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Figure 1: Results obtained for field and wells comparing Application 1 (only traditional Objective
Functions assimilated) and Application 2 (traditional and additional OFs assimilated): (a) Field water
injection rate (iw) with better predictability for Application 2; and (b) water production rate (quw) of the
well PROD024A showing water breakthrough time closer to the reference for Application 2 when
compared to Application 1.
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Abstract

History matching (HM) is an inverse problem whenecertainties in attributes are reduced by
comparison with observed dynamic data. Typicallprnmalized misfit summarizes dissimilarities
between observed and simulation data. Especiallyldng-time series, objective functions (OFs)
aggregate multiple events and tendencies relewafi¢lt! performance in a single indicator (e.g. avat
rate and breakthrough time). To capture the atisinfluencing the reservoir behavior, we evaltlage
assimilation of data series through additional Qfesained from splitting time-series data. In ttisdy,
two additional OF groups supplement the time-semedits: Breakthrough Deviation (BD) indicating
dissimilarities in water breakthrough time; Prodkity Deviation (PD), representing mismatches & th
well potential, mainly impacting the transition rfinohistory to forecast conditions. The Productivity
Deviation (PD) is adapted from previous studiestdad of simulating the last time of the historical
period under forecast conditions, we propose kegpinunder historical data. The change is the
historical data used as target condition to theukitor: Bottom Hole Pressure (BHP) in place of iiqu
production and water injection rates; with this, es&timate a mismatch in well productivity, while
avoiding the influence of other boundary conditiansthe evaluation. Two applications (1 & 2),
assimilating different OF quantities, highlight timfuence of the additional groups. Applicatiorodly
computes time-series misfit (64 OFs) whereas Apfibo 2 includes the BD and PD (counting 128
OFs). The iterative HM method presents flexibiliggarding OFs assimilated and incorporation of
uncertain attributes. UNISIM-I-H case allows usetmaluate the HM considering history and forecast
data. We examine differences between the 450 dosnasulting of data assimilation for
each application through four perspectives. Appilica2 resulted in scenarios with better predidigbi
of the field behavior and smoother transitions leetw field history and forecast periods. Field
cumulative oil production of Application 2 is alBwrecasted closer to the reference data when cadpar
to Application 1; all forecast periods (1, 5 andyEars) emphasize this impact. Some wells presented
breakthrough time closer to the reference for Aggtion 2. The challenging achievement of exact BD
matches leads to the third advantage of the additiondicators. These OFs supply supplementary
information to the diagnosis of scenarios, ideintifyunnoticed problems in the traditional approach.
Finally, even with an overall better performancems of the well OFs presented poorer matches for
Application 2. To explain this, we analyzed theateinship between attributes and the OFs used to
update the attributes. In conclusion, the improf@@cast of the simulation scenarios indicates that
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superior performance of the HM process is posdglsplitting the available dynamic data in relevant
additional OFs. This study presents a case aprcatith 11 years of field history, in which additial
OFs, derived from dynamic data, add value to tserair characterization. They allow the influenée
uncertain attributes to be captured for relevareinéy in reservoir performance. We also show how the
increased quantity of OFs assimilated makes thehidMer for some OFs.

Keywords: History Matching; Iterative Discrete Latin Hypebe methodology; Breakthrough Time;
Well Productivity; Reservoir Characterization; Tsédion between Historical and Forecast periods.

1. Introduction

Reservoir simulation models are representationealfpetroleum fields used in production forecast a
decision-making process. Closed-Loop Reservoir gveent and Management (CLRDM) endorses
the application of simulation techniques in allgets of the field lifetime. CLRDM methodologies
(Jansen et al. 2009; Wang et al. 2009; Schiozal. 2015) integrate model-based optimization artd da
assimilation to support decisions about the phygicablem with uncertainties. Silva et al. (2017)
propose a closed-loop workflow, constructed witlseamble-based method. They demonstrate the
effectiveness of CLRM to improve the predictabild§ the models, in contrast to ensemble-based
separated applications.

Data assimilation is a stage in the CLRDM knownHastory Matching (HM) in the petroleum
industry. It uses the observed dynamic data tor@féo better representation and predictability & th
physical model through simulation models. The HMais inverse problem with multiple possible
solutions. The complexity to solve the problem @ases with dimensionality in terms of number of
inputs and outputs.

A wide understading on the inverse theory and hysteatching, including explanatory examples, is
available in the book of Oliver et al. (2008). @ihvand Chen (2011) discuss the progress of di¢kée
processes in their paper, detailing advantagesdasativantages of manual, evolutionary, Ensemble
Kalman Filter based and Adjoint methods. Rwechuagtral. (2011) sumarizes the evolution of HM
techniques through the time and highlights aspextthe integration of 4D seismic. Maschio and
Schiozer (2016) offer a more recent overview alydMt methods, classifing optimization, probabilitic
and mixed methods.

In the HM process, parameters of the reservoiragtarization, which are inputs into the reservoir
numerical model, are uncertain and represent undeted reservoir features (fault transmissibiliiy,
instance). These uncertainties in the attributélsence dynamic production estimated by the sinaulat
and the asset team used this data to understamdifid transport in the real petroleum field. Thesel
the simulator output is to the dynamic data measurehe field (production rate in specific periddy
example), the better we expect that the model sepits the physical field. In this context, objeetiv
functions (OFs) computes the difference betweeemies and simulation data.

A reservoir analysis based on a deterministic aggfr@onsiders one or more scenarios that represent
a partial set of the possible production scenaievertheless, this approach can present biasetises
since it generates production forecasts withoutjadiely exploring the range of production scenarios
(Goodwin 2015). In contrast, the probabilistic ayggoh represents the uncertainty toward the regservoi
behavior. It supports reliable forecast by addresgjuestions of risk and uncertainty in reservoir
management. This approach incorporates the coasiolerof several sources of uncertainties involved
in the reservoir characterization process and measnt errors in observed data (Maschio and
Schiozer 2017).

Some probabilistic methods allow the redefinitidntlee probability distribution based on the OFs
misfit, improving the reservoir knowledge in terrob reservoir characterization. An example of a
methodology with this characteristic is the IteratiDiscrete Latin Hypercube (IDLHC), method
developed by Maschio and Schiozer (2016). The IDLi$i&n automated probabilistic method to reduce
uncertainty and update probability of the uncertdtnibutes with nonparametric density estimatibime
process consists of applying a correlation matox automatically identify relationships between
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uncertain attributes and OFs. Due to its flexipilit terms of quantity of uncertain attributes aDBs
assimilated, it can be adapted to several scenarioseservoir characterization and information
available.

In order to offer a broader understanding and sepr&tion of the reservoir model, multi-objective
and probabilistic HM processes have been employbese processes simultaneously evaluate the
reservoir behavior through multiple quality indizet associated to observed data in the productidn a
injection wells (Almeida et al. 2014; Kam et al.1Z(. Hutahaean et al. (2015) showed that an engembl
of matched scenarios from multi-objective HM prasca more diverse set of matched-scenarios, which
leads to a better comprehension on the forecastvimah

Nevertheless, since multi-objective-HM performarfcenvergence speed and match quality) can
deteriorate under an increasing number of objedtinetions, Hutahaean et al. (2017) investigates th
selection of objective grouping for multi-objectitéM. Min et al. (2014) developed an evolutionary
algorithm to overcome inefficiencies of multiplejettive constraints by introducing preference-
ordering and successive objective reduction tathentional multi-objective optimization module.

Several studies evaluate the influence of the Giitden in the HM process. For example, Tillier et
al. (2013) focused in defining a formulation focamporating seismic data in the process; Bert@imd
Schiozer (2011) compared eight global OFs in tls¢ohy matching process by assessing the matching
quality of synthetic reservoir model.

A normalized misfit called Normalized Quadratic aion with Sign computes the difference
between simulated and observed data (Avansi @046). This OF summarizes time-series curves for a
scenario (Figure 1-a) in a single indicator (Figlisb) and is useful in probabilistic and multi-otijee
HM approaches (more details in the NQDS sectiom). asceptance rangey[-+ y] supports the
classification of the scenarios taking into accotim® sources of errors consideredy.( noise in the
history data, measurement errors, level of fidaityhe reservoir simulation model).

Figure 1 - Typical NQDS graphic summarizing datarfrseveral scenarios: (a) Curves of oil production
rate plotted against time, adapted from Avansl.2@L6: History data (blue points), selected stesa
that are within an acceptance rangdif gray lines), scenarios with production rateghbr and lower
than the acceptance range (in brown and red legsectively); (b) NQDS plot applying the same
legend colors, where each dot corresponds to auptiod rate curve

Due to the high quantity of observed data, espgdiat long time series, these OFs aggregate into a
single indicator, events and temporary trends eglevo reservoir performance. For example, water
breakthrough time and changes in the Gas-Oil Ra@R) are relevant for the field management; well
production trends evolve over time under distiregervoir conditionse(g. recovery mechanism from
natural flow to water/gas injection to pressurentenance). Different uncertain attributes can efice
these events and temporary trends. Once aggremagedingle OF, the relationship between uncertain
attributes and OFs may be difficult to capture witathematical structures as correlation matrix.

Splitting the conventional NQDS into more objectiumctions is an alternative approach to better
understand the reservoir from the dynamic datalabai Almeida et al. (2018) presented an
introductory study with the application of uncontienal OFs to measure the deviation of specific
events (Breakthrough Deviation and Productivity @gen). Each additional OF captures specific well
behaviors (not mapped by the conventional OFs) déinatinfluenced by distinct uncertain attributes.
Then, the uncertain attributes update process derssthe constraints established by both conveaition
and unconventional OFs. Because of this, the oglshiips identified between the unconventional OFs
and uncertain attributes improved the reservoibcaion and uncertainty reduction process.

1.1. Objectives
This paper aims to evaluate the assimilation ofadyic data series in a way to capture deviations in
the breakthrough time and in the well productiviith that, we aim to assess the possibility of
3
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gathering more information from available dynamatadseries in the HM process, which improves the
reservoir behavior predictability.

When compared to the definitions of Almeida et28l18, we propose a distinct way to simulate the
scenarios to better capture the physics that sodrtlue well productivity. The proposed computatidn
Productivity Deviation avoids the influence of atls®urces of information, such as platform and well
capacities, required in the previous work of Alnzeiet al. 2018. Moreover, this study assesses the
additional OFs as a source of information to revesé¢rvoir behavior, not explored in previous works

We adapt a history matching methodology (IDLHC frddaschio and Schiozer, 2016) to consider
the additional groups of Objective Functions fodating the uncertain attributes and use the same
parameterization presented in that paper. Maschi $chiozer 2016 and 2018 tested the IDLHC
methodology and compared it to other methodologissuring the quality of the history matching
procedure.

2. Theoretical background
After describing the main aspects of the probaislidM methodology, this section details the objest
functions applied to this proposed work.

2.1. Iterative Discrete Latin Hypercube (IDLHC)

The main advantage of the probabilistic IDLHC melihlogy proposed by Maschio and Schiozer
(2016) is to simultaneously assimilate a large nermiif OFs to update probability distributions of
uncertain attributes. Additionally, the procesé$legible in terms of quantity of uncertain attriestand
OFs assimilated, being adapted to several scenafiagservoir characterization and information
available. This HM process generates multiple nystoatched scenarios per iteration and the lasbfset
scenarios is useful for prediction and optimizatsbadies. In the IDLHC general workflow (Figure 2),
the uncertain attributes parameterized in the maginof the process (Step 2) are the same untilatte
pre-defined iteration (ltggy). In each iteration, a set of scenarios represgnthe distribution of
uncertain attributes is generated with DiscretenLidlypercube (DLHC) sampling (Step 3) conceived by
Schiozer et al. (2017).

Figure 2 - General workflow for probabilistic hisgamatching (Maschio and Schiozer, 2016).

After running these scenarios in the flow simulg®tep 4), NQDS computation quantifies the misfit
between scenarios and observed data for each sremat objective function (Step 5). In Step 6,
selected scenarios are used for the generatiorostempor distribution for each uncertain attribute.
Maschio and Schiozer (2016) proposed three appesachupdate the probability density functipaf)
of the uncertain attributes. Figure 3 details métBpchosen for this study.

Figure 3 - Flow chart from scenario selection, mdtB (Maschio and Schiozer, 2016).

A cut-off (R;) applied to the coefficients of the correlationtrixa(Step 6.1) indicates the existence of
relationship between uncertain attributes and diviedunctions. Thel attributes considered correlated
to at least one OF are updated. The updating mutiarts in Step 6.2 with the first attribute taate,
continuing until the last attributéAl). The iterative process around Steps 6.4 to 6d&raguees two
requirements: (a) a quantity of scenarios betweennamum P1) and a maximumR2) percentage of
the scenarios sampled to avoid the collapse opdfieand (b) the selection of scenarios with smallest
computed misfit.

Then, a nonparametric density estimation techniffeep 6.6) leads to updating of uncertain
attributes generating histograms representing tiséepior distribution of each attribute. These poet
distributions are the prior distributions for thexhiteration. The iterative process of Figure Btouies
for the number of iterations predefindte(may).
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2.2. Normalized misfit asindicators of HM quality

In history-matching processes, indicators of qudiir a scenario quantify the misfit between the

simulation scenario and observed data. Four p@sajiglications are to:

a) conduct the HM process, as objective functionsatonmimized;

b) provide data to update the uncertain attributes;

c) diagnose scenarios revealing and guiding the reefawservoir characterization;
d) support the evaluation of performance when compatifierent methodologies.

We detail the two out of three normalized misfibgps applied in Step 5 of the HM methodology
(Figure 2): NQDS and NQDQp (NQDS of Breakthrough Deviation). In the methodplsection we
present the third normalized misfit group NQIBINQDS of Productivity Deviation), because it is
subject of modification from previous work.

2.2.1. NQDS
NQDS (Avansi et al. 2016, modified) consolidates mhisfit between history and temporal data series
of production and injection wells. For example, N&RWell 1 represents the misfit of water rate
production for the Well 1 considering a time inergimulated for a given scenario. Similar notation
applied to other data series, for example, oil pobidn rate (NQD&), production BHP (NQDgbn),
water injection rate (NQD and injector BHP (NQDs).
Equation 1 computes the NQDS:

NQDS = _
| Xj=1Sim; — Obs; | ¥1_ (Tol » Obs; + C)°

(1)

whereSm; andObs; are the simulated and observed (historical) datasured at the time Tol is the
tolerance value (%) defined by the user for eada daries;C is a constant used to avoid null or
excessively small divisor, in case the productiate is close to zero (for example, water productaia

in a recently opened well). Physically, the constmepresents the minimal tolerance for a given data
series.

2.2.2. Water Breakthrough Deviation (NQDSgp)
Water breakthrough is the time when water firsthes the production well. In the field management,
this measured time and subsequent Water-Oil RA®R) trends are usually key performance
indicators that also can be indicative of chanmefind bypassing problems in the field (Baker 1998).
The historical data of water production in wellsssurce of two-combined information: (a) water
production rate through time, and (b) breakthrotigie. In this sense, Almeida et al. (2018) adapied
NQDS as a punctual normalized misfit for breaktigtotime (Equation 2), the NQRS

(BTsim - BTobs) " (BTsim - BTobs)2
|BTsim - BTobsl (AE)Z

NQDSgp = (2

where BT is the Breakthrough Time afH is the Acceptable Tolerance, for example, the maktime
between two consecutive measures of water produc#o water rate cut-off to consider water
breakthrough time avoids erroneous capture of bheakgh time: smaller water production rates when
compared to this cut-off value are treated as uagidiater production. Even if the water breakthioug
has not yet occurred in a given well at the histdrperiod, it may add information to the HM prosés
some simulation scenarios have earlier breakthrdiogh

Figure 4-a exemplifies water production againsttifor history data and some scenarios. The gray
lines represent scenarios with production rate laedkthrough time within the acceptance ranget-
y]. Scenarios 1 and 2 (brown and red lines) havly @ad late breakthrough time, respectively. Dashed
and solid lines correspond to scenarios with matciwed non-matched water production rates. The
diagnostic of the NQDg plot (Figure 4-b) only identifies mismatches in tiwater production rate,
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keeping the two dashed scenarios within the acneptaange. On the other hand, the N@P$lot
(Figure 4-c) identifies the difference of waterdd#hrough time for Scenarios 1 and 2. In this grapb
scenarios superpose in the extreme values of NQD8cause the breakthrough time is identical for
dashed and solid lines.

Figure 4 - Breakthrough Deviation illustration ) {&ater production rate series for history data and
several scenarios exemplifying differences betwbennformation relative to water production ratel a
breakthrough time; (b) NQRf plot summarizing the production curves for thensems; (c) NQDg&p

highlighting the mismatch in water breakthroughdifar the scenarios.

3. Methodology: Productivity Deviation, case study, applications and
assumptions

3.1. Productivity Deviation (NQDSpp)

The transition between history and forecast pedad cause fluid rate and bottom-hole-pressure
fluctuations (Ranjan et al. 2014). In fact, at ghasnt, the controls of the simulation scenarioufhdary
conditions) changes: in the history period, ligaidbil production rates are treated as targetinduhe
forecast period, production restrictions are egghbt (for example, minimal and maximal bottom-hole
pressure for producers and injectors and platfapacity). A possible cause of unconditioned reservo
scenarios is uncertain parameters, which can baglyalefined or missing during the parameterization

As large fluctuations in the transition indicatenfrealistic forecasted production rates, Almeidalet
(2018) defined an indicator related to the produistiof the well. The normalized misfit of Produdty
Deviation (NQD$p) splits the historical dynamic data from wellsointtvo parts simulated differently:
(a) history controls, (b) forecast controls. Thisgmal implementation of the NQR§ follows the
simulation scenario by changing the control of th& history date from history control to forecast
control.

In practical terms, history conditions usually unbé a target for liquid or oil production rate the
producer wells and forecast conditions apply opa@nat conditions as minimal pressure for producers.
Additionally, the simulation of the scenarios irethistory period is not conditioned by platform and
well restrictions, which is indispensable to peridhe forecast simulation.

Two possible limitations may arise from the useopgrational conditions to simulate the history
period (as presented by Almeida et al., 2018).tligjreoupling operational conditions in the reservo
simulation requires information that may be unaartéor example, description of the multiphase flow
in wells. Secondly, applying multiple restrictiosgnultaneously €g. well and platform capacities)
potentially limit the identification of productiyitmismatch.

Therefore, we propose an adaptation to the comdgiven to the last time step of the history from
the one presented by Almeida et al. (2018). Thesored BHP in the wells are the targets for
production and injection wells, meaning that weng®athe data informed to the simulator. In this way
we limit the informed boundary condition to measutestory data. This implementation of the PD
indicator is generalizable and independent of asloeirces of data.

The modifications, in the last time step, of thawation file are: (a) to reset non-restrictive maal
liquid production and injection for the wells (ieatd of non-restrictive maximal and minimal pressure
applied to previous time stepse. all-time steps except the last one); and (b) forin the registered
pressure for each well as new target conditiontéans of informing well rates applied to the prewou
time steps).

Figure 5-a exemplifies, for a given producer wélle deviation for BHP informing the history
pressure in the last timeof history. It illustrates most of the scenariaseerging the target BHP
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condition because (1) liquid rate (Figure 5-b) hagproduction limit (gin=0) and (2) a virtual maximal
liquid rate is used to avoid simulation errorg:.4e>q).

Figure 5 - Productivity Deviation illustration -)(BHP being informed only in the last time step of
the history period; (b) Liquid production rate infted for all time steps except the last time steps,
where non-restrictive conditions are reset; (c)datbr of Productivity Deviation for liquid produonh.

The calculation of the productivity deviation agslito both production well®.¢. for liquid rate -
NQDSpq - and BHP - NQDspymn) and injection wells €g. water rate - NQDSw - and BHP -
NQDSeopinh). Equation 3 computes the NQRYS

(Slmt - ObSt) (Slmt - ObSt)Z

3
|Sim,; — Obs;| i (tol * Obs; + C)? ®

NQDSPD =

whereObs, andSim, indicate the observed and simulation value in #isé time {) of the history data.

The NQDSpg plot (Figure 5-c) indicates the deviation of siatedd scenarios compared to the
reference data. We consider that the scenariosay loetter present well productivity. Therefore, we
expect that scenarios with smaller PD will provigter production predictions.

3.2. Case study

We applied the IDLHC methodology (Figure 2) in tbd&NISIM-I-H reservoir model (Avansi and
Schiozer, 2015). This benchmark case is basedabata from the Namorado Field, a marine offshore
turbidite reservoir in the Campos Basin — Brazil.

Figure 6 - Bi-dimensionat-y view of the UNISIM-I-H with the position of the Ir8gions defined by
Maschio and Schiozer (2016). The production stsatemtains 14 production wells (in red) and 11
injection wells (in green). Wells analyzed in deaithe Results and Discussion section are identified:
INJO15, NA3D, PRODO025A, PROD023A and PRODO024A.

The model UNISIM-I- H (Figure 6) has a productidragegy with 14 producer wells and 11 injection
wells and a production history of 11 years (4 0485) available. The production forecast data for 19
years allows for the evaluation of methodologieterms of predictability of the scenarios.

3.2.1. Initial parameterization

The parameterization defined in Step 2 (Figured?) 39 uncertain parameters as defined by Maschio
and Schiozer (2016). Figure 6 retakes the 13 reguefined according to producer/injector pairs,
attempting to capture the main drainage areas. Eggbn has multipliers of porositynpor), horizontal
permeability (nkx) and vertical permeabilitynkz). Isotropic permeability is taken farandy direction;
initial pdf has uniform distribution for all levels. Table dnsmarizes these uncertainties.

Table 1 - Uncertain attributes presented by Masahub Schiozer (2016).

3.3. Applications

Two applications performed in this study computéedent groups of OFs:

* Application 1: 64 OFs, groups of NQRSNQDSw, NQDSym, for producer wells and NQRs
NQDS,un for injector wells;

* Application 2: 128 OFs resulting from adding the @&s of Application 1, plus the additional OF
groups (NQD$&p, NQDSpg, NQDSepppbn: NQDSpiw @and NQD $ppinh)-
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In the Results and Discussion section, we compare their results for the field arlls in the history
and forecast period.

3.4. Assumptions

Table 2 summarizes the constants and tolerancesedoh OF applied in the calculation of the
normalized misfit. Like Avansi et al. (2016), wefided 5% for controlled-data series (NQRS 10%

for data series that are dependent on other S¢@BDS,, and NQDS,, which are related to liquid rate,

a target in the history period). Pressure relat€DN considers a tolerance of 5%. We applied a
constant of 10 fiday for NQDSw to moderate its impact on wells with low waterergiroduction
through a representative part of the history perteat example, the well NA3D production (Figure 7)
reaches a maximum of 150%aay and for this production, the tolerance addgauf0+0.10*150=25
m>/day. Higher constant would imply in smaller infhoe of the variations i, of this well in the
updating process.

Table 2 - Constants used to calculate normalizeditmi

NQDSsp has an AE of 31 days, the maximum interval betwaeasurements. Productivity deviation
are under forecast controls and under uncontratetlitions. Therefore, we chose a tolerance of 10%
for NQDSpq and NQD$piw, defining a minimal tolerance of 10*hday for liquid production.

The cut-off applied to consider water breakthroigHl nf/day for all the producers, except for
NA3D with 6 nt/day. Figure 7 shows the observed water productite for this well, highlighting the
portion of water rate considered residual. Applyihgr/day cut-off for this well would mean to
consider the breakthrough time of 669 days, whiclsdnot correspond to the effective breakthrough
time of 3 226 days.

Figure 7 - Water production rate for well NA3D hmethistory period.

Considering the recommendations proposed by Masahib Schiozer (2016), the applications
consider:
» 450 simulation scenarios per iteration in Stepad4
« A cut-off R.=0.3 to the coefficients of the correlation mainxStep 6.1;
e An increment of the normalized miséit1 in Step 6.5;
¢ A minimumP1=5% and a maximurR2=15% of scenarios sampled to update the attributes;
* A maximal number of iterations ligs=8, set in the beginning of the process.

Moreover, to guarantee the reproducibility of thpplacations, the first run of the applications uses
the same seed, following the random numeric geioerawister.

4. Results and Discussions

To evaluate the assimilation of dynamic data sdsresking down the conventional NQDS into more
objective functions, we firstly exposed their impadth an overview of the indicators for the wells
together with the field behavior. Then, examplesadflitional OFs of some wells were used to
complement the discussion. We decided on that apprdecause details for each of the 128 OFs
individually were not feasible, with multiple relanships between OF and uncertain attributes.

The plots presented in this section consider tifest®&narios of the8teration in the HM process. In
order to promote a clean visualization of the intpadhe forecast period and avoid fluctuationgriro
changing boundary conditions, these final scenanese simulated again with liquid production and
water injection rate as target during all the higtperiod and the same operation conditions of the
reference case in the forecast period.
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4.1. History Period

The compilation of the results for the OFs allowsd broader evaluation on the general behavior of
the wells resulting from the implementation of daditional OFs. Figure 8 presents graphics for rsdve
OFs groups plotting the number of scenarios agaiesNQD interval, from zero to the-axis value.
The higher the proportion of scenarios for a giNgpD interval, the better. Theaxis is in logarithmic
scale.

The assimilation of additional OFs (Applicationr2fluces the mismatch of the OFs groups that have
higher NQD values in Application 1 (NQPR& and NQD$pw, Figure 8-a and -b). In contrast, the
increased complexity of the HM through the assitimtaof additional OFs leads to increasing the NQD
values of traditional OF groups, exemplified by N&B(Figure 8-c).

Figure 8 — Proportion of scenarios against the N@€rval for OFs groups, semi-logarithmic scalg: (a
NQDSepy for 14 production wells; (b) NQDQSw for 11 injection wells; (c) NQDg for 14 production
wells. Note: Application 1 assimilates 64 Objectiugnctions traditionally applied in the IDLHC
methodology, and Application 2 considers 128 OlpjedEunctions consisting in the traditional and
proposed ones.

This analysis indicated that a comparison baseg amithe history period is insufficient. Therefore,
in the next sections, we explore forecast datdaai for the benchmarking case.

4.2. Transition from history to forecast period

During the history period, the water injection rege target for the injection wells in the simidat
We expect scenarios very close to the reference idathis period. Nevertheless, the transitionh® t
forecast period (Figure 9-a) shows fluctuationshia field rate when compared to the reference data.
Application 2, including the additional OFs (in lanw), provides less fluctuations and smother traorsit
than Application 1.

Figure 9 - Distinct field behavior observed for fireal scenarios of the Application 1 (in greenyiahe
Application 2 (in brown) including the history ped (4 018 days) added to 5 years of production
forecast: (a) Field water injection rate with sraafluctuation in the transition for the final segios of
the application that considers additional OFs;Rb}ervoir average pressure with a bias for both
application in most of the history period, but Apption 2 scenarios with better forecast and larger
variability. Note: Application 1 assimilates 64 @bjive Functions traditionally applied in the IDLHC
methodology, and Application 2 considers 128 OlpjedEunctions consisting in the traditional and
proposed ones.

The average reservoir pressure (Figure 9-b) presebias for both applications in most of the hmisto
period: all the scenarios have reservoir pressal@\bthe reference, and limited variability is otvesl.
This is related to the fact that the initial liqwdlume in place (oil and water) of the scenarios a
smaller than the reference model (between 87-92888/7% for Applications 1 and 2, respectively).
Some scenarios of Application 2 are closer to #fierence pressure in the end of the history pearat
it is closer to the reference in the 5-year foregasiod (5 843 days of production). Note that the
reservoir (and well) pressure is above the bubbletgaround 210.03 kgf/c)y justifying the omission
of the OFs related to gas production rate.

These results indicate that adding the OF groujpseeto Productivity Deviation and Breakthrough
Deviation has the potential to limit oscillatoryHaior and improve the transition between historgt a
forecast periods.

1 NQD (Normalized Quadratic Deviation) is the abselalue of the NQDS.
9
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4.3. Forecast period

We use risk curves to evaluate the field forecaklior (Figure 10). In these curves, the cumuativ
oil production is ploted with the cumulative relegtifrequency observed in the 450 scenarios. Further
than the two applications, we also plot the cunngabil production for the first iteration (in gray
where all the uncertain attributes are in unifomompdistribution and the value of the referencedeio
(black dotted line).

The three forecast period selected (one, five, B&dyears) show more scenarios closer to the
reference value for Application 2. These graphspetpthat the inclusion of the new OFs has the
potential to positively influence the predictalyilaf field behavior.

Figure 10 - Forecast period, risk curves for trenscios of iteration 1 and iteration 8 for the two
Applications for: (a) 1 year; (b) 5 years and (8)ykars. Note: Application 1 assimilates 64 Objexcti
Functions traditionally applied in the IDLHC metlmbolgy, and Application 2 considers 128 Objective

Functions consisting in the traditional and propbsees.

In the next sections, some OFs illustrate the tesulterms of well behavior, individually.

4.4. Breakthrough Deviation

The assimilation of NQDsp in Application 2 leads to the improvement of thhedkthrough time of
the scenarios for most wells. From the analysisngfortance of the OFs groups assimilated in the
application (Appendix A), Breakthrough Deviation svethe additional OF group that contributed the
most in the Application 2. Figure 11 shows the wateduction rate, NQDg and NQD$gp, for the well
PRODO024A. Application 2 presents smaller breaktghodeviation than Application 1. In addition, the
water rate of Application 2 is closer to the refere when compared to Application 1.

Figure 11 - Well PRODO024A: (a) Water productiorerfdr the 450 scenarios of both applications in the
history period; (b) Indicative of better NQRSor Application 2; (c) NQD$&p of the well PROD024A
revealing improvement in the BD, but still withigrgficant mismatch. Note: Application 1 assimilate
64 Objective Functions traditionally applied in iibd HC methodology, and Application 2 considers
128 Objective Functions consisting in the tradiéilband proposed ones

Water production of the well NA3D (Figure 12-a) icates that neither water rate nor breakthrough
time match the history data for both applicatiofise inclusion of the NQDsp in the process was not
sufficient to adjust the water breakthrough time&yiFe 12-b) and, for some scenarios, lead to aavors
water rate production (Figure 12-c). In fact, ttergmeterization is limited to the regional muligpé
and this result indicates the need of adding diffeluncertain parameters, for example, flow basrier
with uncertain transmissibility.

Figure 12 - Well NA3D: (a) Water production rate #50 scenarios of each application; (b) N@PS

revealing large mismatch for all scenarios of agtplications; (c) NQDs with some scenarios in the

same range for both applications. Note: Applicaticassimilates 64 Objective Functions traditionally

applied in the IDLHC methodology, and Applicatiom@nsiders 128 Objective Functions consisting in
the traditional and proposed ones

Therefore, a benefit of the additional OFs is tsisighe identification of limitations in the reseir
parameterization defined. The analysis of theseaartlicators of reservoir quality can be usefukewh
reviewing the reservoir parameterization by supmgysupplementary information to the scenarios’
diagnostics, identifying unnoticed problems in tteglitional approach.

10
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4.5. Productivity Deviation

With the implementation of NQDQ¥g, we observe an improvement in the transition fiustory to
forecast periods for several wells as expected fitwenfield results (Figure 9). The objective funos
related to water injection rate and liquid prodoectirate have higher impact in the history matching
process. In the Appendix A, we show that this OFsugs are used to update a higher number of
uncertain attributes when compared to N@B®n or NQDSibh. The justification for this behavior
refers to the definition of Productivity Deviati@etup, which has BHP define as boundary condition t
the last time step (target informed to the simu)aide select as example production well (NA3D) and
injection well (INJO15) to exemplify the positivepact of the assimilation of the additional OFs.

Figure 13-a presents BHP for the well NA3D duringtdry and forecast periods with a total of 5 844
days (5 years of forecast). The plots N@sand NQDSpyon (Figure 13-b and -c) highlight pressure
of the well closer to the reference (Applicationdgta and with more variability around the history
pressure than Application 1. In this sense, thenaies of Application 2 are considered better
conditioned than those in Application 1 for the Gifsalyzed. Jointly, these graphs provide evidehate t
scenarios with smaller indicators of Productivitguiation provide better forecast behavior.

Figure 13 - Well NA3D: (a) Bottom hole pressurenafll NA3D with history data and 5 years of
forecast (total 5 844 days), (b) NQRss and (c) NQD$Sppuon highlighting the differences between the
applications. Note: Application 1 assimilates 64&ative Functions traditionally applied in the IDCH
methodology, and Application 2 considers 128 Olpjedeunctions consisting in the traditional and
proposed ones.

The transition of water injection between histongl dorecast period improved for several wells. The
injection rate for well INJO15 (Figure 14-a) and itorresponding NQDQg (Figure 14-b) is an
example of better conditioning of scenarios intth@asition.

Figure 14 - Well INJO15: (a) Water injection rafeaeell with history data and 5 years of forecastdt
5 844 days), (b) NQDSw highlighting the fluctuations in the last pointtbe history data simulated
with forecast conditions. NQRQSomitted because all scenarios matched the histata, Note:
Application 1 assimilates 64 Objective Functioralitionally applied in the IDLHC methodology, and
Application 2 considers 128 Objective Functionssisting in the traditional and proposed ones.

4.6. Detailing some OFswith poorer match

We also observe some objective functions with highisfit for Application 2 than for Application 1.
For these OFs, the addition of the unconventiorfed 3 not beneficial.

In our example, we explore the OFs of the well PR@EBA. We detail this analysis from the bottom
hole pressure for the history and 5-years forepastd (Figure 15-a). Highlighted by the NQDS plots
(Figure 15-b and -c), the scenarios of Applicatioare limited to scenarios with higher-pressurelev
than the reference. At the same time, Applicatigrésents scenarios with higher variability, inahgd
scenarios with lower pressure values and clostiretoeference.

Figure 15 - Well PRODO023A - (a) Bottom hole pressoirwell with history data and 5 years of forecast
(total of 5 844 days); (b) NQDRsn showing the scenarios of Application 2 (in brownjited to models
with higher-pressure levels than the reference nmbae, Application 1 (in green) has more scenarios
in the range [-10, +10]; (c) NQR&yoh Showing that the assimilation of additional OFaas$ beneficial
for some OFs. Note: Application 1 assimilates 64e@tve Functions traditionally applied in the
IDLHC methodology, and Application 2 considers I2gective Functions consisting in the traditional
and proposed ones.

11
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Themkz of the region 12 influences only the NQfa% well PRODO023A in the Application 1 (Figure
16) but 6 OFS in the Application 2 (NQR&, NQDSpyoon Of the well PRDO23A and NQR§&; of the
wells PROD023A, PROD024A and PRODO025A, Figure FOr the second application, in order to
provide a better match for NQPR§ PRODO25A, this uncertain attribute is updated idetrimental
manner from the perspective of the other OFs.

We investigate this effect through the correlatimatrix, identifying the relationship between
uncertain attributes and OFs. In the IDLHC methodwl(Figure 3, step 6.1), the correlation matrixhwi
the cut-offR. captures this relationship for each of the 8 tters. The number of iterations that a given
OF is correlated to an uncertain attribute is adgednd presented in two plots: Figure 16 and eigur
consider traditional and additional OFs, respettivieach line corresponds to an uncertain attribute
Figure 16, the R12 line corresponds to the regi@nVithite color means that the correlation coeffitie
is lower than the cut-ofRc in any iteration. Black color means that the datien is higher than the cut-
off Rc in all the 8 iterations. The transitional colomrespond to intermediate values between 0 and 8
iterations.

The groups of the 64 conventional (Figure 16) additaonal OFs (NQD&, and NQD$p— Figure
17) are plotted in the matrix with the uncertaitribtites. Our focus is on the behavior of the ofiyec
functions influenced bynkz (R12), marked with vertical lines in the plots.eTanalysis of the attribute
mkz (R12) is direct because the only conventional ©Fetated to it is the NQQen-PRODO23A.
Figure 16 is built with data from Application 1. &lattributes for vertical permeability multipliankz)
of region 12 are marked with a horizontal line heseait influences the NQ@Re-PROD023A. Because
Application 2 has this same relationship, we do pogsent correlation matrix computed for the
additional OFs.

Figure 16 - Matrix identifying the correlations ¢aged in the 8 iterations for the group of 64
conventional OFs, Application 1. Black color meé#met the correlation was of higher value than the
cut-off R. in all the 8 iterations. White color means that torrelation coefficient is lower than the cut-
off R; in any iteration. The transitional colors corresp®o intermediate values between 0 and 8
iterations, as presented by the legend. The orameehighlight the intersection between attribaad
OFs mentioned in the text.

For Application 2, the NQD$pypon Of the well PROD023A (Figure 15) is highlightedyédher with
the other OFs influenced by this attribute (vetticees).

Figure 17 - Matrix identifying the correlations ¢aped in the 8 iterations for the NQBssand NQD$p
objective functions, Application 2. Black color nmsahat the correlation was of higher value than th
cut-off R; in all the 8 iterations. White color means tha&t dorrelation coefficient is lower than the cut-
off R; in any iteration. The transitional colors corresp®o intermediate values between 0 and 8
iterations, as presented by the legend. The oramgehighlight the intersection between attribdaad
OFs mentioned in the text.

We observe that the NQIp& of the well PROD025A (Figure 18-a and -b) is clasethe reference
in Application 2.

Figure 18 - The attribute mkz (R12) influences NM@DSPDq| of the well PRODO025A — (a) Liquid

production rate in the history period for both apgions highlighting the ranges of productivity

deviation in the last history time step; (b) NQDSPDf the well PRODO025A highlighting smaller

fluctuation in the transition between history andetast period for Application 2 than for Applicatil.
Note: Application 1 assimilates 64 Objective Fuoies traditionally applied in the IDLHC

12
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methodology, and Application 2 considers 128 OljedEunctions consisting in the traditional and
proposed ones.

We also present the final distribution of the atite mkz of region 12 (Figure 19). On one hand,
Application 1 (in green) presents a higher numbelewels (variability) as well as higher multiplier
values. On the other hand, Application 2 distribati(in brown) is concentrated to less levels and
smaller multipliers (to the left of theaxis).

Figure 19 - mkz of Region 12, an attribute coredato the well PROD023A. Note: Application 1
assimilates 64 Objective Functions traditionallplggd in the IDLHC methodology, and Application 2
considers 128 Objective Functions consisting intthditional and proposed ones.

This attribute contributed to the behavior desatib® this OF: smallekz leads to a BHP closer to
the reference for PRODO25A (the scenarios in Apgilbi; 1 have lower pressure when compared to
Application 2 and the history data). Therefore, N&§Dor this well is smaller (Figure 18) because the
liquid production rate of several scenarios dodsdimminish as much as in Application 1 to honor the
informed pressure.

To summarize this example explaining why some QEsgnted poorer match in the Application 2,
this uncertain attributerkz R12) influences traditional and additional OFs M&,n, NQD Sepppon and
NQDSopy). In order to provide a better match for the NQRSPRODO25A, thepdf concentrates in
some levels but is detrimental to other OFs (NQESNd NQD$pppon 0f PROD023A).

This result indicates that with a large number éis@ssimilated, and a large quantity of uncertain
attributes to update, the relationships between &@fesattributes increases the challenge to mateh th
dynamic behavior and all OFs assimilated.

5. Conclusions

We evaluated the impact of gathering and consideaaiditional information from the dynamic data
series in the History Matching (HM) performance. Wesented a deep analysis of the assimilation of
dynamic data series in an unconventional way, wiscbased on splitting the available historic time-
series into more Objective Functions (OFs), detaghelevant events observed in the historical data.
The OFs included measuring the Breakthrough Deng8D) and Productivity Deviation (PD).

We proposed an adaptation for the calculation efatiditional objective function called Productivity
Deviation (PD), which only uses information fronethistory data. It changes the information provided
to the simulator from liquid production or watejaction rate to bottom hole pressure.

Two applications show different field and well beiwa in the scenarios of the last iteration of the
history matching process. The main identified atwges of the unconventional OFs in the HM
matching process for this study case were:

* Smoother transition between history and forecasoge for field data;

* Water breakthrough time closer to the referenca fitatseveral wells and scenarios;

» Additional indicators of quality of the reservoioatel to support the review of parameterization:
revealing problems in scenarios unnoticed by apglginly the traditional OFs;

* Final scenarios with better predictability behavidrthe field in short (1-year), mid (5-years)
and long (19-years) term.

Nevertheless, when considering the additional Q¥es,observed a situation with traditional OF
groups, presenting more distant scenarios fronhi$tery data. In fact, the HM problem becomes more
complex to solve with the additional OFs becaugeutincertain attributes considered influence moee th
OFs. In order to accommodate these additional @Fkda HM process, some traditional OFs result in
higher mismatch.

13
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The improved predictability of the simulation sceos indicates that superior performance of HM
process is possible by splitting the available dyicadata. At the same time, the evidences showinisn
paper encourage the continuous improvement of HMhou®logies and new approaches of data
assimilation, which are able to accommodate a migheber of uncertain attributes and OFs.

Nomenclature
BD Breakthrough Deviation
BHP Bottom Hole Pressure
DLHC Discrete Latin Hypercube
HM History Matching
IDLHC Iterative Discrete Latin Hypercube
Itermax ~ Maximal number of iterations in IDLHC
Iw water injection rate
NQD Normalized Quadratic Deviation
NQDS Normalized Quadratic Deviation with Sign

OF Objective Function

PD Productivity Deviation

pdf probability density function

Pibh Bottom hole pressure of injection wells

Pobt Bottom hole pressure of production wells

Jo Oil production rate

Ow Water production rate

Re Cut-off to the coefficients of the correlation mat
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633 Appendix A: Analysis of importance of OF groups

634 The graphics below present all the objective fundidisposed in groups according to the respective
635 type of production data and application (Applicatib in green, Application 2 in brown). The bar’s
636 height represents the number of attributes thavengOF was selected to update uncertain attributes
637 during all iterations. A horizontal line with thesian of all wells supports the differentiation betwéehe

638 two applications. Note that OFs from Figure 20,a2H 22a are assimilated in both Applications, but
639 from Figure 22¢, 23 and 24, only in the Application 2. Also, tHetp are in the same scale in y-axis.
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NQDS for oil and water rate (Figure 20-a and -b)ehsimilar importance along the wells, with slight
difference in the mean values. These plots evidgheecomplementarity between water and oll
production when a simulation model is close to eets the target values of liquid production infodme
to the simulator.

Figure 20 — Number of attributes that a given OB s&lected to update uncertain attributes by \{ell:
NQDSqo; (b) NQDSqgw. Note: Application 1 assimilaB@sObjective Functions traditionally applied in
the IDLHC methodology, and Application 2 consid#28 Objective Functions consisting in the
traditional and proposed ones.

Water injection rate is the boundary condition infed to the simulator in the history period, with
exception to the last time which the target is teebe BHP. In Figure 21-a, the mean number of
attributes of NQDg is higher for Application 2 than for Application Blevertheless, NQQsdoes not
update more than two uncertain attributes for aaly.w

Figure 21 — Number of attributes that a given OB s&lected to update uncertain attributes by \{ell:
NQDSy; (b) NQDSiuh. Note: Application 1 assimilates 64 Objective Rimres traditionally applied in
the IDLHC methodology, and Application 2 consid&28 Objective Functions consisting in the
traditional and proposed ones.

The mean number of attributes of NQJa&is close to 4 for both applications (Figure 22vahich
indicates similar importance. Figure 22-b preséimsNQDS of Breakthrough Deviation, which has the
higher mean of uncertain attributes updated amoagdditional objective functions.

Figure 22 — Number of attributes that a given OB selected to update uncertain attributes by \{all:
NQDSppbh; (b) NQDSBD. Note: Application 1 assinea64 Objective Functions traditionally applied
in the IDLHC methodology, and Application 2 cons&lé28 Objective Functions consisting in the
traditional and proposed ones

Because in the last time step the BHP is a tamethle simulator, NQD$y group updates more
uncertain attributes than NQBRgh, On average. Mismatches related to N@gsn, have too small
variability for some wells (for example, PRODO024R,JS019) or are uncorrelated with uncertain
attributes (for example PRODO010).

Figure 23 — Number of attributes that a given OB s&lected to update uncertain attributes by \{ell:

NQDSeoyq; (b) NQDSppoon. Note: Application 1 assimilates 64 Objective Riores traditionally applied

in the IDLHC methodology, and Application 2 congi&lé28 Objective Functions consisting in the
traditional and proposed ones.

The same reasoning is applicable for PD of watection and BHP of injectors. NQBRS, groups
updates more attributes than NQigsn, on average.

Figure 24 — Number of attributes that a given OB s&lected to update uncertain attributes by \{ell:
NQDSPDiw; (b) NQDSPDpibh. Note: Application 1 assates 64 Objective Functions traditionally
applied in the IDLHC methodology, and Applicatio@nsiders 128 Objective Functions consisting in
the traditional and proposed ones.

This analysis indicates that among the OFs growued in the history matching process, the

Breakthrough Deviation was more relevant in thecpss of updating uncertain attributes for the study
case applied in this paper.
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Table 1 - Uncertain attributes presented by Maschio and Schiozer (2016).

Uncertain attributes (for Minimum | Maximum | Number of levels | Initial pdf
each region)

mpor 0.8 1.2 30 Uniform

mkx 0.1 5.0 30 Uniform

mkz 0.1 5.0 30 Uniform

Table 2 - Constants used to calculate normalized misfit.

OF C (unit of the variable) | Tol (%)
NQDSqo 0 10
NQDSqw 10 10

NQDS;pbn 0 5
NQDS;y 0 5
NQDSpibn 0 5
NQDSBD AE=31 0
NQDSppq 10 10
NQDSpoppbh 0 5
NQD Sppiw 0 10
NQDSpopibh 0 5
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Highlights
e Better understanding about reservoir behavior by splitting available data in new OF
e Reveal parameterization problems unnoticed by traditional procedures
e Better predictability behavior of the field in short, mid and long term
e Smoother transition between history and forecast periods



