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(a) (b) 

Figure 1: Results obtained for field and wells comparing Application 1 (only traditional Objective 

Functions assimilated) and Application 2 (traditional and additional OFs assimilated): (a) Field water 

injection rate (iw) with better predictability for Application 2; and (b) water production rate (qw) of the 

well PROD024A showing water breakthrough time closer to the reference for Application 2 when 

compared to Application 1. 
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Abstract 
History matching (HM) is an inverse problem where uncertainties in attributes are reduced by 

comparison with observed dynamic data. Typically, normalized misfit summarizes dissimilarities 
between observed and simulation data. Especially for long-time series, objective functions (OFs) 
aggregate multiple events and tendencies relevant to field performance in a single indicator (e.g. water 
rate and breakthrough time). To capture the attributes influencing the reservoir behavior, we evaluate the 
assimilation of data series through additional OFs, obtained from splitting time-series data. In this study, 
two additional OF groups supplement the time-series misfits: Breakthrough Deviation (BD) indicating 
dissimilarities in water breakthrough time; Productivity Deviation (PD), representing mismatches of the 
well potential, mainly impacting the transition from history to forecast conditions. The Productivity 
Deviation (PD) is adapted from previous studies. Instead of simulating the last time of the historical 
period under forecast conditions, we propose keeping it under historical data. The change is the 
historical data used as target condition to the simulator: Bottom Hole Pressure (BHP) in place of liquid 
production and water injection rates; with this, we estimate a mismatch in well productivity, while 
avoiding the influence of other boundary conditions in the evaluation. Two applications (1 & 2), 
assimilating different OF quantities, highlight the influence of the additional groups. Application 1 only 
computes time-series misfit (64 OFs) whereas Application 2 includes the BD and PD (counting 128 
OFs). The iterative HM method presents flexibility regarding OFs assimilated and incorporation of 
uncertain attributes. UNISIM-I-H case allows us to evaluate the HM considering history and forecast 
data. We examine differences between the 450 scenarios resulting of data assimilation for 
each application through four perspectives. Application 2 resulted in scenarios with better predictability 
of the field behavior and smoother transitions between field history and forecast periods. Field 
cumulative oil production of Application 2 is also forecasted closer to the reference data when compared 
to Application 1; all forecast periods (1, 5 and 19 years) emphasize this impact. Some wells presented 
breakthrough time closer to the reference for Application 2. The challenging achievement of exact BD 
matches leads to the third advantage of the additional indicators. These OFs supply supplementary 
information to the diagnosis of scenarios, identifying unnoticed problems in the traditional approach. 
Finally, even with an overall better performance, some of the well OFs presented poorer matches for 
Application 2. To explain this, we analyzed the relationship between attributes and the OFs used to 
update the attributes. In conclusion, the improved forecast of the simulation scenarios indicates that 
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superior performance of the HM process is possible by splitting the available dynamic data in relevant 
additional OFs. This study presents a case application with 11 years of field history, in which additional 
OFs, derived from dynamic data, add value to the reservoir characterization. They allow the influence of 
uncertain attributes to be captured for relevant events in reservoir performance. We also show how the 
increased quantity of OFs assimilated makes the HM harder for some OFs.  
Keywords: History Matching; Iterative Discrete Latin Hypercube methodology; Breakthrough Time; 
Well Productivity; Reservoir Characterization; Transition between Historical and Forecast periods.  

1. Introduction 1 
Reservoir simulation models are representations of real petroleum fields used in production forecast and 2 
decision-making process. Closed-Loop Reservoir Development and Management (CLRDM) endorses 3 
the application of simulation techniques in all stages of the field lifetime. CLRDM methodologies 4 
(Jansen et al. 2009; Wang et al. 2009; Schiozer et al. 2015) integrate model-based optimization and data 5 
assimilation to support decisions about the physical problem with uncertainties. Silva et al. (2017) 6 
propose a closed-loop workflow, constructed with ensemble-based method. They demonstrate the 7 
effectiveness of CLRM to improve the predictability of the models, in contrast to ensemble-based 8 
separated applications. 9 

Data assimilation is a stage in the CLRDM known as History Matching (HM) in the petroleum 10 
industry. It uses the observed dynamic data to afford a better representation and predictability of the 11 
physical model through simulation models. The HM is an inverse problem with multiple possible 12 
solutions. The complexity to solve the problem increases with dimensionality in terms of number of 13 
inputs and outputs. 14 

A wide understading on the inverse theory and history matching, including explanatory examples, is 15 
available in the book of Oliver et al. (2008). Oliver and Chen (2011) discuss the progress of diverse HM 16 
processes in their paper, detailing advantages and disadvantages of manual, evolutionary, Ensemble 17 
Kalman Filter based and Adjoint methods. Rwechungura et al. (2011) sumarizes the evolution of HM 18 
techniques through the time and highlights aspects to the integration of 4D seismic. Maschio and 19 
Schiozer (2016) offer a more recent overview about HM methods, classifing optimization, probabilitic 20 
and mixed methods. 21 

In the HM process, parameters of the reservoir characterization, which are inputs into the reservoir 22 
numerical model, are uncertain and represent undetermined reservoir features (fault transmissibility, for 23 
instance). These uncertainties in the attributes influence dynamic production estimated by the simulator 24 
and the asset team used this data to understand flow and transport in the real petroleum field. The closer 25 
the simulator output is to the dynamic data measured in the field (production rate in specific period, for 26 
example), the better we expect that the model represents the physical field. In this context, objective 27 
functions (OFs) computes the difference between observed and simulation data.  28 

A reservoir analysis based on a deterministic approach considers one or more scenarios that represent 29 
a partial set of the possible production scenarios. Nevertheless, this approach can present biased results 30 
since it generates production forecasts without adequately exploring the range of production scenarios 31 
(Goodwin 2015). In contrast, the probabilistic approach represents the uncertainty toward the reservoir 32 
behavior. It supports reliable forecast by addressing questions of risk and uncertainty in reservoir 33 
management. This approach incorporates the consideration of several sources of uncertainties involved 34 
in the reservoir characterization process and measurement errors in observed data (Maschio and 35 
Schiozer 2017).   36 

Some probabilistic methods allow the redefinition of the probability distribution based on the OFs 37 
misfit, improving the reservoir knowledge in terms of reservoir characterization. An example of a 38 
methodology with this characteristic is the Iterative Discrete Latin Hypercube (IDLHC), method 39 
developed by Maschio and Schiozer (2016). The IDLHC is an automated probabilistic method to reduce 40 
uncertainty and update probability of the uncertain attributes with nonparametric density estimation. The 41 
process consists of applying a correlation matrix to automatically identify relationships between 42 
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uncertain attributes and OFs. Due to its flexibility in terms of quantity of uncertain attributes and OFs 43 
assimilated, it can be adapted to several scenarios of reservoir characterization and information 44 
available. 45 

In order to offer a broader understanding and representation of the reservoir model, multi-objective 46 
and probabilistic HM processes have been employed. These processes simultaneously evaluate the 47 
reservoir behavior through multiple quality indicators associated to observed data in the production and 48 
injection wells (Almeida et al. 2014; Kam et al. 2017). Hutahaean et al. (2015) showed that an ensemble 49 
of matched scenarios from multi-objective HM provides a more diverse set of matched-scenarios, which 50 
leads to a better comprehension on the forecast behavior.  51 

Nevertheless, since multi-objective-HM performance (convergence speed and match quality) can 52 
deteriorate under an increasing number of objective functions, Hutahaean et al. (2017) investigates the 53 
selection of objective grouping for multi-objective HM. Min et al. (2014) developed an evolutionary 54 
algorithm to overcome inefficiencies of multiple-objective constraints by introducing preference-55 
ordering and successive objective reduction to the conventional multi-objective optimization module. 56 

Several studies evaluate the influence of the OF definition in the HM process. For example, Tillier et 57 
al. (2013) focused in defining a formulation for incorporating seismic data in the process; Bertolini and 58 
Schiozer (2011) compared eight global OFs in the history matching process by assessing the matching 59 
quality of synthetic reservoir model. 60 

A normalized misfit called Normalized Quadratic Deviation with Sign computes the difference 61 
between simulated and observed data (Avansi et al. 2016). This OF summarizes time-series curves for a 62 
scenario (Figure 1-a) in a single indicator (Figure 1-b) and is useful in probabilistic and multi-objective 63 
HM approaches (more details in the NQDS section). An acceptance range [-γ, + γ] supports the 64 
classification of the scenarios taking into account the sources of errors considered (e.g. noise in the 65 
history data, measurement errors, level of fidelity of the reservoir simulation model). 66 

 67 
Figure 1 - Typical NQDS graphic summarizing data from several scenarios: (a) Curves of oil production 68 
rate plotted against time, adapted from Avansi et al. 2016: History data (blue points), selected scenarios 69 
that are within an acceptance range ±γ (in gray lines), scenarios with production rates higher and lower 70 

than the acceptance range (in brown and red lines respectively); (b) NQDS plot applying the same 71 
legend colors, where each dot corresponds to a production rate curve 72 

 73 
Due to the high quantity of observed data, especially for long time series, these OFs aggregate into a 74 

single indicator, events and temporary trends relevant to reservoir performance. For example, water 75 
breakthrough time and changes in the Gas-Oil Rate (GOR) are relevant for the field management; well 76 
production trends evolve over time under distinct reservoir conditions (e.g. recovery mechanism from 77 
natural flow to water/gas injection to pressure maintenance). Different uncertain attributes can influence 78 
these events and temporary trends. Once aggregated in a single OF, the relationship between uncertain 79 
attributes and OFs may be difficult to capture with mathematical structures as correlation matrix.  80 

Splitting the conventional NQDS into more objective functions is an alternative approach to better 81 
understand the reservoir from the dynamic data available. Almeida et al. (2018) presented an 82 
introductory study with the application of unconventional OFs to measure the deviation of specific 83 
events (Breakthrough Deviation and Productivity Deviation). Each additional OF captures specific well 84 
behaviors (not mapped by the conventional OFs) that are influenced by distinct uncertain attributes. 85 
Then, the uncertain attributes update process considers the constraints established by both conventional 86 
and unconventional OFs. Because of this, the relationships identified between the unconventional OFs 87 
and uncertain attributes improved the reservoir calibration and uncertainty reduction process.  88 

1.1. Objectives 89 
This paper aims to evaluate the assimilation of dynamic data series in a way to capture deviations in 90 

the breakthrough time and in the well productivity. With that, we aim to assess the possibility of 91 
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gathering more information from available dynamic data series in the HM process, which improves the 92 
reservoir behavior predictability.  93 

When compared to the definitions of Almeida et al. 2018, we propose a distinct way to simulate the 94 
scenarios to better capture the physics that surround the well productivity. The proposed computation of 95 
Productivity Deviation avoids the influence of other sources of information, such as platform and well 96 
capacities, required in the previous work of Almeida et al. 2018. Moreover, this study assesses the 97 
additional OFs as a source of information to reveal reservoir behavior, not explored in previous works. 98 

We adapt a history matching methodology (IDLHC from Maschio and Schiozer, 2016) to consider 99 
the additional groups of Objective Functions for updating the uncertain attributes and use the same 100 
parameterization presented in that paper. Maschio and Schiozer 2016 and 2018 tested the IDLHC 101 
methodology and compared it to other methodologies, assuring the quality of the history matching 102 
procedure.   103 

2. Theoretical background  104 
After describing the main aspects of the probabilistic HM methodology, this section details the objective 105 
functions applied to this proposed work. 106 

2.1. Iterative Discrete Latin Hypercube (IDLHC) 107 
The main advantage of the probabilistic IDLHC methodology proposed by Maschio and Schiozer 108 

(2016) is to simultaneously assimilate a large number of OFs to update probability distributions of 109 
uncertain attributes. Additionally, the process is flexible in terms of quantity of uncertain attributes and 110 
OFs assimilated, being adapted to several scenarios of reservoir characterization and information 111 
available. This HM process generates multiple history-matched scenarios per iteration and the last set of 112 
scenarios is useful for prediction and optimization studies. In the IDLHC general workflow (Figure 2), 113 
the uncertain attributes parameterized in the beginning of the process (Step 2) are the same until the last 114 
pre-defined iteration (Itermax). In each iteration, a set of scenarios representing the distribution of 115 
uncertain attributes is generated with Discrete Latin Hypercube (DLHC) sampling (Step 3) conceived by 116 
Schiozer et al. (2017).  117 

 118 
Figure 2 - General workflow for probabilistic history matching (Maschio and Schiozer, 2016). 119 

 120 
After running these scenarios in the flow simulator (Step 4), NQDS computation quantifies the misfit 121 

between scenarios and observed data for each scenario and objective function (Step 5). In Step 6, 122 
selected scenarios are used for the generation of posterior distribution for each uncertain attribute. 123 
Maschio and Schiozer (2016) proposed three approaches to update the probability density function (pdf) 124 
of the uncertain attributes. Figure 3 details method 3, chosen for this study. 125 

 126 
Figure 3 - Flow chart from scenario selection, method 3 (Maschio and Schiozer, 2016). 127 

 128 
A cut-off (Rc) applied to the coefficients of the correlation matrix (Step 6.1) indicates the existence of 129 

relationship between uncertain attributes and objective functions. The AI attributes considered correlated 130 
to at least one OF are updated. The updating routine starts in Step 6.2 with the first attribute to update, 131 
continuing until the last attribute (AI). The iterative process around Steps 6.4 to 6.5 guarantees two 132 
requirements: (a) a quantity of scenarios between a minimum (P1) and a maximum (P2) percentage of 133 
the scenarios sampled to avoid the collapse of the pdf, and (b) the selection of scenarios with smallest 134 
computed misfit.  135 

Then, a nonparametric density estimation technique (Step 6.6) leads to updating of uncertain 136 
attributes generating histograms representing the posterior distribution of each attribute. These posterior 137 
distributions are the prior distributions for the next iteration. The iterative process of Figure 2 continues 138 
for the number of iterations predefined (Itermax). 139 
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2.2. Normalized misfit as indicators of HM quality 140 
In history-matching processes, indicators of quality for a scenario quantify the misfit between the 141 

simulation scenario and observed data. Four possible applications are to: 142 
a) conduct the HM process, as objective functions to be minimized; 143 
b) provide data to update the uncertain attributes; 144 
c) diagnose scenarios revealing and guiding the review of reservoir characterization; 145 
d) support the evaluation of performance when comparing different methodologies. 146 

We detail the two out of three normalized misfit groups applied in Step 5 of the HM methodology 147 
(Figure 2): NQDS and NQDSBD (NQDS of Breakthrough Deviation). In the methodology section we 148 
present the third normalized misfit group NQDSPD (NQDS of Productivity Deviation), because it is 149 
subject of modification from previous work. 150 

2.2.1. NQDS 151 
NQDS (Avansi et al. 2016, modified) consolidates the misfit between history and temporal data series 152 

of production and injection wells. For example, NQDSqw-Well 1 represents the misfit of water rate 153 
production for the Well 1 considering a time interval simulated for a given scenario. Similar notation 154 
applied to other data series, for example, oil production rate (NQDSqo), production BHP (NQDSppbh), 155 
water injection rate (NQDSiw) and injector BHP (NQDSpibh).  156 

Equation 1 computes the NQDS: 157 
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where Simj and Obsj are the simulated and observed (historical) data measured at the time j. Tol is the 158 
tolerance value (%) defined by the user for each data series; C is a constant used to avoid null or 159 
excessively small divisor, in case the production rate is close to zero (for example, water production rate 160 
in a recently opened well). Physically, the constant C represents the minimal tolerance for a given data 161 
series.  162 

2.2.2. Water Breakthrough Deviation (NQDSBD) 163 
Water breakthrough is the time when water first reaches the production well. In the field management, 164 
this measured time and subsequent Water-Oil Ratio (WOR) trends are usually key performance 165 
indicators that also can be indicative of channeling and bypassing problems in the field (Baker 1998).  166 

The historical data of water production in wells is source of two-combined information: (a) water 167 
production rate through time, and (b) breakthrough time. In this sense, Almeida et al. (2018) adapted the 168 
NQDS as a punctual normalized misfit for breakthrough time (Equation 2), the NQDSBD: 169 

������ =
(�� !" − ��#$ )
|�� !" − ��#$ |

∗
(�� !" − ��#$ )�

(%&)�  (2) 

where BT is the Breakthrough Time and AE is the Acceptable Tolerance, for example, the maximal time 170 
between two consecutive measures of water production. A water rate cut-off to consider water 171 
breakthrough time avoids erroneous capture of breakthrough time: smaller water production rates when 172 
compared to this cut-off value are treated as residual water production. Even if the water breakthrough 173 
has not yet occurred in a given well at the historical period, it may add information to the HM process if 174 
some simulation scenarios have earlier breakthrough time. 175 

Figure 4-a exemplifies water production against time for history data and some scenarios. The gray 176 
lines represent scenarios with production rate and breakthrough time within the acceptance range [-γ, + 177 
γ]. Scenarios 1 and 2 (brown and red lines) have early and late breakthrough time, respectively. Dashed 178 
and solid lines correspond to scenarios with matched and non-matched water production rates. The 179 
diagnostic of the NQDSqw plot (Figure 4-b) only identifies mismatches in the water production rate, 180 
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keeping the two dashed scenarios within the acceptance range. On the other hand, the NQDSBD plot 181 
(Figure 4-c) identifies the difference of water breakthrough time for Scenarios 1 and 2. In this graph, two 182 
scenarios superpose in the extreme values of NQDSBD because the breakthrough time is identical for 183 
dashed and solid lines. 184 
 185 

Figure 4 - Breakthrough Deviation illustration - (a) Water production rate series for history data and 186 
several scenarios exemplifying differences between the information relative to water production rate and 187 
breakthrough time; (b) NQDSqw plot summarizing the production curves for the scenarios; (c) NQDSBD 188 

highlighting the mismatch in water breakthrough time for the scenarios. 189 
 190 

3. Methodology: Productivity Deviation, case study, applications and 191 
assumptions 192 

3.1. Productivity Deviation (NQDSPD) 193 
The transition between history and forecast period can cause fluid rate and bottom-hole-pressure 194 

fluctuations (Ranjan et al. 2014). In fact, at this point, the controls of the simulation scenario (boundary 195 
conditions) changes: in the history period, liquid or oil production rates are treated as targets; during the 196 
forecast period, production restrictions are established (for example, minimal and maximal bottom-hole-197 
pressure for producers and injectors and platform capacity). A possible cause of unconditioned reservoir 198 
scenarios is uncertain parameters, which can be wrongly defined or missing during the parameterization.  199 

As large fluctuations in the transition indicate non-realistic forecasted production rates, Almeida et al. 200 
(2018) defined an indicator related to the productivity of the well. The normalized misfit of Productivity 201 
Deviation (NQDSPD) splits the historical dynamic data from wells into two parts simulated differently: 202 
(a) history controls, (b) forecast controls. This original implementation of the NQDSPD follows the 203 
simulation scenario by changing the control of the last history date from history control to forecast 204 
control.  205 

In practical terms, history conditions usually include a target for liquid or oil production rate for the 206 
producer wells and forecast conditions apply operational conditions as minimal pressure for producers. 207 
Additionally, the simulation of the scenarios in the history period is not conditioned by platform and 208 
well restrictions, which is indispensable to perform the forecast simulation. 209 

Two possible limitations may arise from the use of operational conditions to simulate the history 210 
period (as presented by Almeida et al., 2018). Firstly, coupling operational conditions in the reservoir 211 
simulation requires information that may be uncertain, for example, description of the multiphase flow 212 
in wells. Secondly, applying multiple restrictions simultaneously (e.g. well and platform capacities) 213 
potentially limit the identification of productivity mismatch.  214 

Therefore, we propose an adaptation to the condition given to the last time step of the history from 215 
the one presented by Almeida et al. (2018). The measured BHP in the wells are the targets for 216 
production and injection wells, meaning that we change the data informed to the simulator. In this way, 217 
we limit the informed boundary condition to measured history data. This implementation of the PD 218 
indicator is generalizable and independent of other sources of data.  219 

The modifications, in the last time step, of the simulation file are: (a) to reset non-restrictive maximal 220 
liquid production and injection for the wells (instead of non-restrictive maximal and minimal pressure 221 
applied to previous time steps, i.e. all-time steps except the last one); and (b) to inform the registered 222 
pressure for each well as new target condition (instead of informing well rates applied to the previous 223 
time steps).  224 

Figure 5-a exemplifies, for a given producer well, the deviation for BHP informing the history 225 
pressure in the last time t of history. It illustrates most of the scenarios converging the target BHP 226 
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condition because (1) liquid rate (Figure 5-b) has no production limit (qlmin=0) and (2) a virtual maximal 227 
liquid rate is used to avoid simulation errors (qlmax>>ql). 228 

 229 
Figure 5 - Productivity Deviation illustration - (a) BHP being informed only in the last time step of 230 

the history period; (b) Liquid production rate informed for all time steps except the last time steps, 231 
where non-restrictive conditions are reset; (c) Indicator of Productivity Deviation for liquid production. 232 

 233 
The calculation of the productivity deviation applies to both production wells (e.g. for liquid rate - 234 

NQDSPDql - and BHP - NQDSPDppbh) and injection wells (e.g. water rate - NQDSPDiw - and BHP - 235 
NQDSPDpibh). Equation 3 computes the NQDSPD: 236 

����(� =
(��	) − ��))
|��	) − ��)|

∗
(��	) − ��))�

(*�� ∗ ��) + �)� (3) 

where ��) and ��	) indicate the observed and simulation value in the last time (t) of the history data.  237 
The NQDSPDql plot (Figure 5-c) indicates the deviation of simulated scenarios compared to the 238 

reference data. We consider that the scenarios in gray better present well productivity. Therefore, we 239 
expect that scenarios with smaller PD will provide better production predictions. 240 

 241 

3.2. Case study  242 
We applied the IDLHC methodology (Figure 2) in the UNISIM-I-H reservoir model (Avansi and 243 
Schiozer, 2015). This benchmark case is based on real data from the Namorado Field, a marine offshore 244 
turbidite reservoir in the Campos Basin – Brazil. 245 
 246 

Figure 6 - Bi-dimensional x-y view of the UNISIM-I-H with the position of the 13 regions defined by 247 
Maschio and Schiozer (2016). The production strategy contains 14 production wells (in red) and 11 248 

injection wells (in green). Wells analyzed in detail in the Results and Discussion section are identified: 249 
INJ015, NA3D, PROD025A, PROD023A and PROD024A. 250 

 251 
The model UNISIM-I- H (Figure 6) has a production strategy with 14 producer wells and 11 injection 252 

wells and a production history of 11 years (4 018 days) available. The production forecast data for 19 253 
years allows for the evaluation of methodologies in terms of predictability of the scenarios.  254 

3.2.1. Initial parameterization 255 
The parameterization defined in Step 2 (Figure 2) has 39 uncertain parameters as defined by Maschio 256 

and Schiozer (2016). Figure 6 retakes the 13 regions defined according to producer/injector pairs, 257 
attempting to capture the main drainage areas. Each region has multipliers of porosity (mpor), horizontal 258 
permeability (mkx) and vertical permeability (mkz). Isotropic permeability is taken for x and y direction; 259 
initial pdf has uniform distribution for all levels. Table 1 summarizes these uncertainties.  260 
 261 

Table 1 - Uncertain attributes presented by Maschio and Schiozer (2016). 262 

3.3. Applications 263 
Two applications performed in this study compute different groups of OFs:  264 
• Application 1: 64 OFs, groups of NQDSqo, NQDSqw, NQDSppbh, for producer wells and NQDSiw, 265 

NQDSpibh for injector wells;   266 
• Application 2: 128 OFs resulting from adding the 64 OFs of Application 1, plus the additional OF 267 

groups (NQDSBD, NQDSPDql, NQDSPDppbh, NQDSPDiw and NQDSPDpibh).  268 
 269 
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In the Results and Discussion section, we compare their results for the field and wells in the history 270 
and forecast period. 271 

3.4. Assumptions 272 
Table 2 summarizes the constants and tolerances for each OF applied in the calculation of the 273 
normalized misfit. Like Avansi et al. (2016), we defined 5% for controlled-data series (NQDSiw); 10% 274 
for data series that are dependent on other series (NQDSqo and NQDSqw, which are related to liquid rate, 275 
a target in the history period). Pressure related NQDS considers a tolerance of 5%. We applied a 276 
constant of 10 m3/day for NQDSqw to moderate its impact on wells with low water rate production 277 
through a representative part of the history period. For example, the well NA3D production (Figure 7) 278 
reaches a maximum of 150 m3/day and for this production, the tolerance adds up to 10+0.10*150=25 279 
m3/day. Higher constant would imply in smaller influence of the variations in qw of this well in the 280 
updating process.  281 
 282 

Table 2 - Constants used to calculate normalized misfit. 283 
 284 
NQDSBD has an AE of 31 days, the maximum interval between measurements. Productivity deviation 285 

are under forecast controls and under uncontrolled conditions. Therefore, we chose a tolerance of 10% 286 
for NQDSPDql and NQDSPDiw, defining a minimal tolerance of 10 m3/day for liquid production.  287 

The cut-off applied to consider water breakthrough is 1 m3/day for all the producers, except for 288 
NA3D with 6 m3/day. Figure 7 shows the observed water production rate for this well, highlighting the 289 
portion of water rate considered residual. Applying 1 m3/day cut-off for this well would mean to 290 
consider the breakthrough time of 669 days, which does not correspond to the effective breakthrough 291 
time of 3 226 days.  292 

 293 
Figure 7 - Water production rate for well NA3D in the history period. 294 

 295 
Considering the recommendations proposed by Maschio and Schiozer (2016), the applications 296 

consider: 297 
• 450 simulation scenarios per iteration in Steps 3 and 4; 298 
• A cut-off Rc=0.3 to the coefficients of the correlation matrix in Step 6.1; 299 
• An increment of the normalized misfit δ=1 in Step 6.5; 300 
• A minimum P1=5% and a maximum P2=15% of scenarios sampled to update the attributes; 301 
• A maximal number of iterations Itermax=8, set in the beginning of the process. 302 

 303 
Moreover, to guarantee the reproducibility of the applications, the first run of the applications uses 304 

the same seed, following the random numeric generation twister. 305 

4. Results and Discussions 306 
To evaluate the assimilation of dynamic data series breaking down the conventional NQDS into more 307 
objective functions, we firstly exposed their impact with an overview of the indicators for the wells 308 
together with the field behavior. Then, examples of additional OFs of some wells were used to 309 
complement the discussion. We decided on that approach because details for each of the 128 OFs 310 
individually were not feasible, with multiple relationships between OF and uncertain attributes. 311 

The plots presented in this section consider the 450 scenarios of the 8th iteration in the HM process. In 312 
order to promote a clean visualization of the impact in the forecast period and avoid fluctuations from 313 
changing boundary conditions, these final scenarios were simulated again with liquid production and 314 
water injection rate as target during all the history period and the same operation conditions of the 315 
reference case in the forecast period. 316 
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4.1. History Period 317 
The compilation of the results for the OFs allows for a broader evaluation on the general behavior of 318 

the wells resulting from the implementation of the additional OFs. Figure 8 presents graphics for several 319 
OFs groups plotting the number of scenarios against the NQD1 interval, from zero to the x-axis value. 320 
The higher the proportion of scenarios for a given NQD interval, the better. The x-axis is in logarithmic 321 
scale. 322 

The assimilation of additional OFs (Application 2) reduces the mismatch of the OFs groups that have 323 
higher NQD values in Application 1 (NQDSPDql and NQDSPDiw, Figure 8-a and -b). In contrast, the 324 
increased complexity of the HM through the assimilation of additional OFs leads to increasing the NQD 325 
values of traditional OF groups, exemplified by NQDSqo (Figure 8-c). 326 

 327 
Figure 8 – Proportion of scenarios against the NQD interval for OFs groups, semi-logarithmic scale: (a) 328 
NQDSPDql for 14 production wells; (b) NQDSPDiw for 11 injection wells; (c) NQDSqo for 14 production 329 

wells. Note: Application 1 assimilates 64 Objective Functions traditionally applied in the IDLHC 330 
methodology, and Application 2 considers 128 Objective Functions consisting in the traditional and 331 

proposed ones. 332 
 333 

This analysis indicated that a comparison based only on the history period is insufficient. Therefore, 334 
in the next sections, we explore forecast data available for the benchmarking case. 335 

4.2. Transition from history to forecast period 336 
During the history period, the water injection rate is a target for the injection wells in the simulation. 337 

We expect scenarios very close to the reference data in this period. Nevertheless, the transition to the 338 
forecast period (Figure 9-a) shows fluctuations in the field rate when compared to the reference data. 339 
Application 2, including the additional OFs (in brown), provides less fluctuations and smother transition 340 
than Application 1.  341 

 342 
Figure 9 - Distinct field behavior observed for the final scenarios of the Application 1 (in green) and the 343 

Application 2 (in brown) including the history period (4 018 days) added to 5 years of production 344 
forecast: (a) Field water injection rate with smaller fluctuation in the transition for the final scenarios of 345 

the application that considers additional OFs; (b) Reservoir average pressure with a bias for both 346 
application in most of the history period, but Application 2 scenarios with better forecast and larger 347 

variability. Note: Application 1 assimilates 64 Objective Functions traditionally applied in the IDLHC 348 
methodology, and Application 2 considers 128 Objective Functions consisting in the traditional and 349 

proposed ones. 350 
 351 
The average reservoir pressure (Figure 9-b) presents a bias for both applications in most of the history 352 

period: all the scenarios have reservoir pressure below the reference, and limited variability is observed. 353 
This is related to the fact that the initial liquid volume in place (oil and water) of the scenarios are 354 
smaller than the reference model (between 87-92% and 88-97% for Applications 1 and 2, respectively). 355 
Some scenarios of Application 2 are closer to the reference pressure in the end of the history period and 356 
it is closer to the reference in the 5-year forecast period (5 843 days of production). Note that the 357 
reservoir (and well) pressure is above the bubble point (around 210.03 kgf/cm2), justifying the omission 358 
of the OFs related to gas production rate. 359 

These results indicate that adding the OF groups related to Productivity Deviation and Breakthrough 360 
Deviation has the potential to limit oscillatory behavior and improve the transition between history and 361 
forecast periods. 362 

                                                 
1 NQD (Normalized Quadratic Deviation) is the absolute value of the NQDS. 
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4.3. Forecast period 363 
We use risk curves to evaluate the field forecast behavior (Figure 10). In these curves, the cumulative 364 

oil production is ploted with the cumulative relative frequency observed in the 450 scenarios. Further 365 
than the two applications, we also plot the cumulative oil production for the first iteration (in gray) 366 
where all the uncertain attributes are in uniform prior distribution and the value of the reference model 367 
(black dotted line).  368 

The three forecast period selected (one, five, and 19 years) show more scenarios closer to the 369 
reference value for Application 2. These graphs support that the inclusion of the new OFs has the 370 
potential to positively influence the predictability of field behavior.  371 

 372 
Figure 10 - Forecast period, risk curves for the scenarios of iteration 1 and iteration 8 for the two 373 

Applications for: (a) 1 year; (b) 5 years and (c) 19 years. Note: Application 1 assimilates 64 Objective 374 
Functions traditionally applied in the IDLHC methodology, and Application 2 considers 128 Objective 375 

Functions consisting in the traditional and proposed ones. 376 
 377 

In the next sections, some OFs illustrate the results in terms of well behavior, individually. 378 

4.4. Breakthrough Deviation 379 
The assimilation of NQDSBD in Application 2 leads to the improvement of the breakthrough time of 380 

the scenarios for most wells. From the analysis of importance of the OFs groups assimilated in the 381 
application (Appendix A), Breakthrough Deviation was the additional OF group that contributed the 382 
most in the Application 2. Figure 11 shows the water production rate, NQDSqw and NQDSBD for the well 383 
PROD024A. Application 2 presents smaller breakthrough deviation than Application 1. In addition, the 384 
water rate of Application 2 is closer to the reference when compared to Application 1.  385 

 386 
Figure 11 - Well PROD024A: (a) Water production rate for the 450 scenarios of both applications in the 387 
history period; (b) Indicative of better NQDSqw for Application 2; (c) NQDSBD of the well PROD024A 388 
revealing improvement in the BD, but still with a significant mismatch. Note: Application 1 assimilates 389 
64 Objective Functions traditionally applied in the IDLHC methodology, and Application 2 considers 390 

128 Objective Functions consisting in the traditional and proposed ones 391 
 392 
Water production of the well NA3D (Figure 12-a) indicates that neither water rate nor breakthrough 393 

time match the history data for both applications. The inclusion of the NQDSBD in the process was not 394 
sufficient to adjust the water breakthrough time (Figure 12-b) and, for some scenarios, lead to a worse 395 
water rate production (Figure 12-c). In fact, the parameterization is limited to the regional multipliers 396 
and this result indicates the need of adding different uncertain parameters, for example, flow barriers 397 
with uncertain transmissibility. 398 

 399 
Figure 12 - Well NA3D: (a) Water production rate for 450 scenarios of each application; (b) NQDSBD 400 
revealing large mismatch for all scenarios of both applications; (c) NQDSqw with some scenarios in the 401 
same range for both applications. Note: Application 1 assimilates 64 Objective Functions traditionally 402 
applied in the IDLHC methodology, and Application 2 considers 128 Objective Functions consisting in 403 

the traditional and proposed ones 404 
 405 
Therefore, a benefit of the additional OFs is to assist the identification of limitations in the reservoir 406 

parameterization defined. The analysis of these extra indicators of reservoir quality can be useful when 407 
reviewing the reservoir parameterization by supplying supplementary information to the scenarios’ 408 
diagnostics, identifying unnoticed problems in the traditional approach. 409 
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4.5. Productivity Deviation 410 
With the implementation of NQDSPD, we observe an improvement in the transition from history to 411 

forecast periods for several wells as expected from the field results (Figure 9). The objective functions 412 
related to water injection rate and liquid production rate have higher impact in the history matching 413 
process. In the Appendix A, we show that this OFs groups are used to update a higher number of 414 
uncertain attributes when compared to NQDSPDppbh or NQDSPDpibh. The justification for this behavior 415 
refers to the definition of Productivity Deviation setup, which has BHP define as boundary condition to 416 
the last time step (target informed to the simulator).We select as example production well (NA3D) and 417 
injection well (INJ015) to exemplify the positive impact of the assimilation of the additional OFs. 418 

Figure 13-a presents BHP for the well NA3D during history and forecast periods with a total of 5 844 419 
days (5 years of forecast). The plots NQDSppbh and NQDSPDppbh (Figure 13-b and -c) highlight pressure 420 
of the well closer to the reference (Application 2) data and with more variability around the history 421 
pressure than Application 1. In this sense, the scenarios of Application 2 are considered better 422 
conditioned than those in Application 1 for the OFs analyzed. Jointly, these graphs provide evidence that 423 
scenarios with smaller indicators of Productivity Deviation provide better forecast behavior.  424 

 425 
Figure 13 - Well NA3D: (a) Bottom hole pressure of well NA3D with history data and 5 years of 426 

forecast (total 5 844 days), (b) NQDSppbh and (c) NQDSPDppbh highlighting the differences between the 427 
applications. Note: Application 1 assimilates 64 Objective Functions traditionally applied in the IDLHC 428 

methodology, and Application 2 considers 128 Objective Functions consisting in the traditional and 429 
proposed ones. 430 

 431 
The transition of water injection between history and forecast period improved for several wells. The 432 

injection rate for well INJ015 (Figure 14-a) and its corresponding NQDSPDiw (Figure 14-b) is an 433 
example of better conditioning of scenarios in the transition. 434 

 435 
Figure 14 - Well INJ015: (a) Water injection rate of well with history data and 5 years of forecast (total 436 
5 844 days), (b) NQDSPDiw highlighting the fluctuations in the last point of the history data simulated 437 

with forecast conditions. NQDSiw omitted because all scenarios matched the history data. Note: 438 
Application 1 assimilates 64 Objective Functions traditionally applied in the IDLHC methodology, and 439 

Application 2 considers 128 Objective Functions consisting in the traditional and proposed ones. 440 
 441 

4.6. Detailing some OFs with poorer match 442 
We also observe some objective functions with higher misfit for Application 2 than for Application 1. 443 

For these OFs, the addition of the unconventional OFs is not beneficial.  444 
In our example, we explore the OFs of the well PROD023A. We detail this analysis from the bottom 445 

hole pressure for the history and 5-years forecast period (Figure 15-a). Highlighted by the NQDS plots 446 
(Figure 15-b and -c), the scenarios of Application 2 are limited to scenarios with higher-pressure levels 447 
than the reference. At the same time, Application 1 presents scenarios with higher variability, including 448 
scenarios with lower pressure values and closer to the reference.  449 

 450 
Figure 15 - Well PROD023A – (a) Bottom hole pressure of well with history data and 5 years of forecast 451 
(total of 5 844 days); (b) NQDSppbh showing the scenarios of Application 2 (in brown) limited to models 452 
with higher-pressure levels than the reference, meanwhile, Application 1 (in green) has more scenarios 453 
in the range [-10, +10]; (c) NQDSPDppbh showing that the assimilation of additional OFs is not beneficial 454 

for some OFs. Note: Application 1 assimilates 64 Objective Functions traditionally applied in the 455 
IDLHC methodology, and Application 2 considers 128 Objective Functions consisting in the traditional 456 

and proposed ones. 457 
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 458 
The mkz of the region 12 influences only the NQDSppbh well PROD023A in the Application 1 (Figure 459 

16) but 6 OFS in the Application 2 (NQDSppbh, NQDSPDppbh of the well PRD023A and NQDSPDql of the 460 
wells PROD023A, PROD024A and PROD025A, Figure 17). For the second application, in order to 461 
provide a better match for NQDSPDql PROD025A, this uncertain attribute is updated in a detrimental 462 
manner from the perspective of the other OFs.  463 

We investigate this effect through the correlation matrix, identifying the relationship between 464 
uncertain attributes and OFs. In the IDLHC methodology (Figure 3, step 6.1), the correlation matrix with 465 
the cut-off Rc captures this relationship for each of the 8 iterations. The number of iterations that a given 466 
OF is correlated to an uncertain attribute is added up and presented in two plots: Figure 16 and Figure 17 467 
consider traditional and additional OFs, respectively. Each line corresponds to an uncertain attribute. In 468 
Figure 16, the R12 line corresponds to the region 12. White color means that the correlation coefficient 469 
is lower than the cut-off Rc in any iteration. Black color means that the correlation is higher than the cut-470 
off Rc in all the 8 iterations. The transitional colors correspond to intermediate values between 0 and 8 471 
iterations.  472 

The groups of the 64 conventional (Figure 16) and additional OFs (NQDSBD and NQDSPD – Figure 473 
17) are plotted in the matrix with the uncertain attributes. Our focus is on the behavior of the objective 474 
functions influenced by mkz (R12), marked with vertical lines in the plots. The analysis of the attribute 475 
mkz (R12) is direct because the only conventional OF correlated to it is the NQDSppbh-PROD023A. 476 
Figure 16 is built with data from Application 1. The attributes for vertical permeability multiplier (mkz) 477 
of region 12 are marked with a horizontal line because it influences the NQDSppbh-PROD023A. Because 478 
Application 2 has this same relationship, we do not present correlation matrix computed for the 479 
additional OFs. 480 

 481 
Figure 16 - Matrix identifying the correlations captured in the 8 iterations for the group of 64 482 

conventional OFs, Application 1. Black color means that the correlation was of higher value than the 483 
cut-off Rc in all the 8 iterations. White color means that the correlation coefficient is lower than the cut-484 

off Rc in any iteration. The transitional colors correspond to intermediate values between 0 and 8 485 
iterations, as presented by the legend. The orange lines highlight the intersection between attributes and 486 

OFs mentioned in the text. 487 
 488 
For Application 2, the NQDSPDppbh of the well PROD023A (Figure 15) is highlighted together with 489 

the other OFs influenced by this attribute (vertical lines).  490 
 491 

Figure 17 - Matrix identifying the correlations captured in the 8 iterations for the NQDSPD and NQDSBD 492 
objective functions, Application 2. Black color means that the correlation was of higher value than the 493 
cut-off Rc in all the 8 iterations. White color means that the correlation coefficient is lower than the cut-494 

off Rc in any iteration. The transitional colors correspond to intermediate values between 0 and 8 495 
iterations, as presented by the legend. The orange lines highlight the intersection between attributes and 496 

OFs mentioned in the text. 497 
 498 

We observe that the NQDSPDql of the well PROD025A (Figure 18-a and -b) is closer to the reference 499 
in Application 2.  500 

 501 
Figure 18 - The attribute mkz (R12) influences the NQDSPDql of the well PROD025A – (a) Liquid 502 

production rate in the history period for both applications highlighting the ranges of productivity 503 
deviation in the last history time step; (b) NQDSPDql of the well PROD025A highlighting smaller 504 

fluctuation in the transition between history and forecast period for Application 2 than for Application 1. 505 
Note: Application 1 assimilates 64 Objective Functions traditionally applied in the IDLHC 506 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 
 

methodology, and Application 2 considers 128 Objective Functions consisting in the traditional and 507 
proposed ones. 508 

 509 
We also present the final distribution of the attribute mkz of region 12 (Figure 19). On one hand, 510 

Application 1 (in green) presents a higher number of levels (variability) as well as higher multiplier 511 
values. On the other hand, Application 2 distribution (in brown) is concentrated to less levels and 512 
smaller multipliers (to the left of the x-axis).  513 

 514 
Figure 19 - mkz of Region 12, an attribute correlated to the well PROD023A. Note: Application 1 515 

assimilates 64 Objective Functions traditionally applied in the IDLHC methodology, and Application 2 516 
considers 128 Objective Functions consisting in the traditional and proposed ones. 517 

 518 
This attribute contributed to the behavior described for this OF: smaller kz leads to a BHP closer to 519 

the reference for PROD025A (the scenarios in Application 1 have lower pressure when compared to 520 
Application 2 and the history data). Therefore, NQDSql for this well is smaller (Figure 18) because the 521 
liquid production rate of several scenarios does not diminish as much as in Application 1 to honor the 522 
informed pressure.  523 

To summarize this example explaining why some OFs presented poorer match in the Application 2, 524 
this uncertain attribute (mkz R12) influences traditional and additional OFs (NQDSppbh, NQDSPDppbh and 525 
NQDSPDql). In order to provide a better match for the NQDSPDql-PROD025A, the pdf concentrates in 526 
some levels but is detrimental to other OFs (NQDSppbh and NQDSPDppbh of PROD023A).  527 

This result indicates that with a large number of OFs assimilated, and a large quantity of uncertain 528 
attributes to update, the relationships between OFs and attributes increases the challenge to match the 529 
dynamic behavior and all OFs assimilated.  530 

5. Conclusions 531 
We evaluated the impact of gathering and considering additional information from the dynamic data 532 

series in the History Matching (HM) performance. We presented a deep analysis of the assimilation of 533 
dynamic data series in an unconventional way, which is based on splitting the available historic time-534 
series into more Objective Functions (OFs), detaching relevant events observed in the historical data. 535 
The OFs included measuring the Breakthrough Deviation (BD) and Productivity Deviation (PD).   536 

We proposed an adaptation for the calculation of the additional objective function called Productivity 537 
Deviation (PD), which only uses information from the history data. It changes the information provided 538 
to the simulator from liquid production or water injection rate to bottom hole pressure.  539 

Two applications show different field and well behavior in the scenarios of the last iteration of the 540 
history matching process. The main identified advantages of the unconventional OFs in the HM 541 
matching process for this study case were: 542 

• Smoother transition between history and forecast periods for field data; 543 
• Water breakthrough time closer to the reference data for several wells and scenarios; 544 
• Additional indicators of quality of the reservoir model to support the review of parameterization: 545 

revealing problems in scenarios unnoticed by applying only the traditional OFs; 546 
• Final scenarios with better predictability behavior of the field in short (1-year), mid (5-years) 547 

and long (19-years) term. 548 
Nevertheless, when considering the additional OFs, we observed a situation with traditional OF 549 

groups, presenting more distant scenarios from the history data. In fact, the HM problem becomes more 550 
complex to solve with the additional OFs because the uncertain attributes considered influence more the 551 
OFs. In order to accommodate these additional OFs in the HM process, some traditional OFs result in 552 
higher mismatch.  553 
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The improved predictability of the simulation scenarios indicates that superior performance of HM 554 
process is possible by splitting the available dynamic data. At the same time, the evidences shown in this 555 
paper encourage the continuous improvement of HM methodologies and new approaches of data 556 
assimilation, which are able to accommodate a higher number of uncertain attributes and OFs. 557 

Nomenclature 558 
BD Breakthrough Deviation 
BHP Bottom Hole Pressure 
DLHC Discrete Latin Hypercube 
HM History Matching  
IDLHC Iterative Discrete Latin Hypercube 
Itermax Maximal number of iterations in IDLHC 
iw water injection rate 
NQD Normalized Quadratic Deviation 
NQDS Normalized Quadratic Deviation with Sign 
OF Objective Function 
PD Productivity Deviation 
pdf probability density function 
pibh Bottom hole pressure of injection wells 
ppbh Bottom hole pressure of production wells 
qo Oil production rate 
qw Water production rate 
Rc Cut-off to the coefficients of the correlation matrix  
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 632 

Appendix A: Analysis of importance of OF groups 633 
The graphics below present all the objective functions disposed in groups according to the respective 634 

type of production data and application (Application 1 in green, Application 2 in brown). The bar’s 635 
height represents the number of attributes that a given OF was selected to update uncertain attributes 636 
during all iterations. A horizontal line with the mean of all wells supports the differentiation between the 637 
two applications. Note that OFs from Figure 20, 21 and 22-a are assimilated in both Applications, but 638 
from Figure 22-c, 23 and 24, only in the Application 2. Also, the plots are in the same scale in y-axis. 639 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 
 

NQDS for oil and water rate (Figure 20-a and -b) have similar importance along the wells, with slight 640 
difference in the mean values. These plots evidence the complementarity between water and oil 641 
production when a simulation model is close to or meets the target values of liquid production informed 642 
to the simulator.  643 

 644 
Figure 20 – Number of attributes that a given OF was selected to update uncertain attributes by well: (a) 645 
NQDSqo; (b) NQDSqw. Note: Application 1 assimilates 64 Objective Functions traditionally applied in 646 

the IDLHC methodology, and Application 2 considers 128 Objective Functions consisting in the 647 
traditional and proposed ones. 648 

Water injection rate is the boundary condition informed to the simulator in the history period, with 649 
exception to the last time which the target is set to be BHP. In Figure 21-a, the mean number of 650 
attributes of NQDSiw is higher for Application 2 than for Application 1. Nevertheless, NQDSiw does not 651 
update more than two uncertain attributes for any well. 652 

 653 
Figure 21 – Number of attributes that a given OF was selected to update uncertain attributes by well: (a) 654 
NQDSiw; (b) NQDSpibh. Note: Application 1 assimilates 64 Objective Functions traditionally applied in 655 

the IDLHC methodology, and Application 2 considers 128 Objective Functions consisting in the 656 
traditional and proposed ones. 657 

 658 
The mean number of attributes of NQDSppbh is close to 4 for both applications (Figure 22-a), which 659 

indicates similar importance. Figure 22-b presents the NQDS of Breakthrough Deviation, which has the 660 
higher mean of uncertain attributes updated among the additional objective functions. 661 

 662 
Figure 22 – Number of attributes that a given OF was selected to update uncertain attributes by well: (a) 663 
NQDSppbh; (b) NQDSBD. Note: Application 1 assimilates 64 Objective Functions traditionally applied 664 

in the IDLHC methodology, and Application 2 considers 128 Objective Functions consisting in the 665 
traditional and proposed ones 666 

 667 
Because in the last time step the BHP is a target for the simulator, NQDSPDql group updates more 668 

uncertain attributes than NQDSPDppbh, on average. Mismatches related to NQDSPDppbh, have too small 669 
variability for some wells (for example, PROD024A, RJS019) or are uncorrelated with uncertain 670 
attributes (for example PROD010).  671 

 672 
Figure 23 – Number of attributes that a given OF was selected to update uncertain attributes by well: (a) 673 
NQDSPDql; (b) NQDSPDppbh. Note: Application 1 assimilates 64 Objective Functions traditionally applied 674 

in the IDLHC methodology, and Application 2 considers 128 Objective Functions consisting in the 675 
traditional and proposed ones. 676 

 677 
The same reasoning is applicable for PD of water injection and BHP of injectors. NQDSPDiw groups 678 

updates more attributes than NQDSPDpibh, on average.  679 
 680 
Figure 24 – Number of attributes that a given OF was selected to update uncertain attributes by well: (a) 681 

NQDSPDiw; (b) NQDSPDpibh. Note: Application 1 assimilates 64 Objective Functions traditionally 682 
applied in the IDLHC methodology, and Application 2 considers 128 Objective Functions consisting in 683 

the traditional and proposed ones. 684 
 685 
This analysis indicates that among the OFs groups added in the history matching process, the 686 

Breakthrough Deviation was more relevant in the process of updating uncertain attributes for the study 687 
case applied in this paper.  688 
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Table 1 - Uncertain attributes presented by Maschio and Schiozer (2016). 1 

Uncertain attributes (for 
each region) 

Minimum Maximum Number of levels Initial pdf 

mpor 0.8 1.2 30 Uniform 
mkx 0.1 5.0 30 Uniform 
mkz 0.1 5.0 30 Uniform 

Table 2 - Constants used to calculate normalized misfit. 2 

OF C (unit of the variable) Tol (%) 
NQDSqo 0 10 
NQDSqw 10 10 

NQDSppbh 0 5 
NQDSiw 0 5 

NQDSpibh 0 5 
NQDSBD AE=31 0 
NQDSPDql 10 10 

NQDSPDppbh 0 5 
NQDSPDiw 0 10 

NQDSPDpibh 0 5 

 3 
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Highlights 
 Better understanding about reservoir behavior by splitting available data in new OF 

 Reveal parameterization problems unnoticed by traditional procedures 

 Better predictability behavior of the field in short, mid and long term 

 Smoother transition between history and forecast periods 
 

 


