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Abstract

We present an isogeometric boundary element method (IGABEM) capable of delivering accurate and ef-
ficient solutions in the heat transfer analysis of 2D coated structures such as those commonly found in
turbomachinery. Although we consider very thin coatings (of thickness down to 10−7 m), they are modelled
explicitly as BEM zones, and this is made possible by the development of a new integration scheme (sinh+)
aimed particularly at the challenging nearly singular integrals that arise. Sinh+ is a hybrid of adaptive and
sinh transformation approaches, and we make further extensions to the latter to improve its robustness. The
scheme is tuned to deliver results of engineering accuracy in an optimal time. The scheme is adaptable, by
changing a tolerance, to enable engineers to achieve a different balance between accuracy and computational
efficiency as may be required for different applications. A set of numerical examples demonstrates the ability
of the scheme to produce accurate temperature distributions efficiently in the presence of very thin coatings.
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1. Introduction

The Boundary Element Method (BEM) is a standard numerical technique for the solution of partial dif-
ferential equations, offering an alternative to the Finite Element Method (FEM) for a range of engineering
simulations. Classically the BEM has been advantageous over the FEM for certain applications, includ-
ing fracture mechanics and infinite domain problems such as acoustic and electromagnetic scattering. The5

advantages of the BEM derive from its boundary-only discretisation, the accuracy of its solutions on com-
paratively coarse meshes, and its ability to model discontinuous functions. The boundary-only discretisation
suggests that the BEM should be most attractive for geometries having low surface area/volume ratios, and
indeed the technique has been used very successfully in these cases. Although some specialised formulations
have been proposed for shells, thin sections have historically presented challenges for practitioners working10

with the BEM. This largely results from the difficulty of integrating nearly-singular functions in a robust
and computationally efficient manner in the assembly of the system matrix. In this paper we present a new
scheme capable of producing accurate and efficient solutions for thin sections, focussing on coated struc-
tures, and this is made possible by the development of a new hybrid integration scheme for nearly singular
integrals.15

A comparatively recent development in the BEM literature is the move to isogeometric analysis with
the BEM (i.e. the IGABEM). The isogeometric concept originated with Hughes et al. [1] who showed
how, in an FEM context, there are significant benefits to be gained by replacing the piecewise polynomial
approximation of the primary variable by an approximation formed in a basis of Non-Uniform Rational
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B-Spline (NURBS) functions. These benefits are: (i) the prospect for a much tighter integration of analysis20

and CAD modelling, (ii) the use of an exact geometric representation (i.e. the CAD geometry), (iii) the mesh
refinement can be highly simplified using the standard knot-insertion and/or degree-elevation procedures,
and (iv) the improved convergence properties of the solution over classical FEM. Not surprisingly, with these
benefits, this initial work has attracted a large research community and the isogeometric concept expanded
rapidly from elasticity [1, 2] to other applications including fluid dynamics [3, 4], electromagnetics [5], and25

vibration [6]. The initial works were based on NURBS [1], and then extended to T-splines [7], PHT-splines
[8–10] and trimmed NURBS [11].

Since CAD and BEM both require only a boundary representation the linking of CAD geometries to the
BEM in preference to the FEM seems a more natural choice. BEM analysis of 3D solids proceeds directly
from a boundary representation, the most common geometric representation in CAD. Use of the IGAFEM30

to analyse a 3D solid presents challenges since it requires a volumetric NURBS description, which is not
trivial to generate. There have been some early works injecting spline functions into the BEM, many of
which predated the IGAFEM [12–18]. Simpson et al. [19, 20] applied the isogeometric concept in a BEM
framework, and found similar benefits over classical piecewise polynomial formulations. The IGABEM
concept has been exploited in various areas including elastostatics [19, 21, 22], shape optimisation [23, 24],35

acoustics [25–28], electromagnetics [29] and fracture mechanics [30]. The method is also amenable to BEM
acceleration strategies, including Adaptive Cross Approximation [31, 32] and the Fast Multipole Method
[28, 33].

However, the drawback of both BEM and IGABEM remains that the application to thin sections requires
careful treatment. The current paper is motivated by the desire to extend the benefits of BEM, and more40

specifically IGABEM, to coated structures. These are commonly found in a wide range of engineering
applications, but the focus of the current work is in turbomachinery, where a thermal barrier coating (TBC)
is commonly applied to offer resistance to corrosion, wear and erosion and to enhance lubrication [34]. The
coatings are, by definition, of small thickness. It is important for engineers to understand how the coating
affects the thermal and stress distributions in these devices in order to design turbine systems which have45

the required durability.
When a thermal barrier coating is used to protect a turbine blade from corrosion, wear, and erosion, the

coating thickness is typically 1 to 5 µm [34]. Therefore in the implementation of the isogeometric boundary
element method on the coating zone, the distance r between the source point and field point will become very
small, which will lead to complications in evaluating the boundary integrals required. Since the integrals50

contain fundamental solutions exhibiting ln r and 1/r behaviour, a large number of nearly singular integrals
will arise while integrating over an element on the opposite side of the coating to the source point. In these
cases, the required accuracy cannot be efficiently achieved using standard Gaussian quadrature. Without a
carefully constructed integration scheme, problems containing thin materials such as coatings would require
a very dense mesh making the BEM an unattractive option. There is therefore a considerable benefit to be55

derived from the development of accurate, efficient and robust schemes to evaluate nearly singular integrals
so the benefits of BEM can be extended to these geometries.

Several techniques are available for the evaluation of nearly singular integrals in the conventional BEM.
While analytical methods are feasible for simple cases [35], we focus on the approximate numerical and semi-
analytical methods for generality of application in an IGABEM context. Telles [36] proposed a self-adaptive60

scheme that has become popular for the evaluation of weakly singular integrals in the BEM literature. This
scheme was also shown to be an effective tool for the nearly-singular case. The method works by weakening
the singularity of the integrand using a non-linear mapping of the integral interval from [−1, 1] onto a new
coordinate also in [−1, 1]. The method was extended by introducing a more efficient variable transformation
in polar coordinates (referred to as the part method)[37]. Hayami [38] presented a new radial variable65

transformation for the part method, avoiding the need for analytical formulae, and undertook an error
analysis using complex function theory. Sladek et al. [39] proposed a semi-analytical integration scheme to
evaluate nearly singular integrals occurring in 2D BEM problems. Padhi et al. [40] presented an analytical
integration method for quadratic isoparametric boundary elements in which the distance function r2 is
expressed as a combination of polynomials a + bξ + cξ2 + dξ3 + eξ4. Several semi-analytical or analytical70

methods have been used for elasticity problems [41–43] and potential problems [44]. In references [45–47], the
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line integral approach is used to transform nearly singular integrals into a sum of weakly singular integrals
and regular line integrals, and this is applied in the analysis of thin-body problems. A simple and readily
implemented method for interior field evaluations is introduced in [46], along with an auxiliary surface
method, utilising the characters of the singular kernels. This method transforms nearly singular integrals75

on the original surface to integrals on an auxiliary surface. However, due to the use of the subdivision
technique on the auxiliary surfaces, the method becomes inefficient. In [48], a parameterised Gaussian
quadrature approach was presented to calculate the nearly singular integrals with kernels such as ln( 1

r ), 1
r

or 1
r2 . In [49], the rigid body displacement solution is introduced to compute physical quantities near the

boundary. The particular solution method is presented to compute stresses and displacements on and near80

boundaries in [50, 51] and is then developed further to solve elastoplastic problems in [52]. In [53, 54], an
adaptive integral method is presented that is driven by the upper bound of the error estimate of Gauss
quadrature along with an element subdivision technique. Because the number of Gauss points is chosen
automatically, the method can compute nearly singular integrals to arbitrary accuracy. However, the method
will be time-consuming where the distance from the source point to the field element becomes very small,85

especially for thin-body or coating structures.
Alternative methods based on regularisation are also available, including [55, 56]. Luo et al. [57] com-

bined the regularisation technique (singularity subtraction) and nonlinear transformation method to evaluate
nearly singular integrals in 2D BEM in the solution of thin film problems for composite materials.

A simple method called the domain supplemental approach was presented by Ma [58] for avoiding the90

boundary layer effects encountered in solving problems of elasticity by the BEM. In [59] the approximate
distance function was introduced to separate the near singular parts from the integrals with logarithmic
kernels and to damp out the near singularities of the integrals with Cauchy and Hadamard kernels. Later
a general algorithm called the distance transformation method was presented to evaluate nearly singular
boundary integrals of various orders for elasticity problems [60]. In [61], a new implementation of the95

conventional distance scheme, which is redefined in two local coordinate systems, is given to stabilise the
result. More recently, a spherical element subdivision method is presented by Zhang [62] to compute nearly
singular integrals in 3D BEM.

In 2007, a non-linear coordinate transformation method called the sinh transformation method was
presented in [63] for Laplace problems. The method is further developed in [64–70]. Similar to the sinh100

transformation method, an exponential transformation method has been widely used to cope with nearly
singular integrals for the conventional BEM [68, 71–73]. In [74], the exponential transformation method was
applied to deal with the nearly singular integrals arising in IGABEM. The interested reader is directed to
the works [68, 74] for a full description of the method.

In this paper we present a new IGABEM formulation (sinh+) based on a hybrid integration scheme105

that combines the benefits of the sinh transformation (of, amongst others, Gu et al. [69]) and the adaptive
integration scheme (of Gao et al. [54]). In order to enhance the robustness of the scheme, we further extend
the sinh transformation by using the analytical extension of the NURBS curve to accommodate cases in
which the projection of the source point lies outside the physical domain of the element.

An important requirement to be considered when developing an integration scheme for a BEM or FEM110

system is the balance between accuracy and computational efficiency. The requirement of most engineer-
ing FEM/BEM analyses is to deliver acceptable engineering accuracy with a small use of computational
resources. However, the notion of acceptable engineering accuracy can be expected to be interpreted dif-
ferently by different engineers and for different applications. One valuable feature of the new sinh+ scheme
is that, by changing a single tolerance parameter, engineers can tune the scheme to deliver the required115

accuracy for the problem at hand, without incurring the run-time cost of evaluating integrals to unnecessary
precision. In this way the scheme is tuned to deliver engineering accuracy in the optimal computation time.

This paper is organised in the following sections. In section 2 we provide an overview of the BEM and
IGABEM formulation. In section 3 we review existing methods for evaluating the nearly singular integrals
that arise in a BEM analysis and undertake a detailed analysis of their accuracy and computational efficiency.120

In section 4 we extend the sinh transformation with a new analytical extension approach that improves its
robustness. Informed by the analysis in section 3, we present in section 5 our proposed sinh+ scheme. In
section 6 we demonstrate the effectiveness of the scheme through four numerical examples, and we close
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with some concluding remarks in section 7.

2. Boundary element method and isogeometric boundary element method125

2.1. Boundary integral equation

The Boundary Element Method (BEM) is a powerful tool for solving a range of engineering problems,
in which the governing partial differential equation (PDE) is reformulated as a boundary integral equation
allowing the computational model to be restricted to the boundary only. In the current paper, we apply
the method to solve heat transfer problems, so that we seek the temperature field u and flux density in the
domain Ω and on the boundary Γ ≡ ∂Ω. In this paper we focus on 2D applications, so that Ω ⊂ R2. The
governing PDE is the Laplace equation

∇2u(x) = 0, x ∈ Ω (1)

with normal flux density given by

q(y) = −k∂u(y)

∂n
y ∈ Γ, (2)

where n is the unit outward pointing normal and k is the conductivity of the material. We solve (1) subject
to a set of boundary conditions

u(y) = ū, y ∈ ΓD, (3)

q(y) = q̄, y ∈ ΓN , (4)

q(y) = h(ua − u(y)), y ∈ ΓR, (5)

The known quantities ū and q̄ are prescribed temperatures and flux densities; ΓD, ΓN and ΓR denote the
Dirichlet, Neumann and Robin boundaries respectively, with ΓD ∪ ΓN ∪ ΓR = Γ and ΓD ∩ ΓN ∩ ΓR = ∅; h
denotes the (known) heat transfer coefficient, or film coefficient and ua the (known) ambient temperature
outside the material being analysed. For a 2D potential problem, the corresponding boundary integral
equation can be written as

C(y)u(y) +

∫
Γ

Q(y,x)u(x)dΓ(x) =

∫
Γ

U(y,x)q(x)dΓ(x), y ∈ Γ (6)

Here x ∈ Γ and y ∈ Γ are commonly known as the field point and source point, respectively. U(y,x) and
Q(y,x) denote the temperature and flux fundamental solution kernels, and C(y) is the jump term that
arises from the strongly singular nature of the integral of the flux kernel, so the integral on the left hand
side of (6) should be interpreted in the Cauchy principal value sense.130

The temperature and flux fundamental solution in 2D for isotropic materials are given as

U(y,x) = − 1

2π
ln r, (7)

Q(y,x) =
∂U

∂r

∂r

∂n(x)
= − 1

2πr
(r,1n1 + r,2n2), (8)

where r = r(y,x) = ‖x − y‖ is the distance between source point and field point, r,i = ∂r
∂xi

, and ni is the
ith component of the unit outward normal vector n to the boundary surface at the field point x.
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2.2. B-splines and NURBS basis

In this work, we focus our attention on methods of evaluating nearly singular integrals in the isogeometric
boundary element method, which is a variant of the BEM based on the use of NURBS basis functions.135

Therefore, a brief introduction of B-splines and NURBS is given in this section. For the interested reader,
a full description can be found in Piegl and Tiller [75].

A B-spline is defined using a group of piecewise polynomials, which are defined by the following “knot
vector” of non-decreasing values

Ξ = {ξ1, ξ2, ..., ξn+p+1}, ξa ∈ R. (9)

where a is the knot index, p the curve degree, and n the number of basis functions or control points Pa.
Each ξa ∈ Ξ is called a knot. The B-spline basis functions of degree p are defined recursively; starting with
p = 0 we define

Na,0(ξ) =

{
1, if ξa ≤ ξ < ξa+1

0, otherwise,
(10)

and, for p = 1, 2, 3, ...

Na,p(ξ) =
ξ − ξa

ξa+p − ξa
Na,p−1(ξ) +

ξa+p+1 − ξ
ξa+p+1 − ξa+1

Na+1,p−1(ξ). (11)

Thus, as is given in [75] a whole B-spline curve can be defined by n basis functions (in equations (10) and
(11)) and control points Pa. But in the implementation of BEM, a discretised form of the boundary integral
equation is commonly used, in which computations are focused on a single knot span, which corresponds to a140

single element in conventional BEM implementations. Therefore, in this work the descriptions of boundary
geometry or physical quantities are given in a knot span with p + 1 non-zero basis functions, the values of
which can be obtained by equations (10) and (11).

A pth degree B-spline curve in a knot span (with p + 1 non-zero basis functions) is constructed by a
mapping from the parameter space to physical space, being

x(ξ) =

p+1∑
a=1

Na,p(ξ)Pa, (12)

where Pa denotes the set of control point coordinates and x = (x, y, z) is the location of the physical curve
corresponding to the spatial coordinate ξ in parametric space.145

NURBS, which are a dominant tool used to describe curves and surfaces in CAD systems, are developed
from B-splines and can offer significant advantages due to their ability to describe circular arcs and other
conic sections exactly. The NURBS geometry is a weighted form of the B-spline definition, i.e.

x(ξ) =

p+1∑
a=1

Ra,p(ξ)Pa, (13)

where Ra,p are the NURBS basis functions, which are defined by

Ra,p(ξ) =
Na,p(ξ)wa
W (ξ)

(14)

with

W (ξ) =

p+1∑
a=1

Na,p(ξ)wa, (15)

where a denotes the control point index, Na,p the B-spline basis function from (11), and wa a weight
associated with control point Pa. When all of the weights are of equal value, the NURBS curve will
degenerate to a B-spline curve.

At this point it is useful to emphasise that the control points do not all lie on the spline curve, and this
will have implications addressed in the coming sections.150
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2.3. Isogeometric boundary element method implementation

Unlike the conventional BEM, in which the geometry and solution variables (temperature and flux
density) are defined using C0-continuous polynomial approximations, the isogeometric form (IGABEM)
is characterised by the use of a spline basis to describe them, commonly B-splines or NURBS. In the
implementation of IGABEM, the concept of an ‘element’ from the conventional BEM is considered as a
knot span [ξi, ξi+1], where ξi, ξi+1 ∈ Ξ. The boundary Γ may thus be considered to be divided into elements
Γe, e = 1, ..., Ne. The temperature and flux density fields around the boundary are expressed using a NURBS
expansion, i.e.

u(ξ) =

p+1∑
a=1

Ra(ξ)ũa, (16)

q(ξ) =

p+1∑
a=1

Ra(ξ)q̃a, (17)

where ũa and q̃a are the local temperature and flux parameters associated with the control point with index
a. Readers familiar with the conventional BEM will notice that the shape functions have been replaced
by NURBS basis functions. However, since the NURBS basis functions do not obey the Kronecker-Delta
property, ũa and q̃a should not be interpreted as the temperature and flux at control points (indeed, the155

control points may lie outside the material). Where control points are shared between adjacent elements,
ũa and q̃a apply to all elements to which the control point with index a belongs.

Replacing the continuous functions u and q by the expansions (16) and (17), the boundary integral
equation (6) can be written in a discretised form:

C(ζ̃c)

p+1∑
a0=1

Re0a0(ζ̃c)ũe0a0 +

Ne∑
e=1

p+1∑
a=1

Qea(ζ̃c, ξ̃e)ũea =

Ne∑
e=1

p+1∑
a=1

Uea(ζ̃c, ξ̃e)q̃ea (18)

where

Qea(ζ̃c, ξ̃e) =

∫ 1

−1

Q(ζ̃c, ξ̃e)Rea(ξ̃e)Je(ξ̃e)dξ̃e (19)

Uea(ζ̃c, ξ̃e) =

∫ 1

−1

U(ζ̃c, ξ̃e)Rea(ξ̃e)Je(ξ̃e)dξ̃e (20)

c indicates the collocation point index, ζ̃c the local coordinate of the collocation point, e0 the element in
which the collocation point is located, and a0 is the local index of the collocation point in element e0. e
denotes the element index, ξ̃e is the local coordinate of the field point in its parent element, defined such that
ξe ∈ [−1, 1] in the element Γe, a is the local index of a basis function in element e, Rea the corresponding
basis function, and Je the Jacobian. This may be computed simply using

Je(ξ̃e) =
dΓ

dξ̃e
=
dΓ

dξ

dξ

dξ̃e
(21)

Collocation of (18) taking the source point y at a sufficient number of locations (typically located at the
Greville abscissae [76]), and application of the boundary conditions, leads to a linear system that may be
solved for the temperature and flux density parameters ũa and q̃a. The temperature and flux density fields on160

Γ may then be recovered from (16) and (17). Where the problem consists of two or more different materials,
the standard techniques for multizone BEM [77] may be adopted without change for the IGABEM.
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3. Analysis of existing methods for the evaluation of nearly singular boundary integrals

3.1. Adaptive integral method

A standard Gauss quadrature formula can be expressed by the following equation165

I =

∫ 1

−1

F (ξ)dξ =

m∑
i=1

wF (ξ) + E. (22)

where w is the weight factor, m is the number of Gauss points, and E is the integration error. The upper
bound of relative error e can be approximated by [78]

E

I
≤ 2

(
L

4d

)2m
(2m+ β − 1)!

(2m)!(β − 1)!
≤ e (23)

where β is the order of singularity (i.e. the integrand is of the form r−β), L is the length of the element,
and d is the minimum distance from the source point to the element.

According to [53, 54, 79], the following equation can be obtained

m =

√
2

3
β +

2

5

[
− 1

10
ln

(
e

2

)][(
8L

3d

)3/4

+ 1

]
(24)

which can be rearranged to yield

L =
3

8
d

(
−10m√

2β/3 + 2/5 ln (e/2)
− 1

)3/4

(25)

giving the length of an element over which a given Gauss order can deliver a prescribed accuracy.
Based on the above analysis, and introducing an element subdivision algorithm, Gao and Davies presented

the adaptive integration method in [53, 54], giving details of the derivation and implementation for the170

conventional BEM. The implementation of the adaptive integral method in IGABEM can be found in
[80, 81].

In the process of integral evaluation, to avoid using high Gauss order m, the element should be repeatedly
divided into sub-elements which reduces the ratio L

d . In this way, nearly singular integrals can be accurately

computed using moderate Gauss orders by controlling the ratio L
d . However, one drawback of the method175

is that large numbers of sub-elements will be produced for the more extreme near-singularities, so a large
number of Gauss point evaluations are still required. This can be a problem for coating structures.

3.2. Sinh transformation method

The sinh transformation method has been demonstrated to be feasible in dealing with the nearly singular
integrals in the conventional BEM [66, 67, 69, 82–84]. The current section 3.2 largely follows these works,180

however we adapt the method to the IGABEM context. The scheme has been applied to IGABEM for
Helmholtz problems [85], however no results for individual integrals were reported and the current authors
have been unable to achieve the required accuracy with their own implementation of [85] for the Laplace
problem. In the following, we will develop the sinh transformation method for the nearly singular integrals
that arise in IGABEM.185

y

xp

|xp − y| = d

n

r = |x− y|
x

Control points
Source point
Projection point
Field point
Boundary element

Figure 1: Minimum distance d to the element when xp ∈ Γe
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Consider one general isogeometric boundary Γe with knot span [ξi, ξi+1] as shown in Figure 1. The
minimum distance d from the source point (computed point) to the integration element Γe is defined as
|xp − y|, where xp is the projection point of y onto the integration element Γe. It is noted that in the
case depicted in Figure 1, xp is on Γe, i.e. xp ∈ Γe. The case in which xp /∈ Γe will be introduced in the
next section. Let ξp (with ξi ≤ ξp ≤ ξi+1) be the local intrinsic coordinate of the projection point xp, i.e.190

xp = (x1(ξp), x2(ξp)).
To determine the minimum distance d and local intrinsic coordinates of ξp, a Newton-Raphson iterative

scheme was proposed in [53]. The method is also used in the adaptive integral method for computing the
minimum distance from source point to sub-element. More details about the Newton-Raphson method for
the conventional BEM can be found in [53], and the application for IGABEM has been given in [81].195

As shown in Figure 1, the minimum distance d from the source point to the integration element is defined
as perpendicular to the tangential line, through the computed point and projection point. We recall that
the field point x can be described as a rational polynomial with respect to ξ by (13).

By applying the Taylor’s expansion of x(ξ) in the neighbourhood of projection point xp(ξp) in parameter
space, formulae of the following form can be established:

xk − yk = xk − xpk + xpk − yk
= (xpk − yk) + dxk

dξ

∣∣∣
ξ=ξp

(ξ − ξp) + 1
2
d2xk

dξ2

∣∣∣
ξ=ξp

(ξ − ξp)2 + · · ·

+ 1
n!
dnxk

dξn

∣∣∣
ξ=ξp

(ξ − ξp)n + HOT

(26)

where k = 1, 2, x = (x1, x2), y = (y1, y2), xp = (xp1, x
p
2), n is the order of Taylor expansion and HOT

abbreviates Higher Order Terms. The derivatives are found from

dnxk
dξn

=

p+1∑
i=1

dn

dξn
Ri,p(ξ)Pik (27)

where Pik is the k coordinate of the ith control point. The first order derivative of a NURBS basis function
is expressed as [20]

d

dξ
Ri,p(ξ) = ωi

W (ξ)N ′i,p(ξ)−W ′(ξ)Ni,p(ξ)
(W (ξ))

2 (28)

where Ni,p(ξ) is the B-spline basis function given in equations (10) and (11), N ′i,p(ξ) = d
dξNi,p(ξ), and

W ′(ξ) =
n∑
j=1

N ′j,p(ξ)ωj .200

The higher-order derivatives of the rational function can be expressed in terms of lower-order derivatives
as [20]

dk

dξk
Ri,p(ξ) =

A
(k)
i (ξ)−∑k

b=1

(
k
b

)
W (b)(ξ) d

(k−b)

dξ(k−b)Ri,p(ξ)

W (ξ)
(29)

where

(
k
b

)
= k!

b!(k−b)! , A
(k)
i (ξ) = ωi

dk

dξk
Ni,p(ξ) and W (b)(ξ) = db

dξb
W (ξ).

From Figure 1, the following relation can be obtained

xpk − yk = dnk(ξp), (30)

where nk indicates the component of the unit outward normal of the boundary.
For brevity, let

Dn
k,ξ =

1

n!

dnxk
dξn

∣∣∣∣
ξ=ξp

(31)

From equations (30) and (31), the expansion (26) can be rewritten as

xk − yk = dnk(ξp) +D1
k,ξ(ξ − ξp) +D2

k,ξ(ξ − ξp)2 + ...+Dn
k,ξ(ξ − ξp)n + HOT (32)
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Invoking the relation nkD
1
k,ξ = 0, then, the square of the distance between the source point and the field

point, i.e. r2, can be expressed as

r2(ξ) = (x1 − y1, x2 − y2) · (x1 − y1, x2 − y2)
= d2 + (ξ − ξp)2gn(ξ) + Etrun

(33)

where d = |xp−y| is the minimum distance (shown in Figure 1), n is the order of the Taylor expansion, and
gn(ξ) is a function containing sums of products of terms in the Taylor expansion. Etrun is the truncation
error arising from neglecting the higher order terms in the approximation. Substituting equation (33) into
the boundary integrals in equation (6) yields the following integral:

I1 =

∫ ξi+1

ξi

f(ξ) ln r2dξ =

∫ ξi+1

ξi

f(ξ) ln
(
d2 + (ξ − ξp)gn(ξ) + Etrun

)
dξ (34)

I2 =

∫ ξi+1

ξi

f(ξ)

r2
dξ =

∫ ξi+1

ξi

f(ξ)

d2 + (ξ − ξp)gn(ξ) + Etrun
dξ (35)

In order to correctly represent the behaviour of the kernels, the term f(ξ) in (34) needs to include a
factor of 0.5 (since ln r = 0.5 ln r2) and the term f(ξ) in (35) needs to include a factor of r (since 1/r = r/r2).
Unlike the conventional BEM with polynomial interpolation function (i.e. Lagrange interpolation basis),205

the higher-order derivatives of the NURBS basis functions will not vanish (as shown in equation (32)).
Therefore, the term Etrun in (33) cannot be ignored. Clearly, the higher the order of the Taylor series in
(32), the smaller will be the error Etrun. In this paper, we will develop a method to keep the error Etrun

within acceptable limits.
In the following work, the nearly singular integrals in equations (34) and (35) over an isogeometric

element Γe with knot span [ξi, ξi+1] will be analysed and a general method for their computation will be
given. Firstly, the knot span should be split into two sub-knot spans [ξi, ξp] and [ξp, ξi+1] at the projection
point xp, so that the integrals (34) and (35) are expressed

I1 =

∫ ξp

ξi

f(ξ) ln r2dξ +

∫ ξi+1

ξp

f(ξ) ln r2dξ (36)

I2=

∫ ξp

ξi

f(ξ)

r2
dξ +

∫ ξi+1

ξp

f(ξ)

r2
dξ (37)

where r2 = d2 + (ξ − ξp)2
gn(ξ) + Etrun. The integrals above should be computed separately on each sub

knot span. Here, for brevity and without loss of generality, only the following integral with knot span [ξi, ξp]
in equation (37) is considered ∫ ξp

ξi

f(ξ)

d2 + (ξ − ξp)2
gn(ξ) + Etrun

dξ (38)

Similar procedures can be developed for the other integrals.210

We proceed by defining a nonlinear coordinate transformation mapping s ∈ [−1, 1] to the parametric
coordinate ξ ∈ [ξi, ξp], using

ξ = ξp + d sinh[a(s− 1)] (39)

where

a =
1

2
arcsinh

(
ξp − ξi
d

)
(40)

The Jacobian of transformation is given by

J =
dξ

ds
= d a cosh[a(s− 1)] (41)

9



After the transformation the squared distance r2 can be written as

r2 = d2
(
1 + sinh2[a(s− 1)]gn(s)

)
+ Etrun (42)

Substitution of the sinh transformation (39) and transformed distance function (42) into the nearly
singular integral (38), yields

1

d

∫ 1

−1

a cosh[a(s− 1)]f(s)

1 + sinh2[a(s− 1)]gn(s) + Etrun

ds (43)

By following the above procedure, the near singularity of the integrand on the knot span has been fully
regularised, and the integral can be evaluated directly by standard Gauss-Legendre quadrature.

3.3. Error analysis

3.3.1. Line isogeometric element

In this section we will compare the relative error of several methods outlined above. Firstly, a simple
line isogeometric element is considered, as shown in Figure 2a. The element is represented as a quadratic
NURBS curve with knot vector Ξ = {0, 0, 0, 1, 1, 1}, control points P1 = (0, 0), P2 = (0.5, 0) and P3 = (1, 0)
and weights [1, 1, 1]. The location of the source point is chosen as y = (0.5, d), in which d is the distance
from the source point to the element; in this study d varies from around 1 to 0.0000001. We introduce the
dimensionless aspect ratio d∗ = d/L to describe the proximity of the source point to the element, where L
denotes the length of the element. Since the source point is close to the element, the integrals (19) and (20)
will be nearly singular. Where the kernel in the integral has a strong singularity, i.e. (19), we call this a
strong nearly singular integral, and similarly where the kernel has a weak singularity, i.e. (20), we call this
a weak nearly singular integral. We present here the relative errors, εr, in evaluating both cases, where

εr =

∣∣∣∣Inum − Iref

Iref

∣∣∣∣ (44)

where Inum and Iref denote the numerical and reference values of the considered integral, respectively. The215

reference solutions for integrals considered in sections 3.3 and 4 are found numerically using the Matlab
function ‘int’ to convergence.
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Figure 2: Considered isogeometric elements

Figure 3 shows the relative error in evaluating the weak nearly singular integral by different methods
as the source point approaches the element. In the computation, 8 Gauss points are used to evaluate each
integral. For evaluations using the adaptive scheme, an upper bound relative error e = 10−8 is taken. When220
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the source point is not very close to the boundary, i.e. d∗ > 0.5, all the considered methods can be seen to
yield accurate results. However, with the decrease of the aspect ratio d∗, the performance of conventional
Gaussian quadrature is less satisfactory. From Figure 3, it can be seen that (for the same number of Gauss
points) the Telles scheme outperforms standard Gauss-Legendre, but for small d∗ it is unable to deliver a
relative error below about 0.01 for the weak nearly singular integral with 8 Gauss points. In contrast, the225

relative errors of the adaptive method, the sinh transformation method and the exponential method remain
below 10−5 even when the aspect ratio d∗ becomes very small.
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100

Aspect ratio d∗

ε r

Gauss-Legendre
Exponential transformation
Sinh transformation
Adaptive integral method
Telles method

Figure 3: Relative errors obtained by different methods for weak nearly singular integral on line isogeometric element

Figure 4 shows the relative error of the strong nearly singular integral evaluation by different methods
as the source point approaches the element. For this strongly singular integrand, 25 Gauss points are used
for the evaluations. It can be clearly seen from the figure that all the considered methods can produce230

accurate results when the aspect ratio d∗ > 0.5. However, when d∗ < 0.5, the results obtained by the
Gauss-Legendre quadrature and Telles methods become less satisfactory. We remark that we are applying
the Telles scheme here to an integrand of higher order singularity than is strictly appropriate, but since this
is a nearly singular (not singular) integral, the transformation remains an improvement over an unmodified
Gauss-Legendre scheme. The exponential transformation method, the sinh transformation method and the235

adaptive integral method are still able to deliver high accuracy even when the aspect ratio d∗ = 10−7. One
can also see that the adaptive integral method is emerging as the most accurate approach of those tested,
with a relative error εr remaining around 10−7 and being two to three orders of magnitude smaller than εr
found with the exponential transformation and sinh transformation methods.
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Figure 4: Relative errors obtained by different methods for strong nearly singular integral on line isogeometric element

3.3.2. Arc isogeometric element240

The arc isogeometric element given in Figure 2b is also represented as a quadratic NURBS curve with knot
vector Ξ = {0, 0, 0, 1, 1, 1}, control points P1 =

(
cos(−π6 ), sin(−π6 )

)
, P2 = (1.155, 0), P3 =

(
cos(π6 ), sin(π6 )

)
and weights [1, 0.866025, 1]. The source point y is close to the element with coordinates (1− d, 0), where d
denotes the distance from y to the element; in this study we consider d in the range 1 to 10−7.
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Figure 5: Relative errors obtained by different methods for weak nearly singular integral on arc isogeometric element
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Figure 6: Relative errors obtained by different methods for strong nearly singular integral on arc isogeometric element

Figures 5 and 6 show the results of weak and strong nearly singular integral evaluations by different245

methods when the source point approaches the boundary element. Similar to the line element tests, 8 Gauss
points are used for the weak nearly singular integral and 25 Gauss points are used for the strong nearly
singular integral. One can see that similar conclusions as for the line element can be drawn. The adaptive
method can obtain highly accurate evaluations of both weak and strong nearly singular integrals. From
Figure 5, it is evident that the relative errors of the sinh and exponential transformations start to grow for250

d∗ > 10−4, but the accuracy remains quite satisfactory down to d∗ < 10−7 for most practical engineering
problems. These errors are strongly driven by the number of Gauss points used; it is clear that the relative
errors for the sinh and exponential transformations are markedly reduced when 25 Gauss points are used,
even for the higher order singularity in the kernel, as shown in Figure 6. Figures 7a, 7b, 8a and 8b give a set
of results showing how the errors in sinh and exponential transformations change when different numbers255

of Gauss points are used.
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(a) Errors of exponential transformation
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(b) Errors of sinh transformation

Figure 7: Errors of exponential and sinh transformations change when different numbers of Gauss points are used for the weak
nearly singular integral
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(a) Errors of exponential transformation
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(b) Errors of sinh transformation

Figure 8: Errors of exponential and sinh transformations change when different numbers of Gauss points are used for the strong
nearly singular integral

From the above comparisons, the adaptive integral method, sinh transformation method and exponential
transformation methods can achieve satisfactory results in the computation of nearly singular integrals. The
adaptive integral method can consistently deliver very high accuracy although both the sinh and exponential
transformation methods can obtain satisfactory results.260

3.4. Efficiency analysis

Efficiency is another key metric for the evaluation of a numerical method. The aim in an engineering
context is often to achieve results of acceptable accuracy in as short a time as possible with the available
resources. Sometimes, engineers may find it beneficial to reduce the accuracy of an algorithm to improve the
computational efficiency, as long as the accuracy remains acceptable. It is clear that the different integration265

schemes offer different degrees of accuracy, so we now investigate their computational efficiency.
The error analysis suggests that we proceed focussing on the adaptive method and the sinh transformation

as the two preferred schemes. The elements in Figures 2a and 2b and the nearly singular integrals in equations
(19) and (20) are considered for further study. As in the error analysis, we retain the use of 8 and 25 Gauss
points for the evaluations of the integrals containing the weakly and strongly singular kernels, respectively.270

It is for this reason that, when we plot the CPU time requirements in Figures 9a, 9b and 10a, 10b, the
evaluation of the strong nearly singular integral using the sinh transformation takes approximately three
times more time than that of the weak nearly singular integral. The adaptive scheme CPU time is plotted
for different error tolerances e = 10−6, 10−8, 10−10. There is little visual difference in the CPU time for
these three tolerances; although this can be partially attributed to the compression arising from the use of275

a log scale, it should be remembered that the scheme will create very small subdivisions only locally around
the source point, while larger regions of the element are integrated using the same discretisation. In order
to illustrate this point, the total number of sub-elements and Gauss points used in the adaptive method for
strong nearly singular integrals with e = 10−6, 10−8, 10−10 is given in Table 1. It is evident that, for small
d∗, each reduction of two orders of magnitude in e results in an increase of only about 10% in the number280

of sub-elements and Gauss points. This confirms the reason that the lines showing the CPU time for the
adaptive scheme in Figures 9a, 9b and 10a, 10b are so close together.

The significant feature of these figures is the point at which the sets of lines for the different schemes
cross. This shows that the adaptive scheme will be the more efficient for aspect ratios d∗ ≥ 0.07 for the
weak nearly singular integral, and for aspect ratios d∗ ≥ 0.03 for the strong nearly singular integrals. For285

smaller d∗ the sinh transformation will be the more efficient scheme. This conclusion is summarised in Table
2, in which we introduce the notation d∗crit for this critical aspect ratio. While direct comparison is not
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appropriate because of the different accuracies considered, Figures 9a, 9b, 10a and 10b provide the basis for
a quantification of d∗crit as listed in Table 2.
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Figure 9: CPU time comparison between adaptive integral method and sinh transformation method on isogeometric line element
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Figure 10: CPU time comparison between adaptive integral method and sinh transformation method on isogeometric arc
element

4. Extended sinh transformation290

In Section 3.2, the sinh transformation was presented for the case in which the projection point lies in
the element, i.e. xp ∈ Γe. However, we must note that in a practical engineering simulation, many cases can
arise in which the source point lies close to one end of the element in such a way that the projection point
lies outside the element. Such a case is illustrated in Figure 11, and here we denote the projection point xp

′

to emphasise that xp
′
/∈ Γe. In the current work we assume xp

′
to lie close to the end of the element, as it295

will be shown that this scheme will be applied only for small d∗. In order to develop a robust integration
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Table 1: Total number of sub-elements and Gauss points used in the adaptive method for strong nearly singular integrals on
arc element

Error tolerance ei 10−6 10−8 10−10

Aspect ratio d∗ No. SE No. GP No. SE No. GP No. SE No. GP

6.68×10−1 1 6 1 9 1 11
5.73×10−1 1 7 1 10 1 13
4.77×10−1 1 9 1 13 1 16
3.82×10−1 1 14 1 18 1 22
2.86×10−1 2 14 2 20 2 26
1.91×10−1 2 28 2 36 2 44
9.55×10−2 4 36 4 48 4 60
9.55×10−3 32 114 35 122 39 156
9.55×10−4 317 670 349 750 384 852
9.55×10−5 3168 6386 3484 7030 3832 7748
9.55×10−6 31675 63386 34835 69723 38312 76682
9.55×10−7 316742 633498 348351 696742 383115 766292

Note: ‘No. SE’ stands ‘number of sub-elements’; ‘No. GP’ indicates ‘number of Gauss points’.

Table 2: Efficient method for different nearly singular integrals

weak nearly singular integral strong nearly singular integral

Aspect ratio d∗ < d∗crit = 0.07 d∗ ≥ d∗crit = 0.07 d∗ < d∗crit = 0.03 d∗ ≥ d∗crit = 0.03

Efficient method sinh transformation adaptive integral sinh transformation adaptive integral

scheme, we present a new adaptation of the sinh transformation approach based on the analytical extension
of the NURBS curve.

y

xp′
d = |xp′ − y|

n

r = |x− y|
x

Control points
Source point
Projection point
Field point
Boundary element
Extension element

Figure 11: Minimum distance d to the extension element when xp′ /∈ Γe

Here, we take the arc element in Figure 2b as an example. For the development of the method, and
without loss of generality, we consider the knot span of the element to be [0,1]. For a NURBS curve of300

degree p = 2, the basis functions Ra,p, a = 1, 2, 3 are plotted in Figure 12a.
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Figure 12: NURBS basis functions of the considered isogeometric element

Since the NURBS basis functions are a set of continuous functions of ξ, we can apply them to values of ξ
outside the knot span of the element. For example Figure 12b shows the same NURBS functions applied to
ξ ∈ [0, 1.2]. This analytical extension is non-physical and not intended to describe the component geometry.
This allows us to apply the sinh transformation where the parameter ξp′ of the projection point xp

′
will lie

in the extended span (grey zone) of Figure 12b. The expanded curve (both the dashed curve and solid curve
in Figure 11) can be expressed by

x(ξ) =

p+1∑
a=1

Ra,p(ξ)Pa, ξ ∈
[
0, ξp

′]
, ξp

′
> 1 (45)

A similar expression can be written for cases in which the projection point is just outside the other end of
the element, i.e. for the case ξp

′
< 0.

Considering the extended isogeometric element, the distance d = |y − xp
′ | will be the perpendicular

distance from the source point to the projection point which may be located in the analytically extended
part of the element. The projection point and corresponding distance d can be found using the identical
Newton-Raphson scheme as before. Therefore, the equations (30) and (33) still apply. However, for this
case, the nearly singular integrals (36) and (37) will become

I1 =

∫ ξp′

ξi

f(ξ) ln r2dξ −
∫ ξp′

ξi+1

f(ξ) ln r2dξ (46)

I2=

∫ ξp′

ξi

f(ξ)

r2
dξ −

∫ ξp′

ξi+1

f(ξ)

r2
dξ (47)

with similar expressions for the case ξp
′
< 0.

To illustrate the accuracy of the extended sinh transformation, Figure 13 shows the relative errors in
the evaluation of the strong nearly singular integral over the arc isogeometric element with source points
located outside the subtended arc of the element, as shown in Figures 11 and 2b. The position of the source
point is described by

x = r cos(θ + θ0); y = r sin(θ + θ0). (48)

We consider r varying from 0.1 to 0.9999999 (the circle has unit radius), θ = π
6 , and angle θ0 = ( π

180 ,
π

1800 ,
π

18000 )305

is a small angle, as shown in Figure 2b. These results demonstrate that the extended sinh transformation
can obtain very accurate results, even when the source point is very close to the element and the projection
point lies outside the element.
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Figure 13: Relative errors obtained by extended sinh transformation for strong nearly singular integral on arc isogeometric
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5. Hybrid integration scheme

As discussed in Sections 3.3 and 3.4, both the error and efficiency of the considered computation methods310

are related to the aspect ratio d∗, which describes the proximity of the source point to the element. The
conclusion drawn from these sections is that a satisfactory balance between accuracy and efficiency cannot
be achieved simultaneously by using only one of the considered methods (sinh transformation method or
adaptive method). In Section 3.4 we identify a critical value d∗crit, quantified in Table 2, that can be used
to inform a hybrid approach using the best features of both. When the aspect ratio d∗ > d∗crit, there315

is no near-singularity and the adaptive integration method is applied. However, for d∗ < d∗crit the near-
singularity triggers a hybrid integration scheme, named sinh+ in this work, details of which are provided
in the following section. Here the adaptive integration and sinh transformation methods are combined; the
sinh transformation is used in the region very close to the source point, and the adaptive scheme used in the
more distant parts of the element. When the projection point lies outside the element (xp

′
/∈ Γe, illustrated320

in Figure 11), the extended sinh transformation in Section 4 is used.

5.1. Hybrid sinh+ scheme

It has been shown that there is a truncation error term Etrun in equations (26) and (33) due to the
use of NURBS shape functions to replace the conventional Lagrange polynomials. In this section, we will
discuss the influence of this term on the results and develop the new sinh+ transformation method. As in325

the previous section, an arc describing a quarter of a circle will be studied, described by a quadratic NURBS
with Ξ = {0, 0, 0, 1, 1, 1}, control points P1 = (3.0005, 0), P2 = (3.0005, 3.0005), P3 = (0, 3.0005) and weights
[1,
√

2/2, 1]. We take the minimum distance to be d = 5× 10−4 m.
From equation (33), we can obtain

Etrun =
∣∣r2

exact −
(
d2 + (ξ − ξp)2gn(ξ)

)∣∣ (49)

where r2
exact = (x1− y1)2 + (x2− y2)2 is the real square distance between the source point and field (Gauss)

point. This square distance can be computed accurately since the coordinates of both points are known.
Therefore, the following relative error can be used to describe the accuracy of the Taylor expansion in
predicting the square distance r2:

Relative error =

∣∣∣∣Etrun

r2
exact

∣∣∣∣ (50)

Figures 14a and 14b show the relative error comparisons when the projection point is located at the
middle (ξp = 0.5) and end (ξp = 1) of the element, respectively. From the two figures we can see the growth330
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of the truncation error with increasing distance between the field point and the projection point. The order
referred to in these Figures relates to the number of terms used in the Taylor series approximation. In
Figure 14a, the reason for the fluctuation of the curves for order = 3, 5 is that the sign of the error changes
at these points.

This behaviour leads us to propose the sinh+ method as shown graphically in Figure 15. In the computa-
tion of nearly singular integrals for an IGABEM boundary element with knot span [ξ1, ξ2], we first compute
the truncation error Etrun at each Gauss point. If Etrun exceeds a predefined tolerance eps at the points
ξ = ξ

′
1 and ξ = ξ

′
2, the element will be subdivided into three parts [ξ1, ξ

′
1], [ξ

′
1, ξ

′
2] and [ξ

′
2, ξ2] and the integral

evaluated piecewise as ∫ ξ2

ξ1

f(ξ)dξ =

∫ ξ
′
1

ξ1

f(ξ)dξ +

∫ ξ
′
2

ξ
′
1

f(ξ)dξ +

∫ ξ2

ξ
′
2

f(ξ)dξ (51)

In the central sub-region [ξ
′
1, ξ

′
2], since Etrun < eps, the sinh transformation method may be safely adopted335

and the scheme can benefit from its computational efficiency. The adaptive integral method will be used
to compute the integrals on the subdivisions [ξ1, ξ

′
1] and [ξ

′
2, ξ2] since Etrun > eps. Note that the adaptive

scheme will be efficient here since the interval of integration is not too close to the source point.
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Figure 14: Comparisons of relative errors for different orders of Taylor expansion
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Figure 15: Choice of integral method based on the truncation errors Etrun of Taylor expansion
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Figure 16: The impact of various eps on the accuracy and CPU time of the nearly singular integration

To show the effect of eps on the time taken to compute the integral and the accuracy, a single integral
case (strong nearly singular integral with arc geometry in this section) is given in Figure 16a and 16b. It is340

noted that with the decreasing of eps the accuracy of the sinh+ scheme will be significantly improved, with
mild changes in CPU time.

5.2. Summary of overall integration strategy

The new scheme is summarised as follows. For all non-singular cases:

• if d∗ > d∗crit, the adaptive scheme is used.345

• if d∗ < d∗crit, the sinh transformation is used for the portion of the element (closer to the source point)
over which Etrun ≤ eps, and the adaptive scheme is used for the more distant portions of the element
as shown in Figure 15.

– if the projection point lies outside the element, then the extended sinh transformation is used to
replace the conventional sinh transformation350

– in some cases, Etrun ≤ eps over the entire element, in which case the adaptive scheme is not used

6. Numerical examples

In this section, through several numerical examples, the accuracy and effectiveness of the IGABEM using
the sinh+ scheme for coating structures are demonstrated. The examples involve a substrate with a coating,
and material properties are typical of the materials used in a superalloy turbine blade with a thermal barrier
coating. All material properties are taken from Padture et al. [34]. All analyses are steady state heat
transfer, and in this section we use the notation T (playing the role of u in the earlier sections of this paper)
to emphasise that this is a temperature. All examples are run in 2D, though we make use of surface plots
as a revealing way to display some relative errors. To carry out the accuracy and convergence analysis, two
types of errors are considered: a relative error defined in equation (44) and L2 relative error norm with
respect to a reference solution Tref defined by

E2(Tnum; Γ) =
‖Tnum − Tref‖L2(Γ)

‖Tref‖L2(Γ)

(52)
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where Γ is the boundary, portion of the boundary, or other contour over which the norm is taken, Tnum is
the temperature as predicted by the present numerical scheme, and the L2 norm is

‖f‖L2(Γ) =

√∫
Γ

f2dΓ

Unless otherwise stated, we take the tolerance eps = 10−6 in the sinh+ scheme for all examples. For examples
6.2,6.3 and 6.4, the original parametric definition of the substrate and coating geometry is given by knot
vector Ξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4}. The degree of the NURBS basis functions is p = 2. Unit weights355

are used for a square boundary and weights w = [1,
√

2
2 , 1,

√
2

2 , 1,
√

2
2 , 1,

√
2

2 , 1] are adopted for a circular
boundary.

6.1. Heat transfer through plane wall with multilayer coating structures

In practice we often encounter plane walls that consist of several layers of different materials. Consider a
1×2 m rectangular plate, as shown in Figure 17 with thermal conductivity 22W/m·K. Both sides are covered360

by a ceramic coating structure made of Y2O3-stabilised ZrO2 (YSZ) with thermal conductivity 2.3W/m ·
K which provides the thermal insulation so that the one-dimensional problem will have a temperature
distribution as plotted in the Figure with T1, T2, T3, T4 being temperatures at the key locations. In the
computation, the thickness δ of the coating structure varies from 0.5 to 10−8 m. The temperatures on
both sides are prescribed as T1 = 150◦C and T4 = 10◦C. All upper and lower boundaries are insulated,365

i.e. ∇T · n = 0. We define boundaries Γq̄ as the union of the (horizontal) insulated boundaries, and Γint as
the union of the two interfaces. The initial parametric definition of the substrate and coating geometry is
given by two knot vectors Ξ1 = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6} and Ξ2 = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4},
respectively. The NURBS basis functions with polynomial degree p = 2 and unit weights are used.

Insulation Insulation

2mδ δ

SubstrateT1

T2
T3

T4

Figure 17: Heat transfer through a model with double flat coatings

In Figure 18a we present the L2 relative error norm E2(Tnum; Γq̄ ∪ Γint) when different integration370

schemes and different coating thickness δ are considered. It is evident that when δ > 0.1 m, all methods
can obtain accurate results. However, with the reduction of thickness δ the results obtained by the regular
Gauss quadrature become unsatisfactory. In contrast, the sinh+ and adaptive schemes can obtain accurate
results for coating thickness δ as small as 10−8 m. In Figure 18b, the CPU time of the different analysis
methods is given with the reduction of coating thickness δ. When δ > 10−2 m the sinh+ scheme will use375

a little more time than the adaptive method due to the overhead in selecting the appropriate integration
scheme. However, for δ ≤ 10−2 m, the CPU time of the adaptive scheme increases dramatically, while the
CPU time of the sinh+ scheme remains fixed at around 102 ms.

To further illustrate the effective of the sinh+ scheme, the numerical temperature distribution and its
relative error inside the substrate when δ = 10−5 m are given in Figures 19a and 19b, respectively.380
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Figure 18: Comparisons of accuracy and efficiency
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Figure 19: Temperature distribution and relative error inside the matrix
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6.2. Heat transfer through cylinder with multilayer coating structures

T1Ti,2 Ti,3T4

δδ
r1

r2

coating

substrate

coating

Figure 20: The thermal resistance network for heat transfer through a cylinder with multilayer coating structures

In the second example we study the heat transfer through a cylinder with multilayer coatings as shown
in Figure 20. The conductivity of the superalloy substrate is taken as 22W/m · K and the inner and outer
diameters of the substrate are r1, r2 = 2, 3 m. As shown in the Figure, both sides of the substrate are covered
with a YSZ coating of thickness δ m and having thermal conductivity 2.3W/m · K. In the computation,385

the coating thickness δ varies from 0.5 to 10−7 m. The temperatures on the inner and outer diameters are
prescribed as boundary conditions, being T1 = 80◦C and T4 = 200◦C.
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Figure 21: L2 relative error norm E2(Tnum; Γint)
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Figure 22: Comparisons of CPU time for different methods

In Figure 21 we present the L2 relative error norm E2(Tnum; Γint) where Γint is the union of the interfaces
between the substrate and its coatings; results for different integration schemes and for different values of
δ are shown. From this Figure, some similar conclusions as for example 6.1 can be drawn. Firstly, all the390

methods are effective when δ > 0.1 m but the results obtained by the regular Gauss quadrature become
unsatisfactory for smaller δ. Again, the sinh+ and adaptive schemes can still deliver accurate results for
thickness δ as small as 10−7 m. The CPU time associated with the different methods is given in Figure
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22. Similar conclusions can be drawn as in the previous example with the CPU time of the sinh+ scheme
stabilising at around 103 ms for small δ.395
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Figure 23: Convergence of L2 relative error norm
E2(Tnum; Γint) with ndof
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Figure 24: L2 relative error norm E2(Tnum; Γint) vs. δ

Figure 23 shows the convergence of the L2 relative error norm E2(Tnum; Γint) as the number of degrees of
freedom (ndof) increases from 48 to 480 with different coating thickness δ. The convergence can be clearly
seen even when the thickness of the ceramic coating is as small as 1 µm (10−6 m). The reason for the
increase in relative error norm for small δ ≤ 10−3 m is that in the sinh+ scheme the sinh transformation is
now activated, as d∗ < d∗crit, to improve the efficiency. We are able to tolerate this additional error because400

the integration scheme has been tuned to deliver acceptable engineering accuracy at the optimal computational
cost.

Figure 24 shows the behaviour of the L2 relative error norm E2(Tnum; Γint) with the coating thickness δ.
As δ reduces from 0.5 to 10−3 m the error gradually increases. For δ < 10−3 m the sinh+ scheme activates
the sinh transformation in evaluating the nearly singular integrals; in this range, the L2 relative error norm405

remains stable, stabilising at smaller errors as the model size increases.
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Figure 25: L2 relative error norm E2(Tnum; Γint) when different error tolerances are used in sinh+(illustrated in Figure 15)

As shown in Figure 15, the choice of the appropriate integration method in the proposed sinh+ scheme
depends on the values of error tolerance eps and the truncation error Etrun of the Taylor expansion. In
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Figure 25 we study the effect of eps and ndof on the L2 relative error norm E2(Tnum; Γint) when 9 Taylor
series terms are used. The influence of the tolerance eps can be clearly seen for the coarser discretizations410

when ndof = 48, with the L2 norm error stabilising as eps reduces. When the mesh is refined, the aspect
ratio d∗ will increase to the extent that the sinh+ scheme uses only the adaptive scheme. In this range, the
solution accuracy is independent of tolerance eps. It should be noted that when eps >> 10−1, the sinh+

scheme will degenerate to the original sinh method.
Figures 26a and 26b show the temperature contours and the relative error through the cylinder for the415

case δ = 10−6 m.
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Figure 26: Temperature distribution inside the substrate and its relative errors when δ = 10−6

6.3. Convective heat transfer through hollow cylinder with coating structure

Convection problems are particularly important in heat transfer applications such as those found in
turbomachinery. For a turbine blade, it is very difficult to obtain the boundary temperature, while the
ambient fluid temperature adjacent to the material surface can usually be obtained more readily. In this
example we make some modifications to the example in section 6.2 to explore different numerical features of
the different schemes and better simulate a working turbomachinery environment. For simplicity we remove
the coating on the outer diameter, we will explore the effect of different coating materials (having different
thermal conductivity), and we apply on the inner diameter of the remaining coating a convection boundary
condition given by

k
∂T

∂n
= −h(Tf − T ) (53)

where Tf is the temperature of the fluid and h is the heat transfer coefficient.
As is shown in Figure 27a, we model a superalloy cylinder substrate with inner diameter of 2 m and

outer diameter of 3 m. The inner surface of the substrate is covered by a ceramic coating of thickness δ and420

thermal conductivity 2.3 W/m ·K. The hollow superalloy cylinder substrate has a thermal conductivity of
22 W/m · K and its outer surface maintains a constant temperature of T4 = 800◦C. The thermal barrier
coating is exposed to hot gases at temperature Tf = 1700◦C and a heat transfer coefficient h = 1000W/m2 ·K
applies [34, 86]. In the computation, the coating thickness δ varies from 0.5 to 10−7 m. Note that Figure
27a is included for diagrammatic purposes, and the analysis is performed for the full 360◦ cylinder in 2D.425
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Figure 27: Convection heat transfer model

Figure 28 shows the L2 relative error norm of the interface temperatures, E2(Tnum; Γint), for coating
thicknesses down to 10−7 m. Once again, we see the sinh+ scheme outperforms Gauss-Legendre quadrature
and is able to deliver accurate results from small models, in this cases as few as ndof = 32, and is stable
at very small coating thicknesses. A significant improvement in accuracy can be seen when the model is
refined. To further illustrate the accuracy of the method to solve convective heat transfer models with a
coating, we plot in Figure 29 the relative error in the temperature at points inside the substrate lying on
the contour S1, which is defined by

S1 = {(x, y);x = r0 cos θ, y = r0 sin θ, θ ∈ [0, 2π), r0 = 2.5 m} (54)
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Figure 28: L2 norm E2(Tnum; Γint)
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Figure 29: Relative errors along S1 with δ = 10−5 and 10−7

The relative error obtained by the sinh+ scheme is considerably smaller than that of the regular Gauss
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quadrature, as expected, though it retains an oscillatory nature. This can be attributed to the coarse
discretisation; although the geometry is exact with our IGABEM model, there is a periodicity in the control
point locations that is reflected in the solution. However, the relative error remains stable as δ changes from
10−5 to 10−7 m.430

Figure 30 studies the convergence of the IGABEM scheme using sinh+ when we refine the mesh for
different coating thicknesses. For a fixed thickness δ the convergence of the method is demonstrated well
with increasing model refinement. Otherwise, we draw the same conclusions as from Figure 23, in that the
sinh+ scheme is performing well in delivering results of good engineering accuracy for small δ, at which the
algorithm activates the sinh transformation in addition to the adaptive scheme.435

Figure 31 shows the temperature difference across the coating. We consider coatings made of four
commonly used coating materials: BaLa2Ti3O10 (k = 0.7 W/m ·K) [87], La2Zr2O7 (k = 1.56 W/m ·K) [88],
YSZ (k = 2.3 W/m · K) [34] and BaZrO3 (k = 3.42 W/m · K) [89]. The graphs show the reduction in the
insulation capacity of the coating as its thickness δ reduces. We can also verify numerically that the greater
the conductivity of the coating, the smaller will be its heat insulation capacity. However, as the coating440

thickness becomes small, reducing to 10−7 m, the relationship between its heat insulation capacity and its
thermal conductivity is not obvious, as the curves for all materials become coincident.
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Figure 30: Solution convergence for different δ
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Finally, using the initial parameters, the temperature distribution inside the substrate and its relative
error for coating thickness δ = 10−6 m are given in Figures 32 and 33, respectively.
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Figure 32: Temperature distribution with δ = 10−6 m
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6.4. Convection heat transfer through a tube in a square cross-section445
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Figure 34: Convection heat transfer model

In our final example, shown in Figure 34a, hot steam is carried from a combined heat and power generation
plant by a tube centred in a 6 m square cross-section solid material with thermal conductivity of 22 W/m ·K.
As shown in Figures 34a and 34b, the inner side of the substrate (at radius r = 2 m) is covered by ceramic
(YSZ) coating of thickness δ and thermal conductivity 2.3 W/m · K. In Figure 34b, the left and right
surface temperatures on the left and right edges of the substrate are prescribed constant at T4 = 500◦C450

and T5 = 100◦C, respectively. The coating inside the substrate is exposed internally to hot gases at a
temperature Tf = 1700◦C, and a heat transfer coefficient of 1000 W/m2 ·K applies. Again, the 3D view in
Figure 34a is for diagrammatic purposes only; all analyses are performed in 2D.
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For this problem, an analytical solution is not available, and the convergence of the problem is established
by taking a very refined BEM model as the reference solution. Thus we define an error metric

Error =
1

N

N∑
n=1

∣∣∣∣T in − T 32
n

T 32
n

∣∣∣∣ (55)

where N is the number of evaluation points used to compute the error, and T in is the temperature at
the nth evaluation point in the IGABEM model at refinement level i. The refinement between levels is455

accomplished by uniform knot insertion. It can be seen from the equation that the solution at refinement
level 32 (ndof=1024) is used as the reference solution.

As our evaluation points we take 50 uniformly spaced points along the contour S1, defined in (54). Figure
35 shows the solution convergence in the metric (55) when the NURBS is refined. We consider a coating of
thickness δ = 10−6 m. The table in the Figure gives the corresponding model size in ndof at each refinement460

level. Here, the impact of various eps on the overall accuracy follows the same pattern as shown in Figure
25 for the previous example.
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Figure 36: Interface temperature distributions

Figure 36 shows the temperature Ti,3 at the interface between the substrate and the coating for different
coating thicknesses δ. Again we see the improved thermal insulation with thicker coatings, but also we
see the increased variation in the temperature around the circumference of the interface. Finally, Figures465

37a and 37b show the temperature distribution inside the substrate for coating thicknesses δ = 10−1 and
10−6 m, respectively.
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Figure 37: Temperature distribution in the substrate for the cases δ = 0.1 and 10−6 m

7. Conclusion

In this paper, engineering systems with thermal barrier coatings are studied using the isogeometric
boundary element method (IGABEM). An essential feature of these problems is the small thickness of the470

coating structures, typically 1 to 5 µm [34], and it is demonstrated that a naive IGABEM implementation
using a standard quadrature scheme, that does not specifically deal with this special geometry, is unable to
deliver results of acceptable engineering accuracy.

An analysis is carried out on the errors and computational efficiency of available methods for evaluating
nearly singular integrals in the BEM. We adapt these methods to the IGABEM and show that using only one475

of the examined methods does not yield a satisfactory balance between accuracy and efficiency. We develop
and propose the new sinh+ scheme that combines the benefits of the sinh transformation (of, amongst
others, Gu et al. [69]) and adaptive integration scheme (of Gao et al. [54]). In order to make the scheme
robust, we further extend the sinh transformation by using the analytical extension of the NURBS curve
to accommodate cases in which the projection of the source point lies outside the physical domain of the480

element.
The resulting sinh+ scheme thereby maintains the computation accuracy across the full range of coating

thicknesses by controlling the truncation error in the Taylor expansion of the BEM square distance function
for NURBS discretisations. An important feature of the work is that the integration scheme is tuned
to deliver results of engineering accuracy in the optimal computation time. The scheme is adaptable,485

by changing the tolerance eps, to enable engineers to achieve a different balance between accuracy and
computational efficiency as may be required for different applications.

A range of numerical examples together demonstrate that the new sinh+ scheme delivers highly accurate
solutions in a computationally efficient manner in the solution of engineering problems with thermal barrier
coatings.490
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