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7 Phylogenetic analysis aims to establish the true relationships between taxa.  Different analytical 

8 methods, however, can reach different conclusions.  In order to establish which approach best 

9 reconstructs true relationships, previous studies have simulated datasets from known tree 

10 topologies, and identified the method that reconstructs the generative tree most accurately.  On 

11 this basis, researchers have argued that morphological datasets should be analysed by Bayesian 

12 approaches, which employ an explicit probabilistic model of evolution, rather than parsimony 

13 methods – with implied weights parsimony sometimes identified as particularly inaccurate.

14 Accuracy alone, however, is an inadequate measure of a tree’s utility: a fully unresolved 

15 tree is perfectly accurate, yet contains no phylogenetic information.  The highly resolved trees 

16 recovered by implied weights parsimony in fact contain as much useful information as the more 

17 accurate, but less resolved, trees recovered by Bayesian methods.  By collapsing poorly 

18 supported groups, this superior resolution can be traded for accuracy, resulting in trees as 

19 accurate as those obtained by a Bayesian approach.  In contrast, equally weighted parsimony 

20 analysis produces trees that are less resolved and less accurate, leading to less reliable 

21 evolutionary conclusions.

22 Keywords.—phylogenetic inference; parsimony analysis; equal weights; implied weighting; 

23 Bayesian phylogenetic methods; information content
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24

25 INTRODUCTION

26 Evolutionary history can be reconstructed using parsimony-based or probabilistic approaches. 

27 Because models used with molecular datasets generally share a common probabilistic 

28 construction, statistical methods can be used to determine the most appropriate model [1].  With 

29 morphological datasets, however, it is more difficult to establish whether probabilistic models or 

30 parsimony better reconstruct phylogenetic relationships (which are typically unknown).

31 A pragmatic approach to this question is to simulate data from a known tree. With the 

32 important caveat that generative trees and simulated morphological datasets may be unrealistic 

33 [2,3], probabilistic approaches typically reconstruct the generative tree most accurately (i.e. with 

34 least conflict), followed by parsimony under equal and implied weights in turn [4–9].

35 Previous studies have advocated accuracy as the sole criterion by which to select a 

36 method [5–11]. Congreve & Lamsdell [9] (problematically [2]) define the most accurate tree as 

37 the one that bears the fewest of incorrect splits.  Other authors [5–8,11] use the Robinson-Foulds 

38 distance as a proxy for accuracy (even though the RF distance is also influenced by precision; a 

39 pair of trees can be made two units more similar by replacing an incorrect partition with a correct 

40 one, or by collapsing two incorrect partitions.)  Goloboff et al. [2] propose alternative tree 

41 similarity metrics as proxies for accuracy.

42 Accuracy alone, however, is not the only goal when reconstructing trees [11].  No tree 

43 shows less conflict than a single polytomy, for a total absence of relationship information 

44 guarantees that no relationship is incorrectly resolved. An emphasis on accuracy therefore 

45 disadvantages methods that produce highly resolved trees [11] (and vice versa). This trade-off 

46 has been acknowledged by collapsing some poorly supported groups before calculating accuracy 

47 (which even if accuracy is still equated with ‘performance’) [2,6,8,11]. Naturally [12], methods 

48 that yield less resolution are consistently more accurate [2,5,7,8,11].
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49 We should be seeking not the most accurate method, but the method that recovers as 

50 much information as possible about the true tree, striking a balance between the complementary 

51 quantities [12] of accuracy and resolution.  For example, a tree that resolves 20 relationships 

52 conveys much information about the correct tree, even if one of those relationships is incorrect; a 

53 tree that resolves just one relationship conveys less information, even if that single relationship is 

54 correct.  If two trees are equally accurate, we should prefer the more precise.  Here I explore the 

55 impact on previous studies of evaluating trees according to their total shared information content, 

56 rather than ‘accuracy’ alone.

57 METHODS

58 Congreve and Lamsdell [9; CL hereafter] simulated 55-character matrices from a bifurcating 22-

59 tip tree using a Markov k-state 1 parameter model with rates sampled from a discretized Gamma 

60 distribution.  Their generative tree is the single most parsimonious tree obtained from a study of 

61 Ordovician trilobites; its edges were assigned a unit length.

62 O’Reilly et al. [5; OR hereafter] simulated matrices containing 100, 350 and 1000 

63 characters from a bifurcating 75-tip tree using a modified HKY85 model; they followed a 

64 previous simulation study [4] in selecting a single bifurcating tree from a morphological + 

65 molecular analysis of Lissamphibia. 

66 I used TNT [13] to conduct parsimony searches on each of these matrices under equal 

67 and implied weights, using the parsimony ratchet and sectorial search heuristics (search options: 

68 xmult:hits 20 level 4 chklevel 5 rat10 drift10). I took a strict consensus of all 

69 optimal trees obtained under equal weights, and under implied weights [14] at the concavity 

70 constants used in each respective study (CL: k = 1, 2, 3, 5 and 10; OR: k = 2, 3, 5, 10, 20 and 

71 200). For each dataset I generated a further strict consensus of all trees that were optimal under 

72 any of the concavity constants, excluding the unreasonable value of k = 1, which inadequately 

73 penalises extra steps beyond the first, and thus exhibits undesirable properties of clique analysis 

74 [15] (see Supplementary Text).
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75 I also generated majority-rule consensus trees in MrBayes 3.2.2 [16] using an Mk model, 

76 with rates distributed according to a gamma parameter. I combined results from four independent 

77 runs, each of which employed four Metropolis-coupled Markov chains.  After a burn-in period of 

78 4 000 000 generations, the cold chain in each run was sampled every 10 000 generations for 

79 6 000 000 generations. The sampled topologies faithfully reflected the posterior distribution for 

80 each dataset (0.999 < PSRF < 1.001; ESS > 400).

81 To explore the relationship between resolution and accuracy, I generated further trees for 

82 each analysis by collapsing poorly supported groups. Under the Mk model, I collapsed groups 

83 whose posterior probability was < 95%, 90%, 85%, … 50%. In parsimony analyses, I compared 

84 different measures of node support.  Under Jackknife and Bootstrap resampling, I collapsed 

85 groups with (i) absolute frequency supports of < 0%, 2%, 4% … 100%; (ii) relative frequency 

86 (GC) support of < −-100%, −-95%, … 95%, 100%.  Under Bremer support, I collapsed groups 

87 with Bremer support values less than 1, 2, 3, … 20  with equally weighted trees (TNT command 

88 subopt x; bbreak;); under implied weighting, Bremer support values were drawn from a 

89 logarithmic distribution (0.730...19, 2.5×10−3→1×100), reflecting the fractional nature of tree 

90 scores under implied weights [14].

91 Symmetric difference metrics calculate how much information two trees hold in common 

92 [17] –— that is, how much information a generated tree contains about the generative tree.  

93 Where the generative tree is bifurcating, a particular relationship may be resolved the same way 

94 (s) or a different way (d) on each tree, or resolved in the comparison tree only (r) [18,19].  The 

95 symmetric difference (‘SD’, also termed the Robinson-Foulds distance) is given by 2d + r.  The 

96 symmetric difference is conventionally normalized against the total information present (‘TIP’) 

97 in the two trees, 2d + 2s + r [19]. Undesirably, this assigns a fully unresolved tree an equal score 

98 to a tree that is perfectly resolved and completely incorrect (Fig. 1a).   In the present context, 

99 therefore, it is more appropriate to normalize against the maximum information (‘MaxI’) that 

100 could potentially have been resolved, 2 (d + s + r).
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101 The unit of relationship information may be a quartet (a four-taxon statement) [18–20] or 

102 a bipartition split [21–23]. (Each clade in a tree corresponds to a bipartition that splits taxa into 

103 ‘members’ and ‘non-members’.)  Partitions offer a simple but incomplete measure of the 

104 relationship topological information accommodated in a tree.  The trees ((A, (X, B)), (C, D)) and 

105 ((A, B), ((C, X), D)) both contain the same information regarding the relationships between (A, 

106 B) and (C, D), yet have no partitions in common.  As a consequence, the partition difference (= 

107 Robinson-Foulds distance) suffers four essential shortcomings [21].  Firstly, it is imprecise; the 

108 number of unique values that the metric can take is two fewer than the number of taxa.  (Simply 

109 put, a precise method can allocate distinct difference values to two trees that an imprecise 

110 method would assign an identical score.)  Secondly, it is rapidly saturated; relatively small 

111 differences can result in the maximum distance value.  Thirdly, its value can be counterintuitive; 

112 for example, moving a single tip to a particular location can generate a higher difference value 

113 than moving both that tip and its immediate neighbour to the same point (Supplementary Text). 

114 Fourthly, balanced trees contain proportionally more uneven partitions, and thus attract lower 

115 average distances than asymmetric trees (Supplementary Text).

116 Quartets, in contrast, completely represent all topological information within a tree.  The 

117 quartet dissimilarity measure is precise, does not rapidly reach saturation, generates a meaningful 

118 value for random trees, is robust to the placement of wildcard taxa, and consistently increases in 

119 value as trees become more different; and every quartet represents an equal quantity of 

120 information. I consider it to represent a more useful, meaningful and interpretable indicator of 

121 tree similarity.

122 I calculated quartet distances using the tqDist algorithm [24] via the QuartetStatus 

123 function in the new R package Quartet [25]. Partition distances were calculated using the 

124 Quartet function SplitStatus. To summarise results, s, d, and r were calculated for each 

125 individual tree relative to the generative tree, and the mean of each of parameter was calculated 

126 at each resolution in each analysis.
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127 Previous studies (e.g. [5,6]) have plotted unnormalized symmetric difference against 

128 resolution.  The unnormalized symmetric difference, however, is a function of both resolution 

129 and accuracy: a change in resolution (x) necessarily influences the value, and the range of 

130 possible values, of the symmetric difference (y).  Because the axes are not independent, this is 

131 analogous to plotting x against y / x; the inherent correlation between the axes makes it difficult 

132 to interpret the relative contributions of x and y to the plotted function.  I instead plotted the 

133 proportion of quartets or partitions that are the same in both trees (s), different in both trees (d), 

134 and only resolved in the generative tree (r) on ternary plots using the Ternary R package [26], 

135 oriented such that SD/MaxI decreases vertically, and resolution decreases horizontally (Figure 

136 1a). This plotting configuration distinguishes the relative contributions of resolution and 

137 accuracy to overall similarity (Figure 1b). 

138 Data, scripts and analyses used in this study are archived on GitHub [27,28].

139 RESULTS

140 Ideally, measures of node support would assign incorrect nodes low support values.  With the CL 

141 datasets (55 characters, 22 tips), resampling methods accomplished this more effectively than 

142 Bremer support (Figure 1c,d), a metric that has attracted criticism [29,30].  The groups 

143 contradicted/supported (GC) metric outperformed group frequency (as anticipated by [31]), 

144 whereas bootstrap resampling outperformed the jackknife approach (contra [32]); subsequent 

145 analyses thus employed the bBootstrap GC metric.  Differences between methods were not 

146 statistically significant (Supplementary Text).

147 With the CL datasets, there is no significant difference (at p = 0.01) between the MaxI-

148 normalized quartet symmetric difference of the best trees generated by the Mk model or implied 

149 weights (k ∈ {2, 3, 5, 10}) – but the best trees generated by equal weights, implied weights with 

150 k = 1, and the consensus of k values are significantly worse than those produced by the other 

151 methods (Figure 2a; Supplementary Text).
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152 Collapsing the least-supported groups initially increases the overall accuracy (as 

153 predicted in [2,33]), leading to a slight increase in the overall informativeness of the tree (Figure 

154 2a,b). Beyond a GC score of c. −15, the gain in accuracy no longer offsets the resolution lost; 

155 collapsing further groups thus removes ‘correct’ information and reduces the similarity between 

156 the tree and the reference tree. Indeed, the optimal tree is only perfectly resolved in a minority of 

157 cases (CL, 18%; OR: < 0.2%). Because a Bayesian approach results in less resolution, its most 

158 resolved trees cannot generally be improved by collapsing groups (Figures 1c,d, 2).

159 These results hold even if the (problematic) partition difference metric is employed 

160 (Figure 1b), though relatively more groups must be collapsed (those with a GC score of < 10) to 

161 maximise this metric. The results do not meaningfully change when datasets with low 

162 consistency indices are excluded.

163 Similar results are observed in the OR datasets (Figure 2c–e): at any given level of 

164 resolution, the best trees obtained by the Mk model are similar in accuracy to those obtained 

165 under implied weights (except with very small values of k), but are more accurate than those 

166 obtained using equal weights.  

167 These datasets also demonstrate the impact of dataset size on tree quality.  With larger 

168 ratios of characters to taxa (1000 or 350 characters, 75 tips), all methods produced reasonably 

169 accurate, well-resolved trees (Figure 2d–e). With the smallest (100 character) datasets (Figure 

170 2c), trees were much more different from the generative tree, and the choice of method 

171 influenced results more strongly: the Bayesian approach could obtain substantially less 

172 resolution, and implied weights recovered poor trees at low values of k.  No existing method can 

173 overcome the inherent limitation of a low character to taxon ratio.

174 DISCUSSION

175 When accuracy and resolution are recognized as complementary aspects of information [12], 

176 parsimony and probabilistic analyses generate equally informative reconstructions of 

177 evolutionary history in the simulation studies analysed herein.  Parsimony results are most 
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178 informative when groups with a bootstrap GC value of < −15 are collapsed, and are as accurate 

179 as Bayesian results if nodes are collapsed until trees exhibit an equal resolution. As an important 

180 caveat, parsimony analysis must employ a moderate weighting scheme.  At low values of the 

181 concavity constant (k < 2, say), implied weights begins to exhibit the undesirable properties of 

182 clique analysis, whereas at high values (as k → ∞), it converges to the inferior equally weighted 

183 parsimony (Supplementary Text).  Each of these extremes yields results that are less accurate 

184 and less resolved, making them more different from the generative tree and consequently less 

185 informative about evolutionary history; results encountered only under such parameters do not 

186 merit biological interpretation.

187 Quite aside from issues with the validity of data simulation protocol [2,3], previous 

188 results that favour Bayesian methods over parsimony [5–8,10], or equal weights over implied 

189 weights [9], have arisen because accuracy has been considered the sole measure of a method’s 

190 performance. Future simulation studies should evaluate methods based on normalized tree 

191 similarity metrics that reflect the total information contained within two trees – a quantity that 

192 reflects both resolution and accuracy.  In the analyses examined herein, neither Bayesian nor 

193 parsimony analyses generate consistently superior results.  Of course, other factors may 

194 influence a researcher’s choice of methods: Bayesian models, for instance, can readily integrate 

195 non-morphological data [34,35] and allow probabilistic hypothesis testing using Bayes Factors 

196 [36].  Such considerations notwithstanding, researchers may wish to explicitly compare the 

197 results of both Bayesian and implied weights analyses when conducting phylogenetic analysis; 

198 observations common to both approaches and receiving strong node support values are 

199 particularly likely to be well supported by underlying data.

200 FIGURE LEGENDS

201 Figure 1. Method selection.  (a), normalizing symmetric difference against the total information 

202 present in two trees (SD/TIP, dotted dashed lines) scores a completely incorrect bifurcating tree 
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203 (all relationships resolved differently; bottom corner) no worse than a polytomy (all relationships 

204 unresolved; rightmost corner).  Random trees (coloured line) with more relationships resolved 

205 receive better scores, as some relationships will by chance be resolved correctly.  Normalizing 

206 against the maximum possible relationship information (SD/MaxI, solid lines) penalizes 

207 misinformation over non-information; random trees with more relationships resolved (which thus 

208 contain more misinformation) consequently receive worse scores. (b), four measures of tree 

209 quality. (c–df), impact on tree quality when least-supported groups are collapsed: (c–d), counting 

210 quartets; (e–fd), counting partitions.

211 Figure 2. Status of quartets and bipartitions in trees recovered from simulated datasets. 

212 Points denote the average number of quartets (a, cd–ie) or partitions (b–c) that are the same as 

213 the generative tree, resolved differently to the generative tree, or not resolved. Each series 

214 indicates the effect of progressively collapsing the least-supported groups in trees generated by 

215 analysis of CL (a–bc) and OR datasets (dc, g, 100; e, hd, 350; f, ie, 1000 characters) under the 

216 specified analytical parameters. The vertical direction corresponds to similarity (i.e. more 

217 informative trees); the horizontal direction corresponds to resolution.
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Figure 1. Method selection.  (a), normalizing symmetric difference against the total information present 
in two trees (SD/TIP, dashed lines) scores a completely incorrect bifurcating tree (all relationships resolved 

differently; bottom corner) no worse than a polytomy (all relationships unresolved; rightmost corner). 
 Random trees (coloured line) with more relationships resolved receive better scores, as some relationships 
will by chance be resolved correctly.  Normalizing against the maximum possible relationship information 

(SD/MaxI, solid lines) penalizes misinformation over non-information; random trees with more relationships 
resolved (which thus contain more misinformation) consequently receive worse scores. (b), four measures 
of tree quality. (c–f), impact on tree quality when least-supported groups are collapsed: (c–d), counting 

quartets; (e–f), counting partitions. 
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Figure 2. Status of quartets and bipartitions in trees recovered from simulated datasets. Points 
denote the average number of quartets (a, d–i) or partitions (b–c) that are the same as the generative tree, 
resolved differently to the generative tree, or not resolved. Each series indicates the effect of progressively 

collapsing the least-supported groups in trees generated by analysis of CL (a–c) and OR datasets (d, g, 100; 
e, h, 350; f, i, 1000 characters) under the specified analytical parameters. The vertical direction corresponds 

to similarity (i.e. more informative trees); the horizontal direction corresponds to resolution. 
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