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A recently proposed variational principle with a discontinuous

Lagrangian for viscous flow is reinterpreted against the

background of stochastic variational descriptions of dissipative

systems, underpinning its physical basis from a different

viewpoint. It is shown that additional non-classical contributions

to the friction force occurring in the momentum balance vanish

by time averaging. Accordingly, the discontinuous Lagrangian

can alternatively be understood from the standpoint of an

analogous deterministic model for irreversible processes of

stochastic character. A comparison is made with established

stochastic variational descriptions and an alternative

deterministic approach based on a first integral of Navier–

Stokes equations is undertaken. The applicability of the

discontinuous Lagrangian approach for different Reynolds

number regimes is discussed considering the Kolmogorov time

scale. A generalization for compressible flow is elaborated and

its use demonstrated for damped sound waves.

1. Introduction
Finding variational formulations for physical systems is beneficial

with respect to a deeper understanding of the system and

for establishing new solution methods, both analytical and

numerical. As is well known, this methodical concept is ideally

suited to, for example, the field of conservative Newtonian

mechanics. Contrary to this, in continuum theories many open

problems remain unsolved, typically in the field of viscous flow;

since there are, in general, no obligatory construction rules for

establishing variational principles, for certain problems a variety of

suggestions have appeared from different authors based on

different approaches. One has to distinguish between two major

categories, namely between variational formulations based on a

field description (Eulerian description), and stochastic variational

description based on a material description (Lagrangian

description) and averaging particle motion.
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1.1. Variational formulations based on Clebsch transformation

Early attempts by Millikan [1] showed the non-existence of a Lagrangian in terms of the velocity u, the

pressure p and their first-order derivatives that delivers the Navier–Stokes equations as Euler–Lagrange

equations. A different approach based on the representation of the velocity u by three potentials, i.e. by

auxiliary fields, has been established by Clebsch [2], Lamb [3], Panton [4], but in its original form his

approach is restricted to inviscid flows. Later modified forms of the Clebsch transformation have been

applied successfully to magnetohydrodynamics (MHD) [5] and plasma dynamics [6]. A generalized

Clebsch transformation for viscous flow has been suggested by Scholle & Marner [7], but the field

equations resulting from it are not self-adjoint.

Since in viscous flow dissipation1 leads to an irreversible transfer of mechanical energy to heat,

thermal degrees of freedom have to be considered in order to remain consistent with Noether’s

theorem which implies conservation of energy for every Lagrangian being invariant with respect to

time-translations. Seliger & Whitham [8] made a first decisive step by establishing a Lagrangian that

can be interpreted as a generalized form of Clebsch’s Lagrangian, supplemented by two additional

fields: the specific entropy s and an additional field q, introduced three decades previously by Van

Dantzig [9] as the material integral of the temperature T, i.e. Dtq ¼ T, and termed thermasy, where

Dt ¼ @=@tþ u � r.

Despite including thermal degrees of freedom, Seliger and Whitham’s approach remains restricted to

adiabatic and therefore reversible processes. As a continuation of their work, Zuckerwar & Ash [10]

suggested an extended Lagrangian considering only volume viscosity, leading to equations of motion

containing qualitatively the effect of volume viscosity but differing quantitatively from the

compressible Navier–Stokes equations, also known as the Navier–Stokes–Duhem equations [11,12]

without shear viscosity. They interpret their result as a generalization of the theory of viscous flow

towards thermodynamic non-equilibrium. Based on a rigorous analysis of the fundamental

symmetries the Lagrangian has to fulfil, with particular regard to Galilean invariance [13], Scholle &

Marner [14] suggested a Lagrangian for viscous flow considering both shear viscosity h and volume

viscosity h0 reproducing Zuckerwar and Ash’s Lagrangian for the case h ¼ 0. Again, the resulting

equations of motion differ from the Navier–Stokes–Duhem equations. Considering six simple flow

examples, two of them (steady shear flows) gave exact reproductions of the classical solutions, two

other (transient flows) show the impact of viscosity on the flow at least in a qualitatively correct

manner, whereas no physically reasonable solutions could be constructed for two pressure-driven flows.

In order to resolve the above issue, Scholle & Marner [14] made use of an analogy between quantum

mechanics and fluid mechanics discovered by Madelung [15] to formulate a new Lagrangian by relating

the specific entropy s and the thermasy q to a complex field x, termed the field of thermal excitation by

Anthony [16], ending up with a discontinuous Lagrangian containing an additional parameter v0. By

a careful analysis it is proven that the dynamics resulting from Hamilton’s principle can consistently

be interpreted as a generalization of the theory of viscous flow towards thermodynamic non-

equilibrium, with the parameter v0 being the relaxation rate, giving rise to recovery of the well-known

Navier–Stokes equations and the balance of inner energy when applying the limit v0!1 to the

resulting equations of motion.
1.2. Variational formulations based on the first integral approach
In 1994, Ranger [17] constructed an exact complex-valued first integral of the Navier–Stokes equations

for steady two-dimensional (2D) flow, by introducing an auxiliary potential field F. A first attempt to

formulate a variational principle for this first integral was made by He [18,19], but is restricted to

inviscid steady 2D flows only and feature unresolved issues [20]. For viscous steady 2D flows, Scholle

et al. [21] made use of a Lagrangian in terms of the first-order derivatives of the streamfunction c and

the auxiliary potential field F in order to study inertial effects in Couette flows confined between

wavy plates by means of Ritz’s direct method. The first integral approach has been progressively

generalized; beginning with [22] and followed by an exact complex-valued first integral of the 2D

unsteady Navier–Stokes equations [23], culminating finally in the case of three-dimensional (3D)

incompressible viscous flow [24], which can be derived using a potential formulation similar to that
1In the present work by dissipation, the irreversible transfer of energy from mechanical to thermal energy is understood from the

physicist’s viewpoint while the total energy (¼sum of mechanical and thermal energy) is conserved. This compares strongly to the

mathematician’s viewpoint from which dissipation is simply understood as a loss of energy.
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employed in the reduction of Maxwell’s equations. By paying particular attention to the use of apposite

gauge criteria for the potentials, self-adjointness can be reached at least for the steady case, leading to a

variational formulation for the first integral for steady viscous 3D flow.

1.3. Stochastic variational description
An alternative to the above classical theoretical, deterministic field approach to the problem of finding a

variational principle for viscous flow is a stochastic variational description, based on the Lagrangian

equations of motion in terms of material path lines instead of a field description, making use of a

statistical treatment of kinetic models (e.g. [25–28]). These start from a Lagrangian description of fluid

motion and are focused on a statistical view of individual particle motion. The main idea of this

approach, the roots of which are to be found in Feynman’s path integrals, is that the particle motion

is assumed to be stochastic with a drift that corresponds to a critical point of an action functional.

Using a generalized framework provided by Arnaudon et al. [29] and Chen et al. [30], further

prominent equations in continuum mechanics, e.g. the MHD equations, can be obtained.

An obvious advantage of this approach is that it is very close to classical Newtonian mechanics, where

the Lagrange formalism has been successfully established, allowing adoption of many of its features.

1.4. Aim and scope of this paper
The variational principle formulated in [24] is based on a potential representation of the field equations

and therefore of pure deterministic nature. Alternatively, scientists working on statistical physics have

provided models for viscous flow based on a stochastic variational description. At first glance, these

two approaches belong to disjunct concepts that have nothing in common. In this context, the work

presented in [14], although originally motivated by previous research involving deterministic field

theories, seems to embrace aspects of both concepts and can therefore be considered as a kind of ‘in-

between’ of lying betwixt deterministic and statistic approach, since equations of motions result which

are the classical ones plus ‘deterministic’ fluctuations.

The question, as to how these two different concepts compare to each other is investigated in the

following. Another relevant question is how this concept applies to compressible flow.

It should be mentioned that for an arbitrary velocity field u the existence of the Clebsch variablesF,a, b is

surely given only locally. Their global existence depends on the topological features of the flow: in the case of a

non-vanishing integral of helicity, for example, for flows with closed vortex lines that form linked rings or with

isolated points of zero vorticity, global existence is not a given. Further details can be found in, for example, the

classical work of Balkovsky [31] and Yoshida [32] or in the more recent work of Ohkitani & Constantin [33],

Cartes et al. [34] and Ohkitani [35]. In the case of global non-existence, completeness of the Clebsch

representation requires the use of multiple pairs of variables, such as u ¼ rFþ a1rb1 þ a2rb2 þ � � �.
Subsequently writing airbi for a1rb1 þ a2rb2 þ � � � and analogously aiDtbi for a1Dtb1 þ a2Dtb2 þ . . .

aids understanding in the sense that the number of pairs has to be chosen adequately depending on the

topological features of the respective individual flow problem. It is, however, not the aim of this paper to

contribute to this particular research topic to which so many research groups have already contributed

over several decades. In fact, the focus here is mainly on the use of discontinuous modelling of continuous

systems and its statistical interpretation as well as the generalization of the concept toward compressible flow.

The paper is organized as follows: in §2 the foundations of the discontinuous Lagrangian method with

time averaging are laid for incompressible flow and comparisons to alternative approaches, namely

the stochastic variational description and the first integral approach, are drawn. The applicability of the

different approaches for different Reynolds number regimes is discussed. The generalization of the method

to compressible flow is elaborated in §3. In order to demonstrate its capabilities, the method is applied to

damped acoustic waves in §4. Conclusions are drawn in §5 together with prospective further research topics.
2. General analysis for incompressible flow
2.1. The discontinuous Lagrangian for incompressible viscous flow
For incompressible flow with constant specific heat Scholle & Marner [14] suggested the Lagrangian:

‘ ¼ �@0 DtFþ aiDtbi þ
1

v0
Im (�xDtx)� u2

2
þ �xxþ V � n

iv0
ln

ffiffiffi
�x

x

r
tr D2

� �
: (2:1)
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Together with the velocity u, it depends on the three real-valued potential fields F, ai, bi, the so-called

Clebsch variables [2–4], and on the complex-valued field of thermal excitation introduced by Anthony

[16]. Its absolute square delivers the inner energy2 via

�xx ¼ c0T, (2:2)

where c0 is the specific heat, Dt ¼ @=@tþ u � r the material time derivative and

D ¼ 1

2
[r� uþ (r� u)t], (2:3)

is the tensor of the shear rate. Here tr denotes the trace of a tensor, superscript t the transpose, symbol �
the dyadic product and a bar over a complex quantity its complex conjugate. External forces are

considered via their specific potential energy V. Three constants appear in the above Lagrangian:

the mass density @0, the kinematic viscosity n and an additional constant v0 that according to [14] can

be interpreted as a relaxation rate toward thermodynamic equilibrium.

The Euler–Lagrange equations resulting from variation with respect to the elementary fields are

listed below: variation with respect to the Clebsch variable F delivers the continuity equation,

r � u ¼ 0: (2:4)

As a consequence the identity r � (ju) ¼ u � rj, which is fulfilled for any field j, is considered

subsequently. Next, variation with respect to the two remaining Clebsch variables ai and bi lead after

simple manipulation to the transport equations,

Dtbi ¼ 0 (2:5)

and
Dtai ¼ 0; (2:6)

whereas variation with respect to the velocity u delivers

uþ n

v0
r � i ln

ffiffiffi
�x

x

r
2D

� �
� 1

v0
Im (�xrx) ¼ rFþ airbi, (2:7)

which is a generalization of the classic Clebsch representation u ¼ rFþ airbi in the sense that it is not

the velocity field itself that is represented by Clebsch variables but a combined vector field containing the

thermal excitation, its gradient, the shear rate and its divergence.

Finally, by variation with respect to �x the evolution equation,

Dtxþ iv0x ¼
n

2�x
tr D2, (2:8)

results for the thermal excitation; variation of which with respect to �x delivers the complex conjugate of

(2.8). By taking the material time derivative of (2.7) and considering the other Euler–Lagrange equations

(2.4–2.6) and (2.8), gives rise to the following PDEs:

Dtu ¼ �
rp
@0

þ nDu�rV þ fn:e:, (2:9)

as equations of motion. Equation (2.9) differs from the well-known Navier–Stokes equations by the

presence of the additional forces,

fn:e: :¼ � n

v0
i ln

ffiffiffi
�x

x

r
[r tr D2 þ {Dt þr� u} Du]

�

þ {Dt þr� u} 2D Im
rx
x

� �� ��
,

(2:10)

which vanish in the limit v0!1. In the case of finite v0, these additional terms can be classified as

fluctuations due to the time evolution of the phase w ¼ i ln
ffiffiffiffiffiffiffiffi
�x=x

p
of the thermal excitation and its

gradient Im(rx=x) ¼ r[i ln
ffiffiffiffiffiffiffiffi
�x=x

p
] which is investigated below.

A striking feature of the Lagrangian (2.1) is its discontinuity due to its dependence on the phase w.

These discontinuities become manifest along interfaces Sn(t), at which several matching conditions,
2In Anthony’s original work [16], the absolute square of the thermal excitation gives the temperature, but due to dimensional reasons

the factor c0 allows one to determine the dimension of x as ‘length per time’.
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especially for the normal component of the mass flux density

n � [[@0(u� vs)]] ¼ 0, (2:11)

result from variation with respect to F, where the double square bracket indicates the jump at an

interface. vs denotes the local propagation velocity of an interface and n the vector normal to it.

Variation with respect to u leads to the condition

n[[wD]] ¼ 0, (2:12)

indicating a jump of the shear rate vector Dn at the interface due to the discontinuous phase w, physically

associated with a slip. Hence, the moving interfaces Sn(t) can be interpreted as slip waves running

through the fluid. In contrast, variation with respect to w delivers the production condition,

1

2p
rw � [[c0T(u� vs)]] ¼ n tr D2, (2:13)

revealing a discontinuity in the flux of the inner energy c0T ¼ �xx and therefore the production of inner

energy due to dissipation at the interfaces. The two equations (2.8) and (2.13) together involve the

irreversible transfer of kinetic energy to inner energy in accordance with the first law of

thermodynamics, while the entropy increases in accordance with the second law of thermodynamics.

Independent of the question as to whether the presence of these interfaces are an artefact of the model

or indeed physically interpretable as slip waves, they disappear in the limit v0!1 like the additional

forces (2.10) in the equations of motion.

2.2. Time averaging of the equations of motion
By considering the field equation (2.8) for the thermal excitation, one obtains the following PDE:

Dt

ffiffiffi
�x

x

r
¼

ffiffiffiffiffiffiffiffi
x=�x

p
Dt�x�

ffiffiffiffiffiffiffiffi
�x=x

p
Dtx

2x

¼ 1

2

ffiffiffi
x

�x

r
iv0

�x

x
þ n

2x2
tr D2

� �
� 1

2

ffiffiffi
�x

x

r
�iv0 þ

n

2�xx
tr D2

� �
¼ iv0

ffiffiffi
�x

x

r
,

the corresponding general solution of which being
ffiffiffiffiffiffiffiffi
�x=x

p
¼ exp (iv0t� iw0), where Dtw0 ¼ 0. This implies

i ln

ffiffiffi
�x

x

r
¼ S(w0 � v0t), (2:14)

with sawtooth function S(x) ¼ x� 2pb(xþ p)=2pc. The fluctuating character of the term i ln
ffiffiffiffiffiffiffiffi
�x=x

p
is thus

identified, although these fluctuations have to be understood in a pure deterministic sense as rapid

sawtooth-shaped oscillations.

Next, by introduction of the time averaging operation

hc(x, t)i :¼ 1

2t

ðtþt

t�t
c(x, t0) dt0, (2:15)

any discontinuity is eliminated from the equations of motion. Since the value of an integral over a

sawtooth function is generally limited by

� p2

8
�
ðb

a
S(x) dx � p2

8
,

for any choice of the interval limits a and b, expression (2.14), when time averaged, gives

i ln

ffiffiffi
�x

x

r	 

¼ 1

2t

ðtþt

t�t
S(w0 � v0t0) dt0 ¼ 1

2v0t

ðv0[tþt]

v0[t�t]

S(w0 � j) dj, (2:16)

and therefore the following restriction on its absolute value:

i ln

ffiffiffi
�x

x

r	 
����
���� � p2

16v0t
:

Furthermore it is assumed that the averaging time span t is much shorter than the typical time scale over

which temporal changes occur in the macroscopic flow. As a consequence, time averaging has no

relevant effect on the remaining terms in (2.10); thus after time averaging, the additional forces fulfil
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hfn:e:i ¼ O (v�2
0 t�1); (2:17)

showing that apart from regularization by time averaging the fluctuating forces are effectively eliminated

from the equations of motion. On the one hand they now tend to zero quadratically with respect to v0,

while on the other they are also proportionally reduced by increasing the averaging time span t.
 lishing.org/journal/rsos
R.Soc.open

sci.6:181595
2.3. Comparison with the stochastic variational description
Despite the many differences between both approaches, a common feature of the two is that the Navier–

Stokes equations are obtained by time averaging. In the case of a stochastic variational description time

averaging is applied to particle motion, whereas in the discontinuous field approach time averaging is,

according to (2.16), applied to the phase of the complex field of thermal excitation, indicating deviation

from the local thermal equilibrium. In this context, the rapid temporal oscillations of i ln
ffiffiffiffiffiffiffiffi
�x=x

p
accommodates the stochastic nature of the microscopic particle movement in the sense of an analogous

deterministic model.

In contrast to the stochastic variational description the discontinuous field approach may

alternatively be used with spatial averaging instead of time averaging. A detailed analysis of this

variant of the theory is under construction and will be provided in forthcoming articles. Considering

the ergodic hypothesis it is expected that, similar to turbulence theory, spatial averaging leads to the

same result as time averaging.

In order to acquire a deeper understanding of the physical system, both approaches are of value.

However, for establishing new solution methods, analytical as well as numerical, the deterministic

field approach suggested by Scholle & Marner [14] may be more advantageous, especially for flows in

finite domains, where no-slip/no-penetration conditions have to be fulfilled at solid boundaries. Using

a field approach, the formulation of these conditions is straight forward; conversely, they are

challenging when using a stochastic-Lagrangian approach [36].
2.4. Comparison with the first integral approach
A decisive feature of the Lagrangian (2.1) is the use of potential fields, which is obligatory as shown in

[1,13]. The question arises, whether the Clebsch transformation is the only potential representation

transforming the equations of motion into a self-adjoint form. At least for steady incompressible flow

an alternative approach has been established recently by Scholle et al. [24], suggesting the Lagrangian

in tensor notation

‘ ¼ @�aijuiu j þ 2hu j �
1

3
@ jF

� �
@i�aij þ

1

2
1ilk1 jpq@l�aij@ p�akq þ h2u2

i þ
1

12
(@iF)2, (2:18)

where the velocity field is, according to ui ¼ 1inm@nCm, expressed by a streamfunction vector Cm, which is

quite different from the Clebsch representation; 1inm denotes the Levi-Civita symbol and Einstein’s

summation convention is used. Apart from this, a scalar potential F and a traceless symmetric tensor

potential �aij enter the above Lagrangian. Variation of the action integral

d

ððð
V
‘(�akq, ann, @nCm, @ p�akq, @iann) dV ¼ 0, (2:19)

with respect to �aij results in

@ uiu j �
ukuk

3
dij

h i
� h[@iu j þ @ jui]

¼ 1ilk1 jpq � 1nlk1npq
dij

3

� �
@l@p�akq þ

1

3
[@l@lFdij � @i@ jF],

(2:20)

which is a first integral of steady Navier–Stokes equations in the sense that taking the divergence of this

tensor equation delivers the steady Navier–Stokes equations. Variation with respect to Cm and F lead

to gauge conditions for the potentials; for further details see [24].

In contrast to the Lagrangian (2.1), based on the Clebsch transformation, that of (2.18), based on the first

integral approach, results in a continuous Lagrangian. While applying properly to steady incompressible

flows, a generalization to unsteady and compressible 3D viscous flow has hitherto remained elusive.
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2.5. Applicability of the approaches for different flow regimes
The character of a flow is mainly dominated by its Reynolds number, being a measure for the ratio of

inertial to viscous forces. The major two regimes are the laminar one, from vanishingly small up to

moderate values, and the turbulent one, from its onset at a critical Reynolds number depending on

the flow geometry up to very high values.

For fully developed turbulent flow, Kolmogorov [37] identified a typical time scale indicated by the

so-called Kolmogorov time th ¼
ffiffiffiffiffiffiffi
n=e

p
, where e is the specific dissipation rate. At very high Reynolds

number the Kolmogorov time may fall below the non-equilibrium relaxation time, i.e. 2p=th . v0. In

this case the time averaging as performed in §2.2 can be omitted and the discontinuous approach

based on the Lagrangian (2.1) can be applied since the discontinuities it includes are without

relevance and the non-equilibrium restoration force caused by the latter is small compared to the

classical terms in the equation of motion.

For lower Reynolds numbers, the influence of the discontinuous term in the Lagrangian (2.1) becomes

increasingly relevant. Especially for small and vanishingly small Reynolds numbers and therefore

laminar flow, the Lagrangian given by (2.18) based on the first integral approach, §2.4, may prove a

good alternative, provided that the flow is steady.

A stochastic-Lagrangian approach is principally applicable to flows at arbitrary Reynolds numbers,

but remains challenging with respect to boundary conditions along solid boundaries.
:181595
3. Generalization toward compressible flows
It is demonstrated that the approach is not restricted to incompressible flows; it applies equally well to

compressible flow in a quite analogous way, as shown below.
3.1. The discontinuous Lagrangian for compressible viscous flow
Although the focus of article [14] was mainly on incompressible flow, it provides a clear hint apropos

generalization to compressible viscous flow by proposing a Lagrangian, but without computing the

resulting equations of motion. The following Lagrangian:

‘ ¼ �@ DtFþ aiDtbi þ
1

v0
Im (�xDtx)� u2

2
þ eþ V

� �
þ 1

iv0
ln

ffiffiffi
�x

x

r
h tr D2 þ h0

2
(r � u)2

� �
(3:1)

is the one suggested in [14] after slight modifications,3 containing the additional contribution h0(r � u)2 to

the dissipation rate with bulk viscosity h0. In contrast to the incompressible theory the density @ appears as

an independent field; the tensor of the shear rate is again given by (2.3) and V denotes again the specific

potential energy of external forces. Also for compressible flow the thermodynamics become more

relevant: first the field of thermal excitation has a slightly different meaning; its absolute square results in

�xx ¼ c0T0 exp
s
c0

� �
, (3:2)

being a generalization of (2.2) with specific entropy s. By e the specific inner energy is denoted, which in

classical thermodynamics is a function s and @, fulfilling the constitutive relations @e/@s ¼ T and

@2@e/@@ ¼ p for the temperature and the pressure, respectively. In (3.1) the specific entropy s has,

according to (3.2), to be expressed in terms of the thermal excitation as s ¼ c0 ln (�xx=c0T0), implying

@e
@x
¼ @e

@s|{z}
T

@s
@x
¼ c0T

x
(3:3)

and the respective complex conjugate relation.

Overall the Lagrangian (3.1) is based on the following independent fields: the velocity u, the mass

density @, the Clebsch variablesF, ai, bi, the complex field of thermal excitation x and its complex conjugate.
3The dissipative term (�xx=iv0c0T) ln
ffiffiffiffiffiffiffiffi
�x=x

p
[ � � � ] is simplified to the form (1=iv0) ln

ffiffiffiffiffiffiffiffi
�x=x

p
[ � � � ]. This has minor consequences for the

equations of motion, but simplifies their derivation relevantly. The second modification is the additional specific potential energy V
of external forces.
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3.2. Euler – Lagrange equations
The associated Euler–Lagrange equations are now computed. First, variation with respect to the Clebsch

variable F delivers the continuity equation,

@t@þr � (@u) ¼ 0: (3:4)

As a consequence the identity @t(@j)þr � (@ju) ¼ Dtj, which is fulfilled for any field j, is considered

subsequently. Next, variation with respect to the two remaining Clebsch variables ai and bi lead, after

simple manipulation, to the transport equations,

Dtbi ¼ 0 (3:5)

and

Dtai ¼ 0: (3:6)

By variation with respect to the velocity u the equation

@uþ 1

v0
r � i ln

ffiffiffi
�x

x

r
[2hDþ h0r � u 1]

� �
¼ @ rFþ airbi þ

1

v0
Im(�xrx)

� �
, (3:7)

is obtained, whereas variation with respect to @ delivers

DtFþ aiDtbi þ
1

v0
Im(�xDtx)� u2

2
þ eþ V ¼ �@ @e

@@
: (3:8)

Finally, the Euler–Lagrange equation related to variation with respect to �x leads to the evolution

equation,

Dtxþ iv0
c0T
�x
¼ 1

2@�x
h tr D2 þ h0

2
(r � u)2

� �
, (3:9)

for the thermal excitation; variation of which with respect to �x delivers the complex conjugate of (3.9).

3.3. Equations of motion
In appendix A the evolution equation (A 2),

Dtu ¼ �
rp
@
�rV þ h

@
Duþ hþ h0

@

� �
r(r � u)þ 1

@
fn:e:, (3:10)

is derived from the Euler–Lagrange equations, and is obviously the Navier–Stokes–Duhem equation for

constant viscosities with additional fluctuating forces fn:e: given by (A 3). As in the incompressible case,

the fluctuations vanish linearly with increasing relaxation rate v0 according to fn:e: ¼ O(v�1
0 ).

Again the convergence can be improved to hfn:e:i ¼ O(v�2
0 t�1) by time averaging as in §2.2, as

exemplified for damped acoustic waves below and in appendix B.

4. Damped acoustic waves
Sound waves can be obtained as solutions of the linearized fluid equations of motion. Much research has

been done on this topic, see e.g. the review article of Jordan [38]. If transmitted through a fluid medium

over a long distance, damping due to dissipation may become a relevant effect. Two competing

mechanisms for damping exist, based on thermal conductivity and on viscosity. For some special

fluids, like for example pure water, the thermal conductivity can be neglected [39]. This model

assumption is adopted henceforth.

4.1. Wave geometry
Planar waves associated with the flow geometry are considered,

u ¼ u(x, t)ex (4:1)

and

p ¼ p0 þ P(x, t), (4:2)

where p0 is the ambient pressure. As a consequence, the friction tensor and the friction force read

Tv ¼ [2hDþ h0r � u 1] ¼ �h@xuex � ex þ h0@xu[ey � ey þ ez � ez] (4:3)
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and

fv ¼ hDuþ (hþ h0)r(r � u) ¼ �h@2
xuex, (4:4)

where the abbreviation �h :¼ 2hþ h0 is used.
ietypublishing.org/journal/rsos
R.Soc.open

sci.6:181595
4.2. Linearized equations of motion
Assuming u and P as small perturbations, quadratic and higher order terms can be neglected throughout

the entire set of equations. Since the entropy production is quadratic, the process is nearly adiabatic,

allowing one to assume a barotropic relation of the form

@ ¼ @(p) ¼ @(p0 þ P) � @(p0)|ffl{zffl}
¼:@0

þd@

dp

����
p¼p0|fflfflfflffl{zfflfflfflffl}

¼:a�2
0

P ¼ @0 þ
P
a2

0

, (4:5)

with a0 being the speed of sound of undamped waves. The continuity equation then takes the linearized form

0 � @tP
a2

0

þ u
@xP
a2

0

þ @0 þ
P
a2

0

� �
@xu � @tP

a2
0

þ @0@xu: (4:6)

Regarding the evolution equation (A 1) for the phase of the thermal excitation and considering v � v0, the

same solution (2.14) is achieved as in the incompressible case

i ln

ffiffiffi
�x

x

r
¼ S(w0 � v0t), (4:7)

wherew0 has to fulfil Dtw0 ¼ 0, which after linearization simplifies to @tw0 ¼ 0 and therefore impliesw0 ¼ w0(x).

Based on the above findings, the non-equilibrium forces (A 3) simplify via linearization to

fn:e: ��
@

v0
S(w0(x)� v0t)@t

f v

@

� �
þ @t

Tv

@
rw0(x)

� �� �
�� �h

v0
[S(w0(x)� v0t)@t@

2
xuþ w00(x)@t@xu]ex (4:8)

Finally, neglecting the influence of any external force (V¼ 0), the x-component of the equation of motion (3.10)

as a linear approximation reads

@tu ¼ �
@xP
@0

þ �h

@0

@2
xu� �h

@0v0
[S(w0(x)� v0t)@t@

2
xuþ w00(x)@t@xu], (4:9)

while its y- and z-component vanish identically. Thus, via the two PDEs (4.6, 4.9) the time evolution of the

velocity u and the acoustic pressure P is determined. The initial phase w0(x) is still arbitrary; however, if

homogeneity of the medium is assumed, it should be a constant. Without loss of generality w0 ¼ 0 is

assumed from here on.

By elimination of the velocity the two PDEs can be reduced to one PDE of higher order: by taking the

derivative of (4.9) with respect to x,

@0@t@xuþ @2
xP ¼ �h@3

xu� �h

v0
S(�v0t)@t@

3
xu, (4:10)

and using (4.6) in order to replace @xu by �@tP=(@a2
0), leading finally to a fourth order PDE,

AP ¼ �h

@0a2
0

@2
x@tP�

�h

@0v0a2
0

S(�v0t)@2
t @

2
xP, (4:11)

for the acoustic pressure, where A denotes the d’Alembert operator,

A ¼ 1

a2
0

@2
t � @2

x:

For �h ¼ 0 the d’Alembert equation is simply AP ¼ 0, the solution of which is undamped harmonic waves

without dispersion.
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4.3. Solution for the classical limit
In the limit case v0!1 the following equation is obtained:

AP ¼ �h

@0a2
0

@2
x@tP, (4:12)

resulting from the classical Navier–Stokes theory. This equation has wave-like solutions of the harmonic

form P ¼ P̂ exp (i[kx� v1t]), provided that k and v1 fulfil the dispersion relation

1� i
�hv1

@0a2
0

� �
k2 ¼ v2

1

a2
0

: (4:13)

For a given circular frequency v1 . 0 two corresponding wavenumbers,

k1,2 ¼+
v1

a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i(�hv1=@0a2

0)

1þ (�hv1=@0a2
0)2

s
, (4:14)

result for waves propagating in the forward/backward direction. Via the nonlinear dependence on v1 a

slight dispersion is indicated and according to Im k1 . 0 and Im k2 , 0 the damping of the waves in the

propagation direction becomes apparent. For �hv1=@0a2
0 � 1 a Taylor expansion of the above dispersion

relation gives

k1,2 ¼+
v1

a0
1þ i

�hv1

2@0a2
0

� �
, (4:15)

leading to the fundamental solutions

P ¼ P̂ exp +
�hv2

1

2@0a3
0

x
� �

exp i +
v1

a0
x� v1t

� �� �
, (4:16)

of damped harmonic waves with frequency-dependent damping coefficient �hv2
1=2@0a3

0.
4.4. Solution of the non-equilibrium equations
Assuming again wave-like solutions of the harmonic form P ¼ P̂ exp (i[kx� v1t]) of the PDE (4.11) for

finite v0, one obtains

1� i
�hv1

@0a2
0

þ S(� v0t)
�hv2

1

@0v0a2
0

� �
k2 � v2

1

a2
0

� �
P̂ exp (i[kx� v1t]) ¼ 0 (4:17)

showing that the harmonic form does not solve the PDE (4.11). Thus, in the non-equilibrium case the

waveform must be slightly inharmonic. However, in appendix B the error is estimated: it depends

essentially on the square of the ratio v1/v0 of the circular wave frequency to the relaxation rate. As a

consequence, the classical solution (4.16) based on the dispersion relation (4.13) applies for frequencies

v1� v0 to a good approximation.
5. Conclusion and outlook
Using a general analysis, common features of the discontinuous Lagrangian approach and the stochastic

variational description have been discovered despite the different character (deterministic vs statistical)

of both. The discontinuous Lagrangian approach is successfully generalized toward compressible flow,

with damped acoustic waves considered as an example revealing the criterion that deviations from

the classical theory are of order v2
1=v

2
0, i.e. they may occur at very high wave frequencies v1 if

approaching the thermal relaxation rate v0. Opening up the possibility for validating the

discontinuous Lagrangian approach via experiment with parameter identification of the thermal

relaxation rate in future.

As mentioned in §2.3, the question arises whether the discontinuous Lagrangian approach with

spatial averaging instead of time averaging would deliver equivalent results in accordance with the
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ergodic hypothesis and well known from turbulence theory. This question will be investigated next in

order to gain more trust in this new approach.

Various generalizations of the discontinuous Lagrangian approach appear promising: having

generalized the method from incompressible to compressible flow, the application to non-Newtonian

fluids should be possible by replacing the dissipation rate for a Newtonian fluid in the Lagrangian

(3.1) with the respective dissipation rate for a non-Newtonian one.

The third approach addressed here, the first integral approach, seems to be fully independent of the

discontinuous Lagrangian approach and the stochastic variational description. At present the Lagrangian

it delivers is restricted to steady flow. It nevertheless will form the subject of forthcoming research

projects to find connections to the aforementioned approaches.

Apart from the three approaches discussed here, there are various other strategies that can be used to

establish variational formulations in continuum mechanics, following again different ideas. One of them

is the use of nonlocal functionals. As an example consider the variational principle reported in [40,41] for

the convection-conduction equation.
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Appendix A. Equations of motion related to the Lagrangian (3.1)
The Euler–Lagrange equations (3.4)–(3.9) are a first integral of the equations of motion, different from

the one reported in [24], but with the common feature that the equations of motion are obtained from

their spatial and temporal derivatives as follows. Consider the useful identity
r � i ln

ffiffiffi
�x

x

r
[2hDþ h0r � u 1]

� �

¼ [2hDþ h0r � u 1]|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:Tv

Im
rx
x
þ i ln

ffiffiffi
�x

x

r
[hDuþ (hþ h0)r(r � u)]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:f v
in which the viscous stress tensor Tv and the density f v of the viscous forces appear for the first time and

derive from (3.9) the following evolution equation for the phase of the thermal excitation:
iDt ln

ffiffiffi
�x

x

r
¼ Im

Dtx

x

� �
¼ Im

1

2@�xx
h tr D2 þ h0

2
(r � u)2

� �
� iv0

c0T
�xx

� �

¼ �v0T exp � s
c0

� �
¼: �v,

(A 1)
with a modified thermal relaxation rate v ¼ v(s, @) ¼ v0T(s, @) exp( 2 s/c0) depending very weakly on
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the thermodynamic state. Furthermore,

Dt rFþ airbi þ Im
�xrx
v0

� �

¼ r DtFþ aiDtbi þ Im
�xDtx

v0

� �
�r� u rFþ airbi þ Im

�xrx
v0

� �

þDtairbi �Dtbirai �
2

v0
Im(Dtxr�x)

¼ r u2

2
� e� @

@e
@@
� V

� �
�r� u

@v0
r � i ln

ffiffiffi
�x

x

r
[2hDþ h0r � u 1]

� �

� (r� u)u� Im
r�x

@v0�x
h tr D2 þ h0

2
(r � u)2

� �
� 2ic0T

r�x

�x

� �

¼ �r eþ @
@e
@@

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

h

�rV �r� u

@v0
Tv Im

rx
x
þ i ln

ffiffiffi
�x

x

r
f v

� �

� 1

@v0
h tr D2 þ h0

2
(r � u)2

� �
Im
r�x

�x
þ T 2c0Re

r�x

�x

zfflfflfflfflfflffl}|fflfflfflfflfflffl{rs

,

is obtained from the Euler–Lagrange equations (3.4–3.9); h is the specific enthalpy given by h ¼ e 2 p/@.

Considering all of the above, the material acceleration can be obtained from (3.7) as

Dtu ¼ Dt rFþ airbi þ
1

v0
Im(�xrx)

� �
�Dt

1

@v0
Tv Im

rx
x
þ i ln

ffiffiffi
�x

x

r
f v

� �� �

¼ �rh�rV �r� u

@v0
Tv Im

rx
x
þ i ln

ffiffiffi
�x

x

r
f v

� �

� 1

@v0
h tr D2 þ h0

2
(r � u)2

� �
Im
r�x

�x

�Dt
Tv

@v0
Im
rx
x

� �
� i ln

ffiffiffi
�x

x

r
Dt

f v

@v0

� �
� iDt ln

ffiffiffi
�x

x

r
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

�v

f v

@v0
þ Trs:

Note that for constant specific heat and vanishing thermal expansion coefficient s ¼ c0 ln(T/T0) and

therefore v ¼ v0. In the case of more general thermodynamic constitutive equations v � v0 is

assumed. Finally, keeping the identity

rh� Trs ¼ r eþ @
@e
@@

� �
� @e
@s
rs ¼ 1

@
r @2 @e

@@

� �
¼ rp

@

in mind, an equation of motion of the form

Dtu ¼ �
rp
@
�rV þ h

@
Duþ hþ h0

@

� �
r(r � u)þ 1

@
fn:e: (A 2)

is obtained, which is the Navier–Stokes–Duhem equation for constant viscosities plus additional

fluctuating forces,

1

@
fn:e: :¼ 1

v0

h

@
tr D2 þ h0

2@
(r � u)2

� �
Im
rx
x
� i ln

ffiffiffi
�x

x

r
{Dt þr� u}

f v

@

� ��
�{Dt þr� u}

Tv

@
Im
rx
x

� ��
,

(A 3)

as in the case of compressible flow.
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Appendix B. Time averaging of equation (4.17) and error estimation
By applying the time averaging operation (2.15) to Eq. (4.17), followed by division by P̂ exp (ikx), the

relation

1� i
�hv1

@0a2
0

þ
S(� v0t) exp (� iv1t)

 �

exp (� iv1t)

 � �hv2

1

@0v0a2
0

" #
k2 � v2

1

a2
0

¼ 0 (B 1)

is obtained. It is subsequently shown that the time dependence becoming manifest in the factor

kS(2v0t)exp(2iv1 t) l/k exp(2iv1 t) l can be fully eliminated by a proper choice of the time interval t.

First compute

exp (�iv1t)

 �

¼ 1

2t

ðtþt

t�t
exp (�iv1t0)dt0 ¼ �exp (�iv1t0)

2itv1

����tþt
t�t

¼ sin (v1t)

v1t
exp (� iv1t):

(B 2)

For calculating kS(2v0t)exp(2iv1 t)l, the sawtooth function S(x) is expressed by its Fourier series,

S(x) ¼ �2
X1
n¼1

(�1)n

n
sin (nx),

implying

S(�v0t) exp (�iv1t)

 �

¼ � 1

i

X1
n¼1

(� 1)n

n
2i sin (�nv0t) exp (�iv1t)

 �

¼ i
X1
n¼1

(�1)n

n
[ exp (�i[v1 þ nv0]t)

 �

� exp (�i[v1 � nv0]t)

 �

]

¼ i
X1
n¼1

(�1)n

n
sin ([v1 þ nv0]t)

[v1 þ nv0]t
exp (�i[v1 þ nv0]t)

�

� sin ([v1 � nv0]t)

[v1 � nv0]t
exp (�i[v1 � nv0]t)

�
:

For convenience the time interval t according to v0t ¼ 2pN with integer number N, is chosen simplifying

the above formula to

S(� v0t) exp (� iv1t)

 �
¼ i sin (v1t) exp (� iv1t)

X1
n¼1

(� 1)n

n
exp (� inv0t)

nN þ v1t
þ exp (inv0t)

nN � v1t

� �
:

(B 3)

Finally, the following is obtained:

S(� v0t) exp (� iv1t)

 �

exp (� iv1t)

 � ¼ iv1

t

N

X1
n¼1

(� 1)n

n2

exp (� inv0t)

1þ v1t

nN

þ exp (inv0t)

1� v1t

nN

2
64

3
75: (B 4)

By considering t/N ¼ 2p/v0, v1t/(nN)� 1 and truncating the sum after the leading Fourier order, the

error in the dispersion relation (B 1) can be estimated as

S(� v0t) exp (� iv1t)

 �

exp (� iv1t)

 � �hv2

1

@0v0a2
0

� �i
v1

v0

� �2 2p�hv1

@0a2
0

cos (v0t), (B 5)

where the square of the ratio v1/v0 of the circular wave frequency and the relaxation rate is decisive,

i.e. the classical solution (4.16) based on the dispersion relation (4.13) applies for frequencies v1� v0.



14
References

royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:181595
1. Millikan CB. 1929 LXXVII. On the steady motion
of viscous, incompressible fluids; with particular
reference to a variation principle. Lond. Edinb.
Dublin Philos. Mag. J. Sci. 7, 641 – 662. (doi:10.
1080/14786440408564788)

2. Clebsch A. 1859 Ueber die Integration der
hydrodynamischen Gleichungen. J. Reine Angew
Math. 56, 1 – 10. (doi:10.1515/crll.1859.56.1)

3. Lamb H. 1974 Hydrodynamics. Cambridge, UK:
Cambridge University Press.

4. Panton RL. 1996 Incompressible flow. New York,
NY: John Wiley & Sons Inc.

5. Calkin MG. 1963 An action principle for
magnetohydrodynamics. Can. J. Phys. 41,
2241 – 2251. (doi:10.1139/p63-216)

6. Wagner HJ. 1997 Das inverse Problem der
Lagrangeschen Feldtheorie in Hydrodynamik,
Plasmadynamik und hydrodynamischem Bild der
Quantenmechanik. Paderborn, Germany:
University of Paderborn.

7. Scholle M, Marner F. 2016 A generalized Clebsch
transformation leading to a first integral of
Navier-Stokes equations. Phys. Lett. A
380, 3258 – 3261. (doi:10.1016/j.physleta.2016.
07.066)

8. Seliger R, Whitham GB. 1968 Variational principles
in continuum mechanics. Proc. R. Soc. Lond. A 305,
1 – 25. (doi:10.1098/rspa.1968.0103)

9. van Dantzig D. 1939 On the phenomenological
thermodynamics of moving matter. Physica 6,
673 – 704. (doi:10.1016/S0031-8914(39)
90072-8)

10. Zuckerwar AJ, Ash RL. 2009 Volume viscosity in
fluids with multiple dissipative processes. Phys.
Fluids 21, 033105. (doi:10.1063/1.3085814)

11. Olsson P. 2013 Transport phenomena in
Newtonian fluids – a concise primer. Springer
briefs in applied sciences and technology. Berlin,
Germany: Springer International Publishing.

12. Belevich M. 2017 Classical fluid mechanics.
Sharjah, UAE: Bentham Science Publishers. See
https://books.google.de/
books?id=5QI5DwAAQBAJ.

13. Scholle M. 2004 Construction of Lagrangians in
continuum theories. Proc. R. Soc. Lond. A 460,
3241 – 3260. (doi:10.1098/rspa.2004.1354)

14. Scholle M, Marner F. 2017 A non-conventional
discontinuous Lagrangian for viscous flow. R.
Soc. open sci. 4, 160447. (doi:10.1098/rsos.
160447)

15. Madelung E. 1927 Quantentheorie in
hydrodynamischer Form. Z. Phys. 40, 322 – 326.
(doi:10.1007/BF01400372)

16. Anthony KH. 2001 Hamilton’s action principle
and thermodynamics of irreversible processes –
a unifying procedure for reversible and
irreversible processes. J. Non-Newtonian Fluid
Mech. 96, 291 – 339. (doi:10.1016/S0377-
0257(00)00187-7)

17. Ranger KB. 1994 Parametrization of general
solutions for the Navier-Stokes equations.
Q. J. Appl. Math. 52, 335 – 341. (doi:10.1090/
qam/1994-52-02)

18. He JH. 2007 Variational principle for two-
dimensional incompressible inviscid flow. Phys.
Lett. A 371, 39 – 40. (doi:10.1016/j.physleta.
2007.03.044)

19. He JH. 2008 Erratum to: ‘Variational principle for
two-dimensional incompressible inviscid flow’
[Phys Lett. A 371 (2007) 39]. Phys. Lett. A
372, 5858 – 5859. (doi:10.1016/j.physleta.2008.
07.043)

20. Scholle M, Heining C, Haas A. 2008 Comment
on: ‘Variational principle for two-dimensional
incompressible inviscid flow’ [Phys Lett. A 371
(2007) 39]. Phys. Lett. A 372, 5857. (doi:10.
1016/j.physleta.2008.07.015)

21. Scholle M, Haas A, Gaskell PH. 2011 A first
integral of Navier-Stokes equations and its
applications. Proc. R. Soc. A 467, 127 – 143.
(doi:10.1098/rspa.2010.0157)

22. Marner F, Gaskell PH, Scholle M. 2014 On a
potential-velocity formulation of Navier-Stokes
equations. Phys. Mesomech. 17, 341 – 348.
(doi:10.1134/S1029959914040110)

23. Marner F, Gaskell PH, Scholle M. 2017 A
complex-valued first integral of Navier-Stokes
equations: unsteady Couette flow in a
corrugated channel system. J. Math. Phys. 58,
043102. (doi:10.1063/1.4980086)

24. Scholle M, Gaskell PH, Marner F. 2018 Exact
integration of the unsteady incompressible
Navier-Stokes equations, gauge criteria, and
applications. J. Math. Phys. 59, 043101. (doi:10.
1063/1.5031119)

25. Cipriano F, Cruzeiro AB. 2007 Navier-Stokes
equation and diffusions on the group of
homeomorphisms of the torus. Commun. Math.
Phys. 275, 255 – 269. (doi:10.1007/s00220-007-
0306-3)

26. Arnaudon M, Cruzeiro AB, Galamba N. 2011
Lagrangian Navier-Stokes flows: a stochastic
model. J. Phys. A 44, 175501. (doi:10.1088/
1751-8113/44/17/175501)

27. Arnaudon M, Cruzeiro AB. 2012 Lagrangian Navier-
Stokes diffusions on manifolds: variational principle
and stability. Bull. Sci. Math. 136, 857– 881.
(doi:10.1016/j.bulsci.2012.06.007)

28. Arnaudon M, Cruzeiro AB. 2015 Stochastic
Lagrangian flows and the Navier-Stokes
equations. In Stochastic analysis: a series of
lectures, pp. 55 – 75. Berlin, Germany: Springer.

29. Arnaudon M, Chen X, Cruzeiro AB. 2014
Stochastic Euler-Poincaré reduction. J. Math.
Phys. 55, 081507. (doi:10.1063/1.4893357)

30. Chen X, Cruzeiro AB, Ratiu TS. 2015 Constrained
and stochastic variational principles for
dissipative equations with advected quantities.
arXiv preprint (http://arxiv.org/abs/150605024).

31. Balkovsky E. 1994 Some notes on the Clebsch
representation for incompressible fluids. Phys.
Lett. A 186, 135 – 136. (doi:10.1016/0375-
9601(94)90934-2)

32. Yoshida Z. 2009 Clebsch parameterization: basic
properties and remarks on its applications. J.
Math. Phys. 50, 113101. (doi:10.1063/1.
3256125)

33. Ohkitani K, Constantin P. 2008 Numerical study
on the Eulerian – Lagrangian analysis of
Navier – Stokes turbulence. Phys. Fluids 20,
075102. (doi:10.1063/1.2940141)

34. Cartes C, Bustamante MD, Brachet ME. 2007
Generalized Eulerian-Lagrangian description of
Navier-Stokes dynamics. Phys. Fluids 19,
077101. (doi:10.1063/1.2748447)

35. Ohkitani K. 2018 Study of the 3D Euler
equations using Clebsch potentials: dual
mechanisms for geometric depletion.
Nonlinearity 31, R25. (doi:10.1088/1361-6544/
aa96cc)

36. Constantin P, Iyer G. 2011 A stochastic-Lagrangian
approach to the Navier – Stokes equations in
domains with boundary. Ann. Appl. Probab. 21,
1466 – 1492. (doi:10.1214/10-AAP731)

37. Kolmogorov AN. 1991 The local structure of
turbulence in incompressible viscous fluid for
very large Reynolds numbers. Proc. R. Soc. Lond.
A 434, 9 – 13. (doi:10.1098/rspa.1991.0075)

38. Jordan PM. 2016 A survey of weakly-nonlinear
acoustic models: 1910 – 2009. Mech. Res.
Commun. 73, 127 – 139. (doi:10.1016/j.
mechrescom.2016.02.014)

39. Makarov S, Ochmann M. 1996 Nonlinear and
thermoviscous phenomena in acoustics, part I.
Acta Acustica United with Acustica 82,
579 – 606.

40. Scholle M, Haas A, Aksel N, Thompson HM,
Hewson RW, Gaskell PH. 2009 The effect of
locally induced flow structure on global heat
transfer for plane laminar shear flow.
Int. J. Heat Fluid Flow 30, 175 – 185. (doi:10.
1016/j.ijheatfluidflow.2008.11.003)

41. Haas A. 2010 Influence of topography on flow
structure and temperature distribution in viscous
flows. Bayreuth, Germany: University of Bayreuth.

http://dx.doi.org/10.1080/14786440408564788
http://dx.doi.org/10.1080/14786440408564788
http://dx.doi.org/10.1515/crll.1859.56.1
http://dx.doi.org/10.1139/p63-216
http://dx.doi.org/10.1016/j.physleta.2016.07.066
http://dx.doi.org/10.1016/j.physleta.2016.07.066
http://dx.doi.org/10.1098/rspa.1968.0103
http://dx.doi.org/10.1016/S0031-8914(39)90072-8
http://dx.doi.org/10.1016/S0031-8914(39)90072-8
http://dx.doi.org/10.1063/1.3085814
https://books.google.de/books?id=5QI5DwAAQBAJ
https://books.google.de/books?id=5QI5DwAAQBAJ
https://books.google.de/books?id=5QI5DwAAQBAJ
http://dx.doi.org/10.1098/rspa.2004.1354
http://dx.doi.org/10.1098/rsos.160447
http://dx.doi.org/10.1098/rsos.160447
http://dx.doi.org/10.1007/BF01400372
http://dx.doi.org/10.1016/S0377-0257(00)00187-7
http://dx.doi.org/10.1016/S0377-0257(00)00187-7
http://dx.doi.org/10.1090/qam/1994-52-02
http://dx.doi.org/10.1090/qam/1994-52-02
http://dx.doi.org/10.1016/j.physleta.2007.03.044
http://dx.doi.org/10.1016/j.physleta.2007.03.044
http://dx.doi.org/10.1016/j.physleta.2008.07.043
http://dx.doi.org/10.1016/j.physleta.2008.07.043
http://dx.doi.org/10.1016/j.physleta.2008.07.015
http://dx.doi.org/10.1016/j.physleta.2008.07.015
http://dx.doi.org/10.1098/rspa.2010.0157
http://dx.doi.org/10.1134/S1029959914040110
http://dx.doi.org/10.1063/1.4980086
http://dx.doi.org/10.1063/1.5031119
http://dx.doi.org/10.1063/1.5031119
http://dx.doi.org/10.1007/s00220-007-0306-3
http://dx.doi.org/10.1007/s00220-007-0306-3
http://dx.doi.org/10.1088/1751-8113/44/17/175501
http://dx.doi.org/10.1088/1751-8113/44/17/175501
http://dx.doi.org/10.1016/j.bulsci.2012.06.007
http://dx.doi.org/10.1063/1.4893357
http://arxiv.org/abs/150605024
http://arxiv.org/abs/150605024
http://dx.doi.org/10.1016/0375-9601(94)90934-2
http://dx.doi.org/10.1016/0375-9601(94)90934-2
http://dx.doi.org/10.1063/1.3256125
http://dx.doi.org/10.1063/1.3256125
http://dx.doi.org/10.1063/1.2940141
http://dx.doi.org/10.1063/1.2748447
http://dx.doi.org/10.1088/1361-6544/aa96cc
http://dx.doi.org/10.1088/1361-6544/aa96cc
http://dx.doi.org/10.1214/10-AAP731
http://dx.doi.org/10.1098/rspa.1991.0075
http://dx.doi.org/10.1016/j.mechrescom.2016.02.014
http://dx.doi.org/10.1016/j.mechrescom.2016.02.014
http://dx.doi.org/10.1016/j.ijheatfluidflow.2008.11.003
http://dx.doi.org/10.1016/j.ijheatfluidflow.2008.11.003

	Competing Lagrangians for incompressible and compressible viscous flow
	Introduction
	Variational formulations based on Clebsch transformation
	Variational formulations based on the first integral approach
	Stochastic variational description
	Aim and scope of this paper

	General analysis for incompressible flow
	The discontinuous Lagrangian for incompressible viscous flow
	Time averaging of the equations of motion
	Comparison with the stochastic variational description
	Comparison with the first integral approach
	Applicability of the approaches for different flow regimes

	Generalization toward compressible flows
	The discontinuous Lagrangian for compressible viscous flow
	Euler-Lagrange equations
	Equations of motion

	Damped acoustic waves
	Wave geometry
	Linearized equations of motion
	Solution for the classical limit
	Solution of the non-equilibrium equations

	Conclusion and outlook
	Ethics
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	Appendix A. Equations of motion related to the Lagrangian (3.1)
	Appendix B. Time averaging of equation (4.17) and error estimation
	References


