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SUPPLEMENTARY MATERIAL: PART I 

 
MATHEMATICAL DESCRIPTION OF THE NEURAL NETWORK 

 

1 Basal structure of the network 

The neural network model consists of two chains of N unisensory neurons (Fig. 1, upper panel). 

Each neuron codes for a particular spatial position in its modality. Moreover, each chain is 

topologically organized, i.e., proximal neurons code for proximal positions.  In the following, we will 

denote with a first subscript the particular area (auditory or visual) and with a second subscript, after 

a comma, the neuron position within the area.  

Each neuron receives three different kinds of inputs: a sensory input from the environment (say 

u), a lateral input from neurons of the same modality (say l)  and a cross-modal input from neurons 

of the other modality (say c). The global input (equal to the sum of the previous three contributions) 

is then passed through a sigmoidal relationship,    , which accounts for the presence of a lower 

threshold and upper saturation in neuron activity, and a first-order low-pass filter with time constant, 

which accounts for the neuron integrative capacity.  

Hence, for the generic k-th neuron in the modality S (S = A or V for the auditory and visual 

modalities, respectively) we can write 
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Where kSy ,  represents the neuron output, and the sigmoidal relationship is described by the following 

equation 
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s and x0 are parameters, which set the slope and the position of the sigmoidal relationship. According 

to Eq. (2), the neuron output activity is normalized between 0 and 1 (zero means a silent neuron, one 

a maximally activated neuron).  

It is worth noting that, for the sake of simplicity, we used the same parameters (, s and x0) for all 

neurons independently of their modality. This choice was adopted to minimize the number of model 

assumptions.  

The expression for the sensory input is computed as the scalar product of the sensory representation 

of the stimulus (i.e., the vector T
NSkSSS iiiiI S ] [ ,,2,1,   ) and the neuron receptive field (i.e., the 

vector T
kNSkjSkSkSks rrrrR ] [ ,,2,1,,   )  : 
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We assumed that the neuron receptive field, kSR , , has initially a large extension, described with a 

Gaussian function, and then progressively shrinks during training, to fit the width of the external input 

(see section “Training the network”). 

The lateral input is computed as follows 
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where kj  represents a lateral intra-area synapse connecting the presynaptic neuron j to the post 

synaptic neuron k in the same area. Here we used the classical Mexican-hat arrangement:  a neuron 

is excited by proximal neurons in the same area, and inhibited by more distal ones 
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where inexinex  ,,,  are parameters which set the strength and width of the excitatory and inhibitory 

portions of the Mexican hat. In particular, we have  inexinex      and    . Moreover,   kjd  ,  

represents the distance between neurons’ preferred positions, i.e. 
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           (S6) 

It is worth noting that we used the same expression of lateral synapses (Eq. S5) in both the auditory 

and visual areas, to limit the number of model assumptions. 

Finally, the cross-modal term in Eq. (1) is computed as the convolution of the vector of cross 

modal synapses and the activity in the other unisensory area, i.e. 
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where kjSQw ,  represents a cross-modal synapse from the pre-synaptic neuron j in the area Q to the 

post-synaptic neuron k in the area S. We assumed that the cross-modal synapses are initially 

ineffective and are progressively reinforced during the training phase.  

 

2  Training the network  

Starting from the initial basal value of synapses, the network has been trained during a training 

period in which the sensory input representations (i.e., IA and IV) have been given with a random 

distribution.  

The synapses describing the receptive field, kjSr , , and those describing the cross-modal link 

between the two areas, kjSQw , , have been trained using a learning rule with a classical Hebbian 

potentiation factor and a decay term. We can write, in scalar form 

    ,,,, kjSjSkSkjS riyr      with   S = A, V    (S8) 

      ,,,, kjSQjQkSkjSQ wyyw     with   S = A, V    Q = A, V Q ≠ S  (S9) 

Eqs. (8) and (9) have been applied, at each step, using the final steady state values of the neuron 

output (i.e., when transient phenomena are exhausted).  
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At the beginning of training all cross-modal synapses are assumed equal to zero. Conversely, the 

receptive-field synapses have a broad spatial extension, and moderate amplitude, identical for the two 

modalities, i.e. 
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where r0 sets the initial strength of the receptive field, and R  establishes its initial spatial extension 

(we assume VRAR     and   i.e. a wide initial receptive fields) . Of course, Eq. (10) holds only 

at the first step of training. 

 

3  Probability distribution and spatial accuracy of the inputs  
According to the previous section, we assumed that the sensory inputs are composed of a 

deterministic term, which represents the spatial distribution of the input, centered on the stimulus 

spatial position, and a Gaussian white noise term (zero mean value and assigned standard deviation). 

Hence 
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 where S  represents the spatial position of the stimulus, StrengthSi ,  is the stimulus strength in the 

absence of noise, and S  is the standard deviation of the spatial representation.  According to 

physiology, we assumed that the visual inputs are spatially more accurate than the auditory ones, 

hence we set AV   . Conversely, we assumed that the standard deviation of noise (say S ) is a 

given fraction of the input strength, to set the signal to noise ratio (see table 1 in the text). 

In order to simulate the presence of better acuity at the center, and reduced acuity at the periphery, 

we assumed that the SDs of the visual and auditory inputs increase with the eccentricity of the 

stimulus.  
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The expression of V has been taken from an empirical curve on visual acuity by Dacey (1993) 

(see also Ursino et al., 2017 for more details). By denoting with VVe     the eccentricity with respect 

to the fovea, we have 
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0V  represents the SD of the visual inputs at the fovea (i.e., at zero eccentricity). We used the same 

value as in the previous paper, i.e. 0V = 4 deg. Finally, we use a parameter, to adapt the function 

so that, V ranges between 4 deg, at 0 eccentricity, to about 12 deg at maximum eccentricity. 

The auditory acuity also decreases from the center to the periphery, although it is difficult to 

quantify this effect being influenced by many factors, such as the stimulus intensity and frequency 

(Middlebrooks and Green, 1991; Wood and Bizley, 2015). However, this effect is less evident and of 

smaller entity compared with the visual one (Perrott and Saberi, 1990). Hence, we used a simpler 

linear relationship, assuming that 0A  linearly increases from about 20 deg at the fovea to 30 deg at 

the periphery: 

  90100 AA e  e AA                     (S13) 

with 200 A   and AAe   is the eccentricity of the auditory position with respect to the head center. 

 

The positions of the two stimuli (i.e., A  and V  in Eq. S11) have been randomly generated from 

the prior probability distribution described below. 

 
We assume that both the visual and auditory input have a greater probability close to the fovea, and 

smaller probability at the periphery. This corresponds to have a non-uniform prior in visual 

unisensory conditions. The following probabilities have been used to generate the position of the 

visual and auditory inputs during training. 
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Visual unisensory prior: the visual position follows a Gaussian distribution, centered at the fovea. 

Hence 
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The standard deviation sV (which here plays the role of a space constant) has been set at 7 deg; i.e., 

the visual stimuli becomes very rare at ±20 deg eccentricity.  

Auditory unisensory prior: the auditory position follows a Gaussian distribution, centered at the head 

center. 
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The standard deviation is assumed higher than in the visual case: we have sA = 30 deg assuming that, 

head movements in auditory unimodal conditions are less efficient than eye movement in visual 

unimodal conditions to maintain the stimulus close to the center.  

Cross modal prior: in the cross modal case during training, we assumed that the visual and auditory 

inputs originate from independent causes with a given probability (say ) but are produced by the 

same cause, hence originate from proximal spatial positions, with the complementary probability (1 

– ). According to the Bayes rule, the joined prior probability can be computed from knowledge of 

the individual probability of one stimulus, and the conditional probability of the other. A problem is 

whether, in cross modal conditions, the distribution is dominated by the visual prior (more sharply 

close to the center) or by the auditory one (less sharply close to the center). We assumed that, in 50% 

of cases, the cross-modal stimuli follow the visual distribution and in the other 50% of cases follow 

the auditory one. Hence 

         AVAVVAV ppppp A  5.05.0,                           (S16) 

where we used equations (S14) and (S15) for the visual and auditory priors, and the following 

expression for the conditional probability  
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In writing Eq. (S17) we assumed that the conditional probability is computed as the weighted sum of 

the prior unimodal distribution, reflecting the moderate possibility that the two stimuli are 

independent, and a second term, ,  reflecting the probability that the 

auditory and visual events are originated from the same source. 

As in the previous work, we used a value of space constant sAV = 1 deg, assuming a small audio-visual 

distance when the two stimuli originate from the same source.  
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