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Abstract. In this work a Multiphysics model of a meander line electromagnetic acoustic 

transducer (EMAT) to generate S0 mode Lamb waves in an aluminum plate is built and the 

structural parameters of the transducer are optimized based on the model. Three approaches to 

solve the amplitude of the in-plane displacement component at an observation point are explored 

and the single frequency approach is selected because it is the fastest. In the optimization, the 

objective function to minimize is the negative amplitude of the S0 mode waves, and the design 

variables are the width and height of the magnet and liftoff values of the magnet and the coil 

from the top surface of the plate. The liftoff values form a linear constraint of the optimization 

problem. A genetic algorithm (GA) program capable of handling the linear constraint efficiency 

is developed. The internal status of the GA program is tracked carefully to avoid unnecessary 

evaluations of the objective function. With 30 runs of the program, the optimal set of variables 

leads to the ratio of the width of the magnet to that of the coil of 115.85%. 

Keywords: Ultrasonic transducers, meander line electromagnetic acoustic transducers, Lorentz force, Lamb waves, 
constrained optimization 
 
1. Introduction 
Traditionally in ultrasonic testing, piezoelectric transducers are used to generate ultra- sonic 

waves in the solid sample under investigation. The piezoelectric transducers rely on liquid 

coupling to transfer energy into the solid sample, while the coupling is not always convenient 5 
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and sometimes uncertainty will be introduced. Several non-contact techniques for generation of 

ultrasonic waves are promising alternatives, including the laser-generation, air-coupled 

transducers and electromagnetic acoustic transducers (EMATs). This paper is devoted to the 

EMATs. 

As suggested by the name, EMATs rely on electromagnetic effects to generate ultrasonic waves 

directly in the tested metal or magnetic sample, without requirement for any liquid coupling [1-

3]. In non-magnetic metal testing, the Lorentz force mechanism takes effect. Within the bias 

magnetic field provided by the permanent magnet, the eddy currents in the metal sample, 

generated by the coil fed with high frequency excitation current, give rise to the Lorentz forces, 

serving as the driving forces of the ultrasonic waves. While for magnetic material testing, 

additional effects like magnetostriction exist, rendering the mechanism even more complex. 

Only Lorentz force effect is considered for the EMAT described in this paper. 

The non-contact nature makes the EMATs suitable for material testing in some special situations, 

like testing hot or moving samples. Another benefit is that with different configurations of the 

permanent magnet and the coil, different types of waves could be generated. In spite of these 

advantages, one difficulty in the use of EMATs is that the energy transduction efficiency is often 

lower than that of the piezoelectric transducers. So one crucial problem is to design the 

parameters of the EMATs optimally, so as to maximize their performance. 

For optimization of the EMATs, a reliable model is required, while building a model of an 

EMAT is not an easy task, because the EMAT model is multi-physics in nature, requiring 

knowledge from both electromagnetic and elastodynamic fields. Ludwig conducted transient 

analysis of a meander coil EMAT placed on isotropic non-ferromagnetic half-space, assuming 

uniform static magnetic field [4]. Jafari-Shapoorabadi studied in detail the controlling eddy 

current equations and argued that the previous work using the total current divided by the cross 

section area of the conductor as the source current density was equivalently applying the 

incomplete equation, and this meant ignoring the skin effect and proximity effect [5], while we 

proved the opposite in [6]. Shi et al. compared three different definitions of the current density 

with weak formulation [7]. Garcia-Rodriguez et al. implemented both un-coupled and coupled 

FEM code for EMAT simulations in 2D geometries [8] Dhayalan and Balasubramanniam used 

FEM package COMSOL to build the electromagnetic model of a meander EMAT, and the 

simulated Lorentz force was exported to another package Abaqus as the driving force to excite 
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Lamb waves [9]. The above-mentioned modelling work only involves non-magnetic materials. 

There is also some initial work on modelling EMATs used to test magnetic material, while we 

will not discuss further here. 

There are already some work on optimizations of EMATs. Mirkhani conducted a parametric 

study of an EMAT containing a racetrack coil to generate the SV bulk waves propagating 

perpendicularly into the aluminum sample, by varying the ratio of the width of the magnet to that 

of the coil, and found that if this ratio was set at 1.2, the amplitude of the ultrasonic beam was 

improved [10]. One design variable (the width ratio) and one objective function (amplitude of 

the waves) were used in this optimization, accomplished only through observation of a set of 

curves corresponding to different design variables instead of using a real optimization algorithm. 

Kang et al. built a 3D Lamb wave EMAT model in which only the electromagnetic fields were 

modelled and the orthogonal test method was applied to find an optimal set of input parameters, 

with Lorentz force components at some selected points as the optimization targets [11]. This 

process was later extended to a surface wave EMAT model where the surface waves were 

expressed with existing analytical formulae [12]. The problem of this approach is that the 

parameters supposed be continuous variables were in fact chosen from respective set of discrete 

values in an orthogonal test, so they were not fully covered and the mentioned method is not a 

rigorous mathematical optimization method. Seher et al. optimized a spiral coil EMAT using 

genetic algorithm optimization procedure in the global optimization toolbox of Matlab [13, 14]. 

The ratio of the amplitude of the A0 mode to that of the S0 mode is selected as the objective 

function to be maximized, i.e. preferably generating the A0 mode. 

In this paper, we build a 2D model of a meander line EMAT used to generate Lamb waves in an 

aluminum plate, with the finite element package COMSOL. We choose COMSOL because of its 

power in multiphysics modelling and great flexibility. This model is based on our previous work 

[6], while now we focus on the frequency domain model of the EMAT, instead of the time 

domain model in the previous work. The multiphysics frequency domain model is complete in 

that the eddy current and the elastic waves are both modeled simultaneously in the frequency 

domain. This treatment is still rare in the study of EMATs. We discuss different strategies to 

calculate the amplitude of displacement component at an observation point in the plate, to be 

used to calculate the objective function in optimizations. We formulate the constrained 

optimization problem of our meander line EMAT, solved with a genetic algorithm program in 
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Matlab developed especially for this work. This GA program can handle the linear constraint in 

our optimization problem efficiently, and we also achieved performance enhancement by 

decreasing the total number of evaluations of the objective function. 

 

2. The Multiphysics model of a meander line EMAT 

In this section we summarise the basic equations in the multiphysics model of a meander line 

EMAT used to generate Lamb waves in an aluminum plate. The equations come from the 

electromagnetic and elastodynamic fields. The whole model is divided into the magnetostatic 

sub-model, the eddy current sub-model and the elastodynamic sub-model, as will be explained in 

details in section 2.2. 

 

2.1. The controlling equations 

The basic equations for the electromagnetic filed simulation in the study of EMATs are  
Maxwell's equations [15], 

                   ∇̛ 𝑥 𝐸 =  − 
డ஻

డ௧
                                                    (1) 

 

∇ 𝑥 𝐻 =  𝐽௙ +  
డ஽

డ௧
                                     (2)     

   
                    ∇ ∙ 𝐷 =  𝜌𝑓             (3) 
 
                    ∇ ∙ 𝐵 = 0                                             (4) 
 
These equations are Faraday's law, Ampere-Maxwell law, Gauss's law for electric fields and 
Gauss's law for magnetic fields, respectively. E is the electric field, B is the magnetic flux 
density, t is the time variable, H is the magnetic field strength, 𝑱𝒇  is the free current density, D is 
the electric flux density, 𝜌𝑓is the free charge density. ∇ 𝑥 is curl of a vector, and ∇  ∙ is 
divergence of a vector. Since the frequency in EMAT operation is no higher than several MHz, 

the term 
డ஽

డ௧
  in Maxwell's equations could be neglected. 

To solve Maxwell's equations, another set of equations called the constitutive equations are 
needed, 
 
                    𝐵 =  𝜇 𝐻                                               (5) 
                     
                    𝐷 = ∈ 𝐸                                                (6) 
 
in which 𝜇 is the magnetic permeability, and ∈ is the dielectric constant. 𝜇 and ∈ are scalars here 
indicating that the material is linear. 
When modeling the magnetic field of the permanent magnet in the magnetostatic simulation, we 
start from the relation of B and H in matter,  
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     𝐵 =  𝜇଴ (𝐻 + 𝑀) =  𝜇଴ (𝐻 + 𝑥௠ 𝐻 +  𝑀଴ =  𝜇𝐻 + 𝜇଴𝑀଴ =  𝜇 𝐻 + 𝐵௥      (7) 
 
in which 𝑀 =  𝑥௠ 𝐻 +  𝑀଴ is the magnetization vector, 𝑀଴ is the remanent magnetization, and 
𝐵௥ =  𝜇଴𝑀଴  is the remanent flux density. In region without free currents, (2) is reduced to 
∇ xH = 0 and this leads to the definition of magnetic scalar potential 𝑉௠  as H = -∇ 𝑉௠ . Combing 
this with (4), we arrive at  
 
                   ∇  ∙ ( −𝜇∇𝑉௠ + 𝐵௥ ) = 0                            (8) 
 
This equation is solved with the magnetostatic sub-model. 
With the magnetic vector potential (MVP) A, the equation describing the eddy current 
phenomenon is, 
 

− 
ଵ

ఓ
∇ଶ𝑨 +  𝜎

డ𝑨

డ௧ 
=  𝐽௦                        (9) 

 
in which ∇ଶ is the vector Laplacian operator and Js is the source current density, 𝜎 is the 

conductivity. The eddy current density, not written explicitly in (9), is Je = − 𝜎
డ஺

డ௧ 
.This equation 

holds where there exists a conductor and a source current flows in the conductor. 
 
For 2D planar field simplification where Js is assumed to be along the z axis, we have 
Js = Jszez, with Jsz as the z component of vector Js, and ez as the unit vector along the z axis. 
Similarly we also have A = Azez. If we write Az as A and Jsz as Js, the vector equation (9) is 
transformed to the z component scalar equation, 

 
− 

ଵ

ఓ
∇ଶ𝐴 +  𝜎

డ஺

డ௧ 
=  𝐽௦                       (10) 

 
This equation is a diffusion equation describing the eddy current phenomenon. Now the eddy current 

density is Je = −𝜎
డ஺

డ௧ 
 

The externally applied total current i is the surface integral of the total current density, i.e. the sum of the 
source current density Js and the eddy current density Je, 
 

                     𝑖 =  ∬ (𝐽௦ ௌ
+ 𝐽௘) 𝑑𝑆                                    (11) 

 

In a 2D planar model where the conductor is assumed to be long and straight, Js is uniformly 
distributed, then together with (10), we have, 
 

                − 
ଵ

ఓ
 ∇ଶ 𝐴 +  𝜎 

డ஺

డ௧ 
=  

௜ା௝ఠఙ ∬ ஺ ௗ௦̇
ೞ

ௌ
                       (12) 

 

This is the equation designed a complete in the study of EMAT [16]. 

For steady state or frequency-domain analysis, the phasor notation is adopted, 
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                                                (13) 

The dots on A and i indicate they are complex phasors. 𝜔 is the angular frequency. J is the 
imaginary unit. This frequency-domain integro-differential equation was proposed by Konrad 
[17]. Equations (12) and (13) are solved in the eddy current sub-model. It should be noted that 
(12) and (13) hold for source conductors. In non-source conductors like the metal plate the Js 
term is dropped, while in non-conducting region the eddy current term is also dropped. 
 
The equations describing the generation and propagation of the ultrasonic waves in an elastic 
solid are [18]. 
 

∇ ∙  𝑇 =  𝜌 
డమ௨

డ௧మ − 𝐹                                   (14) 

T = c : S                                                    (15) 
S = ∇ௌu                                                     (16) 

 

These equations are equation of motion, Hook's law and strain-displacement relation 
respectively. T is the stress tensor, ∇ ∙  𝑇 is its divergence, 𝜌 is the density, F is the body force 
density, c is the stiffness tensor, S is the strain tensor, and u is the displacement vector. : is the 
double dot product of a fourth rank tensor c and a second rank tensor S. ∇ௌu is the symmetric 
part of the gradient of the vector u. It should be noted that the same symbol 𝜌 was also used to 
represent charge density in Maxwell's equations, and this shouldn't cause misunderstanding in 
this paper. 
 
For homogenous and isotropic media, we have Navier's equation [19], 

              𝜇∇ଶ 𝑢 + (𝜆 + 𝜇)∇(∇ ∙ 𝑢) =  𝜌
డమ ௨

డ௧మ − 𝐹                 (17) 

Here 𝜆 and 𝜇 are Lamé constants. Like the symbol 𝜌, the symbol 𝜇 was also used to represent the 
magnetic permeability. For 2D plane strain problems like modeling Lamb waves propagating in 
a plate, we have components of displacement vector u as u = u (x, y, t), v= v(x, y, t) and w = 0. 
Navier's equation is solved with the elastodynamic sub-model. 
 
The link between the electromagnetic sub-models and the elastodynamic sub-model is the 
Lorentz force defined as, 
 

                FL = J x B = J x (B0 +Bd)                                       (18) 

 

in which B is the total magnetic flux density composed of the static flux density B0 of the bias 

magnet, and the dynamic flux density Bd generated by the excitation coil. Usually for exciting 

current with moderate magnitude, the Bd term is very small compared with B0. In transient 

analysis, we can simulate the dynamic effect directly, while in frequency analysis which we will 
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use extensively in this work, the dynamic effect is much more difficult to model because we can't 

multiply two complex phasors, so we will use relatively small excitation currents in this work 

and neglect the Bd term. 

 

2.2. The meander line EMAT model 

As already introduced at the beginning of the section, the meander line EMAT model proposed 

in this paper consists of three sub-models including a magnetostatic sub-model simulating the 

bias magnetic field, an eddy current sub-model simulating the distribution of eddy currents and 

the accompanying skin and proximity effects, and an elastodynamic sub-model simulating the 

generation and propagation of the Lamb waves. The two electromagnetic sub-models share the 

same geometry composed of the surrounding air, the permanent magnet, the coil, and the middle 

section of the aluminum plate. The geometry of the elastodynamic sub-model consists of only 

the full plate. This design is valid because the eddy currents and the resulted Lorentz forces are 

concentrated in the local region of the plate just under the coil, so in the electromagnetic sub-

models, only the middle section of the plate needs to be considered. The Lorentz forces are 

transferred to the elastodynamic sub-model as the driving forces of the Lamb waves. By dividing 

the whole model into two geometries and three sub-models, we obtain some benefits. One 

advantage is that the structure of the whole model is very clear. Another advantage is that we can 

apply different meshing rules to the same object (the aluminum plate) in different geometries 

according to respective underlying physics, thus reducing the total number of elements. 

The geometry of the two electromagnetic sub-models is shown in Figure 1. The wires, the plate 

and the permanent magnet are assumed to be indefinitely long in the z direction so a 2D model is 

valid. The plate in this geometry is only the middle section of the full plate. This middle section 

is 300 mm in width and 1 mm in height. The width of the magnet is WM = 0.1 m and the height 

is HM = 0.12 m. The material of the magnet is air, in accordance with example models shipped 

with COMSOL, with remanent flux density of 1 T along the y direction. The coil is meander line 

type, composed of seven parallel wires, and the currents in two adjacent wires are in opposite 

directions. The wires have rectangular cross sections. The widths of the cross sections of the 

wires are WW = 2 mm, and the heights are HW = 1 mm. The horizontal distance between the 

centers of two adjacent wires is half of the wave length 𝜆, calculated from the phase velocity 
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CP of the S0 mode Lamb waves and the frequency f. The frequency for the frequency-domain 

analysis is 250 kHz, and this frequency is also used as the center frequency of a tone burst 

excitation signal in the transient analysis. With frequency f =250 kHz and a plate thickness of 1 

mm, the phase velocity of the S0 mode as determined from the phase velocity dispersion curves 

is CP = 5389.25 m/s, then the wavelength is 𝜆 = CP /f =21.557 mm. We developed a Matlab 

program to produce the dispersion curves. The liftoff from the bottom of the magnet to the top 

surface of the plate section is lM = 2 mm. The liftoff from the bottom of the coil to the top surface 

of the plate section is lC = 0:5 mm. The conductivity of the aluminum plate is 3.774 x107 S/m, 

and the conductivity of the copper wires of the meander coil is 5.998 x107 S/m. The magnetic 

permeabilities of these two materials are the same as that of the air, i.e. 𝜇0 =1.2566 x10-6H/m. In 

the optimizations, WM, HM, lM and lC will be changed, i.e. used as the design variables, as 

detailed in section 2.3. A layer of infinite elements is added to the boundary of the air region to 

increase the modeling accuracy in the magnetostatic analysis and the eddy current analysis. 

Fillets are added to the sharp corners of the magnet and the wires, so that the singularities are 

removed, while at the same time the number of elements is also increased. 

 
Fig. 1 The geometry of the electromagnetic sub-models (not to scale). This geometry is used for magnetostatic 
analysis and eddy current analysis 
 
Special care must be taken when meshing the electromagnetic sub-models. For convenience, the 

plate section is meshed with uniformly distributed rectangular meshes in both the x and y 

directions, with the mapped method. In the y direction, there are 4 elements in every length of 

one skin depth (1.6385 x 10 -4 m for the aluminum material). The copper wires are meshed with 

8 boundary layers. The remaining elements are free triangular elements. All the elements have 

default quadratic shape functions. 
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The geometry of the elastodynamic sub-model only consists of the full aluminum plate with a 

total length of 1.2 m. Lamé constants are 𝜆 = 5.1 x 1010 Pa, and 𝜇 = 2.6 x 1010 Pa. The density is 

2700 kg/m3. In the transient analysis, the ends of the plate are free, and the total time of 

simulation is limited to avoid end reflection in the recorded waveform of the displacement 

component. In the frequency domain analysis, PML layers are added to the ends of the plate to 

allow the wave energy to dissipate, which proves to be a crucial step of modeling. The 

observation point to record the displacement component is 0.2 m from the center of the 

transducer and in the middle plane of the plate. 

Here we would also like to comment on the dimensions of the EMAT model. Obviously the 

model proposed in this work is two-dimensional. This model is simpler and mathmatically more 

mature compared with a 3D model. As a general guideline in finite element method, a 3D model 

should be avoided until really necessary. For heuristic optimizations with excessive number of 

evaluations of the numerical model studied in this work, a 3D model is not recommended. 

 

2.3. Parameters to be used as the design variables 

In the previous EMAT model, there exist several structural parameters. Among these parameters, 

some are selected as the design variables of the optimization problem. The design variables are 

shown in Figure 2. WM is the width of the permanent magnet, HM is the height of the magnet, lM 

is the liftoff of the magnet from the top surface of the plate, and lC is the liftoff of the coil/wires 

from the top surface of the plate. WM, HM and lM are selected because they decide the 

distribution of the bias magnetic field at the induced eddy currents in the plate. lC is chosen 

because it influences the strength of the eddy currents. The two liftoff values are important in 

EMAT applications because they have big impact to the transduction efficiency of the transducer 

and hence its performance.  

The horizontal distance between the centers of two adjacent wires is fixed at half wavelength of 

the S0 mode, because we don't want to destroy the matching relation. The widths and heights of 

the wires are also fixed because we have to limit the number of the design variables and the 

width of the wire shouldn't be too big because we want accurate matching between the distance 

of two adjacent wires and the half wavelength. 

It should also be noted that the number of wires in the meander coil is fixed at 7 as described in 

section 2.2. This number is not chosen as a design variable because changing this number means 
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adding or removing geometrical objects (wires) from a finite element model, and this practice is 

commonly not advised in optimizations involving complex numerical models. 

 

 
Fig. 2 Design variables of the optimization problem 

 
3. The time domain model vs. the frequency domain model 

For optimization, we must obtain the amplitude of the displacement component u at the 

observation point, since it will be used to calculate the objective function. Deciding how to 

calculate the amplitude is thus crucial to this work. 

The first approach is implemented with the time-domain model, in which the bias magnetic field 

comes from the magnetostatic simulation while the eddy current distribution, and the generation 

and propagation of the Lamb waves are from time-dependent simulations. A time-stepping 

scheme is used for this simulation. For convergence of the time-dependent solver in COMSOL, a 

very small time step must be used, which means the simulation will be time-consuming. In this 

work, the number of time steps is set as 8000. The tone-burst excitation signal x(t) is composed 

of 5 sinusoidal periods and modulated with a Hanning window function. Once the time 

waveform u(t) at the observation point is simulated, the amplitude/peak of the envelop of this 

waveform will be solved as, 

                                       (19) 

in which i is the imaginary unit, ℋ[∙] is the Hilbert transform, f +jℋ[f] is the analytic signal 

corresponding to the time domain signal f, and the absolute value of this analytic signal gives the 

envelope. 𝒫 means solving the peak of the envelope, if there's only one wave packet in the time 
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waveform, the maximum value of the envelope corresponds to its peak. Because evolutionary 

algorithms will be applied in this work for optimizations, the number of evaluations of the 

objective function, i.e. the number of runs of the numerical model, will be big, so the time 

domain model is too time-consuming to be considered in optimizations, then an alternative faster 

approach is desired. 

The second approach is to transform the input time-continuous excitation signal to its frequency 

components via Fourier transform (implemented with FFT on a computer), feed them into a 

frequency domain model, transform the output back into the time-response with inverse Fourier 

transform (implemented with IFFT), and finally solve the peak of the envelope of the time 

waveform. The flowchart of this approach is shown in Figure 3. As could be seen in this figure, 

not all the frequency components are used, and a threshold value is set to select only some of the 

frequency components with bigger amplitudes. The corresponding subset of the frequencies are 

input into the frequency model to obtain the system function, then the selected frequency 

components and the system function are multiplied to obtain the output of the system. Zero 

paddings in the time domain and the frequency domain are also introduced as optional operations 

to further increase the calculation accuracy. 

 
Fig. 3 Flowchart of the FFT/IFFT approach 
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The time waveform obtained in this way can be expressed as, 

                       (20) 

in which ℱrepresents Fourier transform, ℱ-1 is the inverse Fourier transform, x(t) is the input 

tone burst signal, Hu(ω, WM, HM,  lM, lC) is the system function for the displacement component 

u. WM, HM, lM and lC are included to stress that the system function changes with the design 

variables, while the input signal x(t) is fixed. As the 265 next step, the amplitude/peak is solved 

just like in Eq.(19). This approach will be less time-consuming than the time-domain simulation, 

since only tens of (or fewer) frequency components are enough, as selected by the threshold 

value. For this approach, we build a frequency-domain model of the EMAT, in which the bias 

magnetic field is again from the magnetostatic simulation, but the eddy current sub-model and 

the elastodynamic sub-model are completely in the frequency-domain. Then we implement this 

proposed approach by connecting the frequency-domain model in COMSOL with the Matlab 

environment. The time waveform from this approach is carefully compared with the waveform 

from the previous time domain simulation, which serves as a reference. As an example, u 

waveforms from the time-dependent simulation and the frequency domain model with FFT/IFFT 

processing are compared in Figure 4. The design variables are selected as WM = 0.1 m, HM = 

0.12 m, lM = 0.002 m and lC = 0.0005 m. The threshold to select the frequency components is 

1%, that is, only the frequency components higher than 1% of the peak value of the spectrum are 

used, and others are discarded. With this threshold, 29 components around the center frequency 

of 250 kHz are kept. 

One important requisite to validate the frequency domain model is that the whole model must be 

linear. In other words, the frequency model can't handle the part of Lorentz force resulted from 

the dynamic magnetic field, because two complex phasors cannot be multiplied together to 

produce another phasor. This is consistent with the discussion about ignoring the Bd term in 

section 2.1. 

Since we are mostly concerned with the amplitude of the u waveform, yet another approach 

exists, where only one frequency is used in the frequency model, corresponding to a traditional 

steady state analysis. That is, we only consider the center frequency of the burst signal (250 kHz 

for the EMAT in this work), and use the absolute value of the complex phasor to approximate the 

amplitude of the waveform. This process could be formulated as, 
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                  |�̇�| =  ห𝐻௨ (𝜔௖. 𝑊ெ 𝐻ெ, 𝑙ெ, 𝑙௖)ห                                               (21)    
                          
in which𝑙௖  is the center frequency in radian, �̇� is the complex phasor of 𝑢. 

It's still necessary to prove that the third approach is an acceptable approximation of the second 

approach. By carefully observing Eq. (21), we can see that |�̇�| is the system function evaluated at 

the center frequency. While in Eq. (20), the spectrum of the tone burst signal ℱ [𝑥(𝑡)] is bell-

shaped, i.e. narrow-banded, and concentrated around the center frequency, so the result of ℱିଵ[∙] 

operation is mainly decided by the value of the system function 𝐻௨ (𝜔௖. 𝑊ெ 𝐻ெ, 𝑙ெ, 𝑙௖) at the 

center frequency𝜔௖, no matter what the system function looks like at other frequencies. Then a 

higher value of 𝐻௨ (𝜔௖. 𝑊ெ 𝐻ெ, 𝑙ெ, 𝑙௖) means higher amplitude of the time waveform, and thus 

higher peak value of its envelope. So the absolute value of the phasor could be used to 

approximate the amplitude of the waveform and thus the objective function. Corresponding to 

Figure 4, the 𝑢 system function is shown in Figure 5. 

 
Fig.4 𝑢 waveforms from time-dependent simulation and frequency domain model with FFT/IFFT processing 
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Fig. 5. 𝑢 system function 

The amplitudes of u from the second approach (frequency model with FFT/IFFT) and the third 

approach (single frequency model) are solved numerically with fixed HM = 0.12 m, lM = 0.002 

m, lC = 0.0005 m and different WM values, to further validate the third approach. The results are 

shown in Figure 6. 𝑃௨ is the peak value of envelope of 𝑢 waveform solved with the frequency 

domain model and FFT/IFFT, while |�̇�| is the magnitude of 𝑢 phasor solved with one single 

frequency in the frequency domain model. These displacements are recorded at a point away 

from the transducer and at the middle plane of the plate, as will be explained further. It could be 

observed that although the amplitudes from these two approaches are not identical, they have 

same shapes, meaning that they will reach the respective maximum values at similar value of 

WM. 

The third approach is the fastest, since only one frequency is used. In the later optimizations, we 

will mainly use this approach. 

 
Fig. 6. 𝑢 amplitudes at different Wm values, from the second and third approaches. HM = 0.12 m, lM = 0.002m and lc 
= 0.0005 m are fixed 
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4. Constrained optimization of the meander line EMAT 

In this section, we formally present the constrained optimization problem of the meander line 

EMAT, the features of the developed genetic algorithm program, and the optimization results. 

 

4.1. The constrained optimization problem 

Since we are trying to design a transducer to generate the S0 mode Lamb waves, the goal of the 

optimization is to maximize the amplitude of the S0 mode, or equivalently, minimize the 

negative of the amplitude of the S0 mode. The optimization problem could be formulated as, 

                     (22) 

in which f is the black box FEM model of the meander line EMAT, WM, HM, lM and lC are the 

design variables as in section 2.3, AS0  is the amplitude of the S0 mode Lamb waves, HW = 

0.001 m is the height of the wire, 𝛿= 0.0001 m is the lower limit of the air gaps between the 

bottom of the magnet and the top surface of the wire, and between the bottom of the wire and the 

top surface of the plate, to avoid that they may intersect with or touch or are too close to each 

other. The linear contraint in Eq. (22) states that the difference between the liftoff values of the 

magnet and the coil must accommodate the height of the wire (HW) and one lower limit of the air 

gap (𝛿). 

The design variables have upper and lower bounds. If we define the width of the coil as WC = 

0.066671m (3𝜆+WW with 𝜆=21.557 mm and WW=2 mm), then the bounds are WM ∈ [WC, 

2WC], HM ∈ [0:06, 0:16] m, lM ∈ [HW + 2 𝛿, 0:015] m, and lC ∈ [𝛿, 0.01] m. The lower bound of 

WM is WC because we want that the magnet could at least cover the coil so that the bias magnetic 

field is approximately uniform at the coil. The lower bounds of lM and lC are easy to select 

according to geometrical considerations. Other bounds are selected somewhat arbitrarily. 

In [14], the authors proposed to solve the displacement components at the middle plane of the 

plate, then from the displacement wave structures of Lamb waves in a steel plate of 10 mm 

thickness at 50 kHz, the in-plane component (u) corresponds to the S0 mode only while the out-

of-plane component (v) corresponds to the A0 mode only. From our dispersion curves 

calculation program which also has the ability to solve the wave structures at the selected 

working point, this is also true for Lamb waves in an aluminum plate with thickness of 1 mm at 
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250 kHz. So in the FEM model, we record the displacement component 𝑢 at the observation 

point in the middle plane of the plate as the S0 mode Lamb waves. 

Since the bounds are now defined for the design variables, we can gain some insight of their 

influences on |�̇�| by sweeping one variable while keeping the others constant, based on the 

previous selection of WM = 0.1 m, HM = 012 m, lM = 0.002 m and lC = 0:0005 m. Now we sweep 

them one by one. Figure 7 shows the variation of |�̇�| with the width of the magnet WM, which is 

the same as the |�̇�| curve in Fig. 6, and the only difference is the range of the width value is 

extended to [30 mm, 129 mm] in Figure 7. Still the peak appears near WM=80 mm. Figure 8 

shows the variation of |�̇�| with the height of the magnet (HM ∈ [60 mm, 160 mm]). This result 

shows the bigger is the height of the magnet the larger will be the amplitude of the generated S0 

mode waves. Figure 9 is the variation of |�̇�| with the liftoff the magnet (lM ∈[lC +HW + 𝛿, 14.8 

mm]). Figure 10 is the variation of  |�̇�| with the liftoff of the coil (lC ∈[ 𝛿, lM - HW -  ]). These 

two figures show clearly that smaller liftoff values lead to larger amplitude of the generated S0 

mode waves. Although these sweep curves only give an incomplete picture of the influences of 

the design variables, combined together they show that improvements could be obtained for the 

optimal design compared with the worst design. 

 
Fig.7. Variation of |�̇�| with the width of the magnet 
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Fig. 8. Variation of |�̇�| with the height of the magnet 

 
Fig. 9. Variation of |�̇�| with the liftoff of the magnet 

 
Fig. 10. Variation of |�̇�| with the liftoff of the coil 
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4.2. The genetic algorithm program 

For optimization, we choose the genetic algorithm (GA), a kind of global optimization algorithm 

without requirement to calculate gradients. We developed a genetic algorithm program in Matlab 

to optimize the parameters of the EMAT, i.e. the design variables. In this program, we 

implement binary coding and real coding, with or without constraints. The implemented genetic 

operations are listed as follows, 

 
(1) Uniform mutation 
(2) Boundary mutation 
(3) Non-uniform mutation 
(4) Whole non-uniform mutation 
(5) Single arithmetic crossover 
(6) Whole arithmetic crossover 
(7) Simple crossover 
(8) Heuristic crossover 

As in Eq. (22), only one linear constraint exists in the optimization problem, and this linearity 

enables us to handle the constraint efficiently, as proposed in the GENOCOP system developed 

by Michalewicz [20]. The basic idea is that during the initial phase of the program, all the 

individuals are generated in the feasible region of the problem. The genetic operations including 

mutations and crossovers listed above are also carefully customized so that, all the individuals of 

the new generation also stay in the feasible region. 

The program is implemented with object-oriented programming (OOP) technique in Matlab, 

exploiting the fact that the concepts like individual, population, generation, etc. in GA are 

naturally modelled with objects in OOP programming paradigm. An advantage of this program is 

that the total number of evaluations of the objective function is reduced, compared with the code 

shipped with Matlab itself. This was realized by carefully tracking the internal status of the 

program and avoiding any unnecessary evaluations. For optimization problems involving 

complex numerical models, the bottleneck of the optimization procedure is the evaluation of the 

objective function, or running of the FEM model, so this advantage helps us reduce the total time 

consumed greatly. 

 

4.3. Optimization results 

The single frequency model is used for calculation of the objective function value in the GA 

program (the third approach). The number of generations is 50, and the number of individuals is 
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30. 30 runs of the GA program are conducted on a PC running Windows operating system, 

installed with two Intel Xeon CPUs @ 2.30 GHz, and a RAM of 128 GB. Evolution of the best 

and mean objective function values versus the number of generation for one run of the program 

is shown in Figure 11. 

 

 
Fig. 11. Best and mean objective function values vs. number of generation for one run of the program 

 
 

The optimization results of the first 5 runs of the program are summarized in Table 1. 

We can observe that the number of evaluations of the objective function changes among the 

different runs of the GA program. This is normal because we track the internal status of the GA 

to reduce the number of evaluations, while the internal status of the program is stochastic. 

The 30 solved minimized objective function values are sorted in increasing order and drawn in 

Figure 12. Among the 30 values, the best one (with minimum optimized objective function 

value) is that the design variables are WM =77.24 mm, HM =16 cm, lM =1.2 mm and lC =0.1 mm, 

and the corresponding objective function value is -5.4353 x10-11. The number of evaluations of 

the objective function (number of runs of the frequency domain model) is 1090, and the total 

time consumed is 43698 s.2 
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Table 1 

Optimization results of the first 5 runs of the program 

No.  WM (m) HM (m) lM (m) lC (m) Obj function value (m) Number of evaluations 

1 0.078228 0.16 0.0012 0.0001 - 5.4338 x 10-11 1113 

2 0.077469 0.15989 0.0012013 0.00010048 - 5.433 x 10-11 1067 

3 0.074729 0.15751 0.0012 0.0001 - 5.4139 x 10-11 1127 

4 0.076207 0.16 0.0012058 0.0001 - 5.4329 x 10-11 1182 

5 0.07732 0.16 0.0012018 0.0001 - 5.4349 x 10-11 1124 

 

 

 

 

Fig. 12. Optimized value of the objective function of different runs (sorted) 
 

From the results, we can see that HM reaches the upper bound (0.16 m), this is normal because a 

bigger value of the height of the magnet corresponds to increased strength of the bias magnetic 

field. lM and lC reach their lower bounds (HW + 2𝛿 = 0.0012 m and 𝛿 = 0.0001 m respectively) 

because smaller value of lM means increased level of the bias magnetic field and smaller value of 

lC means increased level of the dynamic magnetic field and hence the induced eddy currents. We 

can calculate the value of ratio between the width of the magnet and the width of the coil as 

WM=WC = 115.85%, which is similar to [10], although the structures of the coils are different. 

Finally we can compare the amplitude of the displacement component u under optimized 

variables (WM=77.24 mm, HM=16 cm, lM=1.2 mm and lC=0.1 mm) with that under the original 

default variables (WM=100 mm, HM=12 cm, lM=2 mm and lC=0.5 mm). The time waveforms 
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from time domain simulations and respective envelopes and peaks of the envelopes (marked with 

x and +) are shown in Figure 13 (The waveform with bigger amplitude corresponds to the 

optimized variables). The ratio of the peak with the optimized variables to that with the default 

variables is 1.3018. We also calculate the ratio of the absolute values of the �̇� phasors under the 

optimized and default variables and find it to be 1.3002. These two ratios are very close. It 

should be noted that although these ratios show performance improvement of around 30% via 

optimizations, the values of the ratios depend on the reference/default variables (i.e. a worse set 

of default variables leads to bigger ratios). 

 
Fig. 13. u waveforms with default and optimized design variables 

 

5. Conclusions 

In this work we introduced a 2D model of a EMAT composed of a meander coil and a 

rectangular magnet used to generate Lamb waves in an aluminum plate. We focus on the 

complete multiphysics EMAT model in the frequency domain, as the basis of the heuristic 

optimizations, and this treatment is still rare in the literature on EMATs. 

The model was divided into two geometries and three sub-models. The magnetostatic sub-model 

simulating the bias magnetic field and the eddy current sub-model simulating the distribution of 

the eddy currents share one geometry while the elastodynamic sub-model simulating the 

generation and propagation of the Lamb waves has its own geometry. This design has a clear 

structure, and could ensure that different physics can have different meshing rules, thus reducing 

the total number of elements. 
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The quantity we're concerned with is the amplitude of the S0 mode Lamb waves, so this 

amplitude is used in the optimizations of the EMAT. To obtain the amplitude, three approaches 

were explored. The first approach is calculating the peak of the envelope of the time waveform 

from time-domain simulation, which is the most time-consuming. The second less time-

consuming approach is also about calculating the peak, but the time waveform is from a 

frequency domain model, combined with FFT and IFFT processing. The third approach, which is 

the fastest, is only considering the center frequency in the frequency domain model. This 

approach was selected for later optimizations implemented with genetic algorithms, so as to 

greatly reduce the total time of optimization. 

The objective function to minimize is the negative amplitude of the S0 mode (i.e. maximising the 

amplitude of the S0 mode), since we want to strengthen the generation of this mode. The design 

variables are the width and height of the magnet and liftoff values of the magnet and the coil 

from the top surface of the plate. The liftoff values form a linear constraint of the optimization 

problem. 

A genetic algorithm program was developed to tackle the problem of optimising the EMAT. This 

program was implemented with the OOP technique and can handle linear constraint like the one 

in our optimization problem efficiently. Compared with the code shipped with Matlab, the 

number of evaluations of the objective functions is reduced. From the optimization results, it was 

observed that the ratio of the width of the magnet to that of the coil is 115.85%, while the height 

of the magnet reached its upper limit, and the liftoff values reached respective lower limits. 

By comparing the peaks of the envelopes of the u waveforms with the optimized design variables 

and the original default variables, a performance increase around 30% was observed. Comparing 

the absolute values of the �̇� phasors yielded similar result. 
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