
1 of 30 
 

Ef f ic ient  Global  Sensi t iv i t y Ana l ys is  for  F low - Induced V ibra t ion 
o f  a  Nuclear  Reactor  Assembly  us ing Kr ig ing  surrogates  

Gregory A. Banyaya,b, Michael D. Shieldsc, and John C. Brighamd,a 

aUniversity of Pittsburgh, Department of Civil and Environmental Engineering, Pittsburgh, PA, USA 
bWestinghouse Electric Company LLC, Cranberry Township, PA, USA 1 

cJohns Hopkins University, Department of Civil Engineering, Baltimore, MD, USA 
dDurham University, Department of Engineering, Durham, UK 

Abstract 
In this work, surrogate modeling is used to support a global sensitivity analysis (GSA) for a nuclear reactor 

assembly as a proof-of-concept to demonstrate both the pertinence of such methods to this application as well 

as the significant physical insights provided by GSA.  In addition to the knowledge gained relating to the 

system sensitivity, insight gained from the accuracy of the GSA results may be used to compare with 

goodness-of-fit metrics which are traditionally used to support the verification of the surrogate model.  The 

coupled use of surrogate modeling and GSA reduces the number of full-order (i.e., standard computationally 

expensive finite element analysis) simulations required, substantially reducing total computational cost.  This 

work focuses on the use of Kriging surrogates in particular, and examines the robustness of these techniques to 

evaluate sensitivity by considering a variety of design of experiment strategies used to create the surrogate 

models.  Numerical experiments based upon an inverted top-hat upper internals assembly of a pressurized 

water reactor subjected to base motion and fluctuating lift and drag cross-flow loadings are used to evaluate the 

relationship between sensitivities computed from a full-order model versus those computed from a surrogate 

model, highlighting the effectiveness of utilizing GSA and surrogate modeling.  For large sample sizes, 

negligible variation in the resultant sensitivities is shown with respect to the particular method by which a 

computational design of experiment is constructed to train the Kriging surrogates which lends credence to the 

stability and veracity of the results.  Additionally, for the example presented herein the historical significance 

of the downcomer forcing function characterization is substantiated in the sense that loads from the 

downcomer which act indirectly on the upper internals are shown to dominate the response relative to direct-

applied cross-flow loads. 

Introduction 
In accordance with guidance provided by the United States Nuclear Regulatory Commission (NRC) (United 

States Nuclear Regulatory Commission, 2017), new reactor designs are to complete a Comprehensive 

Vibration Assessment Program (CVAP) to evaluate Flow-Induced Vibration (FIV).  License renewals 

similarly need to satisfy (United States Nuclear Regulatory Commission, 2017), but usually do so by 

demonstrating similarity to a valid prototype plant rather than completing a full analysis and test program, 

depending on the plant licensing basis.  The CVAP includes extensive computational dynamic analysis, as 

described in (Westinghouse Electric Company, 2011), as well as a companion measurement and inspection 

program.  The measurement and inspection program, as described in (Westinghouse Electric Company, 2015), 

recommends placing sensors in the locations which are dynamically correlated to the component response 

quantity of interest, which is generally near locations of high cyclic stress intensity.  Correspondingly, the 

vibration analysis program establishes expected measurements (predictions) and associated acceptance criteria, 

which are based on the material fatigue life.  Extensive verification and empirical validation of numerical 

models, for both forcing functions (e.g., turbulence and acoustic phenomena) and structural response, are 

employed to develop the predictions (Palamara, et al., 2015).   

                                                        
1 Note that this paper reflects the views of the authors and not the views of Westinghouse Electric Company LLC. 
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Flow within a nuclear reactor coolant system is highly turbulent.  The high turbulence is necessary for core 

cooling and heat transfer, but also creates a substantial vibratory forcing function on the associated mechanical 

components and assemblies.  For analysis of reactor internals, M.K. Au-Yang developed methods for 

determining forcing functions in a downcomer annulus (Au-Yang & Jordan, 1980), modeling random vibration 

induced by turbulent flow (Au-Yang & Connelly, 1977), and summarized the majority of his published work 

in (Au-Yang, 2001).  Guidelines for practice are then based on the work of Au-Yang and others for dynamic 

analysis of nuclear components subjected to flow-induced vibrations (ASME, 2017).  Recent industry efforts 

such as (Banyay, et al., 2015) have sought to improve the methods described in (ASME, 2017) and part of the 

aim of this work is directed towards supporting such industry efforts to improve methods of dynamic analysis. 

The forcing functions from turbulent flow acting on the various components of a nuclear reactor assembly can 

be characterized as a stochastic process (Tennekes & Lumley, 1972). As such, the dynamic structural response 

to turbulent loading is correspondingly random (Blevins, 2001).  The spectral shape (i.e., the non-dimensional 

power spectral density, PSD) of the forcing random process may be known from prior test data of similar 

components in similar plants, but a best-estimate of the forcing function amplitude is generally difficult to 

determine.  Note that within the nuclear industry, the term “best estimate” analysis has been defined as an 

analysis which is “free of deliberate pessimism regarding selected acceptance criteria” and “includes 

uncertainty analysis” (International Atomic Energy Agency, 2008).  Therefore, in practice, plant designers use 

biased approaches which bound the scatter in the available data to characterize forcing functions.  In so doing, 

this may produce conservative design margins, but can result in over-designed equipment and contribute to a 

lack of understanding of the actual structural dynamic behavior of critical components. Furthermore, such 

approaches can lead to misleading conclusions regarding the true design margin of a given component or 

system; contributing to a false sense of confidence in a high margin (Type II error) or a false impression that a 

component has a low margin (i.e., is at risk of failure, Type I error). Driven largely by recent major structural 

failures caused by FIV in the nuclear industry, such as the steam generators at San Onofre (United States 

Nuclear Regulatory Commission, 2015) or the steam dryer at Quad Cities (United States Nuclear Regulatory 

Commission, 2013), recent revisions to the NRC regulatory guide (United States Nuclear Regulatory 

Commission, 2017) increasingly demand that bias and uncertainty be accounted for in prototype reactor 

designs.  Note that the industry guidelines offer some flexibility in the sense that they do not necessarily 

require rigorous uncertainty quantification but rather require that uncertainty and bias have been accounted for 

in the design process.  For example, regulatory guidance accepts an extensive uncertainty analysis such as 

described in (ASME, 2009), but regulators also accept a more simple uncertainty analysis which demonstrates 

adequate bias to ensure conservative margins. 

Within a reactor assembly, multiple forcing functions are present which are attributed to different excitation 

mechanisms that have to do with component geometry, local coolant velocities and temperature, spectral shape 

functions, and overall plant configuration (i.e., reactor coolant pump or piping design).  These individual fluid-

borne forcing functions, coupled with the structural dynamics, constitute the total observed structural response.  

From this total response, it is often unclear which particular forcing function is the most relevant for the 

response of a given component. The effect of the different forcing functions on the vibration response of a 

given component can vary significantly, with some having a relatively large effect and others being practically 

negligible.  For example, the forcing function acting on an adjacent assembly (e.g., core barrel shell) may be 

more influential to the response of a given component (e.g., support columns or lower support structure) than 

the forcing function acting directly on that component. Misunderstanding the contributions of certain 

phenomenological behavior (e.g., the relative contribution of loads) can lead to excessive expense, such that 

analysts expend resources answering the wrong questions.  For example, misunderstanding the contribution of 

boundary conditions and forcing functions to structural dynamic models may lead to studies employing 
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advanced Computational Fluid Dynamics (CFD) models to accurately characterize forcing functions that do 

not meaningfully influence the structural response.  Variance-based sensitivity analysis can, in part, serve to 

reduce this excessive effort and cost (Saltelli, et al., 2008). For example, sensitivity analysis in this context 

could inform the selection of the parameters to which model outputs are most sensitive.   

Variance-based global sensitivity analysis, such as described in (Saltelli, et al., 2008), (Gratiet, et al., 2016), 

(Cannavo, 2012), and (Pianosi, et al., 2015), requires running a model a large number of times to properly 

characterize the relative importance of the various uncertain parameters (Schenk & Schueller, 2005).  It is 

therefore of interest to explore options to either reduce the number of full-order runs (i.e., finite element 

analysis realizations) required to characterize sensitivity, or to altogether replace the full-order model with a 

surrogate model which runs with minimal computational expense yet captures the relevant trends in the 

physical model. Surrogate modeling techniques aim to model physical phenomena using some means other 

than direct solution of the equations for the system physics. This is useful when solving the governing 

equations is computationally expensive or when the governing equations are not known and the trends must be 

inferred from data.  Furthermore, several works have already applied the use of surrogate models for 

sensitivity analysis, successfully reducing the computational expense significantly such as (Shahsavani & 

Grimvall, 2011), (Hou, et al., 2016), (Cheng, et al., 2017). 

Figure 1 shows an influence diagram used to construct an illustrative simplified cost-benefit analysis.  In this 

postulated scenario, assumed cost quantities are shown in Table 1.  These costs quantities are not arbitrary, but 

rather represent estimates based on approximately 10 years of performing such calculations in the industry.  In 

the influence diagram, the “Analysis Method” parallelogram represents an index associated with three different 

approaches which may be taken to solve this problem.  The “Number of Design Iterations” trapezoid is used to 

simulate how, as a design matures through time and thus iterates, the different analysis methods trend in terms 

of a cost comparison (which is represented by the hexagon).  Design iterations are intended to represent a 

situation in which the physical geometry of a component changes, or a particular forcing function changes 

(perhaps due to an enhanced state of knowledge) and thus the dynamic response and corresponding ASME 

Code margins (i.e., design basis) change.  In practice, both of these types of design iterations occur often, and 

this study considers the latter situation.  That is, this study performs sensitivity studies on a fixed geometry and 

thus does not consider changes in geometric parameters, so the surrogates built and employed herein would not 

necessarily be valid in the context of geometry changes.   Figure 2 then shows the results of how the 

engineering cost steadily increases when exercising a full-order model over many design iterations versus 

either supplementing a full-order model simulation with sensitivity analysis or by using a surrogate model in 

lieu of the full-order model (i.e., the items represented by the “Analysis Method” index).  That is, significant 

savings may be realized by simply using the knowledge gained through sensitivity analysis to reduce 

complexity (i.e., the number of applied forcing functions) in the full-order model used for subsequent analyses 

in the design process; this is shown on the blue line in Figure 2.  Further cost savings may be realized by 

altogether using a validated surrogate model in lieu of the full-order model in subsequent design iterations; this 

is shown on the green line in Figure 2.  It is recognized that the veracity of a surrogate model requires that the 

parameter changes associated with the design iterations fall within the range of the parameter space sampled 

during initial model training.  In practice therefore, there is a balance to achieve in which the sampled 

parameter space should be sufficiently large so as to bound the (future) parameter changes but not so large so 

as to render the initial problem computationally prohibitive.  In short, if some initial investment is made 

upfront to understand parameter sensitivity for large dynamic models, then significant cost savings can be 

realized as the design iterates and subsequent simulations are required.   
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FIGURE 1 - INFLUENCE DIAGRAM AND INPUTS FOR POSTULATED COST-BENEFIT ANALYSIS 

 

TABLE 1  
COST-BENEFIT ANALYSIS VARIABLES 

Variable Value Comment 

Number of Design Iterations 10 

Through the design and analysis of nuclear reactor structures, design 

parameters evolve, which warrants multiple iterations of 

computational models. 

Cost of Full-order Model (per run) 10 hours System finite element models subjected to dynamic FIV loading. 

Cost of Initial Forcing Function 

Development (per function) 
100 hours 

Cost to run CFD and/or analyze test data to characterize forcing 

function. (e.g., boundary layer turbulence in downcomer annulus) 

Number of Forcing Function Inputs 10 Multiple forcing functions acing on an assembly. 

Number of runs needed for Design of 

Experiment 
200 

Number of full-order runs required for Surrogate model construction 

and/or Global Sensitivity Analysis (GSA). 

Cost of Surrogate Model construction 10 hours Time required to develop and train Surrogate model. 

Cost of Surrogate Model run 0.1 hours 
Representation of the small cost of Surrogate model runs (it is 

recognized that actual Surrogate model cost is well below 0.1 hours). 
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FIGURE 2 - ILLUSTRATION OF COST-BENEFIT ANALYSIS BETWEEN TRADITIONAL APPROACH AND 

THE USE OF SENSITIVITY ANALYSIS 

In this work, a framework is developed to use surrogate models for sensitivity analysis for flow induced 

stationary random vibrations in a nuclear reactor internals subassembly, specifically to understand how forcing 

functions in different locations influence the response of the structure.  This is intended to support fast 

turnaround analyses for experimental (real-time or near real-time) plant diagnostics, operational prognostics, 

and component design in the presence of parameter uncertainties. This research does not necessarily seek an 

optimal surrogate modeling technique, but rather a robust surrogate modeling technique that fits the specific 

application.  For this purpose, Kriging (or Gaussian process regression) (e.g., (Nechak, et al., 2015) and 

(Huang, et al., 2011)) was used in this work. First, a full-order finite element model is used directly (i.e., 

without any complementary surrogate-model) to produce global sensitivity indices which do not meaningfully 

change upon generation of further full-order model realizations.  By first computing sensitivity indices from 

full-order runs, this provides a set of results against which the surrogate-computed sensitivity indices may be 

compared. Given these “converged” sensitivity indices, the sampling of the parameter space for the full-order 

model runs is then investigated by considering a computational design of experiment using Latin Hypercube 

and Latinized Partially Stratified sampling techniques.  Thus stability is evaluated in terms of the GSA result 

when the Kriging surrogate is trained by different sampling as a means of providing confidence in the 

surrogate-based sensitivities.  One aim of this is to identify if it is practical to minimize the number of full-

order runs required to re-generate sensitivity indices by way of a trained Surrogate model. It is expected that 

significant economic benefit may be realized in the engineering design process of nuclear reactor structures by 

coupling the advantages offered by both Surrogate modeling and GSA.  The other aim, in this research, is to 

examine the relationship of the sensitivity indices to metrics in surrogate model validation.  This is novel in the 

sense that observation of the error of the sensitivity indices relative to a baseline provides insight as to the 

veracity of the Surrogate model with which the sensitivity indices are computed. 

The remainder of this paper is organized as follows.  First, the methods utilized herein from each of the 

following three disciplines is described: Random Vibration, Surrogate Modeling, and Global Sensitivity 

Analysis.  Then, a framework which combines these disciplines is described.  A stationary random vibration 

Higher up-front cost, but beneficial

with increasing iterations

Cost of running validated Surrogate model

Cost of running full-order model with

reduced set of loads, as informed by

sensitivity analysis

Cost of running full-order model with

re-development of loads each time
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analysis which is typical of that used to simulate the dynamic response of a nuclear reactor assembly during 

plant operational conditions is described and exercised through this framework and the results are discussed, 

which is followed by the concluding remarks. 

Methodology 
In this study, the random vibration component corresponds to the finite element “full-order model” used to 

generate the baseline sensitivity indices, as well as to create the datasets to train the surrogate models – from 

which sensitivity indices will be likewise computed and verified against those from the full-order model. The 

overall methodology used seeks to combine the construction of a computational design of experiment (DOE), 

sensitivity analysis, and surrogate modeling as illustrated by the three parallel workflows in Figure 3.  In the 

first workflow, GSA is performed on the full-order model using the Fourier Amplitude Sensitivity Test 

(FAST) algorithm as one means of computing sensitivity indices.  This is done to establish the “true” 

sensitivity indices to compare with those computed by exercising a surrogate model. Using these full-order 

model evaluations from the FAST GSA, surrogate models for different numbers of realizations from the finite 

element analysis are constructed. In workflows 2 and 3, the full-order model is run using two different 

methods for computational DOE as an alternate means of building a surrogate model for GSA. The three 

workflows are then compared to evaluate the effectiveness of these different sampling methods for use in the 

FIV analysis of a nuclear reactor assembly as well as the stability of the GSA results computed from the 

various surrogates. 
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FIGURE 3 - FLOW CHART OF ANALYTICAL WORKFLOW INVOLVING MODEL DEFINITION, 
COMPUTATIONAL DOE, SURROGATE TRAINING, AND GSA 

 

Random Vibration 
Flow-induced random vibrations in reactor internals can often be characterized as stationary, ergodic random 

processes ( (Tennekes & Lumley, 1972), (Blevins, 2001)). The stationary property follows from the steady-

state operating conditions under which nuclear reactors typically operate; hence the vibration characteristics do 

not change with time. Thanks to the ergodic property, the mean and autocorrelation function of the forcing 

process, 𝑧(𝑡), can be defined, respectively, from a single realization as (Bendat & Piersol, 2010): 

𝜇 = lim
𝑇→∞

1

𝑇
∫ 𝑧(𝑡) 𝑑𝑡

𝑇

0

 (1) 

𝑅𝑧𝑧(𝜏) = lim
𝑇→∞

1

𝑇
∫ 𝑧(𝑡)𝑧(𝑡 + 𝜏) 𝑑𝑡

𝑇

0

 (2) 
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where 𝜏 is the time lag.  The autocorrelation function may be thought of as a correlation between the values of 

the random process at two different times, 𝑡 and 𝑡 + 𝜏.  Physically, 𝜏 should be chosen as a sufficiently small 

time lag as to resolve the highest frequencies of interest, which may pertain to the time scale of the dominant 

turbulent eddies or the dynamics of the structure itself. 

The forcing random process (e.g., applied force and displacement loading) can be transformed to the frequency 

domain, with the autospectral density function given by the Wiener-Khintchine transform of the 

autocorrelation function: 

𝐺𝑧𝑧(𝜔) = ∫ 𝑅𝑧𝑧(𝜏)𝑒−𝜔𝑡
∞

−∞

 𝑑𝜏 (3) 

 

The finite element method with modal superposition was used herein to solve for the system output PSDs 

(specifically, the commercial finite element analysis software ANSYS was used (ANSYS, 2016)).  In 

particular, the natural frequencies, 𝜔, and corresponding mode shapes, 𝜙, of the structure were computed using 

the Lanczos algorithm (Rajakumar & Rogers, 1991).  Then, the single degree-of-freedom (SDOF) transfer 

functions were used to calculate the response PSDs, as briefly outlined below. 

Projecting the governing equations onto the system mode shapes, the equation of motion for modal dynamics 

of which a solution is sought may be expressed as: 

�̈�𝑗 + 2𝜁𝑗𝜔𝑗�̇�𝑗 + 𝜔𝑗
2𝛿𝑗 = 𝐹𝑗 (4) 

where 𝑗 is the mode number (from 1 to 𝑛), and 𝛿, 𝜔, and 𝜁, are the generalized displacement, frequency, and 

damping ratio for each of the modes, and 𝐹 is the modal load.  Then, using the modal analysis results, the 

forced vibration problem is solved in the frequency domain (Ortiz, et al., 1995). 

Ultimately, this analysis is computing the mean squared axial strain response of the upper support skirt.  

Therefore, the following equations show the details necessary to obtain the RMS response from a PSD 

analysis.   

Given the damping 𝜁 at each mode 𝑗, the SDOF transfer function 𝐻 for an input force may be computed as: 

𝐻𝑗(𝜔) =
1

𝜔𝑗
2 − 𝜔2 + 𝑖(2𝜁𝑗𝜔𝑗𝜔)

 (5) 

Next, the modal PSDs are then expressed in terms of these transfer functions and mode superposition as: 

𝑅𝑗𝑘(𝜔) = ∑ ∑ 𝛾𝑙𝑗𝛾𝑚𝑘𝐻𝑗
∗(𝜔)𝐻𝑘(𝜔)�̅�𝑙𝑚(𝜔)

𝑟1

𝑚=1

𝑟1

𝑙=1

 

�̅�𝑙𝑚(𝜔) =
1

𝜔4
�̂�𝑙𝑚(𝜔) 

�̂�𝑗𝑙(𝜔) = −
1

𝜔2
Γ𝑚𝑗𝐻𝑗(𝜔)�̂�𝑙𝑚(𝜔) 

(6) 
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where 𝛾𝑙𝑗 and 𝛾𝑚𝑘 are the participation factors from the modal analysis for modes 𝑗 and 𝑘, respectively, 

corresponding to force excitation 𝑙 and 𝑚, respectively, and 𝐻∗ indicates the complex conjugate of 𝐻.  𝑆�̅�𝑚(𝜔) 

and �̂�𝑙𝑚(𝜔) represent the input force and acceleration PSDs, respectively, which come from the forcing 

function development in this case.  The number of mode shapes is denoted by 𝑛, and the number of nodal and 

base PSDs is denoted by 𝑟1 and 𝑟2, respectively.  For the problem studied in this paper, all forcing functions 

are defined as force or acceleration PSDs acting on un-constrained nodes (i.e., not imposed at the support 

locations). 

The strain terms may be expressed in terms of the modal PSDs, 𝑅, as dynamic, pseudo-static, and covariance 

parts, where �̅� and �̅� are the modal strains and static strains: 

 

𝐺𝑑𝑖
(𝜔) = ∑ ∑ �̅�𝑖𝑗�̅�𝑖𝑘𝑅𝑗𝑘(𝜔)

𝑛

𝑘=1

𝑛

𝑗=1

 

𝐺𝑠𝑖
(𝜔) = ∑ ∑ �̅�𝑖𝑙�̅�𝑖𝑚�̅�𝑙𝑚(𝜔)

𝑟2

𝑚=1

𝑟2

𝑙=1

 

𝐺𝑠𝑑𝑖
(𝜔) = ∑ ∑ �̅�𝑖𝑗�̅�𝑖𝑙�̂�𝑗𝑙(𝜔)

𝑟2

𝑙=1

𝑛

𝑗=1

 

(7) 

Finally, the mean square strain response (𝜖2) may be expressed as: 

𝜖𝑓𝑖

2 = ∫ 𝐺𝑑𝑖
(𝜔)𝑑𝜔

∞

0

+ ∫ 𝐺𝑠𝑖
(𝜔)𝑑𝜔

∞

0

+ 2 |∫ 𝐺𝑠𝑑𝑖
(𝜔)𝑑𝜔

∞

0

|

𝑅𝑒

 (8) 

 

in which ∫ 𝐺𝑑𝑖
(𝜔)𝑑𝜔

∞

0
 is the variance of the 𝑖𝑡ℎ relative (dynamic) free strains, ∫ 𝐺𝑠𝑖

(𝜔)𝑑𝜔
∞

0
 is the variance 

of the 𝑖𝑡ℎ pseudo-static strains, and |∫ 𝐺𝑠𝑑𝑖
(𝜔)𝑑𝜔

∞

0
|
𝑅𝑒

 is the real part of the covariance between the static and 

dynamic strains.  A summary of the relevant theory of stochastic dynamics may be found in (Ortiz, et al., 

1995). 

 

Surrogate Modeling via Gaussian Process Regression 
In recent years, reduced-order modeling techniques (e.g. (Grigoriu, 2010), (Grigoriu & Field, 2014)) and 

surrogate modeling methods (e.g., (Paez, et al., 1997)) have gained popularity for random vibration problems.  

One popular surrogate modeling method is kriging, otherwise known as Gaussian process modeling or 

Gaussian process regression, which has been shown to be effective for stochastic structural dynamics.  For 

example, Abbiati et al. (Abbiati, et al., 2017) successfully used Kriging in conjunction with hybrid simulation 

to establish an active learning method in the context of structural reliability analysis for seismic applications.  

Kriging has the advantage of providing an error metric in the variance of the surrogate model, and has been 

successfully studied alongside methods of sensitivity analysis (Gratiet, et al., 2016). 
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A kriging model, ℳ𝐾, serving as a surrogate for the full-order model ℳ (e.g., the random vibration finite 

element model), is expressed in accordance with (Rasmussen & Williams, 2005), (Sacks, et al., 1989), and 

(Lataniotis, et al., 2017), in which the bold-faced variable indicate a vector quantity: 

ℳ𝐾(𝑥) = 𝜷𝑇𝒇(𝒙) + 𝜎2𝒁(𝒙, 𝜉) (9) 

 

in which 𝜷𝑻𝒇(𝒙) is the mean value (or trend) constructed from regression coefficients 𝜷 and basis functions 

𝒇(𝒙).  As is typical, the basis functions were taken as multivariate polynomials of the form 𝑓𝛼(𝒙) = ∏ 𝑥𝛼𝑖𝑀
𝑖=1  

where 𝛼 is a vector of indices that yield polynomials in the 𝑀 input variables up to degree 𝑃.  For this work, 

ordinary Kriging was used in which the mean (trend) had a constant yet unknown value, which may be simply 

expressed as 𝜷𝑇𝒇(𝒙) = 𝛽1𝑓1(𝑥) = 𝛽1. 

The second term in Eq. (9), 𝜎2𝑍(𝒙, 𝜉) is a zero-mean stationary Gaussian random process with variance 𝜎2 

and autocorrelation function 𝑅(𝒙𝒊, 𝒙𝑗; 𝜽). For our purposes, we assume 𝑅(𝒙𝒊, 𝒙𝑗; 𝜽) is an n-dimensional 

separable ellipsoidal correlation function expressed as:  

𝑅(𝑥, 𝑥′; 𝜃) = 𝑅(ℎ), where ℎ = √∑ (
𝑥𝑖 − 𝑥𝑖′

𝜃𝑖

)

2𝑀

𝑖=1

 (10) 

Parameter estimates, such as detailed in (Lataniotis, et al., 2017) or (Sundar & Shields, 2018), yield a kriging 

model with mean predictor: 

𝜇ℳ𝐾(𝒙) = 𝒇(𝒙)�̂� + 𝒓(𝒙)𝑻𝑹−𝟏(𝑴 − 𝑭�̂�) (11) 

and predictor variance 

𝜎ℳ𝐾
2 (𝒙) = �̂�2 (1 − 𝒓(𝒙)𝑹−𝟏𝒓(𝒙) + 𝒖(𝒙)𝑻(𝑭𝑻𝑹−𝟏𝑭)−𝟏𝒖(𝒙)) (12) 

where 

𝒖(𝒙) = 𝑭𝑻𝑹−𝟏𝒓(𝒙) − 𝒇(𝒙) (13) 

and 𝒓(𝒙) is the vector of cross-correlations between the samples 𝒙𝒊 and the prediction point 𝒙. 
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Computational Design of Experiments 
Gaussian Process Regression, as detailed in the prior subsection, relies upon a training data set.  Such training 

data sets were generated by exercising a full-order finite element model for which computational design of 

experiments were constructed using Latin Hypercube Sampling (LHS) and a generalized Latin Hypercube 

sampling method called Latinized Partially Stratified Sampling (LPSS) (Shields & Zhang, 2016).  In contrast 

to random Monte Carlo sampling, LHS aims to spread the sample points evenly across all possible values.  

LHS partitions each input parameter distribution into intervals of equal probability, and selects one sample 

from each interval, and shuffles the sample for each input so that there is no correlation.  The LPSS method 

performs simultaneous Latin sampling of all variables and stratified sampling of subsets of variables, and has 

been shown to provide variance reduction in the context of parameter interactions. 

Global Sensitivity Analysis 
While many methods of sensitivity analysis exist (Morgan, et al., 1992), global sensitivity analysis (GSA) is 

employed herein as a variance-based technique, which surveys the full parameter space.  For this application, 

GSA provides insight as to the relative importance of multiple parameters (forcing functions), which mutually 

influence the forced response of interest.  Furthermore, GSA accounts for uncertainty in the input parameter 

space so that each plausible combination of relative forcing function variations is considered.   

First-order sensitivity indices for output 𝜖 = 𝑓(𝑷) given input parameters 𝑷 = (𝑝1, 𝑝2, … , 𝑝𝑛) are defined as 

(Saltelli, et al., 2008):   

𝑆𝑖 =
𝑉[𝐸(𝜖|𝑝𝑖)]

𝑉(𝜖)
 (14) 

where V[⋅] denotes the variance operator. The expected value of 𝝐 can be evaluated by the 𝑛 dimensional 

integral: 

𝐸(𝝐) = ∫ 𝑓(𝑝)𝑑𝑝
𝐼𝑛

 (15) 

in which 𝐼𝑛 is the 𝑛 dimensional unit hypercube.  The Fourier amplitude (FAST) method, is used for the 

present study to convert the 𝑛 dimensional integral into a one-dimensional integral as a function of a new 

variable 𝑠 as follows.   

The essence of FAST is to generate a curve in the parameter space that is a periodic function of each 

parameter, with a different frequency for each.  The contribution of each input is measured by the contribution 

of its characteristic frequency Ω𝑖 to the outputs (Morgan, et al., 1992). 

First, per (Cannavo, 2012) the function 𝑓(𝑷) may be expanded as: 

𝑓(𝑷) = 𝑓0 + ∑ ∑ 𝑓𝑖1…𝑖𝑠
(𝑝𝑖1

, … , 𝑝𝑖𝑠
)

𝑖1<⋯<𝑖𝑠

𝑛

𝑠=1

 (16) 

This summation is over all possible combinations of 𝑠 different input variables.  The component 𝑓(𝑷) =

𝑓𝑖1…𝑖𝑠
(𝑝𝑖1

, … , 𝑝𝑖𝑠
) can then be expressed as a Fourier series: 

𝑓(𝑷) = ∑ ∑ …

∞

𝑘2=−∞

∞

𝑘1=−∞

∑ 𝐶𝑘1𝑘2…𝑘𝑛

∞

𝑘𝑛=−∞

𝑒𝑗2𝜋(𝑘1𝑝1+𝑘2𝑝2+⋯+𝑘𝑛𝑝𝑛) (17) 
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With Fourier coefficients: 

𝐶𝑘1𝑘2…𝑘𝑛
= ∫ 𝑓(𝑷)𝑒𝑗2𝜋(𝑘1𝑝1+𝑘2𝑝2+⋯+𝑘𝑛𝑝𝑛)𝑑𝑷

𝐼𝑛

 (18) 

The variances result in the sums of the parts of the Fourier coefficients: 

𝑉{𝑓𝑖1…𝑖𝑠
} = ∑ … ∑ |𝐶𝑘𝑖1…𝑘𝑖𝑠

|

∞

𝑘𝑖𝑠=−∞

∞

𝑘𝑖1=−∞

 (19) 

In order to solve the 𝑛 dimensional integral, every input is expressed as a function of a new independent 

variable 𝑠 as: 

𝑝𝑖(𝑠) =
1

2
+ sin−1(sin(Ω𝑖𝑠)) (20) 

Correspondingly, the expected value of 𝑦 can then be expressed as 
1

2𝜋
∫ 𝑓(𝑠)𝑑𝑠

𝜋

−𝜋
.  Solution of this integral 

involves an analysis of variance (ANOVA) decomposition which includes the calculation of Fourier 

coefficients 𝐶𝑘𝑖
, where index 𝑖 pertains to the summation of the ANOVA.  This method involves numerical 

integration of: 

𝐶𝑘𝑖
=

1

2𝜋
∫ 𝑓(𝑠)𝑒−𝑗2𝜋𝑘𝑖Ω𝑖𝑠𝑑𝑠

𝜋

−𝜋

 (21) 

The number of discrete intervals used to evaluate this integral is defined by variable 𝑀.  Per (McRae, et al., 

1980), the choice of 𝑀 and the number of inputs 𝑘 govern the number of model runs used to compute the GSA 

indices.  Since the number of inputs is set for the upper internals FIV study evaluated herein, the parameter 𝑀 

was adjusted to change the number of model runs used by the GSA.  Finally, the numerator needed for 

computing the global sensitivity indices is calculated as: 

𝐸(𝑦|𝑝𝑖) = ∑|𝐶𝑘𝑖
|

𝑖

 (22) 

Therefore, substituting Equation (22) into Equation (14) provides first-order global sensitivity indices: 

𝑆𝑖 =
𝑉[∑ |𝐶𝑘𝑖

|𝑖 ]

𝑉(𝑦)
 (23) 
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GSA for Upper Internals Model 
First, the response of the upper internals assembly of a nuclear reactor subject to FIV is investigated. Per 

ASME Code design guidelines, as shown in Subsection NG of (ASME, 2017), and also for purposes of 

manufacturability and regulatory acceptance, reactor internal assembly core supports are generally constructed 

of geometrically simple shapes.  As such, various structures, such as lower and upper support columns, can be 

rightly approximated as axisymmetric beams.  As an example, Figure 4 shows an upper internals assembly for 

the AP1000 plant. 

 

FIGURE 4 - UPPER INTERNALS ASSEMBLY FOR THE AP1000 PLANT (FROM (WESTINGHOUSE 

ELECTRIC COMPANY, 2011)) 

A simplified finite element model to solve the problem described above in the above Random Vibration 

Section of the assembly was built in ANSYS using linear hexahedral elements.  The material was austenitic 

stainless steel with density 7,850 
𝑘𝑔

𝑚3, Poisson’s ratio 0.3, and elastic modulus 2 × 1011𝑃𝑎.  The material was 

considered linear elastic and geometric nonlinearities were not considered. The structure was supported with 

simple supports at the top rim of the upper support skirt, in the sense that displacement was zero in all three 

translational degrees of freedom, and subjected to three direct-applied forcing functions to the support columns 

acting in the radially outward direction, lateral forcing functions on each of the upper core plate and upper 

support plate acting in mutually perpendicular directions, and a vertical forcing function on the upper core 

plate.  The model, including boundary conditions and loads is shown in Figure 5.  The output of interest from 

this model was assumed to be the axial (normal) strain, denoted 𝜖, of the upper support skirt in the interest of 

simulating a virtual strain gauge measurement; see Figure 5.  As a simplification for this study, fluid elements 

were not included.  Although the surrounding fluid would impart an effective added mass to the structure, the 

U P P E R  G U ID E

T U B E

U P P E R  S U P P O R T

C O L U M N

U P P E R  C O R E

P L A T E

L O W E R  G U ID E  T U B E

U P P E R  S U P P O R T

A S S E M B L Y

IN S T R U M E N T A T IO N

G R ID  A S S E M B L Y

(IG A )

A A

V IE W  A -A

STRAIN

GAUGE

LOCATION



14 of 30 

focus of this work lies in the application of GSA methods, and so the conclusions would not be impacted by 

this added mass effect. 

 

FIGURE 5 - UPPER INTERNALS MODEL, MESH, AND BOUNDARY CONDITIONS 

Two types of loads were applied to the structure: 1. Cross-flow loads on the support columns, and 2. Base 

motions applied to the upper core plate and upper support plate. Cross-flow loads correspond to forces induced 

on the columns by turbulent flow of coolant over the columns. Here, cross-flow loads were modeled as a 

stochastic process that is fully correlated along the length of the column. To more accurately predict forced 

response, the cross-flow loading could be defined with an uncertain correlation length and permitted to vary 

between one and three diameters along the length of the column (consistent with that observed by Mulcahy for 

turbulent cross-flow (Mulcahy, 1982)).  However, this was considered a secondary effect and, for this study, 

was not considered. The term “base motion” is used for displacements applied to the upper core plate and 

upper support plate as those loads are caused by adjacent reactor components which were not included in the 

finite element model (e.g., base motion imparted from the core barrel to the upper support plate). 

Both the direct-applied and base motion loading were applied from 0 – 2,000 Hz with exponential spectral 

decay of 𝐺(𝜔) ∝ 𝜔−1.75, as illustrated in Figure 6. This spectral decay appears consistent with the non-

dimensional forced response PSDs provided by (Au-Yang & Jordan, 1980) and (Mulcahy, 1982).  For 

comparison, forced response data from a column-like structure exposed to cross-flow loading from a CVAP 
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hot functional test program is shown in Figure 6 with dashed lines.  The peaks in the forced response 

correspond to the natural frequencies of the structure, but it may be seen that the broadband decay of the 

applied forcing function is consistent with the data. Statistical analysis of this same dataset reveals that the 

forced response is Gaussian, ergodic and stationary. 

 

FIGURE 6 - FORCING FUNCTION NON-DIMENSIONAL POWER SPECTRAL DENSITY (WITH BEAM 

FORCED RESPONSE DATA OVERLAID) 

For GSA, the magnitude of the PSD was scaled as shown by the 𝜆 terms in Table 2.  In this analysis, the 𝜆 

terms were assigned a Uniform distribution on the range [0.9, 1.1], from which random samples were drawn 

for the computational DOE.  A Uniform distribution was chosen because the expected value of the PSD for 

any of these forcing functions is of equivalent likelihood of falling anywhere within a ±10% about the nominal 

value.  The magnitude of the force and displacement PSDs were chosen based on the approximate order of 

magnitude of which these loads have been recorded from various historical instrumented Hot Functional Tests 

and sub-scale tests of PWRs. 
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TABLE 2  
FORCING FUNCTIONS APPLIED TO UPPER INTERNALS FINITE ELEMENT MODEL 

Forcing Function Type of Excitation PSD Scaling 

Cross-Flow across Support 

Columns 
Force 

�̃�𝑥
𝐹(𝜔)𝑈𝑆𝐶.𝐶𝑒𝑛𝑡𝑒𝑟 = 𝜆𝑈𝑆𝐶.𝐶𝑒𝑛𝑡𝑒𝑟 × 𝐺𝑥

𝐹(𝜔) 

�̃�𝑥
𝐹(𝜔)𝑈𝑆𝐶.𝑀𝑖𝑑 = 𝜆𝑈𝑆𝐶.𝑀𝑖𝑑 × 𝐺𝑥

𝐹(𝜔) 

�̃�𝑥
𝐹(𝜔)𝑈𝑆𝐶.𝑂𝑢𝑡𝑒𝑟 = 𝜆𝑈𝑆𝐶.𝑂𝑢𝑡𝑒𝑟 × 𝐺𝑥

𝐹(𝜔) 

Base motion applied to Upper 

Core Plate and Upper Support 

Plate 

Displacement 

�̃�𝑥
𝛿(𝜔)𝑈𝐶𝑃.𝐸𝑑𝑔𝑒 = 𝜆𝑈𝐶𝑃.𝐸𝑑𝑔𝑒 × 𝐺𝑥

𝛿(𝜔) 

�̃�𝑧
𝛿(𝜔)𝑈𝑆𝑃.𝐸𝑑𝑔𝑒 = 𝜆𝑈𝑆𝑃.𝐸𝑑𝑔𝑒 × 𝐺𝑧

𝛿(𝜔) 

�̃�𝑦
𝛿(𝜔)𝑈𝐶𝑃.𝐹𝑎𝑐𝑒 = 𝜆𝑈𝐶𝑃.𝐹𝑎𝑐𝑒 × 𝐺𝑦

𝛿(𝜔) 

 

Surrogate Model Verification 
It is of interest to determine how the relative difference in sensitivity indices compares with an independent 

measure of surrogate model accuracy, such as the error between output strains predicted by the Surrogate 

model and an independent (i.e., not used to train the surrogate models) set of data from the full-order model.  

To examine this, 100 full-order simulations were sampled independent of the training sets of data used to 

establish the Surrogate models.  Then, the trained Surrogate models were exercised on this independent dataset 

of 100 to evaluate how well the surrogate model estimations agreed with the full-order model results.  The 

measure of error chosen for these tests was the Root Mean Square (RMS) error based on the Frobenius Norm, 

which may be defined as: 

‖𝐸‖𝐹 ≡ √
1

𝑚
∑ |(𝜖𝐹𝑢𝑙𝑙𝑂𝑟𝑑𝑒𝑟𝑀𝑜𝑑𝑒𝑙 − 𝜖𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙)

𝑖
|

2
𝑚

𝑖=1

 

Where 𝜖𝐹𝑢𝑙𝑙𝑂𝑟𝑑𝑒𝑟𝑀𝑜𝑑𝑒𝑙 − 𝜖𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙 is the difference between the 𝑖𝑡ℎ result predicted by the Kriging 

model and the associated result of the full-order model.  Variable 𝜖 represents the axial strain on the upper 

support skirt.  Figure 7 shows the RMS error between the full-order model and surrogate models constructed 

from three different DOE strategies, LHS, LPSS, and FAST sample points, and each with a varying number of 

training datasets from 27 to 1,728.  A steep decrease in error by approximately a factor of 10 is observed with 

increasing sample size beyond 64 for all Surrogates and, while some small variability is observed from the 

Surrogates which were trained from the different DOE methods, the error is less than 0.01 𝜇𝜖, and thus judged 

negligibly small, in every case for samples sizes of 125 and greater.  The minimum number of samples studied 

for FAST was 393 based on the use of six random variables, per the (Cukier, et al., 1978) algorithm encoded in 

the SAFE toolbox (Pianosi, et al., 2015).  Note that on this and subsequent similar figures, dotted or dashed 

lines in lieu of solid lines are used to indicate that data between the markers were not directly calculated in this 

work.  For further comparison, these results were also compared with a Box-Behnken design (Montgomery, 

2013) in the interest of understanding how such a traditional DOE approach may perform, and the RMS error 

of the Box-Behnken design was 15% higher than that associated with LHS, LPSS, and FAST. 
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FIGURE 7 - SURROGATE MODEL VERIFICATION BY COMPARISON TO TEST SET USING ROOT 

MEAN SQUARED ERROR (MICROSTRAIN) 
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Global Sensitivity Analysis Results 
Given some understanding of the accuracy of the Surrogate model, it is now of interest to examine the change 

in GSA results having to do with increasing the sample size and changing the sampling method.  To that end, 

the following subsections present the results of the three workflows illustrated in Figure 3.   

Prior to examining the results from each workflow, the physical significance of the GSA results is noteworthy.  

The GSA results from all workflows show that the base motion loads acting in the lateral direction at both the 

Upper Core Plate (UCP) and Upper Support Plate (USP) each account for 41% of the output variance, the UCP 

vertical forcing function accounts for 16% of the output variance, and the sum total of the direct-applied cross-

flow loads account for less than 1% of the output variance.  This is meaningful in the sense that the dynamic 

response of the upper internals assembly is governed more by turbulence which imparts loads to the interface 

joints (i.e., upper support flange) more so that turbulence which acts directly upon the upper support columns.   

This sort of observation serves to inform key engineering decisions related to up-front design investments as 

well as in diagnostics during plant operation.  For example, to borrow a principle of decision theory, the 

expected value of perfect information would be much greater to define the forces associated with base motion 

loads than direct-applied cross-flow loads, during the design stage of a new reactor.  Correspondingly, given 

the extreme difficulty of placing sensors within an operating reactor environment, it is valuable to understand 

that measuring the flow field directly by placing a sensor within the upper plenum would provide very limited 

insight into the structural dynamic behavior of the upper internals structures.   

Workflow 1: Full-Order Model GSA using FAST 
Using the SAFE toolbox documented in (Pianosi, et al., 2015) (for which the underlying methodology is 

similar to that implemented in UQLab (Marelli & Sudret, 2014)), GSA was performed, first using the full-

order model described.  An increasing number of samples were generated for the 6 inputs to the full-order 

model until convergence of the sensitivity indices was observed.  The number of simulations required to 

produce sensitivity indices that did not change more than 0.3% (or a sensitivity index magnitude of 0.0005) 

upon further samples was 5,000.  Convergence of the sensitivity indices is plotted in Figure 8, from which it 

may be seen that there was no substantial change in the magnitude of the sensitivity indices as sample sizes 

greater than 512.  Specifically, between 1,728 and 5,000 samples, the sensitivity indices associated with the 

base motion loads differed by less than 0.0005 and those associated with cross-flow loads differed by less than 

3.6 × 10−5. 

Using the model evaluations from the FAST GSA, a kriging surrogate was built for four sample sizes.  In so 

doing, this leverages the computational data already-accumulated from establishing the full-order model based 

sensitivity indices, without the need to generate additional model realizations from a computational DOE with 

some alternative sampling method such as LHS or LPSS.  Then, in order to provide confidence in the 

robustness of using a surrogate for GSA, sensitivity indices from these surrogate models were calculated using 

FAST (implemented in SAFE (Pianosi, et al., 2015)), which are shown in Figure 9.  The black circles on 

Figure 9 represent the benchmark sensitivities against which the surrogate-based sensitivities are compared 

(i.e., the sensitivities associated with 5,000 samples from Figure 8), and the differences between the surrogate-

computed first order sensitivity indices 𝑆1
𝑆𝑢𝑟𝑟 and those computed from the full-order model 𝑆1

𝐹𝐸𝐴 are then 

shown on Figure 10.  Given that this problem had 6 random inputs, the minimum number of samples evaluated 

using FAST was 393 (Cukier, et al., 1978), and the subsequent three sample sizes considered were 512, 1,000, 

and 1,728. 
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FIGURE 8 – FULL-ORDER MODEL GLOBAL SENSITIVITY ANALYSIS CONVERGENCE 
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FIGURE 9 - GSA FROM KRIGING SURROGATES TRAINED WITH FAST AT VARYING SAMPLE SIZES 

 

FIGURE 10 – FAST-TRAINED SURROGATE-BASED SENSITIVITIES VS BENCHMARK 
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Workflows 2-3: GSA from DOE-based surrogates 
In workflows 2-3 from Figure 3, two different sampling methods of computational design of experiments were 

used to construct a surrogate model for GSA. Following Workflow 2, the kriging surrogate is constructed from 

samples generated by LHS. Following Workflow 3, the kriging surrogate is built from samples generated from 

LPSS. In this case we consider LPSS designs in which the crossflow loads are grouped for stratification and 

the base motion displacement loads are grouped for stratification. This LPSS design is described in Table 3 

and results in samples sizes of 27, 64, 125, 512, 1000 and 1728 samples from which the surrogate model is 

trained. LHS of the same size are used for a fair comparison.  

 

TABLE 3 - SETUP OF PARTIALLY STRATIFIED SAMPLING DESIGN  

forcing function 
sub-domain 

dimension (Ni) 
strata 

number of 
samples 

cross-flow  
(inner, middle, outer on upper support column) 

3 
3 
4 
5 
8 

10 
12 

27 
64 
125 
512 

1000 
1728 

base motion  
(upper core plate, upper support plate, vertical) 

3 

number of dimensions 6  

 

Global sensitivity analyses were then performed on the surrogate models in Workflows 2 and 3, again using 

FAST as implemented within (Pianosi, et al., 2015).  For each sample size, the resultant first-order Sensitivity 

indices are shown in Figure 11 and Figure 12 based on LHS and LPSS, respectively, in which the black circles 

are the benchmark sensitivities computed from the full-order model directly.  It may be seen that the 

sensitivities are very similar between those computed from surrogates trained from LHS or LPSS, with a 

maximum relative difference of 0.98% on the cross-flow load sensitivities or 0.002% on the base motion load 

sensitivities.  This data (i.e., Workflows 2 and 3), along with the surrogate-based sensitivities established from 

FAST sampling (Workflow 1) is shown in Table 4 as well.  Figure 13 and Figure 14 show the differences 

between the surrogate-based sensitivities and those from the full-order model.  Aside from the lowest sample 

numbers (e.g., 27 or 64), increasing the sample size beyond 125 had an almost negligible effect on how well 

the surrogate-based sensitivities compared with the benchmark values computed directly from the full-order 

finite element analysis.  This suggests that, for this stationary FIV problem, there is minimal accuracy to be 

gained of the sensitivity analysis results by u sing large sample sizes beyond those for which the surrogate 

model verification error cease to decrease beyond approximately 0.01 𝜇𝜖 (see Figure 7 compared to Figure 13 

and Figure 14). 

Next, Figure 15 and Figure 16 show the results associated with the surrogates trained from FAST sampling, 

LHS, and LPSS are overlaid on the same graph.  Of significance is that even though the surrogates used to 

calculate these sensitivities were constructed from different sampling strategies, the resultant global 

sensitivities do not appreciably differ from one another which serves to demonstrate the stability of the GSA 

results. 
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FIGURE 11 - COMPARISON OF SENSITIVITIES FROM LHS-TRAINED SURROGATE MODELS 

 

FIGURE 12 - COMPARISON OF SENSITIVITIES FROM LPSS-TRAINED SURROGATE MODELS  
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FIGURE 13 – COMPARISON OF LHS-TRAINED AND LPSS-TRAINED SURROGATE-BASED 

SENSITIVITIES TO BENCHMARK FOR BASE MOTION LOADS 

 

FIGURE 14 – COMPARISON OF LHS-TRAINED AND LPSS-TRAINED SURROGATE-BASED 

SENSITIVITIES TO BENCHMARK FOR CROSS-FLOW LOADS  
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FIGURE 15 - SURROGATE-BASED SENSITIVITIES VS. BENCHMARK FOR BASE MOTION LOADS 

 

FIGURE 16 - SURROGATE-BASED SENSITIVITIES VS. BENCHMARK FOR CROSS-FLOW LOADS 
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TABLE 4  
SENSITIVITY INDICES COMPUTED FROM SURROGATE MODELS 

Forcing 
Function 

NFullOrderRuns 
Cross-Flow 

(Inner) 
Cross-Flow 

(Mid) 
Cross-Flow 

(Outer) 
Upper Support 
Plate Lateral 

Upper Core 
Plate Lateral 

Upper Core 
Plate Vertical 

Sum 

Kriging Model 
built from 
LPSS 

27 3.61 x 10-5 6.11 x 10-5 2.53 x 10-4 0.4107 0.4116 0.1626 0.985 

64 3.71 x 10-7 2.58 x 10-6 6.31 x 10-5 0.4124 0.4087 0.1632 0.984 

125 3.24 x 10-7 2.92 x 10-6 6.30 x 10-5 0.4125 0.4086 0.1633 0.984 

512 3.16 x 10-7 3.09 x 10-6 6.28 x 10-5 0.4125 0.4085 0.1634 0.984 

1000 3.17 x 10-7 3.13 x 10-6 6.28 x 10-5 0.4124 0.4085 0.1634 0.984 

1728 3.16 x 10-7 3.15 x 10-6 6.29 x 10-5 0.4124 0.4085 0.1634 0.984 

Kriging Model 
built from LHS 

27 8.29 x 10-6 6.04 x 10-5 2.87 x 10-4 0.4270 0.3912 0.1665 0.985 

64 3.21 x 10-7 3.14 x 10-6 6.19 x 10-5 0.4126 0.4085 0.1633 0.984 

125 3.18 x 10-7 3.08 x 10-6 6.25 x 10-5 0.4126 0.4084 0.1634 0.984 

512 3.16 x 10-7 3.13 x 10-6 6.27 x 10-5 0.4125 0.4084 0.1634 0.984 

1000 3.17 x 10-7 3.18 x 10-6 6.27 x 10-5 0.4124 0.4085 0.1634 0.984 

1728 3.18 x 10-7 3.18 x 10-6 6.29 x 10-5 0.4124 0.4085 0.1634 0.984 

Kriging Model 
built from 
FAST GSA 
samples 

393 3.18 x 10-7 3.20 x 10-6 6.28 x 10-5 0.4124 0.4085 0.1634 0.984 

512 3.16 x 10-7 3.14 x 10-6 6.30 x 10-5 0.4124 0.4085 0.1634 0.984 

1000 3.17 x 10-7 3.19 x 10-6 6.28 x 10-5 0.4124 0.4085 0.1634 0.984 

1728 3.17 x 10-7 3.18 x 10-6 6.29 x 10-5 0.4124 0.4085 0.1634 0.984 
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Additional Discussion of Results 
In addition to the physical insight offered by the GSA, the accuracy of the surrogate models which were 

constructed using designed computational experiments is compared with the convergence of the GSA results.  

Although at sample sizes of greater than 500, the differences in surrogate-based GSA results with respect to 

full-order model GSA results were shown to be small, and also insensitive to the method used to sample the 

parameter space (e.g., FAST, LHS, or LPSS), some noteworthy differences are observed for smaller sample 

sizes.  From the results at smaller sample sizes, two items are noteworthy.  First, LHS and LPSS reduce the 

number of samples needed to assess sensitivity as compared to sampling the parameter space directly with 

FAST.  The minimum number of samples used for FAST was 393, based on the number of integration points 

needed to resolve the underlying periodic functions for the dimensionality of this problem.  In terms of both 

the surrogate verification error and global sensitivities, LHS and LPSS provide comparable results at 64 

samples.  Second, for the very small sample size of 27 the error of the global sensitivities determined from the 

surrogate trained with LPSS is substantially lower than that trained with LHS.  As such, although interaction 

effects may not be strong, the variance reduction provided by LPSS as compared with LHS for a very small 

number of samples is insightful. 

The similar behavior amongst those three methods of sampling the parameter space, as well as the agreement 

between the surrogate-based sensitivities and those computed from the full-order model, provides confidence 

in the stability of the results.  Furthermore, the agreement between sensitivity indices calculated by the 

surrogate and full-order models lends credence as to the veracity of the surrogate models.  Although the 

surrogate verification error was quantified in terms of a strain value and the global sensitivity values are 

unitless, a comparison between these errors may be observed by comparing Figure 7 to Figure 10 for FAST, 

and to Figure 13 and Figure 14 for LHS and LPSS. 

The downcomer forcing function has historically received significant interest (e.g.,  (Au-Yang & Jordan, 

1980)), and to some extent this study helps to substantiate the significance of that particular forcing function.  

The downcomer forcing function acts directly upon lower internals components, such as the core barrel, and 

that motion is then coupled with upper internals components through the upper support flange.  From this 

study, it is apparent that the downcomer forcing function not only directly affects the lower internals response 

(e.g., core barrel), but also manifests itself as a base motion load on the upper internals structures and proves 

even more dominant as a base motion load than the cross-flow loads acting directly upon the upper internals 

components.  This is a meaningful observation in the sense that much effort has traditionally been devoted to 

characterizing flow fields in the upper plenum region of the reactor.  It is thus apparent that from the 

perspective of the structural dynamic response of the upper support assembly subjected to flow-induced 

excitation, rigorous characterization of the upper plenum flow field may be, to some extent, unwarranted.  As a 

caution, this point is not necessarily generalizable to all PWRs, but is nonetheless a meaningful observation for 

the particular analysis presented herein. 

These observations have implications in terms of both nuclear component design and diagnostics.  For design 

of a complex reactor assembly, characterization of forcing functions incurs significant engineering cost 

involving scale model test programs and computationally expensive computational fluid dynamics (CFD) 

simulations.  Thus, if the forced response of a complex assembly is governed by a select few forcing functions, 

albeit of uncertain magnitude, a surrogate model defined by those forcing functions may be exercised easily to 

make risk informed decisions to focus on development of specific forcing functions during the design process.  

For diagnostics, dynamic instrumentation of an operating reactor incurs great cost to plant owners.  Thus, if a 

given component is experiencing anomalous behavior, which is observable from its structural dynamic 

behavior, and it is known which few forcing functions govern the associated forced response, the amount of 
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required dynamic instrumentation may be limited in order to diagnose potential problems.  Furthermore, an 

inverse problem may be constructed and parameterized so as to seek optimal, or most-likely, values of the 

dominant forcing functions. 

 

Conclusions 
A surrogate model prototypic of an upper internals reactor subassembly was constructed.  This model included 

6 independent forcing functions (with variance) and one output forced response variable (axial strain).  The 

global sensitivity analyses showed that for the response variable of interests, three of the total six forcing 

functions dominate the response of the structure.   

Three different workflows were studied in which the Kriging surrogates were trained using different methods 

of sampling the parameter space; namely FAST, LHS, and LPSS.  For large sample sizes, all approaches 

converged to produce accurate global sensitivities which provides confidence in the model results and suggests 

a stable sensitivity analysis result.  For relatively small sample sizes, LHS and LPSS were shown to yield 

surrogates with improved accuracy relative to those yielded from FAST.  For very small sample sizes, LPSS is 

shown to yield improved accuracy relative to LHS. 

The optimal selection of Kriging trend and correlation functions depends on the application at-hand. Recently, 

novel model selection criterion and model averaging technique that employs the information-theoretic 

multimodel inference have been documented (Sundar & Shields, 2018).  Similarly, aggregate surrogate 

modeling methods adaptively trained by a unique universal predictive distribution have recently been 

documented in (Salem, et al., 2017) and (Salem & Tomaso, 2018), and initially explored in (Banyay, et al., 

2018).  Additional future planned work may thus involve the application of those and similar methods to those 

used herein for a reactor assembly model with non-linearities (i.e., non-linear springs and dampers) and non-

stationary loading (i.e., loss-of-coolant-accident acoustic or seismic loads), with varying ranges of parameter 

perturbations.   
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