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A B S T R A C T

Wildfire disturbances effect changes in vegetation communities that in turn influence climate. Such changes in
boreal forest ecosystems can persist over decadal time scales or longer. In the ecotone between boreal forest and
steppe in the region southeast of Lake Baikal in southern Siberia, shifts between the two vegetation types may be
precipitated by variations in site specific conditions, as well as disturbance characteristics such as fire frequency
and severity. Warmer, drier conditions in the region have been associated with a decrease in fire return intervals
and greater burn severity that may, in turn, drive conversion of forests to steppe vegetation at a greater rate than
has occurred prior to the onset of warming and drying. Stand-replacing fires in Pinus sylvestris stands in southern
Siberia may lead to recruitment failure postfire, particularly on southwest to west-facing slopes, which are more
often dominated by grasses. This study uses a combination of field data and remotely sensed indices of vege-
tation and moisture to distinguish between recruitment pathways in southern Siberia, and to study the influence
of factors related to soils, topography, fire severity and winter snow cover on these.

We expected that recruitment success would be associated with lower burn severity (higher NBR), higher
greenness (NDVI) and moisture (NDMI), and winter snow (NDSI) postfire. We also expected phenological
characteristics to differ among recruitment paths. Prior to burning, our sites are broadly similar in terms of
remotely sensed indices of moisture (NDMI), vegetation (NDVI), and winter fractional snow cover (NDSI), but
recruitment failure sites are generally drier and less green postfire. Initial differences in greenness and moisture
among sites characterized by abundant recruitment (AR), intermediate recruitment (IR) and recruitment failure
(RF) become more pronounced over the initial decades postfire. The earliest separability of AR and RF sites using
remotely sensed indices occurs in the winter months 3–4 years postfire, during which time NDSI is highest for AR
sites and lowest for RF. Although seasonality was important with regard to distinguishing among AR, IR and RF
index values, the timing of phenological events such as start and end of season did not differ significantly among
the sites.

1. Introduction

Boreal forests store 40 Pg C (Thurner et al., 2014) and account for
20% of the global forest C sink (Pan et al., 2011). Eurasian and North
American forests each account for about half of boreal carbon storage
(Thurner et al., 2014) and the northern land sink (Gurney et al., 2002).
Boreal forest carbon stocks are increasing due to its expansion into
tundra and former agricultural areas (Achard et al., 2006) as well as
increases in ecosystem productivity from longer growing seasons and

warmer temperatures (White et al., 1999). Boreal carbon stocks are also
vulnerable to losses from increased respiration (Quegan et al., 2011),
droughts (Ma et al., 2012; Michaelian et al., 2011; Peng et al., 2011),
and more frequent and severe disturbance events (Gustafson et al.,
2010) including wildfires (Achard et al., 2006; Settele et al., 2014).

Boreal fire/climate feedbacks and their magnitudes and time scales
are still poorly understood. Disturbance cycles are associated with ex-
acerbating and mitigating feedbacks to climate change (Johnstone
et al., 2016; Rogers et al., 2013) as they both influence and are affected
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by climate (Settele et al., 2014). More frequent and more severe fires
lead not only to substantial boreal forest carbon losses (Fang et al.,
2015; Miquelajauregui et al., 2018; Stephens et al., 2014) and possibly
the reversal of a boreal carbon sink (Bradshaw and Warkentin, 2015),
but also provoke shifts from forests to non-forested ecosystems
(Scheffer et al., 2012), particularly in areas that have experienced cli-
mate change pressures for an extended period prior to disturbance
(Seidl et al., 2017). Persistent forest losses may occur because increased
fire frequency interrupts relay succession dynamics (Johnstone and
Chapin, 2006a), or because conditions such as shading (Holmgren
et al., 1997), soil moisture and temperature or organic layer depth are
so modified that tree seedlings fail to become established and other
plant functional types are more successful (Johnstone and Chapin,
2006b; Trugman et al., 2016).

Siberia has experienced the greatest temperature increase in the
northern hemisphere (Groisman et al., 2013), and southern Eurasian
boreal forests are contracting their range, even as they expand to higher
elevations and further north (Koven, 2013), consistent with predicted
shifts associated with climate change in the region (Tchebakova et al.,
2009). In this region, subtle changes in temporal precipitation patterns
together with longer fire seasons due to rising temperatures can trigger
a tipping point in the ecological systems that leads to the demise of
forests and the expansion of steppe vegetation (Tchebakova et al.,

2011). Fire frequency and precipitation are the two primary drivers that
maintain forest or grassland ecosystems according to observational data
(Bowman et al., 2013; Hirota et al., 2011; Mayer and Khalyani, 2011),
models of vegetation change (Brazhnik et al., 2017, Lehsten et al.,
2015; Tchebakova et al., 2011), and ice core reconstructions of vege-
tation and climate (Eichler et al., 2011). Southern Siberia is on a gra-
dient between much cooler and wetter taiga and the drier and warmer
Mongolian steppe. Fire return intervals (FRI) in the ecotone between
taiga and steppe vegetation are on the order of 25 to 50 years (Chu
et al., 2016; Furyaev, 1996; McRae et al., 2006; Swetnam, 1996; Wirth
et al., 1999), considerably shorter than FRI further north (> 100 years
[Wirth et al., 2002]) and longer than intervals to the south (7–16 years
[Hessl et al., 2012]). The landscape in southern Siberia is generally a
patchwork of forest and grasses, with forests found primarily on slopes,
and the discontinuity of forest vegetation cover indicates a potential for
ecological instability (Peterson, 2002).

The potential for shifts between forest and grassland-type ecosys-
tems, or bi-stability between these two states have been observed
globally (Hirota et al., 2011) in boreal regions of Eurasia (Scheffer
et al., 2012; Tchebakova et al., 2009), tropical regions in South America
(Betts et al., 2004; Malhi et al., 2008; Oyama and Nobre, 2003), Africa
(Lehsten et al., 2015; Staver et al., 2017), and Australia (Bowman et al.,
2001). Dominant plant functional type is largely governed by feedbacks

Fig. 1. Study region and site locations.
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by which tree growth is either promoted or hindered (Adamek et al.,
2016), and fire is frequently the catalyst for such shifts (Bowman et al.,
2013; Tarancon et al., 2014). In Russian boreal forests, as much as a
third of burned area fails to regenerate postfire (Shvidenko et al.,
2011). Persistent forest losses postfire have been commonly observed in
southern Siberia (Schepaschenko et al., 2015), where logging impacts
fuel loads available for combustion and in turn fire severity
(Kukavskaya et al., 2016). Tree mortality dynamics in the southern
boreal forest are critical to understanding carbon cycling and climate
feedbacks in the region (Bradshaw and Warkentin, 2015; Gustafson
et al., 2010; Koven, 2013).

In this study, we seek to distinguish among areas in southern Siberia
that recruit trees abundantly postfire, intermediate recruitment, and
recruitment failure (AR, IR, and RF, respectively) using remotely sensed
data and information from field observations. We use long time series of
remotely sensed indices of greenness, moisture, snow cover, and fire
severity from Landsat and phenological characteristics derived from
MODIS indices to compare these recruitment types prior to burning and
for up to 17 years postfire. We test hypotheses that differences in re-
cruitment type are caused by higher burn severity and lower winter
snow cover, and that variability in recruitment leads to differences in
greenness and vegetation moisture as well as phenological character-
istics of AR, IR, and RF sites.

2. Study area

Our study area is in the southern Eurasian boreal forest range, in
the Zabaikalsky Krai and the Republic of Buryatia, immediately
southeast of Lake Baikal (Fig. 1). The territory is characterized by
highly-dissected and eroded mountainous terrain with mountain
ridges elongated from south-west to north-east. Altitudes range from
300 m in the valleys of the Zabaikalsky Krai to almost 3500 m above
sea level in the Eastern Sayan Mountains of the Republic of Buryatia.
Mean monthly temperature varies from a low of −24 to −26 °C in
January to a high of +15 to +18 °C in July. The average annual
precipitation varies from 200 mm at southern forest, forest-steppe and
steppe zones to 700–900 mm in the Stanovoy highlands and in the
Eastern Sayan Mountains (Geniatulin, 2000; Gerasimov, 1965).
Summer (mainly July and August) accounts for 60 to 70% of annual
precipitation (Forest Plan of the Republic of Buryatia, 2008; Forest
Plan of the Zabaikal Region, 2014). Forests in the region are mountain
taiga, typically light conifer and deciduous stands, mainly consisting
of larch (Larix gmelinii and L. sibirica), Scots pine (Pinus sylvestris), and
to a lesser extent Siberian pine (Pinus sibirica), aspen (Populus spp.) and
birch (Betula spp.). Pine stands are widespread on dry and mesic sandy
and sandy-loam soils. Permafrost is primarily confined to the northern
part of the region and to the upper part of north facing slopes, where
pine is not found. Larch stands grow in the upper parts of north slopes
and in the zone of continuous permafrost in the northern region.
Mixed larch-pine stands with some component of deciduous species
are typical on mesic and wet loamy soils (Buryak, 2015). In the forest-
steppe, south-facing slopes are occupied by steppes, and north-facing
slopes by Scots pine or birch (Betula pendula).

Fires have dominated Siberian boreal forests for the last 9000 years
(Katamura et al., 2009), and, similar to the association with black spruce
in Alaska, their prevalence coincided with the spread of boreal wood-
lands 11,000 to 10,000 years ago (Bezrukova et al., 2010). Siberian
wildfires are typically lower severity surface fires (Rogers et al., 2015),
and the proportion of stand-replacing fires in Siberia is lower in the south
(Krylov et al., 2014). Climate and wildfire in the region are less directly
linked than in the boreal forests of North America due to anthropogenic
impacts including ignitions (Mollicone et al., 2006) and effects on
available fuels through forest management (Kukavskaya et al., 2013) and
through livestock grazing (Hessl et al., 2012). The disconnection between
climate and fire is evidenced by low correlations between fire activity
and weather/climate conditions (Eichler et al., 2011), plus limited

synchrony in fire events (Hessl et al., 2012, Swetnam, 1996). Fires in the
region are characterized by high density and high annual variability
during a short fire season (Chuvieco et al., 2008), and compared with
global fire regimes are rare, intense, and large (Archibald et al., 2013).
Large-scale climate patterns such as the Arctic Oscillation can influence
interannual fire variability (Balzter et al., 2007).

Scots pine spread through the region about 7000 years ago, corre-
sponding to a shift towards a drier and colder climate similar to present
day (Bezrukova et al., 2010). Scots pine forests in the region are
characterized by the highest level of disturbance and fire hazard as they
grow in the drier slopes with greater insolation and in the lower part of
the slopes with a more developed road network (Buryak, 2015). Fire
return intervals in Siberian Scots pine stands are on the order of
20–40 years (Ivanova et al., 2010; Wirth et al., 1999). Pine stands are
managed for timber and firewood, and most burned forests that are
accessible by road are normally also logged, and sometimes replanted
postfire, as they are elsewhere in the Siberian boreal forest (Hu et al.,
2015). Illegal logging in the region significantly increase the amount of
fuels available to burn because of slash left on site, thus increasing
potential fire severity and the probability of fire spreading to tree
crowns (Kukavskaya et al., 2013).

3. Methods

Our sites mostly extend along the Trans-Siberian highway between
Chita and Ulan Ude. We depended on expert knowledge of foresters and
ecologists in the region to locate pine stands that burned after 2000, and
prefire forest type was confirmed by identification of partially-burned
stumps. Sites were generally restricted to south and sometimes west-fa-
cing slopes, where pine stands are typically found. Sites were char-
acterized in situ according to an initial assessment of recruitment levels
as AR (n = 14), IR (n = 37), and RF (n = 13). These characterizations
were later confirmed as AR and RF sites were at the extremes of the
variability in stocking density among the sites (Figs. 2 and 3). The
stocking density for each site was converted to a “tall seedlings”
(i.e.,> 1.5 m) equivalent using Russian forestry standards (Russian
Forest Restoration Rules, 2016), and compared with the required
stocking density to support recruitment for a given site based on ecor-
egion, species and forest type and soil moisture. Sites that did not meet
the stocking density of tall seedlings requirement were maintained as RF,
sites that had more than the requirement but less than two times the
requirement were maintained as IR, and sites with more than twice the
required stocking density were maintained as AR. Field sites that did not
correspond to the appropriate stocking density (n RF = 0, n IR = 18,
n AR = 1) were omitted from the analysis.

3.1. Hypotheses

We tested the following hypotheses regarding the characteristics of
AR, IR, and RF sites. First, that RF sites would exhibit the lowest
postfire vegetation index (NDVI) values, followed by IR and AR sites
due to differences in leaf area, green biomass, canopy structure and
photosynthetic activity (Carlson and Ripley, 1997; Dong et al., 2003;
Gamon et al., 1995). Second, that RF sites have experienced more se-
vere fires (i.e., lower NBR) than IR and AR sites, which have led to RF
through the combustion of seed stock and viable plant propagules
(Flinn and Wein, 1977). Third, that RF sites are characterized by lower
vegetation moisture levels (NDMI) than IR and AR sites due to differ-
ences in species and biomass levels. Fourth, that fractional winter snow
cover (NDSI) is lower in RF sites than IR and AR sites, possibly leaving
seedlings in RF sites vulnerable to colder temperatures and stronger
winds in winter (Myers-Smith and Hik, 2013; Sturm et al., 2001). Fi-
nally, that the timing and magnitude of phenological events, which
depend on plant functional type (Bonan et al., 2002) would vary among
AR, IR, and RF sites due to differences in vegetation communities.
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3.2. Field methods

Field sites were located in an area that appeared homogeneous in
terms of stand characteristics such as stocking density and stand age for
an area at least 250 × 250 m. Soil texture was characterized generally
as light, medium, or sandy loam, or sand, and moisture as either
“mesic” or “dry”, where pine stands are most commonly found in the
region (Wirth et al., 2002). A nested transect was used for comparison
with both Landsat and MODIS imagery. A 200 m transect was sampled
every 30 m for comparison with MODIS data, and additional subplots
every 10 m for the first 30 m of the transect for comparison with
Landsat data. Postfire recruitment was assessed in ten 1 m2 quadrats in
which stems of regenerating trees were counted. In these quadrats, total
ground cover was estimated as a percentage, and fractional cover was
estimated by species. Prefire vegetation was assessed for a larger area in
three 10 m2 circular plots, in which diameter at base height, as well as

height and diameter at breast height (1.3 m) if more than a stump re-
mained, was measured for all dead and live trees.

3.3. RS methods

Many of our sites had recently burned more than once, and de-
termining time since fire was a challenge for sites that were known to
have burned multiple times. We performed all of the analyses described
using the first and then the last fire known to have occurred as the date
of the burn, and we report the values derived using the most recent fire
based on somewhat higher separability of AR and RF sites using these
values (but see Appendix A for the results of the analysis using the first
known fire to have occurred). The use of oldest fire year did not affect
temporal patterns, direction or magnitude of differences among indices
for AR, IR and RF sites. We assessed time series of remotely sensed
indices of vegetation greenness, fire severity, moisture, and snow as a
function of time since fire, as well as seasonal variability for the periods
prior to burning (“prefire”), 1–2 years postfire (“initial assessment”),
and> 12 years postfire (“extended assessment”). These periods are
associated with early colonization by herbaceous species, followed by
expansion of woody plants such as shrubs and tree species, and eventual
dominance of trees if present (Chu et al., 2016; Frazier et al., 2015;
Yang et al., 2017). Upon evaluating the yearly time series data of in-
dices and phenological characteristics, we added a fourth, “inter-
mediate assessment” period 3–4 years postfire, due to apparent non-
linearities in the recovery of indices. Observations were classified ac-
cording to season: spring (doy 60–150) growing season (doy 150–240),
autumn (doy 240–300), winter (doy > 300 or doy < 60).

3.3.1. Indices
The Landsat data used in the analysis were from the pre-Collection

surface reflectance products combined from Landsat 5, 7 and 8 (sensors
TM, ETM+, and OLI, respectively). We attempted the same analysis
with Collection 1 data, but the number of observations was insufficient
for use of the methods presented. We used indices of greenness
(Normalized Difference Vegetation Index NDVI) (Tucker, 1979),
moisture (Normalized Difference Moisture Index, NDMI) (Wilson and
Sader, 2002), burn severity (Normalized Burn Index, NBR) (Key and
Benson, 1999) and snow (Normalized Difference Snow Index, NDSI)
(Riggs et al., 1994) to test the hypothesized relationships between re-
cruitment failure and the post-fire environment (Section 3.1). Cloud,
cloud shadow, snow and water pixels were masked from the data using
the data flags associated with the surface reflectance product using the
C Function of Mask (Foga et al., 2017), and only clear pixel values were
maintained in the analysis.

While the MODIS data products are coarser in spatial resolution
(500 m) than the Landsat images (30 m), MODIS indices are available
daily, which is preferable for studying phenological characteristics
when compared with the 16-day return time of Landsat. NDVI and
NDMI were calculated using the version 6 MODIS Nadir Bidirectional
Reflectance Distribution Function (BRDF) Adjusted Resolution (NBAR)
bands (MCD43A4). The daily values are produced from the most re-
presentative observation in a 16-day moving window for both Aqua and
Terra sensors, and assigned to the ninth day in the time window (Schaaf
and Wang, 2015). These corrected MODIS bands were used to control
for the strong BRDF effects at higher latitudes, that can impact even
ratio-type indices such as those used in this analysis (Lucht and Lewis,
2000; Roman et al., 2011; Verbyla et al., 2008).

3.3.2. Phenology
Phenology characteristics for AR, IR, and RF sites may differ due to

the distinct plant functional types that dominate the different trajec-
tories and associated impacts on phenological patterns, a phenomenon
observed in persistent postfire vegetation changes in tundra (Barrett
et al., 2012) and mid-latitude dryland ecosystems (Van Leeuwen et al.,
2010). Phenological characteristics (start of season, end of season,

Fig. 2. Examples of Recruitment Failure (top), Intermediate Recruitment
(middle), and Abundant Recruitment (bottom).
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length of season, peak value, position of peak, trough, position of
trough, mean autumn, spring and growing season values) were derived
from the BRDF-corrected indices for AR, IR, and RF sites as a function of
year since fire. Annual metrics were used to control for the possibility
that phenological characteristics change over time during recovery
from wildfire disturbance. Phenology was modelled using the green-
brown package in R (Forkel and Wutzler, 2015) for each year in relation
to the fire. The index values for the year were first smoothed and in-
terpolated using a mean function and the temporal filling and gap
smoothing spline method (Forkel and Wutzler, 2015). Annual pheno-
logical characteristics were calculated using a threshold of maximum
and minimum index values for each site using the methods described in
White et al. (1997) with the smoothed and interpolated NDVI values.

3.3.3. Separability
Separability of two distributions can be assessed using several dif-

ferent distance calculation methods including Bhattacharyya
(Bhattacharyya, 1943; Kailath, 1967) and Jeffries-Matusita distance
(Bruzzone et al., 1995; Swain and King, 1973), Divergence and Trans-
formed Divergence indices (Singh, 1984; Swain and King, 1973). The
separability metric used in this analysis is the M-statistic, originally
developed for differentiating between reflectance values of forest and
non-forest pixels in different AVHRR wavelengths (Kaufman and
Remer, 1994). The M-statistic, calculated using the spatialEco package
in R (Evans and Ram, 2017), was chosen for having a transparent cri-
tical threshold level above which separability is deemed acceptable. M
separability between two distributions for groups A and B, is calculated
as follows:

Mean –Mean
SD –SD

A B

A B

M is> 1 when the mean of two normal distributions are separated
by more than one standard deviation, or when the assignment of ob-
servations to a class (e.g., winter NDSI values of AR and RF sites 1 year
postfire) are unambiguous for 84% of the observations (Fig. 4). Other
measures of divergence were evaluated, and generally results were si-
milar, but without a threshold for evaluating separability such as
M > 1, it was difficult to compare outputs or to determine when se-
parability became sufficient.

We focused upon the separability of Landsat-derived NDVI, NBR,
NDMI, and NDSI for AR and RF sites (as the two endpoints of the re-
cruitment level scale) on a seasonal basis as a function of time since fire.

The seasonal time step was a balance between having a fine enough
temporal resolution to observe sub-annual changes, and a long enough
time step to accumulate a sufficient observations for comparison. NDSI
was evaluated as the annual averages of winter values. In addition to
the separability using different indices, we assessed yearly separability
using the phenological characteristics described above. The Shapiro-
Wilk test was used to exclude dates for which index values were non-
normally distributed. Landsat data were available for a maximum of
16 years prefire, and a maximum of 17 years post fire, with an average
of 10, 9, and 9 observations (min = 1, max = 26, 29, 28) per year for
AR, IR, and RF sites, respectively. Daily MODIS data were available for
a maximum of four years prior to the fire and up to 17 years postfire,
with 365 direct or modelled observations per year.

4. Results

4.1. Field data

Prefire stocking density was similar across AR, IR and RF sites
(Fig. 3). RF sites had somewhat lower median stocking density prior to
burning, possibly because stumps were consumed by the fire, but the
differences among sites were not statistically significant. Soils in AR and
IR sites were more often characterized as mesic than dry (10 out of 14,
and 20 out of 37, respectively), whereas soils in RF sites were more
likely to be dry (11 out of 13). Soil texture in AR sites was less likely to
be characterized as sandy, and more often associated with loam,
whereas RF sites were more likely to be sandy and IR sites had a mix of
soil types, most often characterized as sandy loam (Fig. 5). RF sites had
a thinner organic layer (mean = 0.89 cm, sd = 1.13) than AR
(mean = 2.75 cm, sd = 2.18) and IR sites (mean = 1.71 cm,
sd = 2.75 cm) (Fig. 5). RF sites were more likely to be found on west-
and southwest-facing slopes and in flat areas, whereas AR and IR sites
were located across south-, southeast-, southwest-, and west-facing
slopes (Fig. 5). Fractional ground cover in AR, IR and RF sites was very
similar, around 0.45 for all. AR sites were more often dominated by
grasses, while RF sites were more likely to be dominated by forbs
(Fig. 6). Shrubs were only observed in intermediate recruitment sites.

4.2. Remotely sensed data

Fig. 7 shows the progression of Landsat-derived mean growing
season NDVI and NDMI as a function of time since fire. Both indices

Fig. 3. Stocking density of trees prefire (left), and postfire tree regeneration (right) for AR, IR, and RF sites. Prefire differences were not significant, while postfire
differences were.
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show a substantial decrease in the year of the fire, and indices for AR
sites exhibit a positive slope postfire. IR sites showed a shallower in-
crease in postfire NDVI, while RF sites do not show a trend. NDMI for IR
and RF sites exhibits a negative slope postfire.

Table 1 shows the separability of seasonal index values for AR and
RF sites for immediate, intermediate, and extended assessment periods.
The earliest separability occurs in the winter intermediate assessment
period, during which the separability NDMI, NBR, and NDSI values for
AR and RF is> 1. All indices were sufficiently separable in the growing
season in the extended assessment period. Fig. 8 shows the distributions
of winter indices for AR and RF sites. In this period. NDVI values are
uncharacteristically low for AR sites, and NDMI is higher than in RF
sites. NDSI values in AR sites were substantially higher than those for
RF sites in the intermediate assessment period. NDSI values were not
significantly different during other assessment periods (Table 1, Fig. 9).

Most phenological parameters did not show a trend or a separ-
ability> 1 at any time. Fig. 10 shows only the separability of MODIS

NDVI-derived phenological parameters that exhibit values> 1, as a
function of time since fire. None of these parameters (mean spring
value, mean autumn value, mean growing season value, and peak
value) are related to the timing of phenological events, but rather re-
flect the importance of seasonal variability in NDVI. Separability or AR
and RF sites reached a separability value of> 1 after 15 years postfire.
Interestingly, separability of all phenological parameters displayed ex-
hibits an initial increase the year of the fire, a subsequent decrease
3–4 years postfire and a sustained increase 5 years after the fire.

5. Discussion

5.1. Hypotheses

Differences in index values became most apparent in the extended
assessment period>12 years post-fire. As expected, RF sites exhibit the
lowest NDVI values, followed by IR and AR sites (Fig. 7). Low NDVI

Fig. 4. An illustration of distributions which are insufficiently separable (M < 1) (A) and sufficiently separable (M ≥ 1) (B).

Fig. 5. Postfire characteristics of AR, IR, and RF sites: soil type and organic layer depth.

K. Barrett, et al. Remote Sensing of Environment 237 (2020) 111539

6



Fig. 6. Fractional ground cover for AR, IR, and RF sites and the fraction of quadrats in each dominated by grasses, forbs, carex, and shrubs.

Fig. 7. Time series of growing season NDVI (top) and NDMI (bottom) for AR, IR and RF sites, with trendlines superimposed for the postfire period. Values for AR sites
increase postfire, whereas RF and IR sites either stabilize or decline post-fire.
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values for RF sites are likely explained by the low stocking density and
lack of canopy cover in these sites (Gamon et al., 1995), given un-
derstory cover is similar among AR, IR, and RF sites (Fig. 6). NDMI is
lowest for RF sites, and highest for AR sites (Fig. 7), differences that first
become distinguishable in winter during the intermediate assessment
period (Table 1). We believe the low NDMI values for RF sites is asso-
ciated with the lack of canopy vegetation and therefore vegetation
moisture (Hardisky et al., 1983). NBR values are lower for RF sites in
the growing season and autumn during the extended assessment period,
and in the winter during the intermediate period (Table 1).

This is consistent with our hypothesis that fire severity is higher in
RF sites, but we would have expected to see such differences earlier in
the recovery period, i.e., in the immediate assessment period 1–2 years
post-fire. Winter NDSI is lowest for RF sites and highest for AR sites, but
only during the intermediate assessment period (Fig. 9). This result is
consistent with our hypothesis that winter snow cover may be an im-
portant consideration for post-fire recruitment success.

NDVI, and NDMI were generally more useful than NBR or

phenology in discriminating between AR and RF sites. It is possible that
NBR is not as strongly related to fire severity in the region particularly
as the fires were all stand replacing, so considerations that affect sur-
face reflectance characteristics such as fractional mortality are less
useful severity metrics than greenness and moisture levels. Other stu-
dies have highlighted the shortcomings of NBR to measure ecologically
significant variations in fire severity (Lentile et al., 2006), particularly
in boreal forests (French et al., 2008). The differences in organic layer
depth among AR, IR, and RF sites (Fig. 5) are statistically significant,
however, and could reflect more severe or more frequent fires in RF
sites.

While seasonality was important with regard to the separability of
AR and RF sites, the timing of phenological events, such as start of
season and end of season, were not useful in separating AR and RF sites.
The magnitude, but not the timing of NDVI phenology varies among
AR, IR, and RF sites (Fig. 10). We hypothesized that differences in the
timing of phenological events may result from differences in plant
functional type, for example differences in grass and tree canopy green
up (Archibald and Scholes, 2007). The lack of separability may be be-
cause RF sites have similar phenology to AR sites, or that the data used
to derive the phenology were insufficient, or that the phenological
model was not a good fit to the data. The Collection 6 MODIS product
(MCD43A4) uses a 16-day compositing period, days that appear to be
consecutive could be as much as 17 days apart, which can affect the
accuracy of phenological models (Ahl et al., 2006; De Beurs and
Henebry, 2010). Although the models showed good visual agreement
with time series of index values, it is difficult to ascertain how well
these performed overall as there is no metric of goodness of fit avail-
able. The results presented here are not sufficient to rule out the ex-
istence or importance of differences in phenology between AR and RF
sites, but they highlight the usefulness of comparing seasonal variability
in index levels.

5.2. Importance of winter intermediate assessment period

We prioritize earlier detection of recruitment trajectories because of
associations with forest health and the potential for early intervention,
because as much as two thirds of the forested area in the region is

Table 1
Mean separability of AR and RF sites as a function of assessment period and
season. The earliest separability of AR and RF sites occurs during the winter
3–4 years postfire.

Mean AR-RF separability (M > 1)

Index Prefire Immediate
assessment
(1–2 years)

Intermediate
assessment
(3–4 years)

Extended
assessment
(12 + years)

Spring (doy
60–150)

NDMI 0.20 0.45 0.12 0.99
NDVI 0.14 0.69 0.31 1.32
NBR 0.20 0.21 0.10 0.68
NDSI – – – –

Growing
season
(doy
150–240)

NDMI 0.33 0.24 0.17 1.63
NDVI 0.36 0.36 0.27 1.14
NBR 0.33 0.26 0.18 1.12
NDSI – – – –

Autumn (doy
240–300)

NDMI 0.18 0.27 0.11 1.31
NDVI 0.16 0.25 0.15 0.63
NBR 0.17 0.18 0.07 1.22
NDSI – – – –

Winter (doy
0–60,
300+)

NDMI 0.35 0.09 1.16 0.27
NDVI 0.33 0.25 0.63 0.05
NBR 0.40 0.16 1.16 0.24
NDSI 0.39 0.25 1.39 0.26

Bolded values are where M >1, a critical threshold.

Fig. 8. Winter values for the intermediate assessment period 3–4 years post-
fire. NDSI, NDMI, and NBR are substantially higher in AR sites, whereas NDVI is
uncharacteristically lower.

Fig. 9. Winter NDSI values for all assessment periods. Values for AR and RF are
significantly different in the intermediate period.
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managed (Gauthier et al., 2015). Differences between recruitment le-
vels are detected earliest when seasonal differences are considered,
especially winter values during the intermediate assessment period.
Values across all indices generally became more similar during the in-
termediate assessment period, with the exception of winter values,
which became more disparate. During this period, AR sites exhibited
lower NDVI and higher NDMI and NDSI than RF sites. NDVI and NDMI
are positively correlated for all other seasons in all other periods of
assessment, but negative during this time, possibly due to greater
fractional snow cover (evidenced by substantially higher NDSI levels) in
AR sites. Photosynthetic activity, though it may occur in winter even
under snow (Starr and Oberbauer, 2003), is obscured from the sensor
by snow, and the area appears wetter (i.e., exhibits higher NDMI), likely
due to the snow moisture content.

Precipitation in the region falls mainly as rain in the mid to late
summer, so although snow is a limited resource in the region, it is
important in protecting regenerating vegetation and soils from extreme
cold in winter (Sturm et al., 2001), as well as winter desiccation
(Kharuk et al., 2010a) wind shear (Sturm et al., 2001), and herbivory
(Hamilton et al., 1980; Tape et al., 2010). Snowmelt also provides
critically important moisture in the spring (Westerling et al., 2006;
Buermann et al., 2018), and forest trees trap snow in winter months,
leading to greater snow moisture (Onuchin et al., 2018). Den-
droecological studies in Siberia have documented previous mortality
events and subsequent recruitment failure in the 16th and 18th Century

associated with lack of snow and summer water stress (Kharuk et al.,
2010a). Lack of snow induces apical shoot mortality, and for branches
above snow level, chlorosis in Siberian pine (Kharuk et al., 2010a). Tree
mortality generally occurs during the snow-free period (Tremblay et al.,
2007), and the positive effect of snow on the expansion of woody ve-
getation is well-documented in tundra, where shrubs trap snow that
encourages their expansion into areas dominated through mechanisms
of protection from physical elements and insulation from cold tem-
peratures (Halliger et al., 2010; Myers-Smith et al., 2011, Tape et al.,
2006). It is possible that a similar mechanism operates in terms of
promoting abundant postfire recruitment in the mountain taiga of
southern Siberia.

The increasing separability of AR and RF sites over time suggests
that a feedback mechanism may reinforce differences between the sites
over time, as opposed to differences in recruitment being caused en-
tirely by differences in fire severity, for example. While the RF sites are
slightly drier and less green prior to burning, differences in NDMI and
NDVI only become significant postfire, and could be consequence of
recruitment failure as opposed to the cause. The increase in snow cover
in AR sites 3 to 4 years postfire occurs during a period in which these
sites are less distinguishable from RF sites in all other seasons, possibly
because differences in vegetation have not yet become established.
NDSI values in AR sites during the intermediate assessment period are
atypical of the postfire environment, and approach prefire NDSI values
which were generally higher, possibly because the snow was trapped

Fig. 10. Separability of phenological characteristics across different recruitment types as a function of time since fire. Only those phenological char- acteristics for
which separability> 1 occurs are shown here, including mean spring value (MSP, top left), mean autumn value (MAU, top right), maximum NDVI value (PEAK,
bottom left), and mean growing season value (MGS, lower right).
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and shaded by trees and understory vegetation.
NDSI does not generally correlate with any volumetric measurement

of snow (e.g., depth, snow water equivalent), but it can be used to infer
the fraction of area covered with snow (Hall and Riggs, 2007; Nolin,
2010). We note that the NDSI values observed are lower than the
threshold used to identify snow-covered pixels (0.1–0.5, Hall et al.,
1995), which may be due to low winter precipitation in the region and
subsequently low fractional snow cover. Thresholds for differentiating
snow from non-snow NDSI values vary substantially among ecosystems
and regions (Appel, 2018), and negative NDSI values have been ob-
served for some values of fractional snow cover in Siberia and else-
where (Salomonson and Appel, 2004, 2006; Appel, 2018). We are
therefore unable to derive information on the depth of snow for a given
area, and NDSI values are here used only as a proxy for fractional snow
cover. Furthermore, the radiometric resolution of Landsat 5 primarily
and 7 sensors is not well-suited to snow discrimination, but with im-
provements to the Landsat 8 sensor, it is likely that the relationship
between fire severity and snow cover will be the focus of future re-
search (Wang et al., 2016). Landsat 8 data were not used for this ana-
lysis because of the lack of historical data record.

Prefire NDSI values are lower for AR sites, meaning it is also un-
likely that these are located in topographic positions that are better
suited to snow accumulation. RF sites, being located more often on
southwest and west facing sites, may lose more snow due to greater
insolation when the day is warmest. The differences in NDSI do not
appear in any other period, highlighting the potential importance of the
timing of the increased snow cover as a function of time since fire. It is
important to note that the intermediate period postfire occurs in dif-
ferent years for different sites, and it is therefore not the result of two
extreme snow years but rather a feature that occurs in AR sites at a
critical period in the recovery from wildfire disturbance. This, and the
fact that the separability between AR and RF sites increases over time,
raise the possibility that AR and RF sites may have followed a similar
recruitment trajectory for the initial postfire period and diverged in the
intermediate period due to factors external to site level characteristics,
such as weather conditions. Weather has been observed to be a driver of
ecosystem shifts both in interactions with wildfire disturbance
(Trugman et al., 2016) and in the absence of disturbance (Holmgren
et al., 2006; Kharuk et al., 2013, 2017). If weather in the initial as-
sessment period is a factor in the recruitment trajectory, detecting
differences between AR and RF sites may only be possible after several
years of regrowth.

5.3. Broader ecological significance

The results of this analysis suggest that climate feedbacks exist with
boreal postfire recruitment trajectories, in addition to documented
impacts of disturbance frequency and severity and ecosystem pro-
ductivity and respiration. The interaction between precipitation and
temperature during recovery from fire is also likely to be an influential
factor because of the importance of precipitation falling as snow or as
rain (Berghuijs et al., 2014; Stenseth et al., 2002; Trenberth, 2011), and
evapotranspiration effects when temperatures are warmer (Seneviratne
et al., 2010). The feedbacks between climate and postfire recruitment
trajectories (Brazhnik et al., 2017) may contribute to those factors that
influence climate drying through a rapid transformation of forests to
open woodlands (Scheffer et al., 2012). The drier and browner condi-
tions associated with recruitment failure sites correspond to model
predictions regarding forest losses in the region (Tchebakova et al.,
2009, 2011), which offset increased terrestrial carbon storage from
boreal forest expansion upslope and northward into tundra. Persistent
forest losses are more pronounced in the southern mountain taiga be-
cause of topographic conditions that result in distinct differences in

climate and vegetation cover over short distances (Tchebakova et al.,
2011).

Boreal postfire recruitment trajectories feed back to climate through
modifications of ecosystem productivity and respiration (Reich et al.,
2001), albedo (Randerson et al., 2006; Rogers et al., 2013), and eva-
potranspiration dynamics (Bond-Lamberty et al., 2009; Kang et al.,
2006). These feedbacks are significant in the broader context of eco-
system resilience (Holling, 1973; Gunderson, 2000; Reyer et al., 2015)
and the potential for re-organization to a new state as the result of
disturbance (Johnstone et al., 2016). The objective of this study was to
differentiate between categorical levels of stocking density of replace-
ment vegetation that persist after wildfire disturbance, although we
recognize these categories may contain multiple recruitment trajec-
tories, particularly in the case of IR and AR sites. IR and AR sites will
form the basis of elaborating which recruitment trajectories char-
acterize the region.

Although forests frequently do not return to prefire characteristics
(Reyer et al., 2015; Walker et al., 2017) and the potential for postfire
shifts in plant functional type in boreal forests and other ecosystems is
well-documented (Barrett et al., 2012; Scheffer et al., 2012;
Tchebakova et al., 2009; Wolken et al., 2011; Zedler et al., 1983) in-
corporating such shifts into models of interactions between climate and
vegetation dynamics has only begun to be explored (Koven, 2013,
Quegan et al., 2011; Zhu et al., 2015). It is important to incorporate
such shifts as arising from meaningful ecosystem processes such as mid-
period snow cover, as opposed to naive and often site-specific thresh-
olding values (Koven, 2013; Zhu et al., 2015). We must also understand
such processes in the context of legacy effects versus actual environ-
mental changes (Bergeron et al., 2017, Houghton and Nassikas, 2018,
Pongratz et al., 2014), the former of which were impossible to evaluate
without a consistent and reliable burned area data product for the re-
gion.

We restricted our analysis to pine stands as this was known to be the
prefire vegetation type in most recruitment failure sites. Fire severity in
pine stands may be higher than in other forest types because of their
location on south- to west-facing slopes on well-drained sandy soils, and
unlike larch stands, the fact that they burn throughout the growing
season and during the late summer (Swetnam et al. 1996), when fires
tend to be more severe (Turetsky et al., 2011). Pine is less constrained
in terms of its dispersal dynamics than larch (Kharuk et al., 2010a), and
is not complicated by masting events and the potential interaction of
these with disturbances (Ascoli et al., 2015; Shi et al., 2000). In the
Mongolian pine-steppe ecotone, postfire recruitment was lowest in pine
and spruce and higher in larch and spruce stands (Otoda et al., 2013),
possibly because larch (Larix sibirica) is more resilient (Gower and
Richards, 1990) and tends to dominate in the forest-steppe environment
(Dulamsuren et al., 2016), where pine is less well-suited. Summer water
stress, in particular, is worse for pine than larch (Kharuk et al., 2010b).

6. Conclusion

Recruitment failure sites in southern Siberia are associated with
lower greenness and vegetation moisture levels, higher fire severity,
and lower snow index than intermediate or abundantly recruiting sites.
These differences become more pronounced over time, likely as a re-
flection of feedback mechanisms that reinforce recruitment trajectories
postfire. This research supports the broad literature on fire as a catalyst
in broad ecosystem shifts, which may be moderated or exacerbated by
disturbance characteristics and interactions, site-specific conditions,
and climate/weather during the disturbance and recovery periods.
Shifts between Scots pine and grass-dominated vegetation in the region
may be responsive to winter snow cover in the intermediate assessment
period 3–4 years postfire. The potential for fire to convert forest
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dominated stands to open grasslands will likely have a substantial im-
pact on the net terrestrial carbon balance, albedo, and, subsequently,
climate (Heimann and Reichstein, 2008; Tchebakova et al., 2011). It is
important to re-create such processes explicitly in coupled climate and
vegetation dynamics models to determine the presence and magnitude
of feedback mechanisms.

The feedbacks that promote or hinder tree recruitment may become
established in the first five to ten years postfire (Johnstone et al., 2004),
though our ability to detect such feedbacks using remotely sensed data
may take longer, particularly if they are the result of lag effects or
conditions that occur after the initial disturbance. Finally, in-
corporating information on postfire recruitment trajectories in the re-
gion with coupled vegetation and climate models will require an ela-
boration of all recruitment trajectories beyond abundant and poor
recruitment, which will be the basis of our future work.
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Appendix A. This appendix contains the figures generated using remotely sensed data with the year of burn estimated as the earliest fire
date on record

Fig. 11. Time series of growing season NDVI (top) and NDMI (bottom) for AR, IR and RF sites, with trendlines superimposed for the postfire period. Values for AR
sites increase postfire, whereas RF and IR sites either stabilize or decline post-fire.
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Table 2
Mean separability of AR and RF sites as a function of assessment period and season. The earliest separability of AR and RF sites occurs during the winter 3–4 years
postfire.

Mean AR-RF separability (M > 1)

Index Prefire Immediate assessment (1–2 years) Intermediate assessment (3–4 years) Extended assessment (12 + years)

Spring (doy 60–150) NDMI 0.18 0.48 0.07 0.83
NDVI 0.22 0.56 0.30 1.20
NBR 0.35 0.30 0.11 0.44
NDSI – – – –

Growing season (doy 150–240) NDMI 0.19 0.15 0.06 1.54
NDVI 0.24 0.25 0.21 1.06
NBR 0.17 0.15 0.07 1.21
NDSI – – – –

Autumn (doy 240–300) NDMI 0.35 0.11 0.05 1.29
NDVI 0.29 0.18 0.05 0.50
NBR 0.37 0.05 0.04 1.30
NDSI – – – –

Winter (doy 0–60, 300+) NDMI 0.31 0.09 0.78 0.45
NDVI 0.28 0.25 0.63 0.18
NBR 0.31 0.05 0.86 0.41
NDSI 0.23 0.25 1.05 0.53

Bolded values are where M >1, a critical threshold.

Fig. 12. Separability of phenological characteristics across different recruitment types as a function of time since fire. Only those phenological char- acteristics for
which separability> 1 occurs are shown here, including mean spring value (MSP, top left), mean autumn value (MAU, top right), maximum NDVI value (PEAK,
bottom left), and mean growing season value (MGS, lower right).
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Fig. 13. Separability of phenological characteristics across different recruitment types as a function of time since fire. Only those phenological characteristics for
which separability> 1 occurs are shown here, including mean spring value (MSP, top left), mean.
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