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1 Introduction

Topological solitons are of great importance in many areas of science as they constitute

non-trivial configurations of the degrees of freedom of the system, stabilized by topology.

Among them there are instantons, magnetic monopoles and vortices in gauge theories,

Skyrmions, baby-Skyrmions and kinks in scalar field theories [1–3], and many other types

of solitons with applications which range from high energy and condensed matter physics

to fluid dynamics. The spectrum of solutions, in a given theory, is split into disjoint classes

characterized by their topological properties, which in many cases is labelled by the value

of the topological charge. The topology introduces selection rules preventing solutions from

one class to evolve, under the dynamics of the system, into another one. Inside a given

class solutions with the smallest possible value of energy (or Euclidean action) play the

most prominent role since they are very stable under perturbations, as they cannot decay.

In some special theories these solutions have further interesting properties. They

satisfy simpler differential equations, usually of first order in derivatives, that imply the

full equations of motion of the system, which are usually of second order. In addition,

these solutions saturate a lower bound on the energy (or Euclidean action) determined
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the topological charge. Such solutions are called self-dual or BPS, an abbreviation for the

concept introduced by Bogomolny, Prasad and Sommerfield [4, 5] in the context of the

theory of magnetic monopoles. The fact that one can construct solutions of the system

by performing one fewer integration is not related to the use of dynamically conserved

quantities. The self-dual or BPS solutions arise in theories in which the topological charge

has an integral representation and so it has a topological charge density. The fact that the

topological charge is invariant under smooth deformations of the field configurations implies

that its density satisfies identities that have the form of differential equations which, when

combined with the (first-order) self-dual equations, imply the full equations of motion.

This intriguing interplay between topology and dynamics has been explored in [6] to

construct, in a systematic way, theories with self-dual (i.e. BPS) sectors. The method

put forward in [6] starts from a given topological charge with an integral representation,

and involves splitting the density of that charge into the sum of products of pairs of some

quantities, chosen in a convenient way. Different choices of the splitting lead to different

theories associated to the same topological charge. The self-duality equations are given by

the equality (up to a sign) of these quantities in each pair. The static energy density (or

Euclidean action density) is defined as the sum of squares of these quantities, in each pair.

The self-duality equations together with the identities satisfied by the density of topological

charge imply the Euler-Lagrange equations that follow from the static energy functionals

(or Euclidean action) of such theories. The lower bound on such functionals, determined by

the value of the topological charge, follows as a byproduct of the construction. In section 2

we give more details of this method.

Incidentally, let us point out that the scalar field theories possessing a self-dual sector

that were constructed in [6], see also [7], were constructed in such a way that the number

of real scalar fields had to be equal to the number of dimensions of the space in which

each theory was defined. Among the theories covered by such a method there were the

sine-Gordon model in (1 + 1)-dimensions, the Belavin-Polyakov [8] and baby-Skyrmion [9]

models in (2 + 1) models, various modifications of the SU(2) Skyrme model in (3 + 1)-

dimensions [10–14], as well as generalizations of the Skyrme model to higher dimensions

and higher target spaces [15].

The purpose of this paper is to extend the ideas of [6] to construct scalar field theories

in (1 + 1)-dimensions possessing an exact self-dual sector, and having more than one real

scalar field. Theories with two real scalar fields, and possessing a self-dual sector, have

already been constructed in [16] using a different approach and not considering periodic

potentials with infinitely degenerate vacua. The basic ingredient in the construction is the

pre-potencial U (ϕ), a functional of the real scalar fields of the theory ϕa, a = 1, 2, . . . r,

but not of their derivatives. This pre-potential allows us to define the topological charge as

Q =

∫ ∞
−∞

dx
dU

dx
=

∫ ∞
−∞

dx
δ U

δ ϕa

dϕa
d x

= U (ϕa(x =∞))− U (ϕa(x = −∞)) . (1.1)

The action of the theories that we consider here have the form (µ = 0, 1)

S =

∫
d2x

[
1

2
ηab ∂µϕa ∂

µϕb − V (ϕ)

]
, (1.2)
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where the potential is constructed from the pre-potential U (ϕ) as

V =
1

2
η−1ab

δ U

δ ϕa

δ U

δ ϕb
(1.3)

and where ηab is a symmetric invertible matrix that can be quite general in its character as

we discuss in section 2. However, for the purposes of this paper we take it to be a constant

matrix with positive eigenvalues to keep the energy positive definite. The self-duality

(i.e.BPS) equations are given by

ηab
dϕb
d x

= ± δ U

δ ϕa
. (1.4)

Solutions of (1.4) are static solutions of the Euler-Lagrage equations that follow from (1.2),

and they saturate the bound E ≥| Q |, for the static energy E of the theory (1.2).

Given the construction above there are basically two approaches to it. One can take a

theory of the type (1.2), with a given potential V and matrix ηab, and try to solve (1.3) to

find the corresponding pre-potential U that leads to self-duality. In general, that is not an

easy task since the equation (1.3) for the unknown functional U is a non-linear equation

and even the question of the existence of solutions might be non-trivial.

In this paper we have adopted the opposite approach; i.e. of constructing pre-potentials

U , and matrices ηab, that lead to physically interesting theories of the type (1.2). Thus,

instead of taking (1.3) as an equation to solve, we take it as the definition of the potential

V . We are interested in theories with a definite positive energy, and so we take the matrix

ηab to have only real and positive eigenvalues, and take the scalars fields ϕa to be real.

In addition, we want the solutions to be of finite energy and so, as we show in section 3

such solutions have to approach extrema of the pre-potential U at spatial infinity, i.e. for

x → ±∞. Moreover, for the topological charge (1.1) to be non-trivial, the extrema of

U (vacua) have to be as numerous as possible. In order to achieve this we have decided

to adopt the method of construction of pre-potentials based on representation theory of

Lie groups, as explained in section 3. Our approach leads to infinite classes of scalar field

theories with very interesting physical properties that may have applications is many areas

of non-linear phenomena. We give some examples of such theories in section 4, where we

specify our discussion to some representations of the Lie groups SU(2), SU(3) and SO(5).

The solutions of the self-duality equations (1.4) have a very nice geometrical interpre-

tation as explained in section 5. One can think of the space variable x as being “time”,

and the fields ϕa the coordinates of a particle moving in the target space. For finite energy

solutions, the trajectories of such a particle go from one given extremum of U at the infinite

past (x → −∞) to another one at the infinite future (x → −∞). In addition, for positive

definite matrices ηab, we show that, along a given path, that is a solution of (1.4), the

pre-potential U is a monotonic function of x, growing with x, for the choice of the positive

sign in (1.4), and decreasing with x for the negative sign. According to (1.4) the velocity of

the particle (~v)a = dϕa
d x , tangent to the trajectory, is parallel or anti-parallel to the gradient(

~∇ηU
)
a

= η−1ab
δ U
δ ϕb

. Thus, the finite energy solutions of the self-duality equations (1.4) cor-

respond to trajectories in target space linking two extrema of the pre-potential, having ~∇ηU
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as its tangent vector, and leading to the variation of the pre-potential U monotonically,

either upwards or downwards. We show, in section 6, that all extrema of the pre-potential

U are minima of the potential V . So, it may be possible to construct finite energy and

time dependent solutions from some sort of non-linear superposition of self-dual solutions.

Despite the attractiveness of the method, the self-duality does not lead, in general, to

integrable theories with exact and analytical methods for the construction of their solutions.

So, most solutions of the equations of self-duality (1.4) have to be constructed numerically.

The exception is the well-known sine-Gordon model that is integrable and admits a self-dual

sector. The generalizations of the sine-Gordon model, the so-called Affine Toda theories,

are integrable, but it is not certain if they possess a self-dual sector. In addition, for such

theories to possess exact soliton solutions their scalar fields have to be taken as complex

fields and so the energy is not only non-positive but it is complex. Since we are interested

in positive definite energy theories we do not consider the Affine Toda models in this paper.

However, there are modifications of the non-abelian version of Affine Toda theories that do

possess positive definite energy [17]. It would be interesting to investigate if these theories

can fit in our construction.

Another interesting point to be analyzed is the interaction among the self-dual solutions

that we construct numerically. This would involve time dependent simulations of the full

equations of motion and it is beyond the scope of the present paper which deals only with

the static self-dual solutions. There is vast literature about the interactions of kinks and

solitons [1, 2, 18–27] and it would be interesting to apply some of the techniques used in

these papers to the models constructed in the present paper.

We present our numerical construction of the self-dual solutions in section 7, for the

examples discussed in section 4, using the fourth order Runge-Kutta method. We have used

numerical simulations not only to check the expected properties of the self-dual solutions,

but also to test their stability against small perturbations by letting them evolve under the

full time dependent equations of motion.

In section 8 we present our conclusions and comments on possible extensions of

our work.

2 The construction of self-dual sectors

The construction of self-dual sectors for scalar field theories in (1 + 1)-dimensions that we

present in this paper is based on the methods of [6], and can be summarized as follows:

suppose one has a topological charge Q with an integral representation such that its density

can be split into the sum of the products of two quantities as

Q =

∫ ∞
−∞

dxAα Ãα, (2.1)

where Aα and Ãα are functionals of the scalar fields ϕa, a = 1, 2, . . . r, and of their first

space derivatives ∂xϕa, but not of higher derivatives of these fields. The sub-index α stands

for an index or a set of indices. The statement that Q is a topological charge is equivalent

to it being invariant under any smooth infinitesimal variation δϕa of the fields. The fact
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that δQ = 0 for any δϕa leads to the following identities, which are second order in space

derivatives of the fields,

d

d x

(
δAα
δ ∂xϕa

Ãα
)
− δAα
δ ϕa

Ãα +
d

d x

(
δ Ãα
δ ∂xϕa

Aα

)
− δ Ãα
δ ϕa

Aα = 0. (2.2)

If one now imposes the following first order equations on the fields

Aα = ±Ãα, (2.3)

then it is easy to see that (2.2) combined with (2.3) imply the following second order

equations

d

d x

(
δAα
δ ∂xϕa

Aα
)
− δAα
δ ϕa

Aα +
d

d x

(
δ Ãα
δ ∂xϕa

Ãα

)
− δ Ãα
δ ϕa

Ãα = 0. (2.4)

However, (2.4) are the Euler-Lagrange equations associated to the following static energy

functional

E =
1

2

∫ ∞
−∞

dx
[
A2
α + Ã2

α

]
. (2.5)

Thus, this clarifies why the solutions of the first order self-duality equations (2.3) also

solve the second-order Euler-Lagrange (2.4) for the theory (2.5). The extra integration

that would be needed to construct the solutions is provided by the identities (2.2) which

follow from the homotopy properties of the topological charge (2.1). As a by-product of

our construction we see that if the static energy functional (2.5) is positive definite then

one obtains a lower bound on E, for each homotopy class of solutions, and this bound is

saturated by the solutions of the self-duality equations (2.3). The bound is obtained by

rewriting E as

E =
1

2

∫ ∞
−∞

dx
[
Aα ∓ Ãα

]2
±
∫ ∞
−∞

dxAα Ãα. (2.6)

For the (self-dual or anti-self-dual) solutions of (2.3) the topological charge can be written as

QBPS = ±
∫ ∞
−∞

dxA2
α = ±

∫ ∞
−∞

dx Ã2
α. (2.7)

So, if A2
α and Ã2

α are positive definite it follows that

E ≥| Q | . (2.8)

The bound is saturated for the self-dual solutions, and in such a case the energy becomes

EBPS =

∫ ∞
−∞

dxA2
α =

∫ ∞
−∞

dx Ã2
α =| Q | . (2.9)

Note that for the self-dual solutions, the sign of the topological charge Q is determined by

the choice of sign in the equations (2.3) with the opposite sign for the anti-self-dual ones.

For the scalar field theories we consider in this paper, the topological charge is con-

structed simply from a pre-potential U , as given in (1.1). Note also that in order to
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apply the construction of self-dual sectors, explained above, we cannot allow the density

of topological charge to depend upon the derivatives of the fields other than the first one.

Therefore, the pre-potential U can be a functional of the fields but not of their derivatives.

In order to write (1.1) as in (2.1) we take the quantities Aα and Ãα as

Aα ≡ kab
dϕb
d x

; Ãα ≡
δ U

δ ϕb
k−1ba , (2.10)

where kab is an arbitrary invertible matrix that can be introduced into the theory due to

the freedom one has as to the ways of splitting the density of the topological charge into

the sum of products of terms in (2.1). This matrix can be a constant matrix, depend on

the fields ϕa, or can even depend on new (external) fields. With this choice the self-duality

equations (2.3) then become

ηab
dϕb
d x

= ± δ U

δ ϕa
, (2.11)

where ηab is an invertible symmetric matrix given by

η = kT k. (2.12)

Furthermore, the energy functional (2.5) then becomes

E =

∫ ∞
−∞

dx

[
1

2
ηab

dϕa
d x

dϕb
d x

+ V

]
, (2.13)

where the potential is given by (1.3).

Let us now assume that the entries of the matrix ηab are functionals of the fields ϕa,

their first space derivatives and possibly of some extra independent fields χβ and their first

space derivatives. From the self-duality equations (2.11) we then have

d

d x

(
ηab

dϕb
d x

)
= ± δ2 U

δϕc δ ϕa

dϕc
d x

=
δ2 U

δϕc δ ϕa
η−1cd

δ U

δ ϕd

=
δ

δ ϕa

[
1

2
η−1cd

δ U

δ ϕc

δ U

δ ϕd

]
− 1

2

δ η−1cd
δ ϕa

δ U

δ ϕc

δ U

δ ϕd
(2.14)

=
δ V

δ ϕa
+

1

2
η−1ce

δ ηef
δ ϕa

η−1fd
δ U

δ ϕc

δ U

δ ϕd
=

δ V

δ ϕa
+

1

2

δ ηef
δ ϕa

dϕe
d x

dϕf
d x

,

where we have used the definition of the potential V given in (1.3). Again using (2.11) one

finds that
δ ηab
δ ϑ

dϕa
d x

dϕb
d x

=
δ ηab
δ ϑ

η−1ad
δ U

δ ϕd
η−1be

δ U

δ ϕe
= −

δ η−1ab
δ ϑ

δ U

δ ϕa

δ U

δ ϕb
, (2.15)

where ϑ stands for anything that ηab can be a functional of. Thus we see that for any

choice of ϑ we have
δ ηab
δ ϑ

dϕa
d x

dϕb
d x

+
δ η−1ab
δ ϑ

δ U

δ ϕa

δ U

δ ϕb
= 0. (2.16)

Inserting (2.16) into the first term in (under the derivative with respect to x) (2.14) we

conclude that the self-duality equations (2.11) alone imply the relation

d

d x

[
ηab

dϕb
d x

+
1

2

δ ηcd
δ ∂xϕa

dϕc
d x

dϕd
d x

+
1

2

δ η−1cd
δ ∂xϕa

δ U

δ ϕc

δ U

δ ϕd

]
=

δ V

δ ϕa
+

1

2

δ ηcd
δ ϕa

dϕc
d x

dϕd
d x

.

(2.17)
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Note that (2.17) are exactly the Euler-Lagrange equations for the fields ϕa coming

from the functional E given in (2.13). Moreover, taking ϑ = ∂xχβ and then ϑ = χβ we

note that (2.16) implies also that

d

d x

[
δ ηcd
δ ∂xχβ

dϕc
d x

dϕd
d x

+
δ η−1cd
δ ∂xχβ

δ U

δ ϕc

δ U

δ ϕd

]
=
δ ηcd
δ χβ

dϕc
d x

dϕd
d x

+
δ η−1cd
δ χβ

δ U

δ ϕc

δ U

δ ϕd
. (2.18)

This time, the obtained eqauations (2.18) are the Euler-Lagrange equations for the external

field χβ coming from the functional E given in (2.13). Note that such extra fields could

even be the entries of the matrix ηab themselves.

Summarising, we see that the first order self-duality equations (2.11) alone imply the

Euler-Lagrange equations corresponding to the static energy functional E for the fields

ϕa and any possible extra fields that the matrix ηab can depend on. Note that this fact

had already been encoded in the construction presented above, between equations (2.1)

and (2.5), since the fields ϕa which appear in (2.2) and (2.4) can be any fields that the

quantities Aα and Ãα depend on. With the choice we have made in (2.10), the matrix k

and its inverse have become parts of these quantities and so they can depend on extra fields.

Note also that the bound can be obtained by rewriting the energy functional E given

in (2.13) as

E =
1

2

∫ ∞
−∞

dx

[
kab

dϕb
d x
∓ δ U

δ ϕb
k−1ba

]2
±
∫ ∞
−∞

dx
dϕa
d x

δ U

δ ϕa
≥| Q |, (2.19)

which is, in fact, the same as (2.8), and the bound is saturated by the self-dual solutions

of (2.11).

3 The construction of the pre-potential U

As we are interested in deriving physically relevant theories, from now one, we restrict our

discussion to the cases where the scalar fields ϕa, the pre-potential U , and the matrix ηab
are real. In addition, we are interested in the cases for which the static energy functional

E, given in (2.13), is positive definite. Thus we need to restrict our discussion to cases in

which all the eigenvalues of ηab are positive definite. In order for the self-dual solutions

of (2.11) to possess finite energy E, we need the energy density to vanish at spatial infinities

when evaluated on such solutions, and so, given our restrictions, we require that

dϕb
d x
→ 0 ;

δ U

δ ϕa
→ 0 ; as x→ ±∞. (3.1)

Thus, the self-duality equations (2.11) should possess constant vacua solutions ϕ
(vac.)
a that

are zeros of all the first derivatives of the pre-potential, i.e.

δ U

δ ϕb
|
ϕa=ϕ

(vac.)
a

= 0. (3.2)

We then see from (1.3) that such vacua are also zeros of the potential V and of its first

derivatives, i.e.

V
(
ϕ(vac.)
a

)
= 0 ;

δ V

δ ϕb
|
ϕa=ϕ

(vac.)
a

= 0. (3.3)
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Moreover, we would like the theories we are constructing to possess various soliton type

solutions, and we know that, in general, the total topological charges of such solutions are

obtained by additions, under some finite or infinite abelian group, of the charges of the

constituent one-solitons. Thus, we would like to have systems of vacua as degenerate as

possible. Certainly there are numerous ways of achieving this goal. In this paper we use a

group theoretical approach to the construction of the prepotentials U .

3.1 Details of the construction

Consider a Lie algebra G and let ~αa, a = 1, 2, . . . r ≡ rankG, be the set of its simple roots.

We use the scalar fields ϕa to construct our basic vector in the root space:

~ϕ ≡
r∑

a=1

ϕa
2 ~αa
~α2
a

. (3.4)

Next we choose a representation R (irreducible or not) of the Lie algebra G, and we denote

by ~µk the set of weights of R. We take the pre-potential U to be of the form

U ≡
∑
~µk∈R

c~µk e
i ~µk·~ϕ, (3.5)

where c~µk are some (complex) constant coefficients. Note from section 2, that U enters in

our construction of the self-dual sectors only through its derivatives w.r.t. the fields ϕa,

and so any constant additive in U is irrelevant. Therefore, we see from (3.5) that the

zero weights of R play no role in our construction. Since we want U to be real, we need

for our definition of U to consider representations for which, if ~µk is a weight of R, so is

its negative −~µk. Some irreducible representations, like the adjoint, have this property.

However, we can also consider R to have as many irreducible components as necessary to

fulfill this reality requirement. For instance, in the case of SU(N) one can take R to be

the direct sum of the N and N̄ fundamental representations. In addition, for the reality of

U we need the coefficients c~µk to satisfy c−~µk = c∗~µk . Writing c~µk = 1
2

(
γ~µk − i δ~µk

)
, we find

that (3.5) then takes the form:

U ≡
∑

~µk∈R(+)

[
γ~µk cos (~µk · ~ϕ) + δ~µk sin (~µk · ~ϕ)

]
, (3.6)

where the superscript + in R(+) denotes that we are taking just one weight of each pair

(~µk , −~µk). For instance, in the case where R is the direct sum of the N and N̄ fundamental

representations of SU(N), R(+) would be either the N , or the N̄ , component. In the

case where R is the adjoint representation, R(+) would contain only the positive roots.

From (3.6) we then have that

δ U

δ ϕa
=

2 ~αa
~α2
a

·
∑

~µk∈R(+)

~µk
[
−γ~µk sin (~µk · ~ϕ) + δ~µk cos (~µk · ~ϕ)

]
. (3.7)
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There are several ways of satisfying (3.2), and the vacuum structure of our theories

can be quite complicated. Let us first mention various possibilities:

1. In the highest weight irreducible representation of a Lie algebra G, the weights are

of the form ~µk = ~λ − ~wk, where ~λ is the highest weight and ~wk is a sum of positive

roots of G. So, if one takes ~ϕ(vac.) to be 2π times a vector in the co-weight lattice

of G, then ~ϕ(vac.) · ~wk = 2π nk, with nk being an integer. Thus, for any irreducible

component R(+)
~λ

of R(+) the coefficients γ~µk and δ~µk should be taken such that

sin
(
~λ · ~ϕ(vac.)

) ∑
~µk∈R

(+)
~λ

~µk γ~µk − cos
(
~λ · ~ϕ(vac.)

) ∑
~µk∈R

(+)
~λ

~µk δ~µk = 0. (3.8)

2. The weights µ of a Lie algebra G are defined as the vectors which satisfy the condition

2~α · ~µ/~α2 ∈ ZZ, for any root ~α of G. So, from (3.4) and (3.7), one sees that (3.2) can

be satisfied if

ϕ(vac.)
a = π na ; na ∈ ZZ and δ~µk = 0. (3.9)

In such a case we have that ~ϕ
(vac.)
a is π times a vector in the co-root lattice of G. In

the cases where
∑r

a=1 2~αa · ~µk/~α2
a is an odd number, one can also satisfy (3.2) if

ϕ(vac.)
a = π

(
na +

1

2

)
; na ∈ ZZ and γ~µk = 0. (3.10)

3. The third possibility is provided by the cases that involve special vectors ~ϕ(vac.) such

that ∑
~µk∈R(+)

2 ~αa
~α2
a

· ~µk
[
−γ~µk sin

(
~µk · ~ϕ(vac.)

)
+ δ~µk cos

(
~µk · ~ϕ(vac.)

)]
= 0 (3.11)

even when the sines or cosines do not vanish individually. We will show below that

such a possibility exists, for instance, when R is the direct sum of the triplet and

anti-triplet of SU(3), and when δ~µk = 0.

In most of the examples that we discuss in this paper we consider pre-potentials U of

the form (3.6) with δ~µk = 0. Then, the possibility (3.9) is always there and this guarantees

that we have infinitely many degenerate vacua.

4 Examples

In this section we present some concrete examples of the construction presented in sections 2

and 3. As shown there, the matrix ηab can depend on the fields ϕa and their first derivatives

as well as on extra fields. The dependence of the η matrix on derivatives of the fields would

not allow a kinetic term which is quadratic in field derivatives. So, such cases are probably

not of much interest. The cases in which ηab depends on the fields ϕa only and not on their

derivatives are important if one considers field theories possessing a target space with non-

trivial metric like non-linear sigma models, non-abelian Toda theories, etc. In this paper

we consider only the cases where the matrix ηab is constant, real and positive definite, since

the corresponding examples are already rich enough and lead to interesting theories. We

leave the generalizations to more complicated theories to further studies.
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4.1 SU(2)

The rank of SU(2) is unity and so we have just one scalar field that we denote by ϕ. The

matrix η is just a number that we take to be unity. In order to have the usual notation

where the weights are integers or semi-integers, we normalize the only simple root to have

its squared modulus equal to one. For all irreducible representations of SU(2) the non-zero

weights come in pairs, i.e. the weight and its negative, and so the pre-potentials given

in (3.6) apply to all such representations. For the spinor (doublet) representation we have

two possibilities. First we can take the δ-term in (3.6) to vanish and so consider the

following pre-potential and the self-duality equations (see (2.11))

U
(1)
j=1/2 = − cosϕ ; ∂xϕ = ±

δU
(1)
j=1/2

δϕ
= ± sinϕ. (4.1)

The corresponding vacua are then ϕ(vac.) = π n, n ∈ ZZ, which correspond to the

case (3.9). The vacua of types (3.8) and (3.11) do not exist in this case. By differentiat-

ing (4.1) w.r.t. x and using it again, one finds that the solutions of (4.1) solve the static

sine-Gordon equation

∂2xϕ =
1

2
sin (2ϕ) . (4.2)

The solutions of (4.1) are the familiar kink “tunneling” from 0 to π, and anti-kink “tun-

neling” in the reverse direction, and given by

ϕ = 2 ArcTan
(
e±x
)
. (4.3)

The second choice for the spinor representation, corresponds to the case when the

γ-term in (3.6) is zero and when the pre-potential and self-duality equations take the form:

U
(2)
j=1/2 = sinϕ ; ∂xϕ = ±

δU
(2)
j=1/2

δϕ
= ± cosϕ (4.4)

The vacua in this case are ϕ(vac.) = π
(
n+ 1

2

)
, n ∈ ZZ and so correspond to the case (3.10).

Again the vacua of types (3.8) and (3.11) do not exist in this case. By differentiating (4.4)

one finds that its solutions satisfy the inverted sine-Gordon equation

∂2xϕ = −1

2
sin (2ϕ) . (4.5)

The solutions of (4.4) are

ϕ = 2 ArcTan
[
Tanh

(
±x

2

)]
, (4.6)

which are also kink and anti-kink solutions but “tunneling” from −π
2 to π

2 for the kink, and

vice-versa for the anti-kink. Note that redefining the field as ϕ = ϕ̃−π/2, the equation (4.5)

becomes the usual sine-Gordon equation for the field ϕ̃, which now “tunnels” from 0 to π

for the kink, and vice-versa for the anti-kink.

For the triplet representation we do not get anything new since the zero weight term in

the pre-potential leads to a constant term and so is irrelevant. We just get the same equa-

tions as in the doublet representation but with the fields rescaled by a factor 2. However,
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we can take a representation which is reducible and being given by the sum of the j = 1/2

and j = 1 representations. Then we can set the δ-term in (3.6) to vanish and consider the

following pre-potential

U
(1)
1+1/2 = −γ1 cosϕ− γ2 cos (2ϕ) (4.7)

and the corresponding self-duality equations now become

∂xϕ = ±
δU

(1)
1+1/2

δϕ
= ± [γ1 sinϕ+ 2 γ2 sin (2ϕ)] = ± sinϕ [γ1 + 4 γ2 cosϕ] . (4.8)

The vacua are now:

ϕ(vac.) = π n ; and ϕ(vac.) = ArcCos

(
− γ1

4 γ2

)
+ 2πm ; n,m ∈ ZZ (4.9)

The first class is of the type (3.9) and the second of the type (3.11). Of course, we need

| γ1γ2 |≤ 4 for the second type of vacua to exist.

For the case 1 + 1/2, we can also set the γ-term in (3.6) to zero and so consider the

following pre-potential

U
(2)
1+1/2 = δ1 sinϕ+ δ2 sin (2ϕ) (4.10)

leading to the self-duality equations:

∂xϕ = ±
δU

(2)
1+1/2

δϕ
= ± [δ1 cosϕ+ 2 δ2 cos (2ϕ)] = ±

[
4 δ2 cos2 ϕ+ δ1 cosϕ− 2 δ2

]
. (4.11)

The vacua are now

ϕ(vac.) = ArcCos

[
−δ1 ±

√
δ21 + 32 δ22

8 δ2

]
+ 2π n ; n ∈ ZZ. (4.12)

Below we present examples of solutions of equation (4.8) (the case with upper sign).

In the new variable x → γ1x (4.8) takes the form ∂xϕ = sinϕ[1 + b cosϕ], in which the

ratio 4γ2γ1 is denoted by b. So

x = x0 +

∫
dϕ

sinϕ[1 + b cosϕ]
. (4.13)

The form of the integral on the right hand side of (4.13) depends on the value of the

parameter b. For |b| ≤ 1 the pre-potential has only the vacua ϕ(vac.) = π n and for |b| > 1

the second type of vacua in (4.9) appear. Taking the constant x0 such that ϕ(0) = π
2 one

gets the solution

x =


1
4

[
tan2

(ϕ
2

)
− 1 + 2 ln

[
tan

(ϕ
2

)] ]
for b = 1,

1
4

[
1− cot2

(ϕ
2

)
+ 2 ln

[
tan

(ϕ
2

)] ]
for b = −1,

1
1−b2 ln

[
tan

(ϕ
2

)(1+b+(1−b) tan2(ϕ2 )
2 tan(ϕ2 )

)b]
for b 6= ±1.

(4.14)

Note that the solutions given by the last formula in (4.14) interpolate between different

vacua for different values of b. In the case of |b| < 1 the solution describes the tunneling
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Figure 1. Plots of ϕ(x) against x for solutions of the equation (4.8) with the upper sign and with

x rescaled as x→ γ1 x. The curves correspond to solutions of (4.8) for different values of the ratio

b = 4γ2γ1 and the initial condition ϕ(0) = π
2 .

between the vacua ϕ(vac.) = 0 and ϕ(vac.) = π. For |b| > 1 the solution connects ϕ(vac.) =

ArcCos[−b−1] and ϕ(vac.) = π when b < −1 and the vacua ϕ(vac.) = 0 and ϕ(vac.) =

ArcCos[−b−1] when b > 1. In figure 1 we present solutions that correspond to the cases

b = {0,±1
2 ,±1,±2}.

Note that the pre-potentials (4.7) and (4.10) contain sines and cosines of the field ϕ

and its double 2ϕ, but they do not correspond to the usual double sine-Gordon model [28]

since the potentials one gets from (1.3), with η = 1 for instance, do not correspond to the

double sine-Gordon potential. However, the procedure for finding self-duality equations

for theories in (1 + 1)-dimensions with just one scalar field is very well known. Indeed,

from (1.3) one notes that the pre-potential for the double sine-Gordon potential V2−SG can

be obtained by integrating the equation (1.3) (with η = 1)

dU2−SG
dϕ

=
√

2V2−SG ; with V2−SG = 1− a cosϕ− (1− a) cos (2ϕ) (4.15)

where 0 ≤ a ≤ 1. However, note that the pre-potential U2−SG one obtains from (4.15)

is not of the form (3.5) that we have used in our construction for theories with several

scalar fields.

4.2 SU(3)

The rank of SU(3) is two and so we have two fields, ϕ1 and ϕ2, in this case. We take the

matrix ηab to be of the form1

η =

(
2 −λ
−λ 2

)
, η−1 =

1

4− λ2

(
2 λ

λ 2

)
, (4.16)

where we have introduced a real parameter λ. The eigenvalues of η are 2 ± λ, and so we

have to keep λ in the interval −2 < λ < 2, to have η positive definite and invertible. The

1Note that ηab |λ=1= Kab, with Kab being the Cartan matrix of SU(3), given in (4.19).
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weights of the triplet representation of SU(3) are given by

~µ1 = ~λ1, ~µ2 = ~λ1 − ~α1, ~µ3 = ~λ1 − ~α1 − ~α2 (4.17)

and those of the anti-triplet by

~̄µ1 = ~λ2 = −~µ3, ~̄µ2 = ~λ2 − ~α2 = −~µ2, ~̄µ3 = ~λ2 − ~α1 − ~α2 = −~µ1, (4.18)

where λa, and αa, a = 1, 2 are, respectively, the fundamental weights and simple roots of

SU(3). They satisfy

2 ~αa · ~λb
~α2
a

= δab ; and Kab =
2 ~αa · ~αb
~α2
b

=

(
2 −1

−1 2

)
, (4.19)

where Kab is the Cartan matrix of SU(3). Note that the weights of the anti-triplet repre-

sentation are the negatives of those of the triplet. Therefore, if we take the representation

R in (3.5) to be the direct sum of the triplet and anti-triplet we satisfy the conditions for

the reality of the pre-potential U . Thus the set of weights R(+) can be taken to be those

of the triplet representation and so from (3.6) we get the pre-potential as

U = γ1 cosϕ1 + γ2 cosϕ2 + γ3 cos (ϕ1 − ϕ2) , (4.20)

where we have chosen the δ-terms in (3.6) to vanish.

The static energy (2.13) now becomes

E =

∫ ∞
−∞

dx
[
(∂xϕ1)

2 + (∂xϕ2)
2 − λ ∂xϕ1 ∂xϕ2 + V (ϕ1, ϕ2)

]
, (4.21)

where the potential (1.3) is given by

V =
1

λ2−4

[
−γ21 sin2(ϕ1)+γ1 sin(ϕ1)(γ3(λ−2)sin(ϕ1−ϕ2)−γ2λsin(ϕ2)) (4.22)

− γ22 sin2(ϕ2)−γ2γ3(λ−2)sin(ϕ2)sin(ϕ1−ϕ2)+γ23(λ−2)sin2(ϕ1−ϕ2)
]
.

The self-duality equations (2.11) are now of the form:

∂xϕ1 = ± [2γ1 sin(ϕ1) + γ2λ sin(ϕ2)− γ3(λ− 2) sin(ϕ1 − ϕ2)]

λ2 − 4
, (4.23)

∂xϕ2 = ± [γ1λ sin(ϕ1) + 2γ2 sin(ϕ2) + γ3(λ− 2) sin(ϕ1 − ϕ2)]

λ2 − 4
.

The vacua are determined by the conditions (3.2) which in this case become

∂U

∂ϕ1
|
ϕa=ϕ

(vac.)
a

= −γ1 sin(ϕ
(vac.)
1 )− γ3 sin(ϕ

(vac.)
1 − ϕ(vac.)

2 ) = 0, (4.24)

∂U

∂ϕ2
|
ϕa=ϕ

(vac.)
a

= γ3 sin(ϕ
(vac.)
1 − ϕ(vac.)

2 )− γ2 sin(ϕ
(vac.)
2 ) = 0,

and these conditions imply that

γ1 sin(ϕ
(vac.)
1 ) = −γ3 sin(ϕ

(vac.)
1 − ϕ(vac.)

2 ) = −γ2 sin(ϕ
(vac.)
2 ). (4.25)
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Figure 2. (a), (c) The pre-potential (4.20) and (b), (d) the potential (4.22). The vacua (4.26) are

given by the black dots, (4.27) by � and the lines stand for the gradient flow of ~∇U and ~∇V , where
~∇ = (∂ϕ1

, ∂ϕ2
). Here λ = 1

4 and γ1 = γ2 = γ3 = 1.

Certainly (4.25) are satisfied if

ϕ(vac.)
a = π na , na ∈ ZZ, a = 1, 2 any values of the γ’s (4.26)

and these are the vacua of the type (3.9). However, we also have vacua of the type (3.11)

that depend upon the particular values of the γ-constants that we are free to choose. For

instance, one finds that (4.25) are satisfied if

(
ϕ
(vac.)
1 , ϕ

(vac.)
2

)
=

(
2π

3
+ 2π n1 ,

4π

3
+ 2π n2

)
; γ1 = γ2 = γ3 = 1,(

ϕ
(vac.)
1 , ϕ

(vac.)
2

)
=

(
4π

3
+ 2π n1 ,

2π

3
+ 2π n2

)
; n1 , n2 ∈ ZZ. (4.27)
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4.3 SO(5)

The rank of SO(5) is also two and so again we have two fields, ϕ1 and ϕ2. In this case, we

take the matrix ηab to be of the form2

η =

(
4 −2λ

−2λ 2

)
, η−1 =

1

2 (2− λ2)

(
1 λ

λ 2

)
. (4.28)

Note that the eigenvalues of η are 3±
√

1 + 4λ2. Thus, to keep η positive definite and

invertible, we have to restrict λ to the interval −
√

2 < λ <
√

2.

We consider here the case of the adjoint representation of SO(5) in which case we can

use, as weights, all the 8 roots (positive and negative) plus the zero weight which is doubly

degenerate. However, the zero weights are irrelevant because in our construction they lead

to additive constants in the pre-potential U . The roots of SO(5) are ~α1, ~α2, ~α2 + ~α1,

~α2 + 2 ~α1, and their negatives, where ~α1 and ~α2 are the simple roots, with ~α1 being the

shorter simple root. They satisfy

Kab =
2 ~αa · ~αb
~α2
b

=

(
2 −1

−2 2

)
. (4.29)

The set of weights R(+) in (3.6) are the positive roots of SO(5), that we order as ~µ1 =

~α2 + 2 ~α1, ~µ2 = ~α2 + ~α1, ~µ3 = ~α1 and ~µ4 = ~α2, and so, using (3.4) we get

~µ1 · ~ϕ = 2ϕ1 ; ~µ2 · ~ϕ = ϕ2 ; ~µ3 · ~ϕ = 2ϕ1 − ϕ2 ; ~µ4 · ~ϕ = 2ϕ2 − 2ϕ1. (4.30)

Therefore, taking the δ-terms to vanish in (3.6), we get the following pre-potential

U = γ1 cos (2ϕ1) + γ2 cos (ϕ2) + γ3 cos (2ϕ1 − ϕ2) + γ4 cos (2ϕ2 − 2ϕ1) . (4.31)

The corresponding self-duality equations (2.11) now become

∂xϕ1 = ± 1

2 (2− λ2)
[(λ− 2) γ3 sin (2ϕ1 − ϕ2)− 2 (λ− 1) γ4 sin (2ϕ2 − 2ϕ1)

− 2 γ1 sin (2ϕ1)− λ γ2 sin (ϕ2)] , (4.32)

∂xϕ2 = ± 1

2 (2− λ2)
[−2 (λ− 1) γ3 sin (2ϕ1 − ϕ2) + 2 (λ− 2) γ4 sin (2ϕ2 − 2ϕ1)

− 2λ γ1 sin (2ϕ1)− 2 γ2 sin (ϕ2)] .

The energy functional (2.13) takes the form

E =

∫ ∞
−∞

dx
[
2 (∂xϕ1)

2 + (∂xϕ2)
2 − 2λ (∂xϕ1) (∂xϕ2) + V (ϕ1 , ϕ2)

]
(4.33)

with the potential V being given by

V =
1

4 (2− λ2)

[
4γ21 sin2(2ϕ1) + 2γ22 sin2(ϕ2) + 2(3− 2λ)γ23 sin2(2ϕ1 − ϕ2)

+ 4(3− 2λ)γ24 sin2(2ϕ1 − 2ϕ2) + 4λγ1γ2 sin(2ϕ1) sin(ϕ2)

+ 4(2− λ)γ1γ3 sin(2ϕ1) sin(2ϕ1 − ϕ2) + 8(1− λ)γ1γ4 sin(2ϕ1) sin(2ϕ1 − 2ϕ2)

+ 4(λ− 1)γ2γ3 sin(ϕ2) sin(2ϕ1 − ϕ2) + 4(λ− 2)γ2γ4 sin(ϕ2) sin(2ϕ1 − 2ϕ2)

+ 4(4− 3λ)γ3γ4 sin(2ϕ1 − ϕ2) sin(2ϕ1 − 2ϕ2)
]
. (4.34)

2Note that ηab |λ=1= Kab 2/~α2
a, where Kab is the Cartan matrix for SO(5), given in (4.29), and where

we have normalized the roots as ~α2
1 = 1 and ~α2

2 = 2.
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Figure 3. (a), (c) The pre-potential (4.31) and (b), (d) the potential (4.34). The vacua (4.36) are

given by the black dots, (4.37) by � and the lines stand for the gradient flow of ~∇U and ~∇V , where
~∇ = (∂ϕ1 , ∂ϕ2). Here γ1 = γ2 = γ3 = γ4 = 1 and λ = 1

4 .

The vacua conditions (3.2) in this case are given by

∂ U

∂ ϕ1
|
ϕa=ϕ

(vac.)
a

= −2 γ3 sin
(

2ϕ
(vac.)
1 − ϕ(vac.)

2

)
+ 2 γ4 sin

(
2ϕ

(vac.)
2 − 2ϕ

(vac.)
1

)
− 2 γ1 sin

(
2ϕ

(vac.)
1

)
= 0,

∂ U

∂ ϕ2
|
ϕa=ϕ

(vac.)
a

= γ3 sin
(

2ϕ
(vac.)
1 − ϕ(vac.)

2

)
− 2 γ4 sin

(
2ϕ

(vac.)
2 − 2ϕ

(vac.)
1

)
− γ2 sin

(
ϕ
(vac.)
2

)
= 0. (4.35)

Note that in (4.35), ϕ
(vac.)
1 always appears multiplied by a factor 2, and ϕ

(vac.)
2 never appears

divided by any integer. Therefore, the following set of values of fields are solutions of (4.35)

ϕvac.
1 = m1

π

2
, ϕvac.

2 = m2 π, ma ∈ ZZ a = 1, 2 (4.36)

– 16 –



J
H
E
P
0
1
(
2
0
1
9
)
0
2
0

for any values of the γ’s. These are the vacua of type (3.9), with the particularity that

2~µj · ~α1/~α
2
1 is not odd for any weight, and so ϕ1 can be integer, as well as half integer,

multiples of π.

The vacua of the type (3.11) depend upon the values of the γ’s. For instance, if we

take all γ’s to be unity we have the following vacua:

(ϕvac.
1 , ϕvac.

2 ) =

(
2π

3
+ 2π n1 ,

2π

3
+ 2π n2

)
,

(ϕvac.
1 , ϕvac.

2 ) =

(
π + 2π n1 ,

2π

3
+ 2π n2

)
,

(ϕvac.
1 , ϕvac.

2 ) =

(
2π n1 ,

2π

3
+ 2π n2

)
γ1 = γ2 = γ3 = γ4 = 1,

(ϕvac.
1 , ϕvac.

2 ) =

(
2π n1 ,

4π

3
+ 2π n2

)
n1 , n2 ∈ ZZ,

(ϕvac.
1 , ϕvac.

2 ) =

(
π

3
+ 2π n1 ,

4π

3
+ 2π n2

)
,

(ϕvac.
1 , ϕvac.

2 ) =

(
π + 2π n1 ,

4π

3
+ 2π n2

)
,

(ϕvac.
1 , ϕvac.

2 ) =

(
4π

3
+ 2π n1 ,

4π

3
+ 2π n2

)
,

(ϕvac.
1 , ϕvac.

2 ) =

(
5π

3
+ 2π n1 ,

2π

3
+ 2π n2

)
. (4.37)

5 Geometric interpretation of the BPS solutions

As we have seen in (3.1) and (3.2), the finite energy solutions of the self-duality equa-

tions (2.11) have to go to constant vacua solutions for x → ±∞. Therefore, each of these

solutions connect two vacua of the theory. In order to have a geometric picture of these

solutions let us write the self-duality equations (2.11) as

~v = ±~∇ηU ; with (~v)a =
dϕa
d x

;
(
~∇ηU

)
a

= η−1ab
δ U

δ ϕb
. (5.1)

Given the pre-potential U and the metric ηab, which we assume real, constant and

positive definite, the η-gradient of U defines curves in the space of ϕ1, . . . , ϕr, with ~∇ηU
being the tangent vector to these curves. The curves never intersect each other, since

otherwise ~∇ηU would not be uniquely defined on a given point in ϕ-space. They can at

most touch each other tangentially, or meet at points where ~∇ηU vanishes. The self-duality

equation is a first order partial differential equation and so a given solution is determined

by the values of the fields ϕa at a given point x = x0.
3 Given the choice of values ϕa (x0)

one selects a point in the ϕ-space and so a curve defined by the η-gradient of U . This choice

of the curve is unique as long as the values of ϕa (x0) do not correspond to a point where
~∇ηU vanishes, or to a point where two curves touch tangentially. The self-duality equation

3We would like to thank Nick Manton for his suggestion, in our discussions with him, to look at the flow

of the prepotential U .
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‘says’ that the solution ‘travels’ along this curve with x-velocity ~v which is equal to the

η-gradient of U , or the negative of it. The geometric picture is therefore that of a particle

traveling in the ϕ-space with x-velocity ~v, and with the space coordinate x playing the role

of time. Therefore, the problem of solving the self-duality equation (2.11) reduces to that of

constructing the curves in the ϕ-space determined by the η-gradient of U . Any particular

solution corresponds to a particular curve determined by the initial values ϕa (x0). The

finite energy solutions correspond to the curves that start and end at the extrema of the

pre-potential U , i.e. at the points where ~∇ηU vanishes.

Note that a given curve determined by the η-gradient of U cannot intersect itself,

since otherwise the value of ~∇ηU would not be uniquely determined at the point of the

intersection. A given curve can at most touch itself tangentially at a given point. However,

as we show below, if η is a positive definite matrix, a given curve can not close on itself

at a point where ~∇ηU vanishes. For the case of a theory with just one field ϕ, like the

sine-Gordon model, the curves determined the η-gradient of U live in a one dimensional

space. Therefore, if a given curve starts (at x = −∞) at a given vacuum, it either stays

there all the ‘time’ and so is reduced to a point, or it is bound to end (at x = ∞) at a

different vacuum. Consequently, the profile function ϕ (x), that is a solution of the self-

duality equation, has to be a monotonic function of x. This is indeed the case for the

sine-Gordon model. For the case of a theory with several fields this is no longer the case.

Indeed, the profile functions ϕa (x) are projections of the curves in ϕ-space, determined by

the η-gradient of U , onto the ϕa-axis, and so they are not bound to be monotonic functions

of x. Indeed, this is what we have observed in our numerical simulations.

Consider now a given curve γ in the ϕ-space, parameterized by x, i.e. ϕa (x), which is a

solution of the self-duality equation (2.11), and associated to this curve define the quantity

Q (γ) =

∫
γ
dx~v · ~∇U =

∫
γ
dx

dϕa
d x

δ U

δ ϕa
= U (xf )− U (xi) , (5.2)

where xf and xi correspond to the final and initial points respectively, of the curve γ. Note

that the tangent vector to this curve is ~∇ηU and not the ordinary gradient of U , i.e. ~∇U ,

since the curve is a solution of the self-duality equations (2.11). From these self-duality

equations we see that

Q (γ) = ±
∫
γ
dx ηab

dϕa
d x

dϕb
d x

= ±
∫
γ
dxωa

(
d ϕ̃a
d x

)2

, (5.3)

where we have diagonalized the matrix η, i.e.

η = ΛT ηD Λ ; ΛT Λ = 1l ; ηDab = ωa δab ; ωa > 0 (5.4)

and have assumed that the eigenvalues of η are all positive, and have defined ϕ̃a = Λab ϕb.

Under the assumption that η is positive definite, one observes that Q (γ) can only vanish if

the fields are constant along the whole curve, or in other words, if the curve is just a point.

Therefore, the solutions of the self-duality equations cannot start and end on points in the

ϕ-space, where the pre-potential U has the same value. In fact, there is more to this. As
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one progresses along the curve, the difference between the value of the pre-potential U at

this particular point and at the initial point, only increases in modulus. This means that

the curve, that is a solution of the self-duality equations (2.11), climbs the pre-potential

U , either upwards or downwards, without ever returning to an altitude that it has already

passed through.

One further observation one can make concerning this geometric picture of a particle

moving in the ϕ-space is that there is a quantity conserved in the ‘time’ x, namely

E =
1

2
ηab

dϕa
d x

dϕb
d x
− V (5.5)

with V given by (1.3). Indeed, assuming ηab to be constant, one gets from the self-duality

equation (2.11) that d2 ϕa
d x2

= η−1ab
δ V
δ ϕb

. Then using (2.14) we see that

d E
d x

= 0. (5.6)

However, the self-duality equation implies that such a quantity has to vanish on the

self-dual solutions, i.e. E = 0. Such a result resembles what one has for the Euclidean

Yang-Mills instanton solutions, that are also self-dual. The solutions of our self-duality

equations (2.11) correspond to zero-energy ‘pseudo-particles’ evolving in an imaginary time

τ = i x, and tunneling between vacua.

As an example of our geometrical interpretation of the BPS solution we look at the

model involving the SU(3) triplet-anti-triplet case, in which the arbitrary potential param-

eters γ1, γ2 and γ3 have been chosen to take the values γ1 = γ2 = γ3 = 1. Since the

matrix η−1ab is a function of the coupling parameter λ we discuss here three different cases:

λ = 0 and λ = ±1.8. In all presented examples we have taken the upper sign in (5.1)

i.e. ~v = ~∇ηU .

In figure 4 we present the plots, for these three values of λ, of the pre-potential U and

of the lines of the vector field ~∇ηU . In each picture we have plotted three curves, each

one for one numerical solution of the self-dual equations. Note that there is only one curve

that passes through each point not being an extremum (maximum, minimum or a saddle

point) of the pre-potential. The numerical curves follow very closely the lines of ~∇ηU -flow

in all three cases. The gradient flow ~∇U is the same in all three cases. In the case of λ = 0

one gets η−1ab = 1
2δab so both flows, gradient and the ~∇ηU -flow, are proportional to each

other and all is fine. However, for λ 6= 0 the two flows are different, and one can easily see

that the ~∇ηU -flow is clearly different from the gradient flow when λ = ±1.8. In figure 5

we present the picture of the potential V and its gradient flow. It is quite clear from the

pictures that the analysis of the potential V and its gradient lines does not provide us with

all the required information to determine the curves of the BPS solutions.

Another important point, which can be immediately seen from ~∇ηU -flow, is the pres-

ence of “bumps” in the solution ϕa(x). The existence of such properties of the solutions

has already been mentioned before and it will be discussed in more detail in section 7. Here

we just note that if two vacua are connected by a curve which requires a non-monotonic

change of fields then the “bumps” must necessarily occur. The number of “bumps” for a
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(c)

Figure 4. The pre-potential U(ϕ1, ϕ2) for the case of SU(3) in which γ1 = γ2 = γ3 = 1 and the

coupling parameter λ takes values (a) λ = −1.8, (b) λ = 0 and (c) λ = 1.8. These three examples

of the numerical BPS solutions correspond to the curves that connect extrema of the pre-potential.

The flow of ~∇ηU is depicted by tiny oriented lines.

given BPS solution can be deduced directly from the form of ~∇ηU -flow. For instance, let us

look at the curves presented in figure 4 (b). The initial point of each curve corresponds to

x = −∞ whereas the final one has x = +∞. In the case of dashed curve the fields change

monotonically with x− ϕ1 increases and ϕ2 decreases - so in this case the solution has no

bumps at all. On the other hand, the character of the dotted curve suggests that field ϕ2

has a “bump” with a local maximum and then ϕ1 has also a “bump” where its became

positive-valued. A third (solid curve) is such that the bump occurs only for field ϕ2.
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Figure 5. The potential V (ϕ1, ϕ2) and its gradient-flow ~∇V for the case of SU(3) in which

γ1 = γ2 = γ3 = 1 and the coupling parameter λ takes the values (a) λ = −1.8, (b) λ = 0 and

(c) λ = 1.8.

6 The time dependent solutions

As we have shown in section 2, the solutions of the self-duality equation (2.11) are also

solutions of the Euler-Lagrange equations associated to the static energy functional given

in (2.13). Therefore, the solutions of (2.11) are static solutions of the (1 + 1)-dimensional

theory defined by the action

S =

∫
dt dx

[
1

2
ηab

(
dϕa
d t

dϕb
d t
− dϕa

d x

dϕb
d x

)
− V

]
(6.1)

with the potential V given by (1.3). When studying non-self-dual and time dependent

solutions it is important to know the properties of the potential V and in particular its

vacua structure. Since the potential V is constructed from the pre-potential U some of
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these properties are easy to determine. Let us assume that η is real, constant and positive

definite, and let us diagonalize it as in (5.4). However, to make the notation clearer we

absorb the eigenvalues ωa of η into the fields by redefining them as:

φa ≡
√
ωa Λab ϕb. (6.2)

The self-duality equations (2.11) now become

dφa
d x

= ± δ U

δ φa
(6.3)

and the potential (1.3) takes the form

V =
1

2

(
δ U

δ φc

)2

(6.4)

Next we note that

δ V

δ φa
=
δ U

δ φc

δ2 U

δ φc δ φa
;

δ2 V

δ φa δ φb
=

δ2 U

δ φb δ φc

δ2 U

δ φc δ φa
+
δ U

δ φc

δ3 U

δ φc δ φa δ φb
. (6.5)

Thus, on the vacuum solutions, given by the extrema of U (see (3.2)), we have

V |
φa=φ

(vac.)
a

= 0 ;
δ V

δ φa
|
φa=φ

(vac.)
a

= 0 (6.6)

and
δ2 V

δ φa δ φb
|
φa=φ

(vac.)
a

=
(
M2
)
ab

; Mab ≡
δ2 U

δ φa δ φb
|
φa=φ

(vac.)
a

. (6.7)

Let us now Taylor expand the potential V around an extrema φ
(vac.)
a of the pre-potential

U . Since M is a real and symmetric matrix, we find that

V (φ) ∼ 1

2

∑
a,b

[
Mab

(
φb − φ

(vac.)
b

)]2
+O

((
φ− φ(vac.)

)3)
(6.8)

and so, we see that φ
(vac.)
a is a local minimum of the potential V . Consequently, we can

make the following statements about the potential V and its relation to the pre-potential U :

1. V is non-negative, and it vanishes only at the extrema of U .

2. The extrema of U are extrema of V , but the converse may not be true.

3. The extrema of U are always minima of V , irrespective of being minima, maxima or

saddle points of U . The maxima of V are never extrema of U .

The self-dual solutions of (2.11) tunnel between extrema of U , and so between minima

of the potential V . Therefore, we expect that there may exist finite energy, time dependent

multi-soliton like solutions of the theory (6.1).
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7 Numerical support

In the preceding sections we have presented concrete procedures, based on representation

theory of Lie groups, of constructing self-dual sectors of various real scalar field theories in

(1 + 1)-dimensions. We have given examples for some representations of SU(2), SU(3) and

SO(5) groups but, with the exception of the SU(2) case, we have not solved the self-duality

equations (2.11) in analytical forms. The construction of analytical solutions becomes very

difficult as the number of fields increases. Also, as it is not clear whether any of the models

we have constructed are integrable, and we do not have analytical methods at hand to

study this problem.

Thus, in this section we present numerical solutions of the self-duality equations (2.11).

The self-duality equations are first order in x-derivatives and so their solutions are deter-

mined by the initial values of the fields at a particular point in space. As we discussed

in the previous section, this point cannot be the extremum of U as then the self-duality

equations do not ‘evolve’ the fields from their vacuum value. We have taken this point

to be x = 0, and solved (2.11) first by propagating the solution along the positive x-axis

and then along the negative x-axis. In each case we continued the solution until the fields

did not change (and so ‘effectively’ reached a vacuum) and then glued the two branches

of the evolved solutions to get the complete solution. We have performed many such sim-

ulations, varying both the simulation step dx and of the values of x to which we carried

the simulation (to check whether the fields really reached the vacua). For small values of

dx (dx < 0.00001) the results were essentially the same. In the plots that we include in

the next subsections, we present the results obtained for dx = 0.000002. Moreover, in each

case the solutions had essentially not changed much and so they essentially ‘reached’ the

vacuum values.

We have also studied the stability of the BPS solutions. After constructing a given

static self-dual solution we have used it as the initial static configuration for the Cauchy

problem corresponding to the full (second order time dependent) equations of the model.

The time variation of these solutions was simulated using the 4th order Runge-Kutta

method. Our simulations used double precision and were performed with absorbing bound-

ary conditions but, in fact, the time variations of the fields at the boundaries were always

extremely small and the absorption was always infinitesimal.

Of course, analytically, this was to be expected as our BPS fields were static solutions

of the full equations and this was confirmed by the results of our simulations. However,

small numerical errors (inherent in any numerical work) could always alter any results

and, in principle, they could lead to small evolution but we were genuinely surprised by

the smallness of any changes (the errors had always been of the order of 10−3% and,

effectively, they had not grown with the increase of the lattice). So, we have not seen any

significant changes of the fields and we believe that we can trust our results. A bonus of

these studies was the confirmation of the stability of the solutions, at least with respect to

small perturbations introduced by the numerical errors.

Thus, in the cases we have studied, we have found that the self-dual solutions are, as

expected, stable, and do not send any radiation out, to lower their energies, confirming
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that they were, indeed, minima of the energy for the corresponding sector of the topologi-

cal charge.

7.1 SU(3) simulations

In the SU(3) case we have solved numerically the self-duality equations (4.23), correspond-

ing to the pre-potential (4.20), constructed from the triplet and anti-triplet representations.

We have performed simulations for the following sets of values of the γi and λ parameters:

• Case I: (γ1 , γ2 , γ3 , λ) =
(
1 ,
√

2/2 , 1 , 0.5
)
,

• Case II: (γ1 , γ2 , γ3 , λ) = (1 , 0.5 , 1 , 0.5),

• Case III: (γ1 , γ2 , γ3 , λ) = (0.1 , 0.5 , 0.5 , 0.5) .

In this case we took three different values of pairs (ϕ1 (0) , ϕ2 (0)) which lead to three

different solutions.

• Case IV: (γ1 , γ2 , γ3 , λ) =
(
1 ,
√

2/2 , 1 , 1.8
)
.

In cases I and IV the vacua (minima of the potential V (ϕ1, ϕ2)) are given by

(ϕ
(vac)
1 , ϕ

(vac)
2 ) = (n1π, n2π), (7.1)

(ϕ
(vac)
1 , ϕ

(vac)
2 ) =

(
±3π

4
+ 2π n1,∓

π

2
+ 2π n2

)
. (7.2)

Expressions (7.1) result in the maxima and saddle points of the pre-potential U for

the cases I and IV and also in the minima for the cases II and III. For the cases I

and IV the maxima Umax = 2 + 1√
2

occur when n1 and n2 are even numbers. For n2

being odd and n1 arbitrary the pre-potential has saddle points Us1 = − 1√
2

whereas for

n1 odd and n2 even the pre-potential has saddle points Us2 = −2 + 1√
2
. Minima of the

pre-potential for these two cases correspond to the vacua (7.2) where the pre-potential

takes values Umin = −
√

2. For the two other cases II and III all vacua are given by

expressions (7.1). For the case II the pairs of numbers (n1, n2) =(even, even) give maxima

of the pre-potential Umax = 5
2 , (n1, n2) =(even, odd) and (n1, n2) =(odd, odd) give saddle

points Us = −1
2 and finally (n1, n2) =(odd, even) give minima Umin = −3

2 . In the case III

the maxima occur for (n1, n2) =(even, even) where the pre-potential takes value Umax = 11
10 ,

the minima Umin = − 9
10 occur for (n1, n2) =(even, odd) and the saddle points Us = − 1

10

for (n1, n2) =(odd, even) and (n1, n2) =(odd, odd). In figure 6 we present the vacua of

the potential for the cases I and II. The vacua for the case III are shown in figure 10. The

vacua for the case IV are the same as for the case I.

Note looking at all the plots shows very clearly that the fields always go from one

vacuum to the vacuum. In all the cases, as x tends to∞ the fields both tends to the vacua

ϕ1(∞) = 0 and ϕ2(∞) = 0. As x gets smaller and smaller the fields go to various vacua.

In the cases I, II and IV γ1 = γ3 = 1 and so from (4.25) we see that ϕ2(−∞) = 2ϕ1(−∞).

The exact values of ϕ1(−∞) in cases I and II are different and they depend on the value of

γ2. The cases of I and IV differ by the value of λ and their plots are completely different
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Figure 6. SU(3) vacua and the pre-potential: (a) case I, (b) case II. Black dots represent

vacua (7.1), � stand for vacua (7.2) with the upper sign and ⊕ for vacua (7.2) with the lower

sign. The arrows represent the ∇ηU -flow.
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Figure 7. SU(3) fields — case I; (a) ϕ1 and (b) ϕ2.
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Figure 8. SU(3) fields — case II; fields (a) ϕ1 and (b) ϕ2.
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Figure 9. SU(3) fields — case III; (a), (b), (c) field ϕ1, (d), (e), (f) field ϕ2. Plots (a), (d)

were obtained for the initial conditions ϕ1(0) = 0.1, ϕ2(0) = 3.1095, (b) and (e) for ϕ1(0) = 0.1,

ϕ2(0) = 1.3 and (c) and (f) for ϕ1(0) = 2.75, ϕ2(0) = 1.3.

(a) (b)

Figure 10. SU(3) fields — case III (a) pre-potential U and ~∇ηU−flow and (b) potential V and the

gradient flow ~∇V . A dotted curve describes the BPS solution obtained for the initial conditions

ϕ1(0) = 0.1, ϕ2(0) = 3.1095, a dashed one for ϕ1(0) = 0.1, ϕ2(0) = 1.3 and a solid one for

ϕ1(0) = 2.75, ϕ2(0) = 1.3.
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Figure 11. SU(3) fields — case IV; a) fields ϕ1 and ϕ2. This case is similar to I but λ = 1.8.

but the curves go to the same asymptotic values; compare figure 7 and figure 11. In fact,

the values of the energies in cases I and IV are the same; this is not surprising as the

value of the energy is determined by the asymptotic values of the fields and these values

are the same in these two cases so the values of the energies are also the same. The fields

corresponding to the case II are shown in figure 8.

The case III is special as it presents the plots of three numerical solutions obtained

for the identical values of the parameters λ and γi. In this case the potential V has only

minima of the first kind (4.26) at ϕ1 = n1π and ϕ2 = n2π, where n1 and n2 are integer

and this is seen from our results. Each solution was obtained for different initial values of

ϕi(0). We present here the results of the studies of the following initial data ϕ1(0) = 0.1,

ϕ2(0)) = 3.1095 shown in figure 9 (a),(d), ϕ1(0) = 0.1, ϕ2(0) = 1.3 shown in figure 9(b),

(e) and ϕ1(0) = 2.75, ϕ2(0) = 1.3 shown in figure 9(c), (f). For other values of the initial

conditions the obtained plots have always been similar to one of the three cases shown here.

Of course, the BPS equations do not ‘know about the topology’ and they are just

responsible for the evolution to the ‘nearest’ vacuum. Hence in the III case the field ϕ1

evolved in both directions of x to the same value of the vacuum, namely 0, while the field

ϕ2 went to π and 0. The plots of the numerically determined curves in the space (ϕ1, ϕ2)

and the potentials U and V are shown in figure 10.

The case IV is similar to the case I but they correspond to the different values of λ. The

shapes of the curves are very different but it is clear that they go to the same asymptotic

values of the fields as x→ ±∞. Fields ϕ1 and ϕ2 for the case IV are plotted in figure 11.

In figure 12 we have also plotted the energy density of the field configurations for cases

I and IV above. We see that in both cases we have two peaks of the energy density. As

the total value is the same in both cases the whole effect of λ corresponds to the change

of the relative heights of the two peaks and their positions. As we can see from the plots

when λ is larger the peaks are also a little closer together. For smaller values of λ these

effects are less visible.
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Figure 12. Energy densities (and topological charge densities) of the SU(3) field configurations

seen in cases I (a) and IV (b).

7.2 SO(5) simulations

In the case of SO(5) we have solved numerically the self-duality equations (4.32) corre-

sponding to the adjoint representation of that group, and we have checked the stability

of the resultant solutions. Our simulations confirmed that the self-dual solutions were in-

deed the static solutions of the full field equations and that these solutions were stable.

This time (as described in detail in the previous sections) the BPS equations were more

complicated, as in addition to the coupling parameter λ our equations depended on 4 γi
parameters. We present here the results of our simulations for the following sets of values

for the γi and λ parameters:

• Case I: (γ1 , γ2 , γ3 , γ4 , λ) = (1 , 1 , 1 , 0.4 , 0.5)

• Case II: (γ1 , γ2 , γ3 , γ4 , λ) = (1 , 1 , 1 , 0.2 , 0.5)

• Case III: (γ1 , γ2 , γ3 , γ4 , λ) = (1 , −2 , 0 , 1 , 1.0)

• Case IV: (γ1 , γ2 , γ3 , γ4 , λ) =
(
π ,
√

2 ,
√

3 , π/2 , 0.5
)

We have performed many simulations for other values of parameters but the obtained

results were always similar and not qualitatively different from the results presented here.

The case I corresponds to the potential which has minima at

(ϕ
(vac)
1 , ϕ

(vac)
2 ) =

(π
2
n1, π n2

)
, (7.3)

(ϕ
(vac)
1 , ϕ

(vac)
2 ) =

(
∓ π

3
+ n1π,±

2π

3
+ n2π

)
, (7.4)

where n1, n2 ∈ Z. Expressions (7.3) give maxima of the pre-potential Umax = 17
5 when n1

and n2 are simultaneously even, minima Umin = −7
5 when n1 is odd (independently on the

value of n2) and saddle points Us1 = −3
5 for n1 even and n2 odd. On the other hand (7.4)

always corresponds to the saddle points Us2 = −11
10 of the pre-potential. In figure 13(a),

(b) we present plots of the fields obtained in the simulation in which the kink ϕ1 connects
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Figure 13. SO(5) fields — case I; (a) ϕ1, (b) ϕ2 and (c) ~∇ηU−flow. Vacua (7.3) are denoted by

dots whereas vacua (7.4) are marked by �.

the vacua at π/2 and 0 and the kink ϕ2 connects π and 0. We note the familiar “bumps”

on the kinks. These are the most common solutions of the self-dual equations found in

our simulations. In figure 13(c) we plot the pre-potential, its ~∇ηU -flow, and the numerical

BPS solution. The BPS curves in the space of fields follow tightly the ~∇ηU -flows whose

form is determined by the existence of the saddle points in this region. Clearly, in this case

the existence of “bumps” is directly connected with the presence of saddle points of the

pre-potential U .

The case II shares the vacua (7.3) and (7.4) with the case I; however, in this case

the extrema of the pre-potential have a different nature. Expressions (7.3) give maxima

Umax = 16
5 for n1 and n2 being simultaneously even, saddle points Us1 = −6

5 for n1 odd

and n2 arbitrary, and different saddle points Us2 = −4
5 for n1 even and n2 odd. Minima

of the pre-potential Umin = −13
10 are given by (7.4). This case looks superficially similar

but this time the kinks of ϕ1 and ϕ2 connect the vacua at (π/3, 4π/3) to (0,0) (with the

first numbers referring to the value of ϕ1(−∞)). Again, one can see from figure 14 that

the presence of the saddle point (0, π) is tightly related to the “bump” in ϕ1.

– 29 –



J
H
E
P
0
1
(
2
0
1
9
)
0
2
0

     0

   0.1

   0.2

   0.3

   0.4

   0.5

   0.6

   0.7

   0.8

   0.9

     1

   1.1

-40 -20 0 20 40

(a)

     0

     1

     2

     3

     4

-40 -20 0 20 40

(b)

(c)

Figure 14. SO(5) fields — case II; (a) ϕ1, (b) ϕ2 and (c) ~∇ηU−flow. Black dots denote the

maxima and saddle points of the pre-potential that correspond to the vacua (7.3) whereas minima

of the pre-potential are denoted by �. They are localized at (7.4).

The case III is quite different from the other cases discussed in this paper. In the

case III the potential V (ϕ1, ϕ2) has minima Vmin = 0 at

(ϕ
(vac)
1 , ϕ

(vac)
2 ) =

(
2n1 + 1

2
π, 2n2π

)
that correspond to the local minima of the pre-potential, Umin = −4, and V has local

minima at

(ϕ
(vac)
1 , ϕ

(vac)
2 ) = (n1π, (2n2 + 1)π)

that correspond to the local maxima, Umax = 4, of the pre-potential. What is different in

this case is the presence of the vacua along the straight lines

2ϕ
(vac)
1 − ϕ(vac)

2 = 2nπ.
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Figure 15. SO(5) fields — case III; (a), (b), (c), (d) field ϕ1 and (e), (f), (g), (h) field ϕ2. Solutions

correspond to simulations started with the initial data ϕ2(0) = 1.7 and differ by the choice of ϕ1(0).

The cases with ϕ1(0) = 0.8 are shown in plots (a), (e), those with ϕ1(0) = 0.6 in (b), (f), ϕ1(0) = 1.1

in (c), (g) and those with ϕ1(0) = 0.9 in plots (d) and (h).

The pre-potential U and its partial derivatives δU
δϕ1

= −4 cos(ϕ2) sin(2ϕ1 − ϕ2) and
δU
δϕ2

= 2[sin(2(ϕ1−ϕ2)) + sin(ϕ2)] vanish at these lines. These vacua can be understood as

being the limiting cases of the saddle points. These minima of the potential were denoted

by dashed straight lines in figure 16. The BPS solutions can interpolate between isolates

minima of V (dashed and dotted curves connecting dots at figure 16 (c)) as well as between

isolated minima and the valley-shape minima (solid thick and thin curves connecting dashed

lines and dots). In figure 16 (b) we have marked the points that correspond with initial

condition for numerical solution. For all four solutions ϕ2(0) = 1.7 and they differ by the

value of ϕ1(0). The analysis of the curves in figure 15 allows us to conclude that valley-

shape vacua (similarly to the saddle points) are responsible for existence of “bumps” in the
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Figure 16. SO(5) fields — case III; (a), (b) pre-potential and ~∇ηU−flow, (c) potential and its

gradient flow. The curves correspond to ϕ2(0) = 1.7 and ϕ1(0) = 0.8 -solid thin curve, ϕ1(0) = 0.6

— dotted curve, ϕ1(0) = 1.1 — dashed curve, ϕ1(0) = 0.9 — solid thick curve. The initial points

for the numerical simulations are shown at figure (b) which is a blow-up of the central region of

figure (a).

BPS kinks that connect vacua different from the valley-shape ones. Such “bumps” exist

for the kink ϕ1, see figure 15(b) that is a part of the BPS solution that connects (−π
2 , 0)

and (0, π) (dotted curve in figure 16). Similarly the BPS solution that connects vacua

(π2 , 0) and (π, π) (dashed curve in figure 16) has a kink in ϕ1 with the familiar “bump”,

see figure 15(c).

In the case IV the vacua of the potential V (ϕ1, ϕ2) take the form:

(ϕ
(vac)
1 , ϕ

(vac)
2 ) =

(π
2
n1, π n2

)
, (7.5)

(ϕ
(vac)
1 , ϕ

(vac)
2 ) =

(
± a1 + π n1,±a2 + π n2

)
, (7.6)

(ϕ
(vac)
1 , ϕ

(vac)
2 ) =

(
± b1 + π n1,±b2 + π n2

)
, (7.7)
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where n1, n2 ∈ Z and where a1, a2 are given by the expressions:

a1 =
1

2
arctan

[
√

3
(π2 − 1)

√
3(2π2 − 3)δ(+) + (2π2 − 3)

√
(π2 − 1)δ(+)

−6(2π4 − 5π2 + 3) + (8π4 − 15π2 + 6)
√

∆

]
− π

2
,

a2 = π − arctan

[√
3(π2 − 1)δ(+)

9(π2 − 1)−
√

∆

]
.

Similarly, b1 and b2 are given by

b1 =
1

2
arctan

[
√

3
(π2 − 1)

√
3(2π2 − 3)δ(−) − (2π2 − 3)

√
(π2 − 1)δ(−)

6(2π4 − 5π2 + 3) + (8π4 − 15π2 + 6)
√

∆

]
,

b2 = π − arctan

[√
3(π2 − 1)δ(−)

9(π2 − 1) +
√

∆

]
,

where we have defined

∆ := 3(π2 − 1)(2π2 − 3),

δ(±) := 16π4 − 45π2 + 30±
√

∆.

The pre-potential has extrema given by (7.5) which are maxima for n1 even and minima

for n1 odd. Global maxima Umax1 =
√

2 +
√

3 + 3π
2 occur for n2 even and local maxima

Umax2 = −
√

2−
√

3 + 3π
2 occur for n2 being odd. The minima of the pre-potential become

global Umin1 =
√

2 −
√

3 − 3π
2 for n2 even and are only local Umin2 = −

√
2 +
√

3 − 3π
2

for n2 being odd. The vacua (7.6) correspond to the saddle points Us1 ≈ −1.95 of the

pre-potential (marked by � in figure 17) and the vacua (7.7) to the saddle points (marked

by ⊕ in figure 17) at which the pre potential takes the value Us2 ≈ 0.78.

The case IV is also somewhat unusual in that the fields ϕ1 and ϕ2 connect the vacua

at (π/2, 0) to the vacuum at (π, 0). In this case the field ϕ2 goes from 0 to 0 but the
~∇ηU -flow induces a rather complicated path in the (ϕ1, ϕ2) space (i.e. both fields vary to

decrease the overall flow). Superficially, we may have expected ϕ2 to remain constant but

the flow shows that this is not the best path.

8 Conclusions

We have presented a method of constructing real scalar field theories in (1 + 1)-dimensions

with exact self-dual sectors based on the ideas of a generalized self-duality put forward

in [6]. This methods involves considering a topological charge Q with an integral repre-

sentation in terms of a pre-potential U . The self-duality equations are then obtained by

a procedure which involves splitting the topological charge density into a sum of products

of terms and a further introduction of an arbitrary matrix η. This matrix plays the role

of a target space metric in the kinetic energy of the discussed (1 + 1)-dimensional theory.

The potential energy, in turn, becomes quadratic in the first functional field derivatives of

the pre-potential U , with the inverse of the η matrix playing again the role of the metric

contracting these functional derivatives. The constructed theories possess very nice proper-

ties when the eigenvalues of the matrix η are all positive, and the energy becomes positive

definite in such cases.
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Figure 17. SO(5) fields — case IV; (a) ϕ1 and (b) ϕ2, and (c) ~∇ηU−flow. Black dots stand

for maxima and minima (7.5) of the pre-potential, � for its saddle points (7.6) and ⊕ for saddle

points (7.7).

We have also given an algebraic construction of the pre-potential U based on represen-

tations of Lie groups that lead in a quite natural way to an infinite number of degenerate

vacua, allowing topologically non-trivial self-dual solutions to exist. Some concrete exam-

ples have been given, based on the groups SU(2), SU(3) and SO(5), and the numerically

obtained solutions of these equations have been presented. We have also studied in detail

solutions of the corresponding self-duality equations in these theories. With the exception

of the relatively well known SU(2) case for which analytic solutions can be easily found the

solutions of other theories are more complicated and they were obtained numerically. They

possess many interesting properties: kink-like solutions with ‘bumps’, some without them

and some being even more complicated. We have also looked at their stability and have

found that they all were stable, at least with respect of small oscillations. The detailed

analysis of their properties brought out the importance of the pre-potential in determining

their properties. The reason for this is that all such solutions follow the ~∇ηU -flow in the
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space of the fields of the models. This was discussed in section V and with many details

provided in the numerical section.

An obvious next step in our investigations of the models presented in this paper is to

study time dependent solutions that can perhaps be constructed numerically by taking as

the initial configuration two self-dual solutions well separated from each and then evolving

them under the full equations of motion.

This could lead to two-soliton like solutions and it would give information on how such

solutions behave during the scattering process. In addition, it would allow us to investigate

whether some of the models presented here are quasi-integrable in the sense of [29, 30].

In our construction we have chosen an approach in which the potential energy is ob-

tained from the given pre-potential. We have not addressed the reversed problem, namely,

of finding a pre-potential for a given potential. This inverse problem is certainly very im-

portant to study since many well known scalar fields in (1 + 1) dimensions are known, but

it is not clear if they possess self-dual sectors. One example is given by the infinite class

of models known by Affine Toda field theories. Except for the simplest example from that

class, i.e. the sine-Gordon model, it is not known if any exact static one or multi-soliton

solutions of such exactly integrable theories are solutions of a self-dual equation or not.

Such an investigation involves solving the equation (1.3) for the pre-potential U for a given

explicit potential V . This equation is highly non-linear in the field space. We have not

managed to solve it and may even not have solutions for some potentials V .
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