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Abstract 

Archaeoparasitology is increasingly being used as a tool in archaeological research to 

investigate relationships between past humans, environments, diets and disease. It can be 

particularly useful in contexts where parasite eggs preserve, but human and faunal remains do 

not, including in the identification of disease and/or dietary items otherwise absent from the 

local archaeological record. We analyzed soil samples from the Late Mesolithic layers of the 

lake island site of Derragh in County Longford, Ireland. All samples were positive for the 

presence of Diphyllobothrium sp., an intestinal fish tapeworm that infects humans, causing 

diphyllobothriasis. Though fish are thought to be a staple food in Mesolithic Ireland, 

evidence for fishing and subsistence from this period is extremely fragmentary. Similarly, 

there is little available evidence for disease, primarily due to the lack of human remains. This 

finding represents the earliest known presence of human-derived parasites in Ireland, the 

earliest known finding of Diphyllobothrium sp. in Europe and the only finding of the 

tapeworm from hunter-gatherer contexts. It suggests parasitic infections, particularly those 

resulting from undercooked food, may be more common in ancient hunter-gatherer 

populations than previously suspected. The presence of these zoonotic parasites at hunter-

gatherer sites can provide important insight into local environments, health and disease, and 

culinary practices. In locations like Mesolithic Ireland, the presence of parasites may assist in 

the identification of subsistence activities, such as fishing, and specific prey. 

 

1. Introduction 
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 Zoonoses, infectious diseases transmitted from animals to humans, are an important 

part of understanding the origin, evolution, and history of infectious disease and ancient 

human-animal interactions (Fiennes, 1978; Greenblatt and Spigelman, 2003; Mays, 2005; 

Bendrey et al., 2008; Bos et al., 2014; Fournié et al., 2017), but they are difficult to trace in 

the archaeological record. Barrett et al. (1998) proposed a “Paleolithic Age Baseline”, 

suggesting that infectious agents must have been minimal during times in human prehistory 

when people lived in small, mobile groups. Since the “Paleolithic Age Baseline”, there have 

been three epidemiological transitions, all of which have influenced (and are influencing) the 

presence and frequency of infectious disease across the world. The first was the transition to 

farming from hunting and foraging, where infections started to increase as a result of living 

conditions and closer contact with animals. The second was the effect of industrialization on 

humans which led to a decline in mortality with improved living conditions, the development 

of antibiotics, and a rise in chronic non-infectious diseases (e.g., heart disease and cancer). 

The third is the current transition in which the world is seeing the re-emergence of infections 

and antibiotic resistance. 

 Discussions of the origin and evolution of infectious disease often focus on the 

necessity for large, dense human populations and the presence of domesticated livestock, 

centering on the advent of agricultural subsistence and animal domestication to be present 

(Wolfe et al., 2007). There has been much paleopathological research on health in past 

populations at the transition to agriculture that also follows this discussion (e.g. Cohen and 

Armelagos, 1984; Steckel and Rose, 2002; Cohen and Crane-Kramer, 2007). Reconstruction 

of health in the past focuses on human remains (bones and teeth, and much less so the eggs of 

ancient parasites, or indeed animal remains), mainly using macroscopic techniques, less so 

imaging and histology, but increasingly biomolecular analysis (e.g., ancient DNA analysis). 

Historical documents and illustrations also play their part in this endeavor, when and where 

available. However, the macroscopic analysis of skeletons from archaeological sites to 

explore health at the transitions described remains the majority of the type of research carried 

out in this domain (see Roberts, 2018). Yet, while high zoonotic disease loads are 

documented among modern hunter-gatherers (Dunn, 1968; Bennett et al., 1970; Metz et al., 

1971; Hill et al. 2007; Jones 2016) the spread of these diseases from wild animals to humans 

in the archaeological record, specifically via raw or undercooked meat consumption, has 

received less attention in archaeology. 

 One area in which the investigation of past zoonotic disease has increasingly 

developed is archaeoparasitology. A parasite is one that lives on or in a host (e.g., humans 

and other animals). Helminths (‘worms’), protozoa (e.g., leishmaniasis), and ectoparasites 

(e.g., head lice) are the three main groups of parasites. Parasitic infection remains a challenge 

for human populations across the world today. For example, malaria kills more people today 

than any other parasitic infection and in 2016 affected 216 million people in 91 countries; 

almost half a million died (World Health Organization, 2017). Archaeoparasitology is the 

identification of the remains of parasites that infected humans and animals in the past, both 

externally (e.g., lice, fleas) and internally (e.g., malaria, intestinal worms) (Reinhard, 1992; 

Reinhard and Araújo, 2008; Dittmar et al., 2012). The identification of intestinal worms, 

usually through the detection of their preserved eggs in coprolites or sediment, has 

increasingly been used to investigate the relationships (both social and economic) between 

humans and animals in the past (Arriaza et al., 2010; Yeh et al., 2014; Mitchell, 2017; 

Slepchenko et al., 2017). 
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 A main focus of archaeoparasitology, as an interdisciplinary field that seeks to 

integrate, e.g., culture, climate, and environment, is the pathoecological elements leading to 

human zoonotic infection (Dittmar, 2013; Reinhard, 2017). Pathoecology is the study of the 

environmental determinants of disease (Martinson et al., 2003; Reinhard, 2008). Within 

human paleopathology research this is usually described as (paleo) epidemiology – the 

distribution and determinants of health (Waldron, 1994). These include human factors (e.g., 

crowding, sanitation, hygiene), biotic factors (e.g., pathogens, disease reservoirs, intermediate 

hosts), and physical factors (e.g., climate, soil conditions) (Reinhard and Bryant, 2008). 

While the pathoecology of post-agricultural environments has been well-documented using 

parasites (e.g., Mitchell, 2015, 2017; Trigg et al., 2017), ancient hunter-gatherer contexts in 

the Old World have not been similarly investigated. 

 

 

2. Old World Prehistoric Archaeoparasitology 

 

 Although the beginning of pervasive human parasitic infection likely occurred during 

the Neolithic period, in association with livestock domestication, permanent settlements and 

related accumulated human waste (Le Bailly, 2005; Reinhard and Pucu, 2013), we know very 

little about parasitic infection during earlier prehistoric periods around the world, likely due 

to the reduced number of identified sites and associated human skeletal remains. Sprent 

(1969) proposed a division between ‘heirloom’ and ‘souvenir’ parasites, with heirloom 

parasites being those which have co-evolved with humans through time, leading to their 

being human-specific. This suggests the relationship between some parasites and their human 

hosts extends deep into human evolutionary history. Souvenir parasites, on the other hand, 

are parasites that may opportunistically infect a range of host species, including humans. 

Many of these are zoonotic parasites, spread from animals to humans.  

 While many zoonotic parasitic intestinal worms are associated with the Neolithic due 

to fecal contamination of an environment by domestic animals, tapeworms infect their human 

hosts primarily via consumption of raw or undercooked flesh or viscera. This culinary 

pathway indicates tapeworms are likely to have a long-standing association with ancient 

hunter-gatherers. Indeed, the tapeworms of cows (Taenia saginata) and pigs (Taenia solium, 

Taenia asiatica) have evolved to reproduce solely in the human gut (Hoberg et al., 2002). 

This suggests this genus has likely parasitized Homo for a long period of time, probably 

beginning with the hunting of antelope on the sub-Saharan African savannah during the Late 

Pliocene (Hoberg et al., 2001; Hoberg, 2006).  

 Insights offered by archaeoparasitological findings are likely to contribute 

significantly not only to our understanding of previous prehistoric human-animal interactions, 

but to the everyday lives of these past populations (Reinhard, 2000), alongside informing 

research today on these infections. Aside from their use as indicators of ancient human health 

and disease (e.g., Arriaza et al., 2010; Araujo et al., 2011; Mitchell, 2017), the presence of 

paleoparasites have been utilized to identify unhygienic sanitation practices likely 

contributing to the spread of intestinal worms in past groups (Mitchell, 2015), and the 

presence of certain parasites may be indicative of soil and water polluted with human or 

animal feces, infecting the population through drinking contaminated water or eating 

contaminated forage (Bouchet et al., 2003). The presence of parasite microfossils (preserved 

eggs) across archaeological sites also might suggest contamination of the habitation area with 
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fecal material or the use of feces as hearth fuel. Findings may also point to particular culinary 

practices. The presence of many zoonotic parasites is associated with the consumption of raw 

or undercooked flesh or viscera, or processing in another manner that does not kill the 

parasite (e.g., salting, smoking, pickling) (Adams et al., 1997). Paleoparasites may also 

identify the consumption of some animals which have not otherwise been identified from 

faunal remains at the site, but can be documented through their specialized parasites (Sianto 

et al., 2012).  

 Archaeoparasitological analysis of early prehistoric sites in the Old World has been 

more limited than from later time periods, constraining our understanding of the interaction 

between humans, animals, environment and disease during this period. This is likely due to a 

combination of factors including fewer identified sites and associated human skeletal 

remains, poorer preservation, and a lack of attempted analyses owing to a relative absence of 

common paleoparasite contexts (e.g., coprolites, cesspits, latrines) at early prehistoric sites 

(Goude et al., 2018). Here, we undertook archaeoparasitological analysis on occupational 

sediments at the Mesolithic lakeside site of Derragh in the Irish Midlands. There are few 

findings of paleoparasites during the Mesolithic across the Old World and little is known 

about the relationship between humans, environments, diets and potential diseases in 

Mesolithic Ireland given a lack of faunal and human remains from the period. Our focus on 

this Mesolithic lakeside site offers a point of comparison with later paleoparasite analyses 

from Neolithic lakeside sites across Europe (Le Bailly et al., 2005; Maicher et al., 2017) and 

highlights potential ways forward using archaeoparasitology at prehistoric sites, especially 

those that lack direct human presence in the form of skeletal remains and artifacts.  

 

3. Materials and methods 

3.1 Materials: Site background, stratigraphy, and dating 

Derragh (Irish: Doire Each; Co. Longford; 53.757221, -7.394755) is a former lake 

island located in the Irish Midlands. The site is currently on a lake shore, lying at the junction 

of Lough Kinale, Derragh Lough and the outlet of the River Inny (Figure 1). The site consists 

of a stone and brushwood platform-like feature with extensive evidence of human habitation, 

including woodworking, faunal remains and plant food debris. Above ground, these 

archaeological deposits appear as a waterlogged, low-lying, slightly-rounded mound, c.0.5m 

in height and 15m in diameter. Although drainage alteration largely emptied the lake in the 

1960s, subsequent hydrology modification raised the lake levels and has maintained a high 

water table on the site. Researchers first noticed the archaeological deposits in the form of 

characteristic Mesolithic lithics, such as Bann flakes, in the 1970s (O’Sullivan, 1998).  
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Figure 1. Map of Derragh site location. 



   
 

6 
 

The Discovery Programme, an all-Ireland public center of archaeological research 

supported by the Heritage Council, surveyed the site in 2002 and excavation followed in the 

summers from 2003 –2005 as part of the Lake Settlement Project (Fredengren, 2009, 2007, 

2002). Excavation revealed multiple phases of human occupation at the low-lying lakeshore 

mound, a possible platform crannog (Fredengren 2007). The earliest evidence of occupation 

comprised a stake structure, a hollow, three hearths and associated charcoal, ash and hazelnut 

spreads. The later phase of activity is represented by the construction of a stone and gravel 

floor over a compressed peat layer, sealing the hearths. Although there are traces of the early 

Mesolithic, the overwhelming majority of artifacts suggest a period of intermittent but 

intensive use from the Late Mesolithic into the earliest part of the Neolithic.  

One of the distinctive features of the site is the hollow (c. 1.5m x 1.3m; Figure 2, 

C197), which is part of the sterile brushwood-rich peat layer (C210). The hollow would have 

been below the water table during occupation and likely used as a place to dump habitation 

debris from the lakeshore edge. It contained stones, lithic debris, hazelnuts, butchered and 

burned faunal remains, and charcoal and was likely deliberately filled in with the 

considerable woodworking waste that was generated on site. Overlying the hollow are two 

oak planks (C172), a peat layer (C78), a layer of hazelnuts (some charred; C79) and a 

brushwood floor (C22). The brushwood floor is approximately contemporaneous to a stone 

layer which covers the entire knoll, including the perimeter of the hollow. Above the 

brushwood floor is a redeposited topsoil with evidence of Mesolithic, Neolithic and early 

modern activity (Figure 2). 

The hollow occupation phase dates to 7424–7020 cal BP based on bone and a burnt 

pine taper found within it (Table 1). Given that the pine taper was burnt and that pine wood 

was not available within several kilometers from the site, it must have been introduced to the 

site by human inhabitants. The artifacts from the hollow suggest no post-Mesolithic activity 

during this phase. Two oak planks (C172) overlie the hollow, one of which was dated to 

6630–6360 cal BP. The context above the planks, a spread of hazelnuts (C79), dates to 6883–

6645 cal BP. The date of the planks indicates they sunk into the earlier hazelnut deposit. 

Above the spread of hazelnuts lies a phase of brushwood accumulation situated in peat with 

175 artifacts and dated to 6633–6323 cal BP.  

Above these layers there is a platform-like stone layer, covered on its western edge 

with a second brushwood layer, some of which is worked, dating to 6228–5971 cal BP. This 

layer is archaeologically rich, yielding 9,000 artifacts and bones from suids, bear, otter, 

domestic cattle and a single human tooth directly dated to 6244–6006 cal BP. The vast bulk 

of lithic artifacts typologically indicate the Later Mesolithic, although there are a number of 

tools, and the presence of domestic cattle, that date from the Neolithic, as well as the Early 

Mesolithic. Tools associated with the stone layer display a high amount of weathering 

suggesting that they were exposed for some time. 
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Figure 2. Outline of excavated profiles at Derragh with associated contexts (C), parasite 

sample locations and dating.  

 

 

AMS 

Nr. 

Sample Conte

xt 

% 

Coll 

d 
13C/12C 

d 15N/ 
14N 

%C %N C:N 14C 

Age 

1s 

Er

r 

cal BP 

Ua340

64 

pine 

taper 

197 – -26.3 – – – – 6375 60 7424–7175 

Ua340

65 

wood 226 – -29.3 – – – – 6235 55 7268–6996 

MAM

S-

34675;

R-

EVA 

2129 

suid 197 12.1 -21.53 4.1 43.9 15.8 3.2 6229 27 7250–7020 

MAM

S-

34689; 

R-

EVA 

2125  

suid 78 15 -21.11 4 45.3 16.3 3.2 6200 21 7174–7006 

UBA2

3758 

twig 28 –  – – – – 6086 41 7156–6800 

MAM

S-

suid 192 4.1 -21.3 4.6 41.7 14.6 3.3 6065 21 7155–6786 
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34690; 

R-

EVA 

2128 

UBA2

2335 

wood 135 – – – – – – 5801 42 6719–6492 

Ua 

34027 

hazelnut 79 – -25.9 – – – – 5980 50 6943–6679 

Ua 

34028 

hazelnut 79 – -26.1 – – – – 5920 50 6883–6645 

UBA2

2333 

hazelnut 201 – -26.3 – – – – 5876 54 6846–6549 

Ua323

80 

alder 

root 

40 – -29.5 – – – – 5810 50 6734–6493 

MAM

S-

34674; 

R-

EVA 

2122 

suid 95 17 -21.12 4.1 44.4 16.2 3.2 5708 27 6600–6410 

Ua354

83 

oak 

plank 

172 – -27 – – – – 5690 45 6633–6355 

MAM

S-

34688; 

R-

EVA 

2120 

suid 71 17.2 -21.12 4.3 46.6 16.8 3.2 5635 22 6480–6323 

Ua426

49 

human 

tooth 

115 0.6 -17 – – – – 5308 34 6193–5955 

Table 1. Radiocarbon dates, isotopic values, % of collagen and C:N ratios of Derragh site. 

The isotopic values, C:N ratios, amount of collagen extracted (%Coll, >30 kDa fraction) were 

performed at Max Planck for Evolutionary Anthropology, Leipzig, Germany (Code R-EVA). 

δ13C values are reported relative to the vPDB standard and δ15N values are reported relative 

to the AIR standard. All radiocarbon dates are calibrated at the 2-sigma confidence using 

OxCal v 4.3 (Bronk Ramsey, 2009) with the IntCal13 curve (Reimer et al., 2013).  

 

 Twelve occupational sediment samples from Derragh were analyzed for 

paleoparasites in the paleoparasite lab at the Max Planck Institute for Evolutionary 

Anthropology (Leipzig, Germany). Four samples (DL9-12) come from within the hollow, one 

sample (DL8) is from sediment on the oak planks above the hollow, and four (DL4-7) are 

from the hazelnut layer directly above the oak planks (Figure 2). The other three samples 

come from other parts of the site (Figure 2). Sample DL1 comes from a compacted peat layer 

(C135) about 3m to the north of the hollow which is dated to 6720 –6490 cal BP. Samples 

DL2 and DL3 come from peat layers (C201, C227) about 5m to the northwest of the hollow 

dated to 6850 –6550 cal BP.  
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3.2 Methods 

 

The standard RHM protocol (Rehydration-Homogenization-Microsieving) was 

employed to extract paleoparasite eggs from this material (Bouchet et al., 2001; Le Bailly, 

2011; Dufour and Le Bailly, 2013; see Supplemental Material).  

Bone collagen from samples (MAMS-34675, MAMS-34689, MAMS-34690, MAMS-

34674, MAMS-34688) was extracted at the Max Planck Institute for Evolutionary 

Anthropology (MPI-EVA; Leipzig, Germany) for the new radiocarbon dating, using 

pretreatment methodology based on Talamo and Richards (2011) (see Supplemental 

Material).  

 

4. Results  

All twelve sediment samples tested were positive for the presence of paleoparasite 

eggs (Table 2). Some samples were richer in eggs than others, with samples DL2, DL3, and 

DL8 containing the most eggs. Operculated eggs (52–63 x 38–49 µm), some with open and 

others with closed opercula (Figure 3), corresponding to the cestode (tapeworm) genus 

Diphyllobothrium (Cobbold, 1858), were identified in all samples. Diphyllobothrium sp.is a 

common tapeworm infecting animals, including humans, who consume raw or undercooked 

infected fish. Diphyllobothrium sp. eggs are characteristically ovoid, operculated, thick-

shelled, and measure on average 58 –75 µm long and 40 –50 µm wide (Ash and Orihel, 

1980). Given the difficulty in distinguishing between the different species of 

Diphyllobothrium (Le Bailly et al., 2005; Le Bailly and Bouchet, 2013) we only identify the 

eggs to the genus level, but the eggs mostly likely represent D. latum and/or D. dendriticum.  

In addition to Diphyllobothrium sp., sample DL8 and DL10 also contained a few eggs 

which appear to be from the trematode (fluke) genus Fasciola sp. (130–150 x 60–90 µm 

average egg size) or Echinostoma sp. (80–135 x 55–80 µm average egg size) (Figure 4). One 

egg is badly preserved, but measures approximately 132 x 88 µm, is amber-colored and ovoid 

with a wide, open operculum. The others are also amber or straw-colored with wide, open 

opercula, but have varying ovoid shapes and vary in size (85–150 x 55–87 µm).  

 

Samp

le 

Conte

xt 

Associated 

context 

Associate

d date  

(cal BP) 

Result Parasite Number of 

Diphyllobothrium 

eggs 

Other 

DL1 135 compacted 

peat layer 

6720–

6490  

positive Diphyllobothrium 

sp.  

6  

DL2 201 sandy peat 

layer 

6846–

6549 

positive Diphyllobothrium 

sp.  

57  

DL3 227 bark-rich 

peat layer 

_ positive Diphyllobothrium 

sp.  

44  

DL4 79 hazelnut 

layer 

6943–

6645 

positive Diphyllobothrium 

sp.  

5  

DL5 79 hazelnut 

layer 

6943–

6645 

positive Diphyllobothrium 

sp.  

4  

DL6 79 hazelnut 

layer 

6943–

6645 

positive Diphyllobothrium 

sp.  

15  

DL7 79 hazelnut 

layer 

6943–

6645 

positive Diphyllobothrium 

sp.  

11  

DL8 172 oak planks 6633–

6355 

positive Diphyllobothrium 

sp.  

33 Trematode 

egg? 

https://www-sciencedirect-com.offsitelib.eva.mpg.de/science/article/pii/S030544031830030X#bib53
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DL9 197 hollow 7424–

7020 

positive Diphyllobothrium 

sp.  

3  

DL10 197 hollow 7424–

7020 

positive Diphyllobothrium 

sp.  

2 Trematode 

egg? 

DL11 197 hollow 7424–

7020 

positive Diphyllobothrium 

sp.  

12  

DL12 197 hollow 7424–

7020 

positive Diphyllobothrium 

sp.  

11  

Table 2. Paleoparasite results from Derragh.  

 

 
Figure 3. Diphyllobothrium sp. eggs from Derragh. (A) Hatched egg from DL5; (B) egg with 

intact operculum from DL12; (C) distorted egg from DL1; (D) broken egg from DL9. 
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Figure 4. (A) Distorted egg from DL8; (B) hatched egg from DL8; (C) hatched egg from 

DL10; (D) hatched egg from DL10 

 

5. Discussion 

5.1 Paleoparasites at Derragh 

  

  Archaeoparasitological analyses have not been common at Irish archaeological sites. 

The previous earliest finding came from a Bronze Age site at Chancellorsland and may have 

originated from a human, pig, or dog coprolite (Collins and Reinhard, 2008). Later evidence 

includes intestinal parasites, probably originating from domestic animals, reported from an 

Early Christian rath in Co. Antrim, N. Ireland (Allison et al., 1999). Three reports of hydatid 

cysts, the results of the tapeworm Echinococcus granulosus, are also reported from Medieval 

and 18th–19th century burials in Counties Cork, Tipperary, and Kerry (Power, 1997, 2010). 

These are likely the result of close human contact with infected farm dogs.  

 The positive results from Derragh are the earliest reported parasites and the first 

unambiguously human-associated prehistoric parasites from Ireland. The finding of 

Diphyllobothrium sp. eggs from all the Derragh samples suggests infection with the parasite 

and environmental contamination with human feces may have been widespread at the site. 

Given the presence of paleoparasite eggs up to 100 cm below the surface of the site in three 

different areas and in association with dates spanning 7424–6355 cal BP, we are confident 

our findings represent parasitic infection in Late Mesolithic hunter-gatherers at Derragh. All 
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stratigraphic contexts in which paleoparasites were found were in secure, undisturbed layers 

and there is no evidence of bioturbation or other significant sediment movement, although we 

cannot control for potential percolation of parasite eggs between layers (Morrow et al., 2016).  

 Aside from humans, other possible fish tapeworm hosts identified from the Mesolithic 

layers include bear, otter, and some water fowl, though evidence of the presence of these 

animals at the site is minimal and the continuous human occupation of the site makes this 

unlikely. There is no evidence of domestic dogs from the Mesolithic layers. Given the 

recurrent use of the site for human habitation and the presence of positive samples within 

human-derived hearth, ash, charcoal, hazelnut and peat layers, it is doubtful that the 

tapeworm eggs result from anything other than human feces.  

 

5.2 Paleoepidemiology 

  

 The earliest evidence for human infection with Diphyllobothrium sp. comes from 

Peru, dating to around 8000 BC (Reinhard, 1992). Similar findings are fairly common in the 

analysis of coprolites from the pre-colonial periods in coastal Peru and Chile, usually 

associated with the infection of marine fish with Diphyllobothrium pacificum (Patrucco et al., 

1983; Reinhard and Aufderheide, 1990; Reinhard and Urban, 2003). Le Bailly and Bouchet 

(2013) reported the earliest finding of the parasite in the Old World from an early Neolithic 

site in Cyprus dating to 7600–7500 BC. Other early findings of Diphyllobothrium sp. in the 

Old World have been associated with Neolithic lacustrine sites in France (Dommelier et al., 

1998), Germany (Le Bailly et al., 2005), Spain (Maicher et al., 2017), and Switzerland (Le 

Bailly et al. 2005). The parasite-associated dates for Derragh represent the earliest reported 

finding in Europe and the first identification of Diphyllobothrium sp. from a Mesolithic 

hunter-gatherer site. Later findings of Diphyllobothrium sp. through the Roman and Medieval 

periods are more common, though they decrease from the 16th century onward (Le Bailly and 

Bouchet, 2013).   

 The life cycle of Diphyllobothrium sp. is complex and can include up to three 

intermediate hosts. The first intermediate host, a crustacean such as a copepod, is not 

infective to humans. These copepods are consumed by smaller fish, such as minnows, into 

the flesh of which the larvae then encyst. At this point the larvae are infective to humans and 

other fish-eating animals. The consumption of these smaller fish by larger predatory fish 

(e.g., salmonids, eel), which the larvae also infect, is the most common source of human 

infection with the tapeworm (Scholz et al., 2009). To be infected an individual must consume 

fish flesh or viscera which is raw or undercooked. Smoking does not kill the parasite, nor 

does salting or freezing if not under −10°C for 24 hours (Scholz et al., 2009). Once infected, 

an individual tapeworm may live in the body for over 25 years, producing up to one million 

eggs per day (von Bonsdorff, 1977). This extraordinary level of egg production means that 

rates of contamination in unsanitary conditions, such as at a temporary hunter-gatherer camp, 

may have been particularly high. 

 In living populations today, the majority of individuals with diphyllobothriasis (the 

infection caused by Diphyllobothrium sp.) are asymptomatic (Dick, 2007). In about one out 

of five infections individuals experience diarrhea and abdominal pain or discomfort and may 

also experience other symptoms such as headaches, fatigue, constipation and pernicious 
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anemia (Garcia and Bruckner, 1993; Scholz et al., 2009). A prolonged or heavy infection may 

lead to megaloblastic anemia resulting from the depletion of vitamin B12 by the parasite. In 

populations today about 40% of infected individuals show low vitamin B12 levels, but only 

<2% develop clinical anemia (Garcia and Bruckner, 1993). It is unclear how pervasive 

anemia may have been in prehistoric Irish populations infected with parasites, but some 

coastal prehistoric populations in Peru had high rates of anemia, documented via the 

pathological bone condition cribra orbitalia (CO: in the eye sockets) and porotic hyperostosis 

(PH: on the cranium), particularly in children in whom the bone lesions originally develop 

(Blom et al., 2005). This anemia was likely associated with the consumption of aquatic 

resources because they experienced high rates of parasitic infection, including 

Diphyllobothrium pacificum. Porotic hyperostosis identified in Californian skeletons has also 

been suggested as the result of consuming marine resources, leading to parasitic infection 

(Walker 1986). While the aetiology of CO and PH continues to be debated in paleopathology 

circles (e.g., Walker et al 2009, Wapler et al 2004, Oxenham and Cavill 2010, McIlvaine 

2015), purported anemia-related cribra orbitalia and porotic hyperostosis associated with 

likely parasitic infection have also been documented at many Old World sites from various 

periods (Carlson et al., 1974, Facchini et al., 2004, Keenleyside and Panayotova, 2006, Djuric 

et al., 2008). 

 The finding of potential trematode eggs from the Fasciola or Echinostoma genera is 

curious. Both are present in Europe and the earliest finding of Fasciola sp. dates to 3600 BC 

(Dommelier and Espejo, 2001). We could not find any archaeoparasitological reports of 

Echinostoma sp. from the Old World. Fasciola sp. most commonly parasitizes domestic 

sheep and cattle, but sometimes infects humans and wild ruminants as well. This is most 

often associated with the consumption of contaminated water plants. Given the lack of 

domestic livestock or wild ruminants in Mesolithic Irish archaeological sites (Carden et al., 

2012; Woodman, 2015), the presence of Fasciola sp. is unlikely. Echinostoma sp., on the 

other hand, parasitizes a variety of animals, including humans (as definitive hosts). Humans 

are most commonly infected while consuming raw or undercooked snails, fish or frogs 

(Roberts and Janovy, 2000). The presence of Echinostoma sp. eggs may also be the result of 

false infection (the presence of eggs in the stool resulting not from an actual infection but 

from recent ingestion of infected hosts carrying eggs) due to human consumption of infected 

whole, bite-sized fish (e.g., minnows) (Sianto et al., 2005). Given the difficulty in identifying 

these few eggs, we cannot confirm the presence of trematodes at the site. 

  

5.3 Paleopathoecology 

 

 Diphyllobothrium sp. is considered an indicator of fecal water pollution in freshwater 

systems (von Bonsdorff, 1977). The continuation of the Diphyllobothrium life cycle requires 

the release of eggs into the water system by definitive hosts. Temperatures in early Holocene 

Ireland suggest D. dendriticum eggs likely hatched between mid-August and late October, but 

even given colder temperatures eggs can survive, embryonate, and hatch years after they are 

shed (Wright and Curtis, 2000). At Derragh, contamination could be the result of direct 

human defecation or feces disposal in the lake (as evidenced by egg presence in the 
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underwater hollow) and/or defecation into the lake by other host animals, particularly 

migratory birds, which are common definitive hosts of D. dendriticum. Diphyllobothrium sp. 

has been identified in modern pike from Lough Sheelin, just a few kilometers from Derragh 

(Kane, 1966), and in brown trout, char, perch, and stickleback from lake sites across modern 

Ireland (Holland and Kennedy, 1997). 

  

5.4 Fishing in Mesolithic Ireland 

  

 A small assemblage of fish remains was recovered from the excavations at Derragh 

(Supplemental Table 1). All of this material is burnt, most of it to high-temperature 

calcination, as indicated by white and bluish coloring (Nicholson, 2017; Supplemental Figure 

1). A majority of the remains are from eel (Anguilla anguilla) of subadult age (“yellow 

eels”). As eels tend to withdraw to the bottom of water bodies during winter it is probable 

that these were caught in the summer and autumn months. In a few cases the larger vertebrae 

have been crushed laterally (Supplemental Figure 2); this is not a result of burning but is 

likely to indicate human chewing (Jones 1986), although it seems likely that these particular 

vertebrae were not swallowed but spat out and disposed. A few remains are of a different 

taxon, a salmonid. These could not be precisely identified to salmon or trout but are of very 

small individuals. 

 Paradoxically, fish remains are rare or absent on similar Mesolithic lake islands in the 

Irish Midlands, such as Moynagh and Clonava Island (Little, 2014, 2009; McCormick, 2004). 

This has raised the question of whether fish were even present in the area by 7000 years ago 

(Woodman, 2015). Due to the separation of Ireland from continental Europe about 16,000 

years ago when the climate was still intensely cold, contemporary Irish freshwater fauna is 

depauperate compared to the rest of Europe (Edwards and Brooks, 2008). Species that 

lingered after the last glaciation may have been wiped out by the Nahanagan cold phase 

(11,000–10,500 BP). Yet, the survival of relic populations of Arctic fish in a number of Irish 

lakes until the present day (Table 3), shows that at least these species have been present since 

the last glaciation, and must have been available to Mesolithic foragers (Woodman, 2015).  

Actual evidence of Irish Mesolithic fishing and subsistence is extremely fragmentary 

and no evidence survives of the use of these relic species (e.g., Arctic char, shad, cisco). Salt-

tolerant sticklebacks certainly colonized the waterways by this time but are too small to have 

been a major food resource. However, Mesolithic faunal assemblages verify that a variety of 

useful euryhaline temperate fish taxa recolonized Irish rivers and lakes by the early 

postglacial (Table 3). The few available Mesolithic faunal assemblages from coastal and 

inland sites indicate that fishing was at least locally present (Woodman, 1985; Woodman et 

al., 1999), particularly given the lack of other terrestrial food sources staple in continental 

Europe. Irish Mesolithic foragers lacked many of the mammal quarry favored by other 

Mesolithic populations, including deer (Cervidae), elk (Alces alces), and auroch (Bos 

primigenius), with only the wild boar (Sus scrofa) occurring and even this potentially having 

been introduced by Mesolithic people (Edwards and Brooks, 2008; Woodman et al., 1997; 

Woodman, 1986).  

Crucially, fish assemblages from the early Mesolithic Midland site at Lough Boora, 

65 km from Derragh, shows waterways deep inland contained salmonids and eel species by 

this time period (Table 3) (Woodman, 2015), similarly to Derragh. Although there is little 

other evidence for inland use of fish, it seems unlikely that fish were absent from forager 
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subsistence strategies in the Midlands or across Ireland. Fish, mostly salmonids (salmon and 

trout) compromise 81% of the burnt bone assemblage at coastal Mount Sandel, which is the 

earliest sizable Mesolithic assemblage found so far. Eel and trout bones are also dominant at 

the inland site of Lough Boora (Wijngaarden-Bakker, 1989). Lack of fish remains at lake 

sites may relate to lake islands being specialized seasonal camps unrelated to fishing, but this 

is unlikely given their location. Early postglacial lakes were considerably greater in area than 

present day lakes and they covered a high proportion of the Midlands (Mitchell and Ryan, 

2001). Thus, whether due to abundance or necessity, freshwater fish probably were a resource 

that Mesolithic settlers used across the island.  

Isotopic data from the human burial at Stoney Island shows tentative evidence of 

freshwater fish use (Kador et al., 2014), but dating ambiguity undermines the Mesolithic 

classification of this burial. On the other hand, isotopic analysis of human remains from 

Rockmarshall and Killuragh Cave shows a terrestrial signal despite Rockmarshall’s coastal 

location (Woodman et al. 1997, 1999). Caution is needed in interpreting isotopic results as 

some inland foods, such as sea trout and salmon, possess a marine signal (Darimont and 

Reimchen, 2002). Little is known about fish exploitation techniques, and concrete examples 

of Mesolithic fishing technology are limited to the identification of wicker basket fish traps at 

a lake shore Clowanstown and in a estuarine setting Spencer Dock (McQuade and O’Donnell, 

2007). 

 

 

Taxa Evidence type Arrival in Ireland Citation 

Salmon (Salmo salar) Bones By 9900– 9500 cal. 

BP  

(Woodman, 1985) 

Eel (Anguilla anguilla) Bones By 9900– 9500 cal. 

BP 

(Woodman, 1985) 

Trout (Salmo trutta) Bones By 9900– 9000 cal. 

BP 

(Woodman, 1985) 

Three-spined stickleback (Gasterosteus 

aculeatus)  

Genetic Last glaciation or 

early postglacial 

(Ravinet et al., 2014) 

Nine-spined stickleback (Pungitius 

pungitius) 

Genetic Last glaciation or 

early postglacial 

(Ravinet et al., 2014) 

Brook lamprey (Lampetra planeri) None Likely early 

postglacial 

(Woodman, 2015) 

River lamprey (Lampetra fluviatilis) None Likely early 

postglacial 

(Woodman, 2015) 

Arctic char (Salvelinus alpinus) Relic 

populations 

Last glaciation (Carlsson et al., 

2014) 

Shad (Alosa sp.) Relic 

populations 

Since last glaciation 

and early postglacial 

(Carlsson et al., 

2014) 

Cisco/Pollan (Coregonus sp.) Relic 

populations 

Last glaciation (Carlsson et al., 

2014) 

Pike (Esox lucius) Genetic Possibly mid 

Holocene  

(Carlsson et al., 

2014) 

 Table 3: Fish species present during the Irish Mesolithic and their origins 

 

6. Conclusions 
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 Discussions of parasites in the Old World often focus on the introduction of 

agriculture and domestic animals as the primary vectors for parasitic infection due to larger 

human populations, increased environmental fecal contamination, and human interaction with 

livestock. Though these factors undoubtedly increased human infection with many intestinal 

parasites, others were likely an omnipresent part of past hunter-gatherer lives. These include 

tapeworms, some of which have evolved to reproduce solely in the human gut, highlighting 

the antiquity of our interaction with them. 

 The finding of the fish tapeworm Diphyllobothrium sp. eggs at the Derragh site 

provides several insights into the pathoecology and daily lives of hunter-gatherers in 

Mesolithic Ireland. Their presence suggests the living environment and local water supply 

were contaminated with human feces. The contamination of nearby water sources, such as 

Lough Kinale and Derragh Lough, with the feces of infected individuals would contribute to 

continuing the cycle of the parasite within local lacustrine communities. Given the presence 

of Diphyllobothrium sp. eggs in the subsurface layers of the Derragh hollow this type of 

contamination was undoubtedly occurring. 

 The presence of fish tapeworm at Derragh also alludes to the culinary practices 

undertaken by inhabitants of the site. Since the tapeworm is passed to humans via the 

ingestion of larvae encysted in fish flesh, the residents of Derragh must have been consuming 

fish raw, undercooked, or processed by some other method that failed to kill the parasite (e.g., 

smoking, salting, curing). The regular consumption of infected fish may have led to heavy 

parasitic loads within the human population, potentially leading to serious health problems 

including vitamin B12 deficiency and anemia. Though often associated with periods of dietary 

stress in people who relied on farming and increased parasitic loads in the past (see papers in 

Cohen and Armelagos 1984 and Cohen and Crane-Kraner 2007), skeletal indicators of 

anemia, such as porotic hyperostosis and cribra orbitalia, are more likely to indicate heavy 

parasitic loads in pre-agricultural individuals as these populations are unlikely to have 

suffered anemia related to iron deficiency given the typically meat-rich diet of past hunter-

gatherers.   

 Due to the rarity of Mesolithic human remains in Ireland, insights into health during 

this period have been limited. Aside from the single tooth found at Derragh (Co. Longford) 

the only known remains consist of a cremation burial at Hermitage (Co. Limerick), a scatter 

of teeth and limb fragments from Ferriter’s Cove (Co. Kerry), an ulna from Rockmarshall 

(Co. Louth) and a reworked bone from the Lower Bann in Northern Ireland (Woodman, 

2015). While the presence of tapeworms at Derragh indicates Mesolithic foragers in Ireland 

may have suffered from the deleterious effects of parasitic infectious disease, the lack of 

human remains from this period, particularly cranial remains, leaves this possibility unclear 

for now.  

 Nevertheless, the occurrence of Diphyllobothrium sp. at Derragh is an important 

indicator of the use of fish as a food item for inland Irish Late Mesolithic communities, which 

has been a long-standing question. Given the lack of fish remains in the region during this 

period, especially from lake island sites, the presence of fish parasites may provide a critical 

way forward in the indirect identification of prehistoric fish consumption in Mesolithic 

Ireland and beyond.  

 Our findings at the Derragh site provide important insight into the local environments, 

diets, living conditions and culinary practices of Mesolithic Ireland, highlighting the use of 

archaeoparasitology as a critical development within archaeology and human paleoecology. 

This work also emphasizes the value of extending the use of archaeoparasitological analysis 
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as another major tool in bioarchaeology for exploring zoonotic disease in the past, 

particularly in contexts where environmental conditions enable parasite eggs to preserve, but 

where human remains do not. Additionally, as seen at Derragh, the use of 

archaeoparasitology can assist in the identification of dietary resources which may not 

otherwise be identified in the faunal assemblage. As archaeoparasitology becomes more 

widespread in interdisciplinary archaeological research future applications, particularly in the 

case of prehistoric sites and/or sites with limited preservation of human and faunal remains, 

will increasingly contribute to our understanding of the relationship between humans, local 

environments, diets and disease in the past. 
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