi, R.-D., and Wu, C.-L., 2002, Origin of Miocene shoshonitic volcanic rocks from Xiongyingtai, Hoh Xil, North Xizang: Geochimica, v. 31, no. 3, p. 243–252 (in Chinese with English abstract).
- Plank, T., and Langmuir, C.H., 1998, The chemical composition of subducting sediment and its consequences for the crust and mantle: Chemical Geology, v. 145, no. 3, p. 325–394, doi:10.1016/S0009-2541(97)00150-2.
- Ramos, F.C., Wolff, J.A., and Tollstrup, D.L., 2004, Measuring ⁸⁷Sr/⁸⁶Sr variations in minerals and groundmass from basalts using LA-MC-ICPMS: Chemical Geology, v. 211, no. 1, p. 135–158, doi: 10.1016/j.chemgeo.2004.06.025.
- Stacey, J.S., and Kramers, J.D., 1975, Approximation of terrestrial lead isotope evolution by a two-stage model: Earth and planetary science letters, v. 26, no. 2, p. 207–221, doi: 10.1016/0012-821X(75)90088-6.
- Steiger, R.H., and Jäger, E., 1977, Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology: Earth and Planetary Science Letters, v. 36, no. 3, p. 359-362, doi: 10.1016/0012-821X(77)90060-7.
- Stoppa, F., and Schiazza, M., 2013, An overview of monogenetic carbonatitic magmatism from Uganda, Italy, China and Spain: volcanologic and geochemical features: Journal of South American Earth Sciences, v. 41, p. 140–159, doi: 10.1016/j.jsames.2012.10.004.
- Su, B.-X., Zhang, H.-F., Ying, J.-F., Tang, Y.-J., Hu, Y., and Santosh, M., 2012, Metasomatized lithospheric mantle beneath the western Qinling, Central China: insight into carbonatite melts in the mantle: The Journal of Geology, v. 120, no. 6, p. 671–681, doi: 10.1086/667956.
- Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, no. 1, p. 313–345, doi: 10.1144/GSL.SP.1989.042.01.19.
- Turner, S., Arnaud, N., LIU, J., Rogers, N., Hawkesworth, C., Harris, N., Kelley, S., Van Calsteren, P., and Deng, W., 1996, Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts: Journal of Petrology, v. 37, no. 1, p. 45–71, doi: 10.1093/petrology/37.1.45.
- Wang, J., and Li, J.P., 2003, Geochemical characteristics and geological implications of the Cenozoic kamafugites from Lixian County, West Qinling: Acta Petrologica et Mineralogica, v. 22, no. 1, p. 11–19 (in Chinese with English abstract).
- Wasserburg, G.J., Jacobsen, S.B., DePaolo, D.J., McCulloch, M.T., and Wen, T., 1981, Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions: Geochimica et Cosmochimica Acta, v. 45, no. 12, p. 2311–2323, doi: 10.1016/0016-7037(81)90085-5.
- Wei, Q., Li, D., Wang, G., and Zheng, J., 2007, Zircon SHRIMP U-Pb dating and geochemical characteristics of Chabaoma Formation volcanic rocks in northern Tibetan plateau and its petrogenesis: Acta Petrologica Sinica, v. 23, no. 11, p. 2727–2736 (in Chinese with English abstract).
- Williams, I.S., 1998, U-Th-Pb Geochronology by Ion Microprobe, in McKibben, M.A., Shanks III, W.C., and Ridley, W.I., eds., Applications of microanalytical techniques to understanding mineralizing processes: Reviews in Economic Geology, Volume 7, Society of Economic Geologists, p. 1–35.
- Workman, R.K., and Hart, S.R., 2005, Major and trace element composition of the depleted MORB mantle (DMM): Earth and Planetary Science Letters, v. 231, no. 1, p. 53–72, doi:10.1016/j.epsl.2004.12.005.
- Wu, F.-Y., Yang, Y.-H., Mitchell, R.H., Li, Q.-L., Yang, J.-H., and Zhang, Y.-B., 2010, In situ U–Pb age determination and Nd isotopic analysis of perovskites from kimberlites in southern Africa and Somerset Island, Canada: Lithos, v. 115, no. 1, p. 205–222, doi: 10.1016/j.lithos.2009.12.010.
- Wu, F.-Y., Arzamastsev, A.A., Mitchell, R.H., Li, Q.-L., Sun, J., Yang, Y.-H., and Wang, R.-C., 2013, Emplacement age and Sr-Nd isotopic compositions of the Afrikanda alkaline ultramafic complex, Kola Peninsula, Russia: Chemical Geology, v. 353, no. 5, p. 210–229, doi: 10.1016/j.chemgeo.2012.09.027.
- Yang, J.-S., Wu, C.-L., Shi, R.-D., Li, H.-B., and Meng, F.-C., 2002, Miocene and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area, north of the Qinghai-Tibet Plateau: Acta Petrologica Sinica, v. 18, no. 2, p. 161–176 (in Chinese with English abstract).
- Yang, Y.-H., Wu, F.-Y., Wilde, S.A., Liu, X.-M., Zhang, Y.-B., Xie, L.-W., and Yang, J.-H., 2009, In situ perovskite Sr–Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton: Chemical Geology, v. 264, no. 1, p. 24–42, doi: 10.1016/j.chemgeo.2009.02.011.
- Yu, X., 1994, Cenozoic potassic alkaline ultrabasic volcanic rocks and its genesis in Lixian-Dangchang area, Gansu province: Sedimentary Geology and Tethyan Geology, v. 18, p. 114–129 (in Chinese with English abstract).
- Yu, X., Mo, X., Flower, M., Su, S., and Zhao, X., 2001, Cenozoic kamafugite volcanism and tectonic meaning in west Qinling area, Gansu province: Acta Petrologica Sinica, v. 17, no. 3, p. 366–377 (in Chinese with English abstract).
- Yu, X., Zhao, Z., Mo, X., Wang, Y.-L., Xiao, Z., and Zhu, D.-Q., 2004, Trace elements, REE and Sr, Nd, Pb isotopic geochemistry of Cenozoic kamafugite and carbonatite from west Qinling, Gansu Province: Implication of plume-lithosphere interaction: Acta Petrologica Sinica, v. 20, no. 3, p. 483–494 (in Chinese with English abstract).

- Yu, X., Zhao, Z., Zhou, S., Mo, X., Zhu, D.-Q., and Wang, Y.-L., 2006, ⁴⁰Ar/³⁹Ar dating for Cenozoic kamafugite from western Qinling in Gansu Province: Chinese Science Bulletin, v. 51, no. 13, p. 1621–1627, doi: 10.1007/s11434-006-2010-7.
- Yu, X., Mo, X., Zhao, Z., Huang, X., Li, Y., Chen, Y., and Wei, Y., 2009, Two types of Cenozoic potassic volcanic rocks in West Qinling, Gansu Province: Their petrology, geochemistry and petrogenesis: Earth Science Frontiers, v. 16, no. 2, p. 79–89 (in Chinese with English abstract).
- Yu, X., Mo, X., Zhao, Z., He, W., and Li, Y., 2011, Cenozoic bimodal volcanic rocks of the West Qinling: Implication for the genesis and nature of the rifting of north-south tectonic belt: Acta Petrologica Sinica, v. 27, no. 7, p. 2195–2202 (in Chinese with English abstract).
- Zhao, Z.-M., Ji, W.-H., Li, R.-S., Ma, H.-D., Yang, Z.-J., Wang, B.-Z., Zhu, Y.-T., Wang, G.-C., Bai, D.-Y., Zhang, Z.-F., and Li, D.-P., 2009, Geochemical characteristics and petrogenesis of volcanic rocks since the Neogene in the Bayankala and east Kunlun region, northern Tibetan plateau: Geochimica, v. 38, no. 3, p. 205–230 (in Chinese with English abstract).
- Zheng, X., and Bian, Q., 1996, On the Cenozoic volcanic rocks in Hoh Xil District, Qinghai Province: Acta Petrologica Sinica, v. 12, no. 4, p. 530–545 (in Chinese with English abstract).
- Zhu, Y.-T., Jia, Q.-X., Yi, H.-S., Lin, J.-H., Shi, L.-C., Peng, C., and Guo, T.-Z., 2005, Two periods of Cenozoic volcanic rocks from Hoh Xil lake area, Qinghai: Journal of Mineralogy and Petrology, v. 25, no. 4, p. 23–29 (in Chinese with English abstract).
- Zindler, A., and Hart, S., 1986, Chemical geodynamics: Annual Review of Earth and Planetary Sciences, v. 14, p. 493-571, doi:10.1146/annurev.ea.14.050186.002425.