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1 Introduction

The discovery of the accelerated expansion of the universe [1–8] prompted many attempts

to explain the phenomenon, caused by an unknown “dark energy”, using modifications to

Einstein’s theory of General Relativity [9]. These theories generally started with a specific

dark Lagrangian which was then investigated to test its compatibility with both dark
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energy and other cosmological and solar system observations. Here we follow the method

of [9–17] and look at a class of dark Lagrangians, so that future experimental results can

immediately rule out a whole swathe of models without the need for further calculation.

We use the formalism introduced in [10–14] which draws on the “Post Parameterised

Friedmann” (PPF) approach described in [9, 15–17]. In these papers the Einstein-Hilbert

action is modified with a dark Lagrangian such that the modified action is written as

S =

∫

d4x
√
−g

[

R

16πG
− Lmatter − Ld

]

, (1.1)

and equations of state for dark sector perturbations are found for the entropy perturbation

and the anisotropic stress. The recent observation of a neutron star merger by LIGO [18]

severely constrained the speed of gravitational waves, and seemingly placed strict restric-

tions on many modified gravity theories. However, it was suggested in [19] that although

these theories predict the speed of gravitational waves to be different from that of light at

low energies, this may not necessarily be the case at the high energies seen in neutron star

mergers, due to the unknown UV completions of these theories.

We find the perturbed fluid variables when L{2} = L{2}(δLgµν), in a similar way

to [12]. We then impose invariance under time reparameterisation and find the equations

of motion. We also find evolution equations for the equation of state parameter w and the

elastic bulk modulus. We find restrictions on w such that we can have a realistic (positive

and subluminal) sound speed. We find the perturbed fluid variables when we have imposed

spatial invariance, and we find the conditions under which the entropy is gauge invariant.

In this paper our main focus is on generalising all of these calculations for the case

where L{2} is a function of the change in the time-like and spatial parts of the metric

separately, not necessarily packaged together as the spacetime metric.

Elastic dark energy (EDE) discussed in [12, 20] is a development of Carter-Quintana

relativistic elasticity theory [21–25]. These models describe the universe as a solid with

certain parameters which can be found by observations. By imposing time translational

invariance but not spatial invariance, we fulfill the conditions necessary for EDE.

As we are adding a dark energy term to the Einstein-Hilbert action (1.1), we can

decompose the stress energy tensor as Tµν = Tmatter
µν +T radiation

µν +T dark
µν , i.e. we have added

a source term to the standard model stress energy tensor.

1.1 Decomposition of the metric

We impose spatial isotropy by foliating the four-dimensional (4D) space-time, as in [12, 26],

by three-dimensional (3D) sheets with a time-like unit vector, uµ which is everywhere

orthogonal to the sheets. The 4D spacetime has metric gµν , and the 3D sheets have spatial

metric γµν = γ(µν). The (3 + 1) decomposition of the 4D metric is

gµν = γµν − uµuν , (1.2)

where uµ and γµν are subject to the orthogonality and normality conditions:

uµγµν = 0, uµuµ = −1. (1.3)
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Hence we can write the dark term in the stress-energy tensor in an isotropic spacetime as

Tµν = ρuµuν + Pγµν , (1.4)

where ρ is the density of the universe due to this dark term and P is the pressure. The

pressure and density are related by P = wρ, where w is the equation of state parameter.

From now on, when we write Tµν , this will refer to the dark stress-energy tensor rather

than the overall energy momentum tensor.

2 L{2}(δLgµν)

We will first look at the case L{2}(δLgµν) before generalising to more generic Lagrangians.

For any Lagrangian which is a function only of perturbations of the metric and no deriva-

tives thereof, i.e. L{2} = L{2}(δLgµν), then from [12], the most general quadratic Lagrangian

for dark sector perturbations is

L{2} =
1

8
WµναβδLgµνδLgαβ , (2.1)

where δLgµν is the metric fluctuation under a perturbation and Wµναβ can be thought of

as a mass term for the perturbation, not to be confused with the Weyl tensor. From [13],

we can use the symmetries of the W tensor:

Wµναβ =W(µν)(αβ) =Wαβµν , (2.2)

to obtain the most general possible Wαβµν :

Wµναβ = AWuµuνuαuβ +BW (uµuνγαβ + γµνuαuβ)

+ CWu(µγν)(αuβ) +DWγµνγαβ + EWγµ(αγβ)ν .
(2.3)

2.1 Contractions of the Eulerian change in the energy-momentum tensor

The deformation vector, which represents possible coordinate changes [14],1 has both time-

like parts and space-like parts

ξµ = −χuµ +mµ. (2.4)

We can find the various contractions of δET
µ
ν by inserting the derivatives of the deforma-

tion vector. We use two different variational operators: δL and δE , which are linked via

the Lie derivative along the diffeomorphism-generating vector ξµ via

δL = δE + Lξ, (2.5)

where δL is the Lagrangian perturbation (in co-moving coordinates) and δE is the Eulerian

perturbation (points are fixed in spacetime). Lξ is the Lie derivative in the direction of ξµ,

a vector field representing possible coordinate transformations, so that the Lie derivative

acting on a given symmetric tensor field is LξXµν = ξα∇αXµν + 2Xα(µ∇αξ
ν). Note that

1The equations of motion of General Relativity are independent of ξµ, but this is not necessarily true

for more general actions. We can decompose δLgµν as δLgµν = hµν + 2∇(µξν) [14].
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Lξgµν = 2∇(µξν). We are interested in the perturbed fluid equations, which are derived

from the Lagrangian for perturbations, denoted as L(2). In order to find the perturbed

fluid variables, we first need to find the Eulerian change in the stress-energy tensor, δET
µν .

We will work in the synchronous gauge, where perturbations to the metric have spatial

components only

δEgµν = γαµγ
β
νhαβ , (2.6)

Working in the synchronous gauge (2.6), we vary (2.1) to obtain the contractions of the

stress energy tensor [12, 14]

uµu
νδET

µ
ν = (ρ̇+K(BW +ρ))χ−(BW +ρ)

(

1

2
ĥ+∇αm

α

)

−(ρ+AW )χ̇, (2.7a)

uνγσµδET
µ
ν =

(

1

4
CW +P

)

∇̄σχ− 1

4
CWK

σβmβ+

(

1

4
CW −ρ

)

ṁσ+ρKσ
αm

α, (2.7b)

γνµδET
µ
ν = −1

2

(

γαβ(3DW +EW +P )+3uαuβ(BW −P )
)

δEgαβ (2.7c)

−
[

3uαuβ(BW −P )+γαβ(3DW +EW +P )
]

∇αξβ+3χṖ (2.7d)

γσµγ
ν
ρδET

µ
ν = χγσρṖ − 1

2

(

(DW +P )γσρĥ+(EW −2P )ĥσρ

)

(2.7e)

+γσρ
[

(P −AW )χ̇−(DW +P )
(

∇̄αm
α−χK

)]

+(2P −FW )
[

∇̄(σmρ)−mβK
β(σuρ)−χKσ

ρ

]

,

where we have defined “time” and “space” differentiation as the derivative operator pro-

jected along the time and space directions

ψ̇ ≡ uµ∇µψ, ∇̄µψ ≡ γνµ∇νψ, (2.8)

and where K = 3H, (where H is the Hubble parameter) is the trace of the extrinsic

curvature tensor Kµν ≡ ∇µuν , which satisfies Kµν = K(µν) and u
µKµν = 0.

2.2 Perturbed fluid variables

The components of the perturbed energy-momentum tensor Tµ
ν are written as

δET
µ
ν = δρuµuν + 2(ρ+ P )v(µuν) + δPγµν + PΠµ

ν , (2.9)

where vµ is the perturbed dark sector velocity and PΠµ
ν is the anisotropic part of the

stress tensor, which is orthogonal and symmetric. We have dropped the subscript E on the

variation of the density and pressure. We can now compare (2.9) and the contractions of

the perturbed stress energy tensor (2.7), to obtain the perturbed fluid variables in terms

– 4 –
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of the deformation vector (2.4), as described in [12, 14]

δρ = (ρ̇+K(BW + ρ))χ− (ρ+AW )χ̇− (BW + ρ)

(

1

2
ĥ+ ∇̄αm

α

)

, (2.10a)

δP = (P −BW )χ̇− 1

3
(3DW + EW + P )

(

1

2
ĥ+ ∇̄αm

α

)

(2.10b)

+

[

1

3
(3DW + EW + P )K + Ṗ

]

χ,

(ρ+ P )vσ =

(

ρ− CW

4

)

˙̄mσ −
(

P +
CW

4

)

∇̄σχ, (2.10c)

PΠσ
ρ = (2P − EW )

[

1

2
ĥσρ + ∇̄(σmρ) −

1

3
γσρ

(

1

2
ĥ+ ∇̄αmα

)]

, (2.10d)

where we have defined PΠµ
ν =

(

γµβγ
α
ν − 1

3γ
α
βγ

µ
ν

)

δET
β
α.

2.3 Invariance under time reparameterisation

We now want to discover what constraints invariance under changes in time imposes. This

is helpful for [12, 20] because applying time translational reparameterisation invariance but

not spatial reparameterisation invariance leads to elastic dark energy. Hence we set the

coefficients of χ, χ̇ and ∇̄σχ in (2.10) to zero and therefore obtain

ρ̇+ 3H(P + ρ) = 0,

Ṗ + (P + 3DW + EW )H = 0. (2.11)

This gives the conservation equation and an equation for the evolution of pressure with

time. We can rewrite the perturbed fluid variables (2.10) as

δρ = −(P + ρ)

(

1

2
ĥ+ ∇̄αξ

α

)

, (2.12a)

δP = −β
(

1

2
ĥ+ ∇̄αξ

α

)

, (2.12b)

vσ = ξ̇σ, (2.12c)

PΠσ
ρ = 2µ

[

1

2
ĥσρ + ∇̄(σξρ) −

1

3
γσρ

(

1

2
ĥ+ ∇̄αξα

)]

, (2.12d)

and the pressure evolution as

Ṗ + 3βH = 0, (2.13)

where we have defined

β =
1

3
P +DW +

1

3
EW , (2.14a)

µ = P − 1

2
EW , (2.14b)

as parameters that can be determined by experiment. β and µ correspond to the elastic

bulk modulus and the elastic shear modulus, respectively [12, 20].
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So far, we have summarised previous work. However, as an aside we note that it is

possible to place constraints on the parameters using observational data. In [27], it was

noted that it might be possible to place constraints on the parameters of the elastic dark

energy model, referred to as Time Diffeomorphism Invariant (TDI) models in their paper.

The authors used observational data on cosmic shear and CMB lensing which would give

constraints for any given value of w, unless w ≈ −1, as a wide. Unfortunately, recent

Planck data has shown that w ≈ −1, so these constraint do not apply.

In appendix A, using 2018 Planck data [28], we find a constraint of −0.004 < β <

0.106 if we assume that the equation of state parameter w of the Lagrangian (2.1), where

P = wρ, is constant. If we assume that w 6= −1 exactly, then we also find constraints of

−0.0477 ≤ µ̂ ≤ 0.0599, where we have defined µ̂ = µ/ρ. However,the assumption that we

do not have a phantom equation of state, i.e. we require w ≥ −1, gives 0 ≤ µ̂ ≤ 0.0599.

3 L{2}(δLuµ, δLγµν)

In the previous section, we summarised the derivation of the perturbed fluid variables for

theories where the second variation of the Lagrangian depends only on the change in the

metric [12] and found new constraints on the values of the elasticity and rigidity parameters.

We now move on to extend this work to more general Lagrangians.

If we take the second variation of the Lagrangian as a function only of the change in

the time and spatial parts of the metric separately

L{2} = L{2} (δLuµ, δLγµν) , (3.1)

then the most general possible quadratic Lagrangian which is a function of δLuµ and δLγµν
is

L{2} =
1

8
XµναβδLγµνδLγαβ +

1

8
Y µνδLuµδLuν +

1

4
QµναδLuµδLγνα, (3.2)

where

Xµναβ = X(µν)(αβ) = Xαβµν , Y µν = Y (µν), Qµνα = Qµ(να). (3.3)

Using the identities [20]

δLu
µ =

1

2
uµuαuβδLgαβ ,

δLγµν = δLgµν + 2u(µ

(

γαν) −
1

2
uν)u

α

)

uβδLgαβ , (3.4)

it is possible to write (3.2) as

L{2} =
(

Wµναβ
X +Wµναβ

Y +Wµναβ
Z

)

δLgαβδLgµν , (3.5)

– 6 –
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where upon comparing (3.2) with (2.1), we can see that the components of W σρφλ =

W σρφλ
X +W σρφλ

Y +W σρφλ
Q are

W σρφλ
X =

1

2
Xµναβ

[

2
(

δ(σµδ
ρ)

νδ
(φ

αδ
λ)

β + δ(φµδ
λ)

νδ
(σ

αδ
ρ)

β

)

+ 4u(µH
σρ

ν) (3.6a)

× δ(φαδ
λ)

β + 4u(αH
φλ

β)δ
(σ

µδ
ρ)

ν + 4u(µH
σρ

ν)u(αH
φλ

β)

]

, (3.6b)

W σρφλ
Y =

1

4
Y µν

[

Hφλ
µH

σρ
ν +Hφλ

νH
σρ

µ

]

, (3.6c)

W σρφλ
Q = 2Qµνα

(

δ(σµδ
ρ)

ν + u(µH
σρ

ν)

)

Hφλ
α, (3.6d)

where we have defined

Hαβ
µ ≡

(

γ(αµ − 1

2
uµu

(α

)

uβ). (3.7)

Eq. (3.5) is a very important result — we can rewrite any Lagrangian dependent on the

variation of the spatial part of the metric and the time-like part of the metric separately

into one dependent on only the variation of the full metric.

In the rest of this section, we will explore how we can use the method of section 2 to

find the perturbations of a Lagrangian of the form (2) without any new calculations.

3.1 Decomposition of the X,Y and Q tensors

The most general tensors that satisfy the necessary symmetries (3.3) are:

Xµναβ = AXu
µuνuαuβ +BX

(

uµuνγαβ + γµνuαuβ
)

+ 4CXu
(µγν)(αuβ), (3.8a)

+DXγ
µνγαβ +

1

2
EXγ

µ(αγβ)ν ,

Y µν = AY u
µuν +BY γ

µν , (3.8b)

Qµνα = AQu
µuνuα +BQu

µγνα + 2CQu
(νγα)µ. (3.8c)

3.2 The specific W tensor for L(δLuµ, δLγµν)

Collecting like terms, we obtain

W σρφλ = W σρφλ
X +W σρφλ

Y +W σρφλ
Q

=

(

1

2
AX +

1

8
AY +

1

2
AQ

)

uσuρuφuλ +BX

(

uσuργφλ + γσρuφuλ
)

(3.9)

+

(

8CX +
1

2
BY +BQ + 2CQ

)

u(σγρ)(φuλ) + 2DXγ
σργφλ + EXγ

φ(σγρ)λ.

Comparing to (2.3), we find

AW =
1

2
AX +

1

8
AY +

1

2
AQ,

BW = BX ,

CW = 8CX +
1

2
BY +BQ + 2CQ,

DW = DX ,

EW = EX . (3.10)

– 7 –
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3.3 Invariance under time reparameterisation

We repeat our calculations from earlier, where we fixed our equations to be the same under

a change in time and we obtained (2.13).

Plugging in the values from (3.10), we find an equation for the evolution of the pressure

Ṗ = − (P + 3DX + EX)H = −3βgH, (3.11)

where βg ≡ 1
3 (P + 3DX + EX). We also find that the coefficients of the W tensor become

AW =
1

2
AX +

1

8
AY +

1

2
AQ = ρ,

BW = BX = P,

CW = 8CX +
1

2
BY +BQ + 2CQ = −P,

DW = DX ,

EW = EX . (3.12)

Next we will examine the specific cases where the Lagrangian depends only on the variation

of either the time or the spatial part of the metric.

3.3.1 L{2}(δLuµ)

First, if we make L{2} a function of δLuµ only, i.e. L{2} is dependent only on the change

in the time part of the metric, we obtain WX = WQ = 0, in which case β = P = 0, and

using (2.14b) we can then rewrite the perturbed fluid variables from (2.12)

δρ = −ρ
(

1

2
ĥ+ ∇̄αξ

α

)

, (3.13a)

δP = 0, (3.13b)

(1 + w)vσ = ξ̇σ, (3.13c)

PΠσ
ρ = 0. (3.13d)

We find that the equation of state parameter is

w = ẇ = 0. (3.14)

Using constraints from Planck [28] which show w ≈ −1, we can therefore rule out this case.

While this case might intuitively seem unlikely,2 we have completely ruled it out without

having to examine any specific model. This shows the power of our parameterisation

method.

2The lack of spatial dependence means that the dark energy Lagrangian is described by a pressureless

fluid.
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3.3.2 L{2}(δLγµν)

If we make L a function of δLγµν only, i.e. L is dependent only on the change in the spatial

part of the metric, we get WY =WQ = 0, which means

AW =
1

2
AX = ρ,

BW = BX = P,

CW = 8CX = −P,
DW = DX ,

EW = EX ,

(3.15)

and
Ṗ = − (P + 3DX + EX)H

≡ −3βγH.
(3.16)

where we have defined βγ = 1
3 (P + 3DX + EX). For L{2}(δLγµν) the evolution equation

for w (A.2) remains the same but with β now depending on DX and EX rather than D

and F , which lead to the same result if we use (3.15).

3.3.3 Summary of L{2}(δLuµ, δLγµν)

The analysis of section 3 shows that the effect of the metric split is simply to change the

coefficients as shown in (3.10).

If we have mandated time reparameterisation invariance by decoupling χ, then the

only relevant contribution to β and µ come from the spatial part of the metric γµν , i.e.

only the first term in (3.2) has any effect on the system.

3.4 Comparison with elastic dark energy theories

We can compare to [20] to find the properties of the dark energy material, as this Lagrangian

can be described using elastic dark energy.

We perform a scalar-vector-tensor (SVT) decomposition, where we decompose the

perturbation to the metric hij as [29]

1

2
hij = HS

LQ
S
ij +HS

TQ
S
ij +HVQV

ij +HTQT
ij , (3.17)

where one can decompose a spatial tensor field as

ηij∇i∇jQ
S,V,T = −k2QS,V,T , (3.18)

scalars can be constructed from vectors and tensors as [30]

∇iQ
S = −kQS

i , ∇i∇jQ
S +

1

3
k2ηijQ

S = QS
ij , (3.19)

and vectors can be constructed from tensors as

∇(iQ
V
j) = −kQV

ij , (3.20)

– 9 –
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with the requirement that Q
V |i
i = Q

T |i
ij = QT i

i = 0. We now find the entropy perturbation,

which is defined by

wΓ =

(

δP

δρ
− dP

dρ

)

δ. (3.21)

The entropy perturbation and scalar anisotropic stress are given by

wΓ = 0,

wΠS = −2
µ

ρ+ P
[δ − 3(1 + w)η] , (3.22)

where we have defined δ = δρ
ρ
, and η = −

(

HS
L + 1

3H
S
T

)

. This is the same result as [20]

finds when looking at elastic mediums.

4 Tensor-metric theories

So far, we have looked at theories where L{2} = L{2}(δgµν , δfµν). In this section, we

now apply our analysis to theories where the dark Lagrangian is a function of both the

variation of the metric gµν and of an unspecified non-dynamical symmetric rank-2 tensor

fµν [31, 32].3

If L{2} = L{2}(δgµν , δfµν), then the most general quadratic Lagrangian we can have is

L{2} =
1

8
AµναβδLgµνδLgαβ +

1

4
BµναβδLgµνδLfαβ +

1

8
CµναβδLfµνδLfαβ . (4.1)

The tensors obey the following symmetries

Aµναβ = A(µν)(αβ) = Aαβµν , Bµναβ = B(µν)(αβ), Cµναβ = C(αβ)(µν). (4.2)

The decomposition of these tensors, called “coupling tensors” because they prescribe how

the fields combine in the Lagrangian, is

Aµναβ = AXu
µuνuαuβ +BX

(

uµuνγαβ + γµνuαuβ
)

+ 4CXu
(µγν)(αuβ)

+DXγ
µνγαβ + 2EXγ

µ(αγβ)ν , (4.3a)

Bµναβ = AY u
µuνuαuβ +BY u

µuνγαβ + 4CY u
(µγν)(αuβ)

+DY γ
µνγαβ + 2EY γ

µ(αγβ)ν + FY γ
µνuαuβ , (4.3b)

Cµναβ = AZu
µuνuαuβ +BZ

(

uµuνγαβ + γµνuαuβ
)

+ 4CZu
(µγν)(αuβ)

+DZγ
µνγαβ + 2EZγ

µ(αγβ)ν . (4.3c)

3It should be noted that at this point there are no derivatives of fµν in the action and therefore no

kinetic term for fµν . We could choose a form of fµν that includes derivatives of a vector field or a scalar,

and therefore generates a kinetic term.

– 10 –



J
H
E
P
1
1
(
2
0
1
8
)
1
8
0

4.1 Equations of motion

We use (4.3) to find

δET
µ
ν = −1

2
(BXu

µuν +DXγ
µ
ν + Tµ

ν)h− EXh
µ
ν −

1

2
Bµ

ν
αβkαβ

−
(

∇αT
µ
ν −

1

2
Bµ

ν
σβ∇αfσβ

)

ξα

+
(

2Tα(µgβν) −Bµ
ν
σαfβσ −Aµ

ν
αβ − Tµ

νg
αβ

)

∇αξβ

(4.4)

where we have defined kµν ≡ δEfµν .

We find the perturbed fluid variables by assuming the unperturbed tensor fµν is ho-

mogenous, i.e. ∇̄αfµν = 0, as chosen in [33], recalling the definition of “space” differentia-

tion ∇̄µψ ≡ γνµ∇νψ from (2.8)

δρ = −(BX+ρ)

(

1

2
h+∇̄αmα

)

− 1

2

(

BY γ
αβ+AY u

αuβ
)

kαβ

+

[

ρ̇+
1

2
ḟαβ (BY γαβ+AY uαuβ)+BY f

αβKαβ+(ρ+BX)K

]

χ

−(AX+AY f
β
σu

σuβ+ρ)χ̇−fαβBY ∇̄αmβ , (4.5a)

(ρ+P )vλ = (ρ−CX) ˙̄mλ−(P +CX−CY u
σuβf

β
σ)∇̄λχ

−CY

{

γλ(αuβ)kαβ+γ
λσfβσṁβ−mβf

βσKλ
σ

}

, (4.5b)

δP = −1

3
(3DX+P +2EX)

(

1

2
h+∇̄βmβ

)

−
(

1

2
BY u

αuβ+
1

6
(3DY +2EY )γ

αβ

)

kαβ

−fαβ 1
3
(3DY +2EY )∇̄αmβ+(P −BX+BY f

αβuαuβ)χ̇

+

[

Ṗ +
1

3
(P +3DX+2EX)K+

1

3
(3DY +2EY )f

αβKαβ

−1

2
ḟαβ

(

1

3
(3DY +2EY )γαβ+AY uαuβ

)]

χ, (4.5c)

PΠρ
λ = 2(P −2EX)

[

1

2
hρλ+∇̄(ρmλ)−

1

3
γρλ

(

1

2
h+∇̄αm

α

)]

(4.5d)

−EY

[(

γρ(αγβ)λ−
1

3
γρλγ

αβ

)

kαβ+2fαβ
(

γα
(ρ∇̄λ)mβ−−1

3
γρλ∇̄αmβ

)]

.

Assuming time reparameterisation invariance gives

δρ = −(AX+ρ)

(

1

2
h+∇̄αξα

)

− 1

2

(

BY γ
αβ+AY u

αuβ
)

kαβ−BY f
αβ∇̄αξβ , (4.6a)

(ρ+P )vλ = (ρ−CX)ξ̇λ−CY

[

γλ(αuβ)kαβ+f
αβ

(

γλαξ̇β−Kλ
αξβ

)]

, (4.6b)
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δP = −1

3
(3DX+P +2EX)

(

1

2
h+∇̄βξβ

)

−
(

1

2
BY u

αuβ+
1

6
(3DY +2EY )γ

αβ

)

kαβ

−1

3
fαβ(3DY +2EY )∇̄αξβ , (4.6c)

PΠρ
λ = 2(P −2EX)

[

1

2
hρλ+∇̄(ρξλ)−

1

3
γρλ

(

1

2
h+∇̄αξ

α

)]

−EY

{(

γρ(αγβ)λ−
1

3
γρλγ

αβ

)

kαβ+2fαβ
(

γα
(ρ∇̄λ)ξβ−

1

3
γρλ∇̄αξβ

)}

, (4.6d)

and we obtain evolution equations for P and ρ

ρ̇ = −1

2
ḟαβ (BY γαβ +AY uαuβ)−BY f

αβKαβ − (ρ+BX)K,

Ṗ =
1

3
(3DY + 2EY )f

αβKαβ +
1

2
(DY γαβ −BY uαuβ)ḟ

αβ − 1

3
(P + 3DX + 2EX)K.

(4.7)

5 No preferred direction in the coupling tensors

5.1 Preferred direction

Using uµ and γµν in the decomposition of the coupling tensors means that we have chosen

a preferred direction for the Lagrangian. If we assume there is no preferred direction and

only the full metric is seen in the coupling tensors, then (4.3) becomes

Aµναβ = AAg
µνgαβ + 2BAg

α(µgν)β , (5.1a)

Bµναβ = ABg
µνgαβ + 2BBg

α(µgν)β, (5.1b)

Cµναβ = ACg
µνgαβ + 2BCg

α(µgν)β . (5.1c)

In order to obtain (5.1a) we must set the coefficients in (4.3) as follows

AX = AA + 2BA AY = AB + 2BB AZ = AC + 2BC

BX = −AA BY = −AB BZ = −AC

CX = −BA CY = −BB CZ = −BC

DX = AA DY = AB DZ = AC

EX = BA EY = BB EZ = BC

FY = −AB.

(5.2)

5.2 The perturbed fluid variables

When we use the coupling tensors (5.2), then we find that the perturbed fluid variables

when χ is decoupled are

δρ=(AA−ρ)
(

1

2
h+∇̄αξ

α

)

+AB

(

fαβ∇αξβ+
1

2
k

)

− 1

3
BBk

αβuαuβ , (5.3a)
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(ρ+P )vσ = BB

[

uνγσµk
µ
ν+BB

(

γσµf
µβ ξ̇β−fαβKσ

αξβ

)]

+(BA+ρ)ξ̇σ, (5.3b)

δP = −
(

1

3
(2BA+P +3AA)

(

1

2
h+∇̄αξ

α

)

+
1

2
ABk+

1

3
BBγ

ν
µk

µ
ν

)

(5.3c)

−1

3
(3AB+2BB)f

αβ∇̄αξβ ,

PΠρ
λ = 2(P −2BA)

(

1

2
hρλ+∇̄(ρξλ)−

1

3
γρλ

(

1

2
h+∇̄αξ

α

))

(5.3d)

−2BB

[

γρµγ
ν
λk

µ
ν−

1

3
γνµk

µ
νγ

ρ
λ+2fαβ

(

γα(λ∇̄ρ)ξβ−
1

3
γρλ∇̄αξβ

)]

,

and we can write the evolution equations (4.7) as

ρ̇ = AB(f
αβKαβ+

1

2
ḟ)−BB ḟ

αβuαuβ+(AA−ρ)K (5.4a)

Ṗ = −1

6

(

2(P +3AA+2BA)K+3AB

(

ḟ+2fαβKαβ

)

+2BB

(

ḟαβγαβ+2fαβKαβ

)

)

. (5.4b)

6 Choosing a form for fµν

6.1 Conformal and disformal choices

An obvious choice for fµν is

fµν = Afφgµν +Bf∇µφ∇νφ (6.1)

where Af and Bf are constants and φ is a scalar field. However, because this means that

the variation of fµν contains the variation of the metric, we must modify (4.1). In fact,

this choice means that (4.1) can be rewritten as the second variation of a Lagrangian of

the form L(2)(δOLgµν , δLφ,∇µδLφ), i.e.

L(2) = A(δLφ)
2 + BµδLφ∇µδLφ+

1

2
Cµν∇µδLφ∇νδLφ

+
1

4

[

Yαµν∇αδLφδLgµν + VµνδLφδLgµν +
1

2
WµναβδLgµνδLgαβ

]

, (6.2)

which was studied in [13]. The terms on the second line of (6.2) could be possibly be

generated by “Beyond Horndeski” theories [34, 35]. The Beyond Horndeski theories contain

terms in a specific combination to avoid the Ostrogradski instability, which would place

constraints on the couplings A, Bµ and Cµν .

6.2 Flat reference metric

Another choice is a flat reference metric, i.e. fµν = ηµν , although this choice does not

simplify our perturbed fluid variables greatly while we are still using the generalised la-

grangian (4.1).
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7 Summary of results

In this paper, we have

• summarised the calculations given in [14] for the perturbed fluid variables for a general

dark Lagrangian of the form L{2} = L{2}(δLgµν) by working in the synchronous

gauge and in the perfectly elastic case, both with and without the imposition of time

reparameterisation invariance

• obtained new constraints on the values of w and µ for a realistic sound speed under

various conditions, using data from the Planck satellite

• rewritten the perturbed fluid variables for general dark Lagrangians of the form

L{2} = L{2}(δLγµν , δLuµ), L{2} = L{2}(δLuµ) and L{2} = L{2}(δLγµν) both in general

and when time reparameterisation invariance is imposed

• obtained new evolution equations for Ṗ and w for these new Lagrangians and repeated

these calculations for tensor-metric theories where L{2} = L{2}(δLgµν , δLfµν), using

either a time-spatial metric split in the coupling tensors or using only the full metric

• found new evolution equations for ρ and P and rewritten the perturbed fluid variables

in these theories

There are many different modified gravity theories which attempt to explain the accel-

erated expansion of the universe. By parameterising theories based on the second variation

of the Lagrangian, we were able to develop a framework which can very quickly rule out

various theories, and indeed we can rule out any theory which is purely a function of the

variation of the time part of the metric. Our method could be used both in future models

of massive gravity or to rule out large classes of theories when new observational results

are found.

We have examined the connections between these theories and elastic dark energy. For

our first case, the elastic dark energy framework can be straightforwardly used. We also

placed constraints on the parameters of elastic dark energy using Planck results. Future

work could examine whether other dark energy models can use this framework.
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A Evolution of w

We want to find an evolution equation for w, the equation of state parameter where P = wρ.

Using the conservation equation, (2.11) and (2.13), and defining

β̂ ≡ β

ρ
, (A.1)
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we obtain

ẇ = 3
[

w(1 + w)− β̂
]

H, (A.2)

which notably does not depend on µ. Hence w is constant if

β̂ = w(1 + w), (A.3)

and so

w = −1

2
± 1

2

√

1 + 4β̂, (A.4)

gives a stable universe. Using 2018 Planck data [28], the 68% constraint on w is w =

−1.028± 0.032 which in turn gives a constraint of −0.004 < β < 0.106.

A.1 Sound speed

The sound speed for elastic dark energy is given by [20]

cs
2 ≡

β̂ + 4
3 µ̂

1 + w
, (A.5)

where µ̂ = µ
ρ
. Using (A.3), and in order that the sound speed fulfills 0 ≤ cs

2 ≤ 1, i.e. is

real and sub-luminal, then for constant w we must have

− 3

4
w(1 + w) ≤ µ̂ ≤ 3

4
(1− w2). (A.6)

If we set µ̂ = 0 = ẇ, then (A.6) gives that either w = −1 exactly, or

0 ≤ w ≤ 1, (A.7)

which leads to a contradiction with the acceleration of the universe, as acceleration requires

w < −1
3 . This means that either w = −1 or a stable universe with zero shear modulus

cannot support acceleration of the universe and we therefore require a non-zero µ. Using

the 2018 Planck data [28] together with (A.6) gives us constraints of −0.0477 ≤ µ̂ ≤ 0.0599.

However,the assumption that we do not have a phantom equation of state, i.e. we require

w ≥ −1, gives 0 ≤ µ̂ ≤ 0.0599.
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