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Abstract. We study the eigenvalues of the connection Laplacian on a graph with an orthogonal
group or unitary group signature. We establish higher order Buser type inequalities, i.e., we provide
upper bounds for eigenvalues in terms of Cheeger constants in the case of nonnegative Ricci curvature.
In this process, we discuss the concepts of Cheeger type constants and a discrete Ricci curvature
for connection Laplacians and study their properties systematically. The Cheeger constants are
defined as mixtures of the expansion rate of the underlying graph and the frustration index of
the signature. The discrete curvature, which can be computed efficiently via solving semidefinite
programming problems, has a characterization by the heat semigroup for functions combined with a
heat semigroup for vector fields on the graph.

Key words. connection Laplacian, Cheeger constants, discrete curvature, Buser inequality,
semidefinite programming, Carstesian product

AMS subject classifications. 05C50, 53C23, 58J35, 05C76, 90C34

DOI. 10.1137/16M1056353

1. Introduction. A graph structure with its Laplacian matrix provides a math-
ematical tool to analyze the similarities between data points: those points with large
enough similarities are connected by an edge. One can also assign edge weights to
quantify such similarities. In many applications, it is noticed that the representation
of the data set can be vastly improved by endowing the edges of the graph additionally
with linear transformations [7, 23, 46]. For example, when the graph is representing a
social network, we hope to attach to each edge an element from the one-dimensional
orthogonal group O(1) = {%1} to indicate two kinds of opposite relationships be-
tween members of the network (vertices). When the graph is representing a higher
dimensional data set, e.g., two-dimensional photos of a three-dimensional object from
different views, one would like to assign to each edge an element of the orthogonal
group O(2) which optimally rotationally aligns photos when comparing their similar-
ity (see, e.g., [7, 46]). In theoretical research, assigning linear transformations to the
edges of a graph also provides mathematical structures that have been found very
useful in various topics, e.g., the study of the Heawood map-coloring problem [21, 22],
the construction of Ramanujan graphs [11, 39], and the study of a discrete analogue
of magnetic operators [45, 47]. Agarwal, Kolla, and Madan [1, section 1.1] pointed
out relations of these additional structures with the famous unique game conjecture
of Khot and their relevance for the synchronization problem is explained in [19].
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We consider such additional structures on the oriented edges of an undirected
graph assuming only values in the orthogonal or unitary groups O(d) or U(d) and
refer to them as d-dimensional signatures and denote them by o throughout this
paper. The corresponding Laplacian of a graph GG with such an additional structure o
is called the connection Laplacian A%, defined by Singer and Wu [46]. The restriction
to the groups O(d) and U (d) guarantee that A7 is self-adjoint and has real eigenvalues.

In fact, the connection Laplacian of a graph yields a very elegant and general
mathematical framework for the analysis of massive data sets, which includes several
extensively studied graph operators as particular cases, e.g., the classical Laplacian,
the signless Laplacian [15], the Laplacian for Harary’s signed graphs [4, 51], and the
discrete magnetic Laplacian [32, 45, 47].

In this paper, we study the spectra of the graph connection Laplacian, which are
closely related to the geometric structure of the underlying graph G with a signature o
comprising the linear transformations attached to its edges. We describe this geomet-
ric structure by introducing two types of quantities, Cheeger type constants (denoted
by h7(G)), and a discrete Ricci curvature. The global Ricci curvature condition is
expressed by the notion CD?(K,n), where K € R is a lower curvature bound and
n > 0 is an upper dimension bound (meaning that CD? (K, n) implies CD?(K’,n’)
for any K’ < K and n’ > n). Our main theorem is concerned with higher order
Buser type inequalities, showing the close relations between eigenvalues Af of the
connection Laplacian A and the Cheeger constants hj, assuming nonnegativity of
the discrete Ricci curvature. In the special case of an unweighted D-regular graph
G, our result takes the following explicit form (the objects in this theorem require
lengthier introductions which will be provided in the following subsections).

THEOREM 1.1 (higher order Buser inequalities). Assume that a D-regular un-
weighted graph G with N vertices and a d-dimensional signature o satisfies C D7 (0, 00).
Then for each natural number 1 < k < N, we have the upper estimates

(1.1) 7, < 16D (kd)? log(2kd)(hY)?

for the eigenvalues of the associated connection Laplacian A°.

We also obtain a lower bound estimate of the first nonzero eigenvalue of the con-
nection Laplacian by the lower Ricci curvature bound, i.e., we show a Lichnerowicz
type eigenvalue estimate (see Theorem 1.9 later in the introduction). In this process,
the properties of the Cheeger constants and discrete Ricci curvature are explored
systematically. In particular, our eigenvalues estimates help us to deepen the under-
standing of these geometric quantities.

For the interested reader we start with some background information in the setting
of Riemannian manifolds. The following subsection can be skipped but we think that
it is helpful to understand the involved notions in their wider context.

1.1. Background about Ricci curvature and eigenvalue estimates in
Riemannian geometry. We provide a brief survey on the background in Rieman-
nian geometry of the curvature notion and types of eigenvalue estimates that will
be developed in this paper. This explains the motivation of the curvature notion
and terminology like higher order Cheeger and Buser inequalities and Lichnerowicz
inequality.

Let (M, (-,-)) be a Riemannian manifold of dimension n and A := divograd <0
be the Laplace-Beltrami operator of (M, (-,-)). Bochner’s formula states that for any
smooth functions f on M and any point x € M,
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%A\gradf [*(x) = [Hessf|*(x) + (gradAf(x), grad f(z)) + Ric(grad f(z)),

where Hess stands for the Hessian and Ric stands for the Ricci tensor. If the Ricci
curvature of M is lower bounded by K, i.e., Ric(v) > K|v|? for all v € T, M and all
z € M, and, using the estimates Hessf2(z) > 1(Af(z))?, we obtain for all z € M

(1.2) %AIgradf\Q(x) — (gradAf(z), gradf(2)) > —(Af(x))* + K|grad f (z)|*.

S|

This inequality relates the Ricci curvature and the Laplace-Beltrami operator.

Bakry and Emery [5, 6] clarify this relation by the following deep observation.
They introduce the following symmetric bilinear forms I' and I'y for two smooth
functions f, g, on M:

(1.3) 20(f,9) := A(fg) — fAg = (Af)g,

Notice that T'(f,g) = (gradf,gradg) and I's(f,g) = $Algradf|* — (gradAf, gradg).
Therefore, the inequality (1.2) can be rewritten as

(1.5) To(f, f)(x) > —(Af(x))* + KT(f, f)(x) for all smooth f: M — R.

S

In conclusion, an n-dimensional Riemannian manifold (M, (-, -)) with Ricci curvature
bounded from below by K satisfies the inequality (1.5). Notice from the definition of
I' and T'y that (1.5) is expressed solely in terms of the Laplace—Beltrami operator A.
This suggests a way to define, indirectly, a Ricci curvature notion for a metric space
via the help of a Laplace—Beltrami operator. This will be the Ricci curvature approach
for our discrete setting of graphs.

Suppose M be closed (i.e., compact without boundary). The spectrum of A is
discrete and can be listed with multiplicity as

0= (M) < X(M) < Ag(M) <o < A(M) < -o- oo

One of the main topics in spectral geometry is to explore lower or upper bounds
of those eigenvalues in terms of geometric quantities. The following estimate is due
to Lichnerowicz. (See, e.g., [20, Chapter 4.G.4].)

THEOREM 1.2 (Lichnerowicz estimate). Let (M, {-,-)) be a closed Riemannian
manifold of dimension n, and suppose that Ricci curvature is lower bounded by K.
Then the first nonzero eigenvalue \o(M) satisfies

A2(M) >

n—1
The so-called Cheeger constant is defined as

vol(.5)

h(M) = inf — {vol(My), vol(M3)}’

where S runs over hypersurfaces of M dividing M into two submanifolds M; and M
with boundary S. The following estimate is due to Cheeger. (See, e.g., [20, Chapter
4.G.4].)
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THEOREM 1.3 (Cheeger inequality). Let (M, {-,-)) be a closed Riemannian man-
ifold. Then we have

1
Mo(M) 2 TH(M)2
In 1982, Peter Buser [12] showed that A2(M) can also be bounded from above by

h(M)?2, up to a constant involving Ricci curvature. This result was further improved
by Ledoux [33] and can be stated as follows.

THEOREM 1.4 (Buser inequality). Let (M, (-,-}) be a closed Riemannian manifold
with nonnegative Ricci curvature. Then there exists a universal constant C' such that

A2(M) < Ch(M)>.

It is natural to ask whether there are similar lower and upper bounds for the
higher eigenvalues A\, (M), k > 3, involving some kind of multiway Cheeger constants.
In fact, we can define such multiway Cheeger constants in the following way. For any
Borel subset A C M with positive measure, define

vol(0A)
1. A)i= ———=.
(16) o) =
Then we set for any natural number k,
(1.7) hip(M):= inf max ¢(4;),

{Ash, 1<i<h

where the infimum is taken over all nonempty, disjoint subsets {A;}*_; of M such
that each A; has positive measure. One can check that

ha(M) = h(M).

Lower bound estimates of Ay (M) in terms of hy(M)? are called higher order Cheeger
inequalities, and upper bound estimates of A\ (M) in terms of hx(M)? under assuming
nonegative Ricci curvature are called higher order Buser inequalities. Higher order
Buser inequalities were first proved by Funano [18] and later improved in [36].

Theorem 1.1 presented in the previous subsection is such a higher order Buser
inequality for the connection Laplacian in the discrete setting of a graph with a signa-
ture. Note that the appearance of a signature requires an adaption of the curvature
condition and of the involved multiway Cheeger constants. These notions are intro-
duced for graphs in the next two subsections.

1.2. Signatures, graph connection Laplacians, and Cheeger constants.
The aim of this subsection is to introduce central notions appearing in our main result,
Theorem 1.1 above, in more detail: signatures, associated connection Laplacians, and
multiway Cheeger constants.

We first fix some relevant notation. Let G = (V, E) be an undirected simple
finite graph with vertex set V and edge set E. For simplicity, we restrict ourselves to
unweighted D-regqular graphs in this introduction even though our results are proved
later without this restriction. Let H be a group. For each edge {z,y} € F, we assign
an element o, € H to it, such that

(1.8) Oye = O';yl.

Actually, we are defining a map o : E°" — H, where E°":={(x,y), (y,x) | {z,y} € E}
is the set of all oriented edges. In this paper, we restrict the group H to be the
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d-dimensional orthogonal group O(d) or unitary group U(d) and we call o a d-
dimensional signature of the graph G.
The (normalized) connection Laplacian A, as a matrix, is given by

oo._ l o _
(1.9) A7 = DA Ing,

where D is the (constant) vertex degree and Iyg4 is a (Nd) x (Nd)-identity matrix, N
is the size of vertex set V', and A? is the (Nd) x (INd)-matrix, blockwisely defined as

o _ 0 if{xy} & E;
(1.10) (A%7)ay = { oy if (z,y) € E°.

Due to the special choice of H and (1.8), A? is Hermitian. Hence all eigenvalues of
the matrix A are real. Note that the connection Laplacian A in (1.9) is defined as
a negative semidefinite matrix for our later purpose of defining the discrete curvature,
due to a convention originating from Riemannian geometry. However, we still want
to deal with nonnegative eigenvalues. Hence, when we speak of eigenvalues of the
connection Laplacian A%, we mean the eigenvalue of the matrix —A?. They can be
listed (counting multiplicity) as

(1'11) 0SATSAT < A7 <+ < )‘((TNfl)qul < )‘((TNfl)d+2 << ARg 2

Observe that two different signatures do not necessarily lead to different spectra.
Given a function 7 : V' — H and a signature o : E°" — H, we consider the new
signature o” defined by
(1.12) o5, =T1(x) ogyT(y) V(z,y) € E”.

Then the corresponding connection Laplacians A° and A are unitarily equivalent
and hence share the same spectra. Indeed, it is easy to check that

(1.13) A7 = (M) A7 M,,
where M, stands for a diagonal matrix given blockwisely by (M )z, := 7(z). We call
the function 7 a switching function. Two signatures o and o’ are said to be switching
equivalent if there exists a switching function 7 such that ¢’ = 7. It follows from
(1.13) that the eigenvalues of the connection Laplacian A% are switching invariant.
The Cheeger type constants {h | k = 1,2,..., N} and the discrete Ricci cur-
vature K (o) that we are going to introduce are also switching invariant. A sig-
nature o is said to be balanced if it is switching equivalent to the trivial signature
Owiv : E°7 — {id} € H. In fact, the constants {h{ | k = 1,2,..., N} are quantifying
the connectivity of the graph and the unbalancedness of the signature o. The latter is
described by the frustration index % (S) of the signature o restricted to the induced
subgraph of S C V', with the property that

17(S) =0 & o restricted on S is balanced.

By abuse of notation, we will also use S to denote its induced subgraph and denote
by the Eg the edges of this induced subgraph. In particular, for an U(1) signature
o: E" = U(1), 17(S) is defined as

(1.14) o(S)=_min Y low) = @),
{z,y}€Es
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where the minimum is taken over all switching functions on S. For higher dimensional
signatures, we need to choose a matrix norm to define (?(.5); see Definition 4.3 in
section 4.1. For U(1) signatures, we show that there is an easier way to calculate its
frustration index using spanning trees (see subsection 4.2).

Denote by |E(S,V \ S)| the number of edges connecting S and its complement
V'\ S. We then define

L7(S) + |E(S, V\ 5)
D-[S] ’

where |S| is the cardinality of the set S. Note that the term |E(S, V' \ S)| corresponds

to vol(0A) and D - |S| corresponds to vol(A) in (1.6). The quotient w can be
understood as an expansion rate of the set S, that is, the ratio between the number
of edges connecting S with the “outside world” and the size of the set S. The contri-
bution of the signature is concentrated in the frustration index 7 (S) which does not
appear in the setting without a signature.

Analogously as in (1.7), the Cheeger constants h{ are then defined as

(1.15) ¢7(S) :=

(1.16) hy = {én}ll{l:l 112?3}(k¢ (Si),

where the minimum is taken over all nonempty, pairwise disjoint subsets {Si};?:l
of the vertex set V. Choosing k = 2 and o4y : B — {1} € O(1), we recover
the classical Cheeger constant h = hJ"", a measure for the connectedness of the
graph G and crucial in the definition of expander graphs (see, e.g., [30]). Multiway
Cheeger constants with trivial signature A"V are used in the definition of k-way
expanders (see, e.g., [40, 48]). Note that even though these are higher order concepts,
the underlying spaces are still one-dimensional graphs in contrast to the recently very
intensively studied topic of higher dimensional expanders (see, e.g., [28] and references
therein), where expansion properties are generalized to higher dimensional simplicial
complexes.

Concerning the involvement of a nontrivial signature o, the definitions of the
Cheeger constants h{ are natural extensions of the constants in [4] and [32], where
H = O(1) and U(1), respectively, and it is closely related to the O(d) frustration ¢!
constant in [7] (see Remark 4.7 for a detailed explanation).

1.3. Curvature dimension inequalities with signatures. The nonnegativ-
ity of the discrete Ricci curvature Ko (o), or the curvature dimension inequality with
a signature, CD?(0,00), is an extension of the classical curvature dimension inequal-
ity & la Bakry and Emery [5, 6] on graphs, which has been studied extensively in
recent years; see, e.g., [13, 17, 26, 27, 29, 34, 37, 44]. For related notions of curvature
dimension inequalities and their strong implications in establishing various Li-Yau
inequalities for heat semigroups on graphs, we refer to [8, 25, 41, 42]. The definition
of CD?(0,00) uses both the connection Laplacian A and the graph Laplacian A,
capturing the structure of the graph (especially its cycles) and the signature (espe-
cially the signature of cycles) locally around each vertex (see Proposition 3.12). The
curvature condition C'D?(0,00) can be characterized by properties of the classical
heat semigroup P, := e*® for functions and the heat semigroup Py := e!A” for vector
fields (vector valued functions) of the underlying graph (see Theorem 3.20). Another
appealing feature of this curvature notion is that it can be calculated very efficiently.
Indeed, calculating this curvature is equivalent to solving semidefinite programming
problems.
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It actually looks more natural to define the curvature dimension inequality with
a signature using both matrices A and A° when we come back to the general setting:
For a d-dimensional signature o, the connection Laplacian A, as an operator, acts
on vector fields, i.e., functions f : V — K%, where K =R or C.

DEFINITION 1.5. For any two functions f,q:V — K%, we define

(1.17) 207 (f,9) == A(fTg) — fT (A7) — (A7 f)"g
and
(1.18) 2U3(f. 9) = AT (f,9) = T7(f,A%9) = T7(A% f, g).

Note that T'(f,g) and T'3(f,g) are K-valued functions on V. We also write
To(f) :=T7(f, f) and Tg(f) :=T9(f, f), for short. In (1.17) and (1.18), we use the
graph Laplacian whenever we deal with a K-valued function, and we use the graph
connection Laplacian whenever we deal with a K-vector valued function.

DEFINITION 1.6 (CD?(K,o00) inequality). Let K € R. We say the graph G with
a signature o satisfies the curvature dimension inequality CD° (K, 00) if we have for
any vector field f : V — K% and any vertex x € V,

(1.19) L3 (f)(x) = KI7(f)(x).

The precise oo-dimensional Ricci curvature lower bound K. (o) is defined as the
largest constant K such that (1.19) holds for all f.

In section 3.6, we show that the above curvature condition C'D?(0,00) can be
characterized in terms of the corresponding heat semigroups P; := e/® and P7 = etA”
as follows:

CD°(K,00) & T9(PPf)<e KIP(To(f)Vf:V =KL Ve>0.

This is very useful for the proof of Theorem 1.1.

It turns out that every graph G with a signature o satisfies C’D"(% —1,00) (see
Corollary 3.8). This is shown by considering the switching invariance of CD? (K, o)
and CD? inequalities of covering graphs (see sections 3.2 and 3.3). In particular,
every (unweighted) cycle graph with a signature o : E°" — O(d) or U(d) satisfies
CD?(0,00).

Given a graph G and a signature o, the curvature K, (o) can be computed very
efficiently by reformulating the CD? (K, 0c0) inequality as linear matrix inequalities
at local neighborhoods of all vertices (see section 3.4). Computing the precise Ricci
curvature lower bound K (o) is then equivalent to solving semidefinite programming
problems. In particular, we derive the precise formula of K, (o) for a triangle (3-cycle)
graph with o : E°" — U(1) in section 3.5.

Moreover, the class of graphs with signatures satisfying C'D?(0, c0) inequalities
is rich since this curvature property is preserved by taking Cartesian products: Given
two graphs G; = (V;, E;), i = 1,2, with signatures o; : E" — H; = O(d;) or U(d;),
i = 1,2, denote their Cartesian product graph by G; x Go = (V4 x Va, E13). Let us
assign a signature 1o : E% — Hy ® Hs to G x G as follows:

alQ,(xl,y)(zg,y) = 01,zq20 ®Id2 for any (5171,.712) S Efr,y S ‘/27

012, (2,1 (2,y2) = Ldy @ 02,4, forany (yi,y2) € E3",z € V1.

Then we have the following theorem (see Theorem A.3 and Remark A.4).
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THEOREM 1.7. Let G;,i = 1,2 with signatures o;,1 = 1,2, satisfy CD* (K, 0)
and CD?2(Ks,00), respectively. Then the Cartesian product graph G1 x Go with the
signature 012 satisfies C D2 (3 min{Ky, Ko}, 00).

In Appendix A, we discuss a similar behavior of the curvature dimension inequal-
ity on the Cartesian product G; x G2 when we assign to it various choices of edge
weights, vertex measures, and signatures. The behavior of frustration indices and the
Cheeger constant under taking Cartesian products is also discussed in Appendix A.

1.4. Motivation via a dual Buser inequality. Having introduced all relevant
notions, let us have a second look at our main result presented earlier.

THEOREM 1.1 (higher order Buser inequalities). Assume that a D-regular un-
weighted graph G with N wvertices and a d-dimensional signature o satisfies C D7 (0, 00).
Then for each natural number 1 < k < N, we have the upper estimates

(1.20) 7, < 16D (kd)? log(2kd)(hY)?

for the eigenvalues of the associated connection Laplacian A°.

Note that A7, should be considered as the maximal value of the group of eigenval-
ues {)‘((kal) FIRTRR A7}, There are N different groups of eigenvalues and N Cheeger
constants, correspondingly.

A Buser inequality on graphs satisfying the classical curvature dimension inequal-
ity CD(0, 00) has been established in [29] by extending an argument of Ledoux [33].
In fact, Theorem 1.1 reduces to their result (see (1.21) below) up to a constant, when
k =2, d =1, and the signature ¢ is balanced.

Higher order Buser inequalities for graph Laplacians were proved in [37], via
showing an eigenvalue ratio estimate. However, the method in [36, 37] does not
extend to the connection Laplacian for a general signature o : E°" — H = O(d) or
U(d), except for the very special case O(1) (see Example 7.5). We discuss extensions
of the methods in [36, 37] for H = O(1) signatures in section 7. For general signatures,
our proof neatly extends Ledoux’s [33] argument for Buser’s inequality and provides
new ideas for establishing higher order Buser inequalities.

In the remainder of this section, we like to discuss a special consequence of The-
orem 1.1, namely, a dual Buser inequality, which can also be viewed as a motivation
for our general result.

Let us start by presenting some known results about Cheeger and dual Cheeger
constants of a graph G and the eigenvalues of the classical graph Laplacian A. We
have A := %A — In, where A is the adjacency matrix of G and its real eigenvalues
can be ordered in size with multiplicities by

O=Xx <A< <Ay <2

We can also view A as a connection Laplacian with the trivial signature oy, : E°" —
{1} € O(1).

We already mentioned that if we assign to G the trivial O(1) signature oy :
E°" — {1} € O(1), then the constant h3*™ coincides with the classical Cheeger
constant of G. If, instead, we assign to G the signature —oyy, : B — {—1} € O(1),
then the constant h] 7" reduces to the bipartiteness ratio of Trevisan [49], or to one
minus the dual Cheeger constant of Bauer and Jost [9]. For details, we refer to [4].
In fact, we have the following relations between eigenvalues, Cheeger constants, and
structural properties of the underlying graph:
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XA =0 & h3"™ =0 & G has at least two connected components;

2— Ay =0 & h{7""¥ =0 < G has a bipartite connected component.

The Cheeger [2, 3, 16] and dual Cheeger [9, 49] inequalities assert that
(hgmv)2 (h—ffmv)Z

5 <2 < 213" and

<2 — Ay < 2k,

For many purposes, it is very useful to have further relations between Ay (2— A, resp.)
and hgt™ (h] 7" resp.). The authors of [29] prove the following Buser inequality: If
G satisfies the curvature dimension inequality C'D(0, c0), then

(1.21) A2 < 16D(hg™iv)2.

Note that the condition C'D(0, co) can be understood as a special case of CD?(0, c0)
by choosing o = oyyiy-

In particular, every cycle graph Cy with N vertices satisfies C'D(0, 00). Moreover,
we have for the graph Cy (see, e.g., [35, Proposition 7.4]),

(1.22) ()2 < Xo(C) < 5(hg™ )2,
which is in line with the Cheeger inequality and Buser inequality, and also
(1.23) 0.3(h]7"%)? < 2 — An(Cn) < 5(hy7%)2.

A natural question then arises: Is there a similar generalization of the right-hand
side of (1.23)? That is, we are asking for a possible dual Buser inequality for the
graph Laplacian A.

Observe that the first eigenvalue of the connection Laplacian A~ also known
as the signless Laplacian [15], is equal to 2 — Ay. Indeed, one can check that

) 1
— AT = 2]y — (—A) =1Iy+ BA

Therefore, Theorem 1.1 implies the following result.

COROLLARY 1.8 (dual Buser inequality). Assume that a D-reqular graph G with
N wertices satisfies CD~%v(0,00). Then we have for the largest eigenvalues of the
graph Laplacian A = %A — Iy

(1.24) 2 — Ay < 16(log2)D(hy 7).

This provides a “dual” version of the Buser inequality in (1.21). We would like
to mention that every cycle graph Cx also fulfills the inequality C D~ %iv (0, 00).

Note that the inequality CD~7=iv(0,00) is not solely defined by replacing the
Laplacian A in (1.3) and (1.4) by A=7=iv. In fact, our definition of C'D~%%iv (0, 00)
involves both matrices A and A~7%v as was explained in subsection 1.3. A reason
why both operators are needed in the curvature condition is that the corresponding
heat semigroup P, 7" := """ does not possess a probability kernel (the operator
P 7% is not even nonnegative), a property which is essential for the proofs in [29, 33].
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1.5. Lichnerowicz inequality and the jump of the curvature. Let \? be
the first nonzero eigenvalue of the connection Laplacian A?. Suppose the graph G
is connected. We observed that when o is unbalanced, A{ # 0, and hence A7 = AJ.
Moreover, when ¢” (V') becomes very small, i.e., when ¢ is very close to being balanced,
A% = A becomes very close to 0. Once o becomes balanced, A = 0, and A7 = A > 0.
We say that the quantity A\ jumps when o becomes balanced.

We show the following Lichnerowicz type eigenvalue estimate in section 6.

THEOREM 1.9 (Lichnerowicz inequality). Assume that the graph G with a sig-
nature o satisfies CD (K, 00). Then the first nonzero eigenvalue A% satisfies

(1.25) A > K.

For another Lichnerowicz type eigenvalue estimate for the eigenvalues Ao and
2 — Ay of the graph Laplacian A in terms of the coarse Ricci curvature bound due to
Ollivier [43], we refer to [10]. An interesting application of Theorem 1.9 is the follow-
ing: The jump phenomenon of the quantity A imposes a similar jump phenomenon
on the curvature.

Figure 1 illustrates the jumps of the first nonzero eigenvalue A? and the curvature
K (o) of the particular example of a triangle graph C3 with o : E°" — U(1), when
o becomes balanced. In Figure 1, the complex variable s = Sgn(Cs) € U(1) is the
signature of the triangle (see (2.2) for the definition). The signature ¢ is balanced if
and only if Re(s) = 1. See section 3.5 for details.

Moreover, Theorem 1.9 also establishes direct relations between Cheeger constants
and the discrete Ricci curvature; see section 6.

1.6. Organization of the paper. In section 2, we set up our general setting
of a graph with edge weights, a general vertex measure, and a signature and discuss
the associated connection Laplacian. In section 3, we discuss various basic proper-
ties of the curvature dimension inequalities with signatures and also their equivalent
definitions. In section 4, we introduce multiway Cheeger constants with signatures
and discuss some of the fundamental properties. Section 5 is devoted to the proof
of our main result, that is, higher order Buser inequalities. In section 6, we prove a

Eigenvalues

""" Curvature the first eigenvalue
the second eigenvalue — - — the third eigenvalue

Fic. 1. Curvature and eigenvalues of a signed triangle.
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Lichnerowicz type eigenvalue estimate and discuss its applications. The special case of
graphs with O(1) signatures is treated in section 7, where an eigenvalue ratio estimate
is obtained. In Appendix A, we provide a detailed discussion about the behavior on
Cartesian product graphs of the two concepts, curvature dimension inequalities and
Cheeger constants with signatures. Appendix B contains a counterexample showing
that a combinatorial expression of the frustration index via spanning trees, which we
established in section 4 for graphs with U(1) signatures, no longer holds for U(d)
signatures with d > 1.

2. The connection Laplacian. In this section, we introduce the basic setting
of a graph with edge weights, a vertex measure and a signature, and the corresponding
connection Laplacian.

2.1. Basic setting. Throughout the paper, G = (V, E, w) denotes an undirected
weighted simple finite graph with vertex set V' and edge set E. If two vertices x,y € V
are connected by an edge, we write z ~ y and denote this edge by {z,y}. To each
edge {z,y} € E, we associate a positive symmetric weight wg, = wy,. Let

dy = Z Wiy

Y,y~x

be the (weighted) vertex degree of z € V.
For the vertex set V, we assign a finite positive measure p : V. — Rsg. The

following two quantities D¢’ and D@°" will appear naturally in our arguments:

d
(2.1) D™ := max ——, and DZ’" := max max u(x)
zeV pu(x) TEV Yy~ Wy

Typically, one chooses u(z) = 1 for all x € V (u = 1y for short), or u(z) = d,
for all x € V (u = dy for short). The superscripts in (2.1) are abbreviations for
“nonnormalized” and “normalized,” respectively. Observe that, D" = maxgcv d;
for the measure u = 1y, while D" = maxgcv d, for the measure p = dy and
Wgy = 1 for all {z,y} € E.

We write (G, u,0) to denote a graph G = (V, E,w) with the vertex measure
and the signature o : E°" — H, where H is a group (recall (1.8)).

Recall from the introduction that o is balanced if it is switching equivalent to
the trivial signature oy : E°" — id € H. Actually, the original definition of bal-
ancedness of a signature by Harary [23] is defined via the signature of cycles of the
underlying graph. Let C be a cycle of G, i.e., a subgraph composed of a sequence
(x1,22), (X2, 23), ..., (®e—1,20), (xg, 1) of distinct edges. Then the signature Sgn(C)
of C is defined as the conjugacy class of the element

(2'2) Opiwo0moms " Oxy_qaoOwpay € H.

Note that the signature of any cycle is switching invariant. Harary [23] (see also [50])
defines a signature o : E°" — H to be balanced if the signature of every cycle of G is
(the conjugacy class of the) identity element id € H. In fact, the above two definitions
of balancedness of a signature are equivalent; see [50, Corollary 3.3 and section 9].

For more historical background about signatures of graphs, we refer the reader
to [38, section 3].

2.2. Connection Laplacian. Let K = R or C. Throughout the paper we
restrict H to be the orthogonal group O(d) or the unitary group U(d), of dimension

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/11/19 to 129.234.39.154. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

268 S. LIU, F. MUNCH, AND N. PEYERIMHOFF

d, d € Zso, when K = R or C, respectivly. For every edge (z,y) € E°", 0,y is a
(d x d)-orthogonal or unitary matrix and we have o, = U;yl

For any vector-valued functions f : V — K? and any vertex z € V, the graph
connection Laplacian A is defined via

ATf(@) = —— 3 way 0wy f(y) — f(@)) € KL

px) 2=

Note that a function f : V — K? can also be considered as an (Nd)-dimensional

— o7
=04y

column vector, which we denote by 7 € KN4, This vector is well defined once we
enumerate the vertices in V. The Laplacian can then be written as

(23) A7 = (diag/t)il(AJ - diagD)a

where diag,, and diagp, are (Nd) x (Nd)-diagonal matrices with the diagonal blocks
(diag,,)za = p(z)1q and (diagp)se = d.lq for z € V, respectively. Here we use Iy for
a (d x d)-identity matrix. The matrix A“ is defined blockwise as follows. For z,y € V|
the (d x d)-block of it is given by

o _J0 if {z,y} ¢ E;

Then we have F’f = (diag,,) "' (A7 — diagD)?.

If every edge has the trivial signature 1 € O(1), A% reduces to the graph Lapla-
clan A. When H = U(1l), A? coincides with the discrete magnetic Laplacian
[32, 45, 47].

Given two functions f,g : V — K¢, locally at a vertex = the Hermitian inner

product of f(x) and g(z) is given by f(z)Tg(x). The corresponding norm of f(x)

is denoted by |f(z)| := 1/ fT(x)f(z). Globally, we have the following inner product
between f and g:

(2.5) (fr9)u = (@) f(x) g(x)
xeV

We denote by ¢2(V,K%; 1) the corresponding Hilbert space of functions. The £2 norm
corresponding to (2.5) is denoted by || - ||2,.. Note that A7 is a self-adjoint operator
on 2(V,K% ), i.e.,

(26) <Agf7g>IL = <f7 Aa'g>“'

We call A% € R an eigenvalue of A7 if there exists a nonzero function f : V — K¢
such that A7 f = —\? f. In fact, all Nd eigenvalues of A lie in the interval [0, 2D3°"].

Let ¥ be the group generated by the elements of {0,y | (z,y) € E°"}. We call
¥ the signature group of the graph (G, o). If the action of ¥ on K¢ is reducible, we
have an orthogonal decomposition of K¢, i.e.,

Kd:Ul@UQ@'“@UT for some 7,

where the U;’s are pairwise orthogonal w.r.t. the Hermitian inner product of K¢ and
each Uj; is an Y-invariant subspace of K? of dimension d; such that Z:Zl d; = d. Then
there exist signatures o; : E°" — O(d;) or U(d;), i = 1,2,...,r, such that we can
write

A =ATPA2PH---P A%

by identifying each U; with the vector space K%
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3. Curvature dimension inequalities with signatures. In this section, we
introduce the CD? (K, n) inequality for K € R and n € R and discuss its basic prop-
erties. We will characterize the C'D? inequality in terms of linear matrix inequalities
and also in terms of heat semigroups for functions and vector fields.

3.1. Definitions. We start by discussing several basic properties of the opera-
tors T'? and T'g defined in Definition 1.5 (of course, we are using the Laplacians in
our current general setting). First, observe that they have the following Hermitian
properties:

(3.1) I7(f.9) =T7(g.f), T3(f.9) =T5(g.f) Vf,9:V = K"

Since the graph Laplacian A satisfies

(3.2) > u@)A(f ) (@) =0,

zeV

the definition (1.17) of T'? and the self-adjointness (2.6) of A lead to the following
summation by part formula:

(3.3) > @I (f,9) (@) = —(£,A%)u = —(A £, ),
eV

Moreover, we have the following properties.

I(’}){OPOSITION 3.1. For any two functions f,g:V — K% and any x € V, we have
i

I(f.g)(x) = D7 way(0ay F(y) — f(@) " (02y9(y) — 9(2));

Y, y~zx

2p(z)

(i)

IT7(f, 9)(@)] < VI7(f)(2)V/T7(g) ().

Proof. The formula (i) follows from a direct calculation; (ii) is a consequence of
(i) by applying the Cauchy—Schwarz inequality. O

DEFINITION 3.2 (CD? inequality). Let K € R andn € Ry. We say that (G, i, o)
satisfies the C D inequality CD°(K,n) if we have for any vector field f : V — K¢
and any vertex x € V

led 1 o o
(3-4) L2 (f)z) = — A f(@)]” + KT7(f) ().
We call K a lower curvature bound of (G, u,0) and n a dimension parameter. We
define the n-dimensional Ricci curvature K, (G, u, o;2) of (G, u, o) at the vertexx € V.

to be the largest K that the inequality (3.4) holds for a given dimension parameter n.
We further define the precise n-dimensional Ricci curvature lower bound K, (G, u, o)

of (G,u,0) as

(3.5) K, (G, u,0):= Il’éi‘I/lKn(G, 1,03 T).

We also simply write K, (c;z) and K, (o) when the setting (G, ) is clear.
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Note that for given K € R, and nji,ne € Ry with n; < ng, the inequality
CD?(K,n;) implies CD?(K,nz). In other words, CD?(K,n) provides a lower cur-
vature bound K and an upper dimension bound n of the graph.

We also remark that rescaling the measure p by a constant ¢ > 0 leads to

1
(3.6) Kn(G,cp, 032) = —Kn(G, 1, 05 2).

We will be particularly interested in graphs satisfying C'D? (K, 00) in this paper.

The classical curvature-dimension inequality CD(K, n) & la Bakry and Emery [6]
on graphs is defined as follows: For any real-valued function f : V — R and any
vertex x, we have

(37) D)) > - |AF@)P + KT(7)(a)

Recall the definitions of T' and T's from (1.3) and (1.4).

When o = o4y 1 E°" — id € U(d) is the trivial signature, the graph (G, u, o) sat-
isfies the inequality CD? (K, n) if and only if (G, u) satisfies the inequality CD(K,n).
In fact, this follows immediately from the following general result.

PROPOSITION 3.3. Assume that the action of the signature group ¥ of the graph
(G, p, o) is decomposable, i.e., we have
AO’ :AU1 EBA‘M @..-@AUT’

where o; : E°7 — U(d;) or O(d;),i = 1,2,...,r. Then the graph (G, u,o) satisfies
the inequality CD? (K, n) if and only if (G,M,O’i) satisfies CD (K,n) for each i =
1,2,...,r

Proof. By assumption, for any function f : V — K%, there exist functions f; :
VU =K%, i=1,2,...,r, such that
Pr=Hh+fh+ -+
and
ATf = AT OAT 0 @ AT,
Hence, for any x € V, we obtain by Definition 1.5,

2) = YT (), and T3()(@) = Y T5(f)(@)

We also have i,

A7 f(a)]* = A7 ()]

i=1
Therefore, the inequality
T3(f)(x) > — |A7 f(2)]* + KT7(f)(x) Vo € V

is equivalent to the inequality

S|

r

S (e Z( AT RGP 7))

i=1

and the proposition follows immediately. 0
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Given a graph (G, u, o), where o : E°" — O(d;) or U(dy), we have a natural new
signature
o Idz BT — O(dldg) or U(dldg),
(,y) = 0gy @14y,
where 14, stands for the identity matrix of size dy x d2. The following observation will

be useful in our later discussion about the C'D? inequalities on Cartesian products of
graphs in Appendix A.

COROLLARY 3.4. A graph (G,pu,0) satisfies CD?(K,n) if and only if (G,p,
o ®1y,) satisfies CD®laz (K n).

Proof. We observe that the action of the signature group of (G,o ®1,,) on K142
admits an orthogonal decomposition and, therefore, we have

A%l — A ... pA°.
N ——
do times
Corollary 3.4 is then a direct consequence of Proposition 3.3. O

3.2. Switching invariance. The CD? inequality is switching invariant.

PROPOSITION 3.5. If (G,u,0) satisfies CD?(K,n), then (G,u,0c7) satisfies
CD° (K,n) for any switching function 7:V — H.

Proof. Recalling (1.13), we check that we have for any 7:V — H and f, g:V — K%,

(3.8) T7°(f,9) =T7(r ' f,7""g) and T% (f,9) =T35(r " f,77"9),

using 7(z)T = 77!(z). The proposition then follows immediately from (1.13) and
(3.8). O

The arguments in the above proof show also that K, (G, u,o;x), introduced in
Definition 3.2, is the switching invariant for any given n.

We denote by dist the canonical graph distance and define the ball of radius r
centered at x € V by

B, (z) :={y € V | dist(x,y) <7}.

PROPOSITION 3.6. Let (G, u,0) be given. If the signature of every cycle of length
3 or 4 is equal to (the conjugate class of) id € H, then (G, u, o) satisfies CD?(K,n)
if and only if (G, n) satisfies CD(K,n).

Proof. Let x € V be a vertex. Since all cycles of 3 or 4 have trivial signature, we
can switch all the signatures of edges in the subgraph induced by the ball Bs(x) to
be trivial. Note that the inequality (3.4) only involves the vertices in the ball By (x).
Then the proposition follows from Propositions 3.5 and 3.3. 0

3.3. Coverings and a general lower curvature bound. Let (é,ﬂ,&) and
(G, u,0) be two graphs. Let 7 : (G, /1,6) — (G,u,0) be a graph homomorphism,
namely, 7 : V — V is surjective, and if {Z,7} € E, then {r(Z),7(7)} € E. Moreover,
we require

(3.9) Oig = On(@)n(s)y Wig = Wr@n(g), and @(2) = p(r(z)).
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Such a map 7 is called a covering map if, furthermore, the subgraph of G induced by
the ball B;(%) centered at each vertex # € V is mapped bijectively to the subgraph
of G induced by the ball By(x). If a covering map 7 : (G, ji,5) — (G, j1,0) exists, we
call the graph (G, fi,5) a covering graph of (G, u, o).

THEOREM 3.7. Let (G, i,5) be a covering graph of (G, u, o). If (G, i, &) satisfies
CD?(K,n), then (G, u,o) satisfies CD° (K, n).
_ Proof. For any function f : V — K¢, we can find a corresponding function f :
V — K% such that

(3.10) f(@):=f(n(@) VieV,

where 7 is the covering map from (G, f1,5) to (G, u, o).
For any # € V, and any € 7~ !(z), we can check by definition of a covering map
that

B11)  JATF@)P = (A7 f(@), T7())@) = T7(f)(2), T5(F)(@) =T5(f)(@).

Since (G, i, &) satisfies CD?(K,n), we obtain that for any f:V — K¢, and any
vertex x € V,

(3.12) DS(f) (@) > —|A° f(2)]* + KT7(f)(#).

S

Combining this with (3.11) completes the proof. d
COROLLARY 3.8. Any graph (G, u, o) satisfies the inequality

o 2 non
o0 (2 - i),

In particular, any unweighted cycle graph with constant verter measure p = vg - 1y
and any signature o : E°7 — H satisfies

CD?(0,2).

Proof. Let (T, i, 5) be the universal covering of (G, u,0), i.e., T is a tree. It is
shown in [34, Theorem 1.2] (see also [27, Theorem 8]) that (T, 1) satisfies the CD

inequality
2
G
Due to Proposition 3.6, we know that (T, f1,0) satisfies

= 2
oD’ ( nor _D’?“on72> )
Dye @

since a tree has no cycles. By the definition of a covering graph, we have D¢’ = Dpo"
and D¢’ = D72". Then the corollary follows directly from Theorem 3.7. O

3.4. CD°? inequality as linear matrix inequalities. In this subsection, we
present an equivalent formulation of the C'D? inequality via linear matrix inequali-
ties. As a consequence, the problem of calculating the Ricci curvature of a graph is
reduced to solving semidefinite programming problems. In this process, we explore
the geometrical information captured by the C'D? inequality of a graph.
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By Definition 1.5, the operators I'” and I'§ can be considered as two symmetric
sesquilinear forms. Hence they can be represented by Hermitian matrices. For our
purpose, we are interested in considering the two symmetric sesquilinear forms locally
at every vertex x € V. There exist two (Nd) x (Nd)-Hermitian matrices I'’ (z) and
I'(x) such that for any two functions f,g: V — K9,

(3.13) T(f,9)(x) = FTT%(2) g and T5(f,9)(x) = FTTS(x)

Denote by | B, (x)| the cardinality of the set B,.(x). Observe that the matrix I'? (z)
only has a nontrivial block of size |By(z)| x |Bi(x)|, while the matrix I' only has a
nontrivial block of size |Ba(x)| x |Bz2(x)|.

We denote by A%(x) the (d x Nd)-matrix such that A f 7 for all
functions f : V. — K% Given two Hermitian matrices M; and Mg, the inequality
M, > Ms means that the matrix My — My is positive semidefinite. Then we have the
following equivalent definition of C'D? inequality.

DEFINITION 3.9 (CD? inequality as linear matrix inequalities). Let K € R and
n € Ry. A graph (G, p, o) satisfies the CD? inequality CD° (K, n) if and only if, for
any vertex x € V, the following linear matriz inequality holds:

1
(3.14) Pa(a) = —A7(x 2)TA7 () + KT ().
A direct consequence is the following proposition.

PROPOSITION 3.10 (semidefinite programming). The n-dimensional Ricci cur-
vature K, (G, u,0;x) of the the graph (G, u, o) at the vertex x € V is the solution of
the following semidefinite programming:

mazimize K

subject to T'g(x) — %A"( YEA (z) > KT ().

In the following, we describe the explicit structure of the matrices A% (z), ' (z),
and I'g (z). For simplicity, we restrict to the setting

(3.15) w=1ly, ie, plz)=1Vz eV,
and
(3.16) Wey =1V {z,y} € E.

Given a vertex € V, let us denote its neighbors by y1,y2,...,yq4,. By abuse of
notation, we still write A?(z) and I'? () for their nontrivial blocks corresponding to
the vertices x,y1,...,yq,. Then it is easy to see that
(3.17) A%(z) = (—dola Ony, -+ Oayy,)
and

dely  —Ozy, ++ —Ozy,
705?!1 Id 0
(3.18) o (z) = )
Ugydl O Id
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For the matrix I'g(x), the structure of the subgraph induced by Ba(z) is of rele-
vance. We denote the sphere of radius r centered at a vertex x € V' by

Sr(z) :={y € V | dist(x,y) = r}.

Then, the ball Bs(x) has the decomposition By (z) = {2} US;(z) U Sa(z).
We first introduce some natural geometric quantities before we present the entries
of the matrix I'J(z). For any vertex y € Sy(z), we have

(3.19) Si)NSe(a)l = 1

2,2~y 20T 2 F#T

and

(3.20) taley) =iy NSi@)) = Y L

2,20, 2T

Note that (3.20) is the number of triangles (i.e., 3-cycles) which contain the two
neighbors  and y. This justifies the notation g (z,y).
For any vertex z € Sa(x), we have

(3.21) S1(z)NSi(@) == Y L

Y y~w, Y~z
Note that (3.21) is related to the number of 4-cycles which contain the two vertices x
and z.

Remark 3.11. The above three geometric quantities are all closely related to the
growth rate of the cardinality of B,.(z) (in other words, the volume of B,(x) w.r.t.
the measure p = 1y) when the radius r increases.

The quantity £a (z,y) counts the number of 3-cycles regardless of their signatures.
A signed version of this quantity is also important, and we define the following quantity
describing the unbalancedness of the triangles containing the two neighbors x and y:

(3.22) 12 (y) = Y (la— 0ra0y0ya) -

Z,2M0Y, 2T

Note that the balanced triangles containing x and y do not contribute to the expression
in (3.22).

PROPOSITION 3.12. Under the setting of (3.15) and (3.16), the nontrivial block
of TS (x), which is Hermitian and of size |Ba(x)| x |Ba(x)|, is given by the following
blocks:

(3.23) (4T5(2))ae = (3ds + d2)1g;

(3.24) (405(2))zy = — (3 +du +[S1(y) N S2(2)| +#A(2,9)) Tay
for any y € S1(x);

(3.25) (4I'9(2)) sz = Z OzyOyz, for any z € So(z);

Y y~T Y~z
(3.26) (4I'3(2))yy = (5 — du + 3|S1(y) N Sa(z)| + 48a (2, y)) la
for any y € S1(x);
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(3.27) (413 (2))y1y. = 2041000y, — 40414,

for any y1,y2 € S1(x), y1 # y2, where we use oy,y, =0 if {y1,y2} € E;
(3.28) (4T5(2)),: = 2777

for any y € S1(z) and z € So(x), where we use oy, =0 if {y,2} € E;
(3.29) (4T3 (x)).. = |S1(2) N S1(x)|1g for any z € Sa(x);
(3.30) (4T5(x))z12, = 0 for any 21,22 € Sa(x), 21 # 22.

Proof. This follows from a direct expansion of the identity

TS(f,9)(@) = TTT(2)F for any f,g:V — K%
We omit the details here. 0

Remark 3.13. (i) The block (4T'¢(z)),. above is a signed version of the quan-
tity ‘81(2) N Sl(l')l in (321)
(ii) When y1,y2 € Si(z) are neighbors, ie., {y1,y2} € F, we have a triangle
containing x, y1, and y,. Then the block (4I'(z))y,y, can be rewritten as

=2 (Lo + (Is — 01202520 y201)) Oy
which describes the unbalancedness of this triangle.

3.5. Example of a signed triangle. We consider a particular example of a
triangle graph C3, which consists of three vertices x,y, and z, as shown in Figure 2.
We set

(3.31) p(x) = ply) = p(z) =2 and Wy = Waz = wy: = 1.
Let o : E°" — U(1) := {z € C,|z2] = 1} be a signature on C3. Assume that the

signature of the cycle Cs is equal to (the conjugacy class of) s € U(1). Then o is
switching equivalent to the signature given in Figure 2, i.e.,

Ogy =0z, =1 and oy, =s.

PROPOSITION 3.14. Let (Cs,u,0) be as above and s = Sgn(C3). Then it has
constant co-dimensional Ricci curvature at every vertex. As a function of s, Koo(8) :=
Ko (Cs,p,0) is given by

Z ifs=1;
(8:32) Koels) =95 - A7 sRets)

otherwise.
8

y 0,,=s z

Fic. 2. A signed triangle.
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Curvature

-1 -0.5 0 0.5 1
Re(s)

Fic. 3. co-dimensional Ricci curvature of a signed triangle.

Remark 3.15. The curvature (3.32) is illustrated in Figure 3 as a function of the
variable Re(s). The function K (s) “jumps” at s = 1. That is,

5
(3.33) lim Koo(s) =0 but Ko (1) =- >0.
s—1 4

We will show that such a “jump” appears in a more general setting in section 6.

Proof of Proposition 3.14. Since the curvature is switching invariant, we can
switch the signature ¢ to be as shown in Figure 2 before calculating the curvature
Ky(o;x) at z. In fact, one can do similar operations for calculating Ko (y) and
Ko (2). So (Cs, i1, 0) has constant curvature and we only need to calculate the curva-
ture at x.

By the fact (3.18) and Proposition 3.12, we can obtain the corresponding matrices
I'?(2) and I'g (z). Note that in this example, we choose a different measure (3.31) from
that in (3.15). Hence these matrices differ by a scaling of 1/2 and 1/4, respectively.
Therefore, under the current setting (3.31), we have

1 2 -1 -1 1 10 —6+s —6+5
27 (z) = 5 -1 1 0 and 4T'9(z) = 1 —6+3 7 2— 43
-1 0 1 —6+s 2—4s 7

By Proposition 3.10, we need to solve the following semidefinite programming:

maximize K
(3.34) subject to I'J (z) > KT (x).

Inequality (3.34) is equivalent to positive semidefiniteness of the following matrix:

10-8K  —6+s5+4K —6+5+4K
(3.35) 16Tg(x) — 16KT7(z) = | —6+5+4K  7—4K 243
—6+s+4K  2—4s 7—AK
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By Sylvester’s criterion, this is equivalent to nonnegativity of all principle minors of
the above matrix. Calculating these principle minors, we translate the semidefinite
programming to the following problem:

maximize K
subject to 10 — 8K >0, 7—4K > 0,
16K? — 8(6 + Re(s)) K + (33 + 12Re(z)) > 0,
16 K% — 56K + (16Re(s) +29) > 0,
8(1 — Re(s))K? — 10(1 — Re(s))K + (1 — Re(s))? > 0.

Rewriting the above inequalities, we obtain

maximize K

subject to K <5/4, K <7/4,

K > (5+ /17 + 8Re(s))/8 or K < (5 — 17+8Re(s))/8,

K > (T+2y/5— 4Re(s))/4 or K < (7 — 2/5 — 4Re(s))/4,
K > (6 +Re(s) + v/Re(s)2+3)/4 or K < (6 + Re(s) — v/Re(s)? + 3)/4.

One can check directly that (3.32) is the solution of this optimization problem. 0

Similarly, one can calculate the co-dimensional Ricci curvature of longer cycles
Cy for N > 4.

PROPOSITION 3.16. Let (Cy, p,0) be a cycle of length N with the edge weights
and measure [ given in (3.31) and s = Sgn(Cn). Then (Cn,u,0) has constant co-
dimensional Ricci curvature at every vertexr. Moreover, we have

|1 ifs=1;
(3.36) Koo(Cay p0) = { 0 otherwise,
and, for N > 5,
(3.37) Koo(Csp,0) = 0.

We remark that new examples of graphs (G, o) satisfying the C D7 (0, co) inequal-
ity can be constructed by taking Cartesian products of known examples for various
choices of the signature, edge weights, and vertex measure on the product graph.
We refer to Appendix A for full details about the behavior of C'D? inequalities on
Cartesian product graphs.

3.6. Heat semigroup characterizations of CD? inequalities. In this sub-
section, we derive characterizations of the C'D? inequality via the solution of the
following associated continuous time heat equation,

ou(z,t)
(3.38) o - ATt
u(z,0) = f(x),

where f : V — K% is an initial function. The solution u : V x [0,00) — K% is given
by P7f := A" f, where P7 is a linear operator on the space ¢2(V,K% ). Clearly,
we have Py f = f. It is straightforward to check the following properties of P .
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PROPOSITION 3.17. The operator P7,t > 0, satisfies the following properties:
(i) P? is a self-adjoint operator on the space £2(V,K%; u);
(ii) P? commutes with A°, i.e., PFA° = A P?;
(i) PfP = Py, for anyt,s > 0.
The solution of the heat equation corresponding to the graph Laplacian A is
simply denoted by P; := e, The matrix P, has the following additional properties
besides the ones listed in Proposition 3.17.

PROPOSITION 3.18. (i) All matriz entries of P; are real and nonnegative.
(ii) For any constant function ¢ on V', we have Pyc = c.

In particular, the above properties imply that for a function f : V — R with
0< f(z)<cforallz €V, we have 0 < P,f(z) <cforall x € V.

Proof. Recall that A can be written as the matrix (diag,) ' (A — diagp,), where
diagp, and diag, are the diagonal matrices with (diagp)s. = d, and (diag, )z = p(z)
for all x € V', and A is the weighted adjacency matrix. Now we exploit the fact that

(3.39) all off-diagonal entries of A are nonnegative,

and, therefore, we can choose C' > 0 such that A + C - Iy is entrywise nonnegative.

Then e2+¢ I~ is also entrywise nonnegative, which implies that the same holds for
Py = eAtCIn o= Cln,

For the constant function ¢, we have
(3.40) Ac=0.

Therefore, we have %Ptc = 0, which implies P,c = c. 0

Remark 3.19. Note that the two facts (3.39) and (3.40) do not extend to general
P?, even when o only takes values from O(1) = {£1}. Therefore Proposition 3.18
does not hold for the more general operators P/ .

If n = oo, the CD? inequality is equivalent to the following local functional
inequalities of P? f.

THEOREM 3.20. Let (G, u,0) be given. Then the following are equivalent:
(i) The inequality CD? (K, o) holds, i.e., for any function f :V — K%, we have

L3(f) = KT7(f).
(ii) For any function f:V — K¢ and t > 0, we have
L7(P7 f) < e 2KIP,(T7(f)).

(iii) For any function f:V — K% and t > 0, we have
log 1 log log
P(|fP?) = |P7fI? 2 E(eﬂﬁ - DI(FY f),

where we replace (e*5 —1)/K by 2t in the case K = 0.

Remark 3.21. Theorem 3.20 is similar in spirit to [5, Propostion 3.3]. Note that
Proposition 3.18(i), which is crucial for the proof of [5, Propostion 3.3], is not true for
P? in general. However, with our definitions of the operators I'” and I'§, we avoid
this difficulty.
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Proof. (1) = (ii): For any 0 < s < t, we consider
(3.41) F(s) := e *K5Py(L7(P7_f)).

Since F(0) = I'7(P7 f) and F(t) = e *KtP,(T7(f)), it is enough to prove <L F(s) > 0.
We calculate

2K d F(s) = —2KP,(T°(P7_,f)) + AP,(T?(P7_.f)) + Ps (dFU(PtUsf))

ds ds
and
PP ) = T (ATPLf PELT) ~ T (P, ATPEf).
Therefore, AP; = P;A and the inequality CD? (K, co) imply
L R(s) =22 P TS (P, 1)~ KT7 (P f)] 20,

where we used Proposition 3.18(i). This proves (ii).
(if) = (iii): For 0 < s < t, we consider

(3.42) G(s) = P(|P,f]").

Note that G(0) = |P? f|> and G(t) = Py(|f|?). Using the estimate (ii) and Proposition
3.17, we have
4

-G(s) = AP S| + Pu (P70 (A7PTT) = (A7P7 /)P ]]

=2P,(I" (P, f)) = 2€2KSFU(Pth)-
Therefore, we obtain

2Kt71

t t
G(t) — G(0) = /0 %G(s)ds > 2r‘f(ngf)/O e2Ks s — eTF"(Pt"f).

This proves (iii).
(iii) = (i): Here, we consider the inequality (iii) at ¢ = 0 and use the expansion
t? 2 2
P7 =1d+tA% + i(A") + o(t%).
Dividing (iii) by 2¢? and letting ¢ tend to zero, we obtain
1 R ——— R I
TSP = 347 (@7PF) = $ (@720 T - 5 (A7) (A7)
> KT7(f) + 7(f, A7 f) + T7 (A7 f, ).
Using Definition 1.5, the above inequality simplifies to
I3(f) = KI7(f),

which shows (i). d

4. Multiway cheeger constants with signatures. In this section, we intro-
duce multiway Cheeger constants with signatures for graphs (G, p, o).
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4.1. Cheeger constants with signatures. Following the ideas of [32], we in-
troduce a Cheeger type constant of (G, i, o) as a mixture of a frustration index and
the expansion rate. For any nonempty subset S C V', the frustration index ¢ (S) is
a measure of the unbalancedness of the signature ¢ on the induced subgraph of S.
For that purpose, we need to choose a norm on H, to measure the distance between
different elements in H.

DEFINITION 4.1. Given a (d x d)-matriz A = (a;;), we define the average (2,1)-
norm |Alz1 of A as

1 d d 2
(4.1) |Al21 = 5 > |ai;[®
i=1 \j=1

If we denote the vector of the ith column of A bfyAﬂ this norm can be rewritten as
|Al21 = 2520 | |A¥|. Recall that |A7|? := (A")T AL
Remark 4.2.
(i) The average (2,1)-norm is smaller or equal to the Frobenius norm (alterna-
tively called the Hilbert—Schmidt norm), i.e., we have for any (d x d)-matrix

A = (aij),
(4.2 Al < 4]
. 2,1 > \/(j F,
where |Alp = (szzl |al-j|2)% denotes the Frobenius norm of A. This is a

straightforward consequence of the Cauchy—Schwarz inequality directly.

(ii) The average (2,1)-norm is not submultiplicative in general, i.e., |ABla1 <
|Al2.1|B|2,1 is not necessarily true for any (d x d)-matrices A and B. However,
it B € O(d) or U(d), we have

(4.3) |BA|21 = |Al21.

Note that in this case, |Bl21 = 1.

DEFINITION 4.3 (frustration index). Let (G, u,0) be given. We define the frus-
tration indez 1°(S) for 0 #S CV as
t(S) := min Z WaylozyT(Y) — 7(2)|21

T:S—H
{z,y}€Es

= min E Wyylol  —id
T:S—H zy' zy |2’1’
{z,y}€Es

where Eg is the edge set of the induced subgraph of S in G.

Remark 4.4.
(i) By (4.3), the quantity

02y T(y) = T(2)|2,1 = |0y () — T(Y)]21

is independent of the orientation of the edge {z,y} € E. Hence, the summa-
tion 3¢, reps Wayl0ayT(y) — 7(x)2,1 is well defined.

(ii) In the definition of the frustration index, we are taking the infimum over
all possible switching functions. Hence, the frustration index is a switching
invariant quantity.
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(iii) The average (2,1)-norm is only one possible choice which can be used in the
definition of the frustration index. A more canonical norm to be used is the
Frobenius norm. However, having the aim to present the strongest Buser
type inequalities (5.1) in section 5, we choose the average (2,1)-norm here
(recall (4.2)).

We denote by |E(S,V \ S)| the boundary measure of S C V, which is given by

[E(S, VA=) way.

€S ygSsS

In the above, we use the convention that wy,y, = 0 if ¢ y. The p-volume of S is

given by
p(S) = 3 o).

z€eS
DEFINITION 4.5. We call k subsets {S;}¥_, of V' a nontrivial k-subpartition of V
if all S; are nonempty and pairwise disjoint.
Now we are prepared to define the Cheeger constant.

DEFINITION 4.6 (Cheeger constant). Let (G, p,0) be given. The k-way Cheeger
constant hy is defined as

hY = min max ¢° S,
* {Si}h_, 1Si§k¢ (Si),

where the minimum is taken over all possible nontrivial k-subpartitions {S;}%_, of V
and
7 (S) + E(S, V\ S|
u(S)
Note that the multiway Cheeger constants defined above are switching invariant.
Definition 4.6 is a natural extension of the Cheeger constants developed in [4, 32] and
is related to the constants discussed in [7].

¢7(5) :=

Remark 4.7 (relations with Bandeira, Singer, and Spielman’s constants). In [7],
Bandeira, Singer, and Spielman introduced the so-called O(d) frustration ¢; constant
vg,1 as follows:

1

—— Z wmy|0my7(y)_7(x)|Fv

Vg1 = min
L L vSow) Vdu(V) o=y

where | - | denotes the Frobenius norm of a matrix. Modifying vg1 by also allowing
zero matrices in the image of 7, we obtain

- min Zm,yev wzy|UzyT(y) - T(x)‘F
Gl 7:V—HU{0} ZCEEV /_L(J])|T(Jj)|F

)

where we denote the (d x d)-zero matrix by 0. Note that |7(z)|r = V/d, for 7(z) € H.
We observe the following relation between our Cheeger constant h{ and the con-
stant v¢ o
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which is verified by the calculation
(S) + |E(S, V\ S5)|

hy =
1™ prscy 1(S)
. Z{x,y}eE wwy|gwy7—(y) - T(‘T)lll

= min
7:V—HU{0} Za:EV ,U,(IE)|T(ZL’)|2,1

< min Z{m,y}EE Way|ozyT(y) — 7(2)|F
TVSHOO) VA ey w(@)|7 ()20
1 *

= §VG71'

In the inequality above, we used (4.2).

For convenience, we call {S;}¥_, a connected, nontrivial k-subpartition of V' if all
sets S; C V are nonempty and pairwise disjoint and if every subgraph induced by S;
is connected. Then the Cheeger constants introduced in Definition 4.6 do not change
if we restrict our considerations to connected, nontrivial k-subpartitions:

LEMMA 4.8. Let (G, p,0) be given. Then we have

hY = min max ¢°(S;
T e

where the minimum is taken over all possible connected, nontrivial k-subpartitions
{Si}§=1 of V.

Proof. Let {S;}¥_; be a possibly nonconnected, nontrivial k-subpartition achiev-
ing h{. Suppose S; has the connected components W}, ..., Wi"(i). Then,

n(i)
¢ (Si)u(S:) = Z ¢ (W) (W)

and p(S;) = 2?21 uw(W7). Hence, there exists j(i) € {1,2,...,n(i)} such that
qﬁ"(Wij(i)) < ¢7(S;). Consequently,

max ¢“(Wij(i)) < max ¢7(S;) = hy,

1<i<k T 1<i<k
and thus {T/VzJ (1:)}’;;:1 is a connected, nontrivial k-subpartition of V' with
o _ o i)
hi = 1?%‘25 (W).
This implies the lemma. ad

4.2. Frustration index via spanning trees. This subsection is motivated by
the following question: Is there any easier way to calculate the frustration index (7 (.S)
of a subset S C V? We will provide an affirmative answer in the case H = U(1).

Note that the average (2,1)-norm reduces to the absolute value of a complex
number, and the frustration index :7(S) for S C V simplifies to

LU(S) = T:Sniig(l) Z wacy|0'3:y7-(y) - T(I)|a
{z,y}€Es

where Fg is the edge set of the induced subgraph of S. Here our aim is to make it
easier to calculate (t7(S) by considering all spanning trees of the induced subgraph
of S and taking the minimum over so-called constant functions on these trees with
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respect to the signature. This reduces the original minimization problem to a finite
combinatorial problem. We will show in Appendix B via a counterexample that this
reduction is no longer possible in the case of higher dimensional signature groups.

DEFINITION 4.9. Let (G, o) be a finite, connected graph the signature o: E°" — H.
A function T : V — H is constant on G with respect to o if, for all (x,y) € E°", we
have

OuyT(y) = 7(x).
In other words, T is a switching function such that o” is trivial, i.e., o
for all (z,y) € E°".

Let T = (S, Er), Er C Eg, be a spanning tree of the induced subgraph of S. We
write Cp(S) :={r:S — U(1) : 7 is constant on T with respect to o}. Moreover, we
define Tg as the set of all spanning trees of the induced subgraph of S.

Since T is a tree, the set C(.S) is not empty. Since T is a spanning tree, we have
Cr(S)=7U():={rz:S—=>U() | z€U(1)} for any 7 € Cr(S).

THEOREM 4.10. Let S C V be a nonempty subset of V' which induces a connected
subgraph. Then,
(4.4) t?(S) = min Z Way|OzyTr(y) — Tr ()],

TETS
{z.y}€Es

Ty:z'deH

T

where T denotes an arbitrary representative of Cr(S).

Moreover, if a function T : S — U(1) satisfies 1, 1ep, WaylooyT(y) — 7(2)| =
17(S), then there is a spanning tree T = (S, Er) such that T is constant on T with
respect to o.

We remark that in (4.4) we are taking the minimum over a finite set. Moreover,
given a spanning tree T' € Tg, only terms associated to edges of Eg not belonging to
the spanning tree contribute to the sum.

Theorem 4.10 can be considered an extension of [24, Theorem 2|, where Harary
and Kabell derived this result on unweighted graphs for the case H = O(1) = {+1}.
Their proof depends in an essential way on the fact that the frustration index in
their setting (which they called line indezx of balance) only assumes integer values.
Therefore, their proof cannot be extended to the current general setting.

We first prove a basic lemma.

LEMMA 4.11. Let Z :={z1,...,2n} CU(1) and wq,...,w, > 0. Then we have

n

n
(4.5) min Zwk|z—zk|:min2wk|z—zk|.
zeU(1) o1 2€Z et

Moreover, if z € U(1) \ Z, then

n n

E wk|z — 2| > min g wk|z — 2|
z2€Z

k=1 k=1

Proof. The minimum over on the left-hand side of (4.5) exists, since U(1) is com-
pact and Y, _, wk|z — 2zi| is continuous in z. Suppose that the minimum is assumed
in 29 = e with 29 ¢ Z. That is, the function ¢ : R — R, ¢ — >_}'_, wile™ — 2]
assumes a local minimum in ¢g. Since zg ¢ Z, the second derivative ¢’ exists at tg
and is not negative due to the minimum property. But for all k € {1,...,n}, we can
set 2, = e'** and compute
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2 2

, . d
ﬁk” —e'¥|(tg) = 2@ sin

t— 1t
2

(to) < 0.

This is a contradiction and, hence, zy € Z. This finishes the proof of the lemma. 0O
Now, we prove the theorem with the help of the lemma.

Proof of Theorem 4.10. First, we notice that the expression wyy|04y7r(y)—7r ()|
does not depend on the choice of 70 € Cr(S) since Cr(S) = 7rU(1). Hence, the
restriction to the representative of Cr(S) makes sense.

Let 79 : S — U(1) be a minimizer of 3, 1 cp, Wayl|owyT(y) — 7()|. Denote by

Eo:={{z,y} € Es : 0zy70(y) = 70(2)}

the set of edges where 7y is constant with respect to o. It is sufficient to show that
Go = (S, Ep) is connected since then there is a spanning tree Ty of Gy such that 79 is
constant on Ty with respect to o.

Suppose Gg is not connected. Then there is a connected component W C S.
Denote dsW := {(z,y) € EZ : x € W,y € S\ W}. We have 9sW # ) since S
is connected. Moreover, we have o,70(y) # 7o(z) for all (x,y) € dsW, since W
is a connected component and, otherwise, y would also belong to W, contradicting
(.’E, y) € 8SW

The previous lemma states that

min Z Way|owyTo(y) — 27o(z)| = min Z Wy |02y To(y)T0(2) — 2|

=€U) (z,y)€0sW €U (z,y)€0sW

achieves the minimum only in elements of the set {og,70(y)70(z) : (x,y) € dsW}.

But 1 ¢ {ozy10(y)70(2) : (z,y) € IsW}, since o4, 10(y) # To(x) for all (z,y) € OsW.
Hence, there exists zp € U(1) such that

(46> Z wxylaxyTO(y) - Z()T()($>| < Z wa:ylaa:y7-0<y) - 7-0(33)"

(z,y)€0sW (z,y)€0sW

We define 7 : S — U(1),

zo7o(x) ifz e W;
T1(x) = )
T0() ifxeS\W.
Consequently,
Z w$y|0wy7-l (y) ! (.L“)l
{m7y}€ES
= > WaylozyTi(y) = (@) + D waylowymi(y) — 1i(2))|
{z.y}€EwUEs\w (z,y)€0sW
= Z WaylozyTo(y) — To(z)| + Z Way|owyTo(y) — 2070 ()]
{z,.y}€EwUEs\w (z,y)€EDsW
(4.6)
< > WaylozyTo(y) = To(x)| + D Waylowymo(y) — To()]
{z.y}€EwUEs\w (z,y)€DsW
= > waylowmo(y) — o))
{z,y}€Es
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This is a contradiction to the fact that 7y is a minimizer of 3 (s.y}eBs Way
|02y (y) — 7(z)|. Thus, Gy has to be connected. This finishes the proof.

Recall from Lemma 4.8 that the Cheeger constant A7 is the minimum of
maxi<;<x ¢7 (S;) over all possible connected, nontrivial k-subpartitions {S;}*_,. There-
fore, Theorem 4.10 implies that the calculation of h{ reduces to a finite combinatorial
minimization problem if H = U(1).

5. Buser inequalities. In this section, we prove our main theorem, namely,
higher order Buser type inequalities for nonnegatively curved graphs (cf. Theorem
1.1 in the introduction).

THEOREM 5.1 (main theorem). Let (G, p,0) satisfy CD?(0,00). Then for all
1 <k <N, we have

(5.1) VAl < 4D (kd\/10g(2kd) ) 7.

Before we present the proof, we first discuss the following two lemmata. We will
use the following notation for the ¢7(V, K% 1) norm of functions, 1 < p < oo,

[ fllp,p := (Z M($)|f($)p> ' .

zeV

For simplicity, we omit the subscript p in the following arguments.

LEMMA 5.2. Assume that (G, p, o) satisfies CD?(0,00). Then for any function
f:V =K andt >0, we have

(5:2) I1f = P7 flln < V2t /To(f)]h-

Proof. First, the equivalent formulation of the C'D?(0, 00) inequality in Theorem
3.20(iii) implies that

(5.3) VPPl > V2LV (PF f)so-

The inequality (5.2) is actually a dual version of the above one. We set

0 if f(2) — P f(2) = 0
g(x) == { (f(z) — Ptaf(x))/‘f(,r) — Pt”f(a:)| otherwise,

and calculate

If =B flh

(=Pt =~ [ goPifisg)

- / (A7 f, PTg) uds

m

0
| 3 @ pro)(aas

zeV

where we used the self-adjointness of P and the summation by part formula (3.3).
We further apply Proposition 3.1 and the estimate (5.3) to derive

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/11/19 to 129.234.39.154. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

286 S. LIU, F. MUNCH, AND N. PEYERIMHOFF

17 PAI < [ 3wt/ E D@V Pl ds

zeV

< / VT /T (P7g) lloeds

< VT (Al / rH\/Ps<|g|2>uooczs
TN

In the last inequality we used the fact Ps(|g|?) < |||g/?/lc = 1, which follows from
Proposition 3.18. a

We still need the following technical lemma.
LEMMA 5.3. For any function f:V — K%, we have
(5.4) IVTZ(H)llr < V2DET > waylowy fly) — f(@)].
{z,y}€FE

Proof. Tt is straightforward to calculate

IVTT D = 3 @), o 3 way 0wy F ) — £

zeV QM( )nyw
<Z\/ Z Vg |0y F(y) — f(@)]
x€eV Y, Yy~
A S g oy ) — 1)
z€V y,y~x

This simplifies to (5.4), since the summands above are symmetric w.r.t. z and y. 0O
Now, we have all ingredients for the proof of the Buser type inequality (5.1).
Proof of Theorem 5.1. Let {S;}*_, be an arbitrary nontrivial k-subpartition of V.

For each S;, let 7; : S; — H be the function achieving the values (7 (.S;) introduced

in Definition 4.3. We extend each 7; trivially to a function on V by assigning zero

matrices to the vertices in V' \ S;. By abuse of notation, we denote this extension,

again, by 7; : V — H. Each 7; gives rise to d pairwise orthogonal functions in
C(V, K% p):

(5.5) VS K e (m), 1=1,2,....d,
where (TZ((E))l denotes the [th column vector of the matrix 7;(z). Note that for x € 5,

we have |7} (x)| = 1.
For every 1 < ¢ < k, we apply Lemma 5.3 to obtain

1¢ l
QEII\/F“(E)Ill

d
1
EZ DnOT Z wmy|0'acy7_zl(y) _Tzl(x)l + |E(SHV\51)‘

{z,y}€Es,

(5.6) < V2D (Si) + [E(Si,V \ 5:))-

IA
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On the other hand, we have by Lemma 5.2,

Vat|\JTo(H] = > (e - P/7i(z)

zeV

>3 u@) [ (@) = Prrl(@)] - Il (@)

zeV
zzmmﬁwwﬂﬁﬁﬁﬁﬁm
zeV

where Re(-) denotes the real part of a complex number, and we used the Cauchy—
Schwarz inequality in the last inequality. By Proposition 3.17, we continue to calculate

(5.7) Vat|l\/To ()l > Re ((rf, 7 = PP 7))u) = 171113 = 1Pgm 13-

Let {1}V, be an orthonormal basis of £2(V,K%; ) consisting of the eigenfunctions
correspondmg to {\7}Nd, respectively. Setting

aé,n = <Tilv ’(/)n>ua

we have
Nd )

(5.8) Y latal =715 = u(sh)
n=1

and

(5.9) m%—szzﬁ-

Now (5.6), (5.7), (5.8), and (5.9) together imply, for each 1 < i <k,

d Nd 1|2
nor4 -0 1 —tAY ’aiﬂ’b
2v gt (5:) 2d2<1—;€ u(&-))

d kd—1 | 1 |2 Nd o2
1 |0 7N Y]
>=%° <1 _ il o 0 n
di = S g 1S
d kd—1 |1 |2
1 |ai n| —tA]
(5.10) >1--Y Rl et
dim o p(Si)
By (5.8), we know
d kd—1| | |2
1 ‘ai n’
Ay Sl
d =1 n=1 1(S5)
but our aim is to show that for some iy € {1,2,...,k} this expression is strictly

positive. We rewrite the summands as follows:

b |/ A
(5.11) sy~ \ Ve

2
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Since the functions 7! /1/u(S;),i = 1,2,...,k,l = 1,2,...,d, are orthonormal in the
space £2(V,K9; 1), we obtain

e ol
5.12 ST < >=1
Summation over n yields
kd—1 |oz§

k d
(5.13) Z >

d kd—1 1 2
1 [ 1
5.14 - onl g

We insert this estimate into inequality (5.10) to obtain

1 o
. nor o N > o —tAY .
(5.15) 2,/ D tlmgiagxkqﬁ (S;) > ©d ek

Since the k-subpartition was chosen arbitrarily, we have

1 o
(5.16) 2,/D"t - b > i e Mk,
For A7, # 0, we choose t = log(2dk) /A7, to obtain
(5.17) 4y/D2kd+/log(2dk)hG > /AT,
This completes the proof. 0

Recall from Corollary 3.8 that any graph (G, u,o) has a specific finite lower
curvature bound. In case of a negative lower curvature bound, we have the following
result. For a subset S C V', we define the following constant, which is no greater than

L2(9):

(5.18) 12(S) = min . E Waylozy f(y) — f(2)].
f:S—=K
|f@)|=1,vaes (#¥I€Es
Using this constant, we have the following isoperimetric type inequality.

THEOREM 5.4. Let (G,pu,0) satisfy CD?(—K,00), for K > 0. Then for any
subset ) £S CV,

. 1 : -1y e M
(5.19) L (S)+|E(S,V\S)|222Dgormm{(l—e VY, ZM}M(S’).

Proof. Modifying the proof of Lemma 5.2 for K > 0, we derive from the inequality
CD?(—K, ) that for any function f:V — K9,

(5.:20) I1£=Pefl < [\ T sl VDl
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Using 1 — e ™ > u/2 for 0 < u < 1, we have for 0 <t < 1/(2K),
(5.21) If = P7 flln < 2ViH[V/To(f)]a-

Let S be an arbitrary nonempty subset of V. Let f0: S — K¢ with |f°(x)| = 1 for
all € S be the function achieving the value of (?(.S). By similar reasoning as in the
proof of Theorem 5.1, we obtain for 0 < ¢ < 1/(2K),

(5.22) 2\/2D27t (:7(S) + |E(S, V' \ S)[) > pu(S)(1 — 7).

If \Y > 2K, we set t = 1/\] and obtain

(5.23) 2¢/2D" (17(S) + |B(S, V\ 9)|) > pu(S)(1 — e 1)/A7.

If A < 2K, we set t = 1/(2K) and obtain

(5.24) 2\/? ((8) + |B(S,V\ 9))) > n($)(1 — ) > () L
Combining both cases completes the proof. ]

We now define the following Cheeger type constant E‘l; corresponding to 1 (S).
DEFINITION 5.5. Let (G, u, o) be given. The constant hN‘{ is defined as

W i CEEIEEVAS)]
P£SCV 1(S)

By definition, we observe that i?‘l; < h{. Theorem 5.4 implies the following esti-
mate immediately.

COROLLARY 5.6. Let (G, p, o) satisfy CD(—K,o00), K > 0. Then we have
(5.25) A7 < 8max{(e/(e — 1))> D" (h9)?, /DEFTKhT }.
Note that, for the constant i?‘l; , the following Cheeger type inequality is proved in
[7, Theorem 4.1] (see also [32, Theorem 4.6 and Remark 4.9]).
THEOREM 5.7 (see [7]). Let (G,u, o) be given. Then we have
2 5% oo < ope
(5.26) Whl < A] < 2R9.
G

Ezample 5.8 (signed triangle). We revisit the example of a signed triangle dis-
cussed in section 3.5 (see Figure 2). In this case we have H = U(1) and, therefore,

¢ = h{. Using Theorem 4.10, we can check

s Is—1] 2(1 — Re(s))
o6 6 '
The Buser type inequality Theorem 5.1 tells us
(5.27) A < 32log 2(h{)?,

while the Cheeger type inequality Theorem 5.7 gives
2
=(

(5.28) : h7)? < A] < 2h9.

The comparison of the estimates (5.27) and (5.28) is shown in Figure 4, where we
treat the quantities A{ and h{ as functions of the variable Re(s).
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Re(s)

the first eigenvalue

— — Buser inequality

— - — Cheeger inequality: upper bound
""" Cheeger inequality: lower bound

Fic. 4. Comparison of Cheeger and Buser estimates for a signed triangle.

6. Lichnerowicz estimate and applications. We have the following Lich-
nerowicz type eigenvalue estimate (cf. Theorem 1.9 in the introduction).

THEOREM 6.1 (Lichnerowicz inequality). Assume that (G, p,0) satisfies CD?
(K,n) for K € R and n € Ry. Then we have for any nonzero eigenvalue \° of A,

(6.1) n-l

A7 > K,

n
where we use the convention (n —1)/n =1 in the case n = co.

Proof. Let ¢ : V. — K< be the corresponding eigenfunction of \° with unit
2(V,K% 1) norm. Integrating the inequality C'D?(K,n) over the measure u, we
obtain

(6.2) 2; @7 () (x) > % Zvu(w) A ()]” + K 2; (@07 () ().
By (3.2), z:e have N )
zéu(I)Fé' (¥)(x) = - Zvu(x)Re(F"(w, A7P)(x)) = A7 ;u(x)ra<w)<x).
Reca:;ng the summation bywle)art formula (3.3), we have N
;Vu(wr“(w(x) = —(, A7), = A7,

Therefore, (6.2) tells us that
1
(6.3) (A7)? > E(A")Q + N K.

This implies (6.1) in the case A7 # 0. |

Consequently, we have the following estimates about the lower curvature bound
of a graph.
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COROLLARY 6.2. Let (G, u,0) satisfy CD?(K,n), for some K € R and n € R,..
Then we have the following facts:
(i) If n =1, we have
K <0.

(ii) If0 < n < 1, we have K < 0. If, furthermore, o is not balanced, we have

2(1 —n) ~.5
K< -——_—Z2(h9)~
= 5anm(1)

(iii) If 1 <n < oo and o is not balanced, we have

2n—1)~ _2(n-1)

K < hg <

hy.
" 1

Proof. The estimate (i) follows directly from Theorem 6.1. Note that A{ is posi-
tive when o is not balanced. Hence we can combine Theorems 6.1 and 5.7 to conclude
estimates (ii) and (iii). O

If the graph has a nonnegative lower curvature bound, we can improve the
estimate Corollary 6.2(iii) by applying Corollary 5.6.

COROLLARY 6.3. Let (G, u,0) satisfy CD?(K,n) for some K>0 and 1 < n<oo.
If the signature o is not balanced, then we have

n—1 ~  8e? nor (75
(6.4) K< —,— min {Qh‘{, WDG (h1)2} .
Proof. Recall that CD?(K,n) implies CD?(K,c0). Hence, Corollary 5.6 is
applicable here. ]

Remark 6.4 (jump of the curvature around a balanced signature). Suppose that
a graph (G, p) with a balanced signature has positive n-dimensional Ricci curvature,
ie,, K,(0triv) > 0. (Recall that every balanced signature is switching equivalent to
oriv- Note that by Corollary 6.2, K, (oiv) > 0 is possible only when 1 < n < 00.)
Then by Corollary 6.2, we observe that the curvature K, (o) of (G, u, o), as a function
of the signature o, has the following “jump” phenomenon: For unbalanced signatures
o, when they are close to the balanced signature oy,

(6.5) limsup K, (0) <0, but K, (ctiyv) > 0.
7 (V)—0

In the above expression, we use (“ (V') as a measure for the difference between o and
Otriv-
The jump of the curvature is closely relate to the jump phenomenon of the first

non-zero eigenvalue of A?. When the signature o of a connected graph becomes
balanced, the first nonzero eigenvalue jumps from A{ to Ag.

Ezample 6.5 (signed triangle). We consider the example of a signed triangle again.
Recall that we have observed the jump phenomenon of the curvature of a signed
triangle in Remark 3.15 (see Figure 3). In Figure 1 of the introduction, the jumps
of the oo-dimensional Ricci curvature and the first nonzero eigenvalue of a signed
triangle are illustrated in the same diagram.
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We conclude this section by an interesting application of the jump phenomenon
of the curvature.

THEOREM 6.6. Suppose that a graph G has at least one cycle, but no cycles of
length 3 or 4. Then, for any signature o, any edge weights, and any verter measure
u, we have

K, (G,pu,0) <0 forany ne€R,.

Proof. Since G contains at least one cycle, there exist unbalanced signatures on G.
On the other hand, we have

(66) Kn(G,,lJ,7CT) = Kn(GaﬁLvo—triv)

by Proposition 3.6, as G has no cycles of length 3 or 4. Therefore, if K,,(G, 11, 04riv) >0,
the equality (6.6) leads to a contradiction to the jump of the curvature observed in
Remark 6.4. Hence we must have K,,(G, y,0) < 0. d

Note that the conditions on the graph in Theorem 6.6 are purely combinatorial,
whereas the curvature estimate holds for any edge weights and vertex measures.

Combining Theorem 6.6 and Corollary 3.8, we obtain an indirect verification of
(3.37). Actually, we obtain the following more general result.

COROLLARY 6.7. Let N > 5 and (Cn,p,0) be an unweighted cycle with constant
vertexr measure | = vg - 1yy. Then we have

K, (Cn,p,0) =0 for anyn > 2.

7. Eigenvalue ratios of graphs with O(1) signatures. In this section, we
restrict our considerations to the setting of a graph (G, 1) with a signature

o:E" = 0(1)={£1}.

We show that Theorem 5.1 can be applied to derive an upper bound for the ratio of
the kth eigenvalue A7 to the first eigenvalue A\{ when (G, i, o) satisfies CD7 (0, c0).

Note that the connection Laplacian reduces to an operator on ¢2(V,R; u). That
is, for any real function f:V — R and any vertex z € V, we have

(7.1) N ﬁ 3" way(0uy f(y) — f(2) € R.

Y,y~x

The eigenvalues of A% can be listed as
0<A] <o r <A <A < 2D2"

In [4, Theorem 3], Atay and Liu prove the following estimate.

THEOREM 7.1 (see [4]). For any graph (G, p, o) with o : E°" — O(1) and any
natural number 1 < k < N, we have
A

7.2 hi <164/2D%"k .
i PV

This result is an extension of the so-called improved Cheeger inequality due to
Kwok et al. [31] for the graph Laplacian A. We also mention that in the current
case of O(1) signatures, the multiway Cheeger constants, given in Definition 4.6, have
more explicit combinatorial expressions. We refer to [4] for more details.

As an application of Theorem 5.1, we prove the following eigenvalue ratio
estimates.
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THEOREM 7.2. For any graph (G, u, o) with o : E°" — O(1) satisfying C D’ (0, 00)
and any natural number 1 < k < N, there exists an absolute constant C' such that

(7.3) ] < ODE"DE™EN].
Proof. Since the inequality C'D? (0, c0) is satisfied, we have by Theorem 5.1,

X7 < 4,/(log2) DT hS.

Combining this with Theorem 7.1, we obtain

)\O’
(7.4) VA < 64y/21og2\/DE D"k \/;7
k
This implies (7.3) immediately. |

A direct corollary is the following Buser type inequality.

COROLLARY 7.3. Let (G, u,0) with o : E°" — O(1) satisfy CD?(0,00). Then for
all 1 < k < N, there exists an absolute constant C such that

(7.5) VAL < C\/DEem D" kR .
Proof. Combining (7.4) with Theorem 7.2 leads to this result immediately. |

Remark 7.4. Comparing this result with Theorem 5.1, the advantage of the es-
timate (7.5) lies in the fact that h{ < hJ and that the order of k in (7.5) is lower.
However, in the estimate (7.5), the orders of the degrees D" and DZ°™ are higher
than in Theorem 5.1.

Finally, we observe that Theorem 7.1 and hence the estimate in Corollary 7.3
cannot be true for general signatures o : E°” — H, even in the one-dimensional case
H =U(1). To explain the reason, let us revisit the example of a signed triangle.

Ezample 7.5 (signed triangle). The example of a signed triangle, discussed in
section 3.5, carries a U(1) signature o is assigned (see Figure 2). If Re(s) tends to
1, i.e., if the signature on the triangle tends to be balanced, we observe that A§ has
a positive lower bound (see Figure 1), while both A\] and h{ tend to zero, but at a
different rate (see Figure 4). In fact, by Theorem 5.1, we have

(7.6) A < 32log 2(h7)2.

Assume that Theorem 7.1 holds in this case for k = 2. Combining this with (7.6), we
obtain 1 < C'hJ for some absolute constant C' > 0. This is a contradiction. Hence,
Theorem 7.1 cannot hold for more general signatures.

Appendix A. Curvature and Cheeger constants on Cartesian products.
In this section, we discuss the C'D? inequality and the Cheeger constants on the
Cartesian product of two graphs. For two graphs, G; = (V4, E1) and G2 = (Va, E»),
their Cartesian product G; X Ga = (Vi x Va, E13) is defined as follows. Any two
vertices (z1,y1), (z2,y2) € V1 x Va are connected by an edge in Ej» if and only if

either {x1,22} € E1,y1 =ya or x1 = xo,{y1,y2} € Es.

A.1. Curvature on Cartesian products. We first discuss the simpler case of
graphs with constant vertex measures.
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A.1.1. Graphs with constant vertex measures. Given two graphs G; =
(V1, E1,w1) and Gy = (Va, B2, ws), we assign the following edge weights to the Carte-
sian product G7 X Go = (V1 x Vi, E19):

W12, (21 ,y) (w2,y) ‘= Wizize fOT any {zi,x0} € E1,y € Va;

(A1) W12, (1) (wyy2) = W2yyryo fOT ANy {y1,y2} € Eo,x € V7.

Let 0; : EY" — H;,i = 1,2, be the signatures of G;,i = 1,2, respectively. We
need to find a proper construction of the signature on the Cartesian product graph
G1 X GQ.

We first consider the case that

Hy=Hy:=H =0(d) or U(d) for some d € Zg.
In this case, we define the signature o1 : E{5 — H as follows:

T12,(21,y) (w2,y) *= Ol,aras fOr any (w1,z2) € EY",y € Va;

(A?) 012, (z,y1) (z,y2) “= 02,512 for any (yl,yg) € BES" x e V1.

Let X; be the signature group of the graph G; with o; (recall the definition of the
signature group at the end of section 2.2). We say the two subgroups ¥; and 35 of
H commute if for any s; € X1, so € Yo, we have 5185 = $257.

THEOREM A.l. Let (G1,1v,,01) and (Ga, 1v,,02) be two graphs with o; : EY™ —
H,i=1,2. Assume that they satisfy

CDJl (Kl, nl) and CDU2 (K27 ’I’L2)7

respectively. If their signature groups 31 and Yo commute, then their Cartesian prod-
uct graph (G1 X Ga, 1y, xv,,012), with the edge weight w1 given in (A.1), satisfies

CD°2 (Kl ANKo,ng + 712),

where K1 A Ky := min{ Ky, Ky }.

Note that the commutativity restriction of 3; and ¥4 is a very natural condition.
The intuition behind the above result is that the “mixed structure” in the Carte-
sian product is “flat.” To be precise, we want for two balanced signatures o1, 09 on
G1,Gs that 012 on G x G5 is also balanced. In Figure 5, we show a typical new
cycle created in the process of taking the Cartesian product, where {z;,z} € E;
and {yk,y} € E2. Since ¥ and Yo commute, the signature of this cycle, given by
O1,22:02,yy, Jl_’miag’;yk, is trivial.

Proof of Theorem A.1. Let f : Vi x Vo — K% be any K? valued function on the
product graph. For fixed y € Va, we define f,(-) := f(-,y) to be a K¢ valued function
on ;. Similarly, we define the function f*(-) := f(x,-): Vo — K9,

By the construction of 019, it is straightforward to check that

(A.3) AT f(,y) = A7 f,(2) + A £ (y)
(A4) 72 (), y) = L7 (fy) () + D7 (%) (y).
For the operator I'7'?, we claim that

(A.5) 3= (f)(@,y) 2 T3 (fy) (@) + T3 (%) (y)-
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\ 04 XX /
(x,yx) (xi,Yi)

02,y O2.yyk
~J(xY) (%5y)
'// 01 XX \\

Fic. 5. A typical cycle in the Cartesian product graph.

Once inequality (A.5) is verified, we apply the CD? inequalities on G and Gy to
estimate

72 (f)(x,y)
> nillA‘”fy(x)IQ + KT (fy) (@) + %Iszﬂc(y)P + K7 (/%) (y)
1
>
ny + no
1
>
T nip+ne

(A.6)

(A7 fy (@) + |A72 f2(y)])* + (K1 A Ka) (D7 (fy) () + T72(f7) (1))

[A72 f (2, y)|* + (K1 A K2)T72(f)(2, ).

In the third inequality above, we used the triangle inequality and the equalities (A.3)
and (A.4).
Hence, it only remains to prove the claim (A.5). Recall that

(A7) 209 (f)(2,y) = AT (f)(2,y) = T7(f, A2 ) (@, y) = T7(A72 £, f) (2, y).

For simplicity, we denote the neighbors of  in V; by x; and the neighbors of y in V5
by yr. We will then write, for short,

W15 = W1 gz, W2k = W2 yyp s and 01,4 *= Ol,zx;, 02,k ‘= 02 yy;»

and > . (32, resp.) the summation over all neighbors of z € Vi (y € V5, resp.).
We first calculate

AT72(f)(x,y)
=D wii (P72 ()i y) = T72(f)(2,9) + Y war (T72(f) (@, y0) = T72(f) (2, y)) -

Yr

:ZLl ::LQ

Applying (A.4), we obtain
L= 3" wii (T7(f,) (i) + T2 (%) (y) — T (f,) () — D72 (F%)(9)

= AT (f,)(z) + % Z wywa k(o2 f (@i, yr) — f (@i, 9) 7

Zi Yk

(A.8) — Joznf (2 y) = flz,y)]?).
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Similarly, we have

Ly = AT72(f")(y) + % Z wy jwa k(|01 f (i, ye) — f(@,ye)[?

(A.9) = loiif(ziy) — Fl@9)?).
Now we calculate the remaining terms in (A.7).
D7, A7 ) 1)
= 0 S wnlonif (wiy) — fe, ) (o187 ) — A7 (2, 0)

b3 S waklonf i) — (o) (02057 1, i) — 577 (7))

Yr

(AlO) =: M1 + Mg.
Applying the equality (A.3), we obtain
My =T (fy, A7 fy)(z)
1 T :
(A.11) +3 > wiilonif(@iy) = fa,9)" (01,47 f7 (y) — A% [ (y)).

Hence, we get
My — L7 (fy, A7 fy)(x)

= % > wiiwakl(onif (@i y) = f@,y)" (01,028 f (@0, 9k) — 020 (2, y1))

Zi,Yk

(A.12) — lovif (@i y) — fa,y)?].

Similarly, we have

‘]\4'2 _ 1"0’2 (f(L, Ao'zfl)(y)

= % > wiws k(o2 f (@, y8) = f(2,9) (02,0010 f (@i yp) — o1if (wi,1))

Ti Yk

(A13) = looif (@, yx) — [z, y)?).
Combining (A.8) and (A.13), we arrive at
(L — AT (£,)(2)) — (M — D7(f%, A% ) () ~ (3 ~ Toa(7, A7) (0))
= 3 3w llonsF i) — FGi )+ losf ) — £GP

i, Yk
+ (oo f (7, yx) — f(xvy))T(UZkUl,if(l'i,yk) —o1if(wi,y))
+ (oo f (7, yx) — f(%Z/))T(Uz,k01,z‘f(fﬂi,yk) - Ul,if(xiay))]'

(A.14)
Since ¥; and ¥ commute, we have

02 k01,5 = 01,i02k-
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Therefore, we obtain

(L1 = AT (fy)(2)) — (M2 — D72 (f*, A7 f*)(y)) — (Ma — o2 (f*, A% f*)(y))
= % D wiiwa klo1ioa g f (i, yr) — 01 f (@i y) — oo n f(x,yx) + fla, ).

Zi Yk

(A.15)

Similarly, by combining (A.9) and (A.12), we obtain

(L2 = AT2(f)(y)) — (M1 = T7 (£, A7 fy) (2)) — (M1 — T (fy, A% f)(2))
= % > wiiwa ks ko f (i yr) — ook f (@, y) — ovif (@i y) + fla,y)*.

Ti Yk

(A.16)

Adding (A.15) and (A.16), and using (3.1), we get

205 (f)(, ) = 205" (£,) (@) — 205 (f) ()
_ Z w1,iw2 ko2 ko1 i f (@i, yk) — o2k f (@, yk) — o1 f (w0, y) + f(%y)|2 > 0.

Ti Yk

(A.17)

This proves (A.5). d

Remark A.2 (tightness of Theorem A.1). The estimate in Theorem A.1 is tight
at least in the case of taking the Cartesian product of (G, 1y, o) with itself, assuming
that its signature group X is abelian. That is, for any given n € R, the precise lower
curvature bounds satisfy

KQ’!L(G X G7 1VXV7012) - Kn(G7 1V7U)

Note that the tightness of Theorem A.1 lies in the tightness of (A.6) and (A.17). B
assumption, there exists a function f: V — K? and a vertex x € V such that

T3(/)(@) = A f(@) + KT (f)(x) and T7f(z) #0.

Then we can choose a function ' : V x V — K9 satisfying, locally, around the vertex
(x,x) eV XV,
(i) Fle.2) = ()
(i) (acz,ac) f(z;) for all z; ~ x;
(iii) F(z,zk) := f(xx) for all zg ~ x;
(iv) F(xi,xk) := 0y O, (amkf(xk)—i—a;zli (x;)—f(x)) for all z; ~ z and x, ~ x.
Note that (i)—(iii) 1mphes A°F,(x) = A°F*(z) and, hence, (A.6) holds with equal-
ities. Property (iv) ensures that (A.17) holds also with equality. This shows the
tightness of the result.

Next, we discuss the situation when the two groups H; and Hs are different. We
assume that

H1 = O(d1)7H2 = O(dg), or H1 = U(d1)7H2 = U(dg), for some dl,dg S Z>()7
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where di,ds can be different integers. In such a general situation, we construct the
signature 019 : E95 — H; ® Hs on the Cartesian product graph in the following way:
812>(I17y)(12,y) = 01,212, ® 14, for any (3717562) € BV, y € Va;
(A].S) 3127(334!1)(:6,!/2) = Id1 [%4) 02,9192 for any ('yl,yg) € EQOT,QJ € Vl,
where I, is the identity matrix of size d; x d;, i = 1,2.
THEOREM A.3. Let (Gy,1v,,01) and (Ga,1lv,,02) be two graphs with o;
E{" — H;, i=1,2. Assume that they satisfy
CcD°t ([(17 n1> and CD°? (K27 ng),
respectively. Then their Cartesian product graph (G1 X Ga, 1y, xv,,012) with the edge
weight wia given in (A.1) satisfies
C’l)812 (Kl N Ko,ng + 712).
This is an immediate consequence of Theorem A.1 and Corollary 3.4.

Proof of Theorem A.3. By Corollary 3.4, we know that (G, 1v,,01 ® I4,) and
(G2, Iy, Iy, ®03) satisty CD7 %l (K ny) and C D1 ®72( Ky, ny), respectively. Note
that for any (z,z;) € E{" and (y, yx) € ES", we have
(A.19) (Ul,fwﬂi ® Id2)(1d1 ® Unyyk) - (Idl ® Unyyk)(O—l,Iqu‘, ® Id2)'

That is, the corresponding signature groups of (G1,lv,,01 ® I4,) and (Ga, 1v,, 14, ®
o9) commute. Hence, we can apply Theorem A.1 and finish the proof. 0

Remark A.4 (vertex measure). In Theorems A.1 and A.3, we use the particular
vertex measure pu(x) = 1 for all vertices z. In fact, we have more flexibility about
those measures. Assume that the vertex measures of Gy, Ga, G1 X G5 take constant
values v1,v9,v19 € R, respectively. Then under the assumptions of Theorem A.1
(replacing 1y, by v; - 1y, ), we have that the graph (G1 x Ga,v12 - 1y, vy, 012) satisfies

1

CD7 ((VlKl ANveKs),ny + n2> .
V12

The result in Theorem A.3 can be generalized similarly.

A.1.2. Graphs with nonconstant vertex measures. For two graphs (G, p1)
and (G2, p2) whose vertex measures are not necessarily constant, we modify the def-
inition of the edge weights of their Cartesian product. In [14], Chung and Tetali
introduced the edge weight for the Cartesian product G; x Go = (V4 x Vi, E19)

wl1:'2,(:r1,y)(zzﬁy) = Wy a,p2(y) for any {z1, 20} € By, y € Va;
(A.20) wlljl(m’yl)(m’w) =Wy, g1 (z) for any {yi,ys} € Es,x € V4,

and the specific vertex measure
(A.21) 2uip Vi x Vi 3 (x,y) = 2p1(x)pe(y) € R.
Observe that, in the case u; = dy,, i = 1,2, we have
2 ()H2(Y) = Y WD (o)) T D W (0 w0
ers Yk

The definitions (A.20) and (A.21) lead to a Laplacian associated to a natural random
walk on the product graph Gy x Gs.
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THEOREM A.5. Let (G, p1,01) and (Ga, pa, 02) be two graphs with o; : E?™ — H,
1 =1,2. Assume that they satisfy

CD°t (Kl, nl) and CD°? (KQ, n2)7

respectively. If their signature groups 31 and 3o commute, then their Cartesian prod-
uct graph (G1 x Ga,2p1pe, 012), with the edge weight wT, given in (A.20), satisfies

1
C D2 (2(K1 /\Kg),nl —‘rTLg) ,

where K1 A Ko := min{K;, K5 }.

Proof. The proof is analogous to the proof of Theorem A.1. We only mention
here that, this time, we have

AT () = SAT () + 5A% (1),
D7 (7)) = 5T (f,)(@) + 577 (7)),

and

T3 (f)(wy) > (T3 (R)@) + T3 ().

The last inequality above is derived from

2p(x)ply) (4032 () (@, y) = T3 (fy) (@) = T3 (f*)(y))
= > wigwaploa ko f (@i, yk) — o2k f (@ k) — ovif (zi,y) + f(2,y)]* > 0. O

Zi Yk

Remark A.6. Let us assign a general vertex measure ji12 to the Cartesian product
graph. Then, under the assumption of Theorem A.5, a proof analogous to the proof
of Theorem A.1 yields that (G7 x Ga, p12,012), with the edge weight w, given in
(A.20), satisfies

CDtTlQ ( min M(Kl /\KQ),TLl +TL2) .
(z,y)EVI XV M12((E7y)

Note that this general result also includes Theorem A.1 as a particular case.
A result similar to Theorem A.3 follows immediately from Theorem A.5.

THEOREM A.7. Let (Gy,p1,01) and (G, ua,02) be two graphs with o; : EY" —
H;,i =1,2. Assume that they satisfy

cD™ (Khnl) and ODUz(K27n2)7

respectively. Then their Cartesian product graph (G1 X G, p12,012), with the edge
weight wT, given in (A.20), satisfies

CD%:2 ( min M(lﬁ A Kz),ni + n2) :
(z,y)€VI X Vo ,U12('T7y)
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A.2. Cheeger constants on Cartesian products. In this subsection, we dis-
cuss relations between the Cheeger constants on two graphs and on their Cartesian
products.

Recall (4.3), i.e., for any (dx d)-matrix A and any B € O(d) or U(d), their average
(2,1)-norm satisfies

(A.22) |BAl21 = |Al21-

This ensures the following relation between the Cheeger constants.

THEOREM A.8. Let (Gy,1v,,01) and (Ga,1lv,,02) be two graphs with o;
E9" — H;, i = 1,2. Suppose that Hy and Hy are embedded in a group Hio such
that Hy and Hy commute. Define o192 as in (A.2). Then the kl-way Cheeger constant
hi? of their Cartesian product graph (G x Ga,1lv,xv,,012), with the edge weight
w1 given in (A.1), satisfies

N < AT 4

We first show the following lemma.

LEMMA A.9. For any subsets S; C V;, i = 1,2, we have
(A23) 1712 (Sl X Sg) < |S1|L(72 (SQ) + ‘SQ|L01 (Sl)

Proof. Let 7; : S; — H,; be the function that achieves the frustration index ¢7¢(.S;).
Set 7 := 1179 : S1 X S9 — Hiys. Then, by definition, we calculate

1712 (51 X 52)
< Z Z W1 20|01 22 TL (2 ) T2 (y) — 71 (@) T2(y) |21

yES2 {z,x’'}€Es,

+> > wayyloayyn (@) - n(@)m2(y) |2

z€S51 {y,y’'}€Es,

= ‘S2| Z wl,za:’|0-1,w:v’7_1 (ml) - T ($)|271
{ZL’,CE’}GESl

+ 154 Z Wa,yy 02,4y T2 (y') — T2(y)]2.1-
{y.y'}€Es,

In the last equality, we used that H; and Hs commute and (A.22). This implies the
lemma immediately. O

Proof of Theorem A.8. For any two subsets S; C V;, i = 1,2, it is straightforward
to check that

[E(S1 % 52, Vi x Vo \ S1 X Sa)| < |S2f[E(S1, Vi \ S1)| + |S1[|E(S2, V2 \ S2)].
Combining this with Lemma A.9, and using the fact |S; x Sa| = |S1||S2|, we obtain
¢712(S1 x Sz) < 971 (S1) + 672 (S52).

Then the theorem follows immediately, by definition, since every nontrivial k-
subpartition {Sil)}le of Vi and every nontrivial {-subpartition {ng )}é‘:l of V5 in-
duce a nontrivial kl-subpartition {SY) X Séj)}félu:l of Vi x Va. d
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Note that Theorem A.8 can be applied in the following particular case: Given two
signatures o; : E" — H;, ¢ = 1,2, we can embed them into H; ® Hs by identifying
H, with H; ® Iz, and Hy with Iy, ® Ha, respectively. Then the signature o12 on
G1 X G coincides with the signature 715 given in (A.18).

For graphs with nonconstant vertex measures, we can extend the above proof to
obtain the following result.

THEOREM A.10. Let (G1,p1,01) and (Ga,p2,02) be two graphs with o;
E¢{" — H;, i =1,2. Then the kl-way Cheeger constant hj}* of their Cartesian product
graph (Gy x Ga,2u12,012), with the edge weight wT, given in (A.20), satisfies

= 1
W < S+ ).

Appendix B. Frustration index and spanning trees. In section 4.2, we
showed that, in the case H = U(1), there is an easier way to calculate the frustration
index of a subset S C V. Recall that the frustration index ¢?(S) is defined as the
minimum of } ¢, 1 e g Way|ozyT(y) — 7(2)[2,1 over all possible switching functions 7
on S. Theorem 4.10 tells us that it is enough to take the minimum of

(Bl) Z wxylgxyTT(y) - TT(x)|2,1
{z,y}€s

over all spanning trees T of S, where 7p is an arbitrary representative of the set
Cr(S)={r:5—=U():7 is constant on T w.r.t. o}.

Recall that (B.1) is well defined because for any two 71,72 € Cr(S), there exists
z € U(1) such that 71 = 72z, and hence

(B.2)  |owymi(y) — T1(2)|2n = [(0ayT2(y) — T2(2))2]2,1 = |owyT2(y) — T2()|2,1.

That is, the quantity |o,y7r(x) — 7r(y)|2,1 does not depend on the choice of 7p €
Cr(S).

It is natural to ask whether Theorem 4.10 can be generalized to higher dimensional
signatures, i.e., H = U(d), for d > 2. We first observe that, for the signature o :
E°" — U(d), d > 2, the quantity (B.1) is not well defined since it depends on the
representatives! Note that for any (d x d)-matrices A and B € U(d), we do not
always have |AB|21 = |A|2,1 (recall that |[BA|21 = |A|2,1). But this is needed in the
verification of (B.2).

However, if we use the Frobenius norm |- | instead, (B.1) is still well defined. In
this section, we present a counterexample to show that Theorem 4.10 does not hold
for higher dimensional signatures, even if we use the Frobenius norm in the definition
of the frustration index.

Recall that Lemma 4.11, which is a statement about the metric space S = U(1),
plays a crucial role in the proof of Theorem 4.10. This lemma does not generalize
to higher dimensional spheres. Already in S?2, we have the following counterexample:
For three equidistributed points P;, P>, P3 on a meridian close to the north pole IV,
we have

d(Pl,P2> +d(P1,P3) > d(N,Pl) —|—d(N,P2) —f—d(N,Pg),

where d denotes the intrinsic distance in S2. Lifting this example into U(2) by using
the Hopf fibration S — SU(2) = §3 — S2, we obtain the following matrices in U(2):
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0 -1 relor  —\/1—r2
Ao(l 0 >’Aj<m re o >’k1’2’3’

where r € [0,1], o, = 2(k — 1)7/3. We check that

(B.3)

A — Alp=VorV1<k#1<3

‘AO_Ak|F:2V1_ \/1—7“2 Vk:1,2,3

Therefore, for small » (e.g., when r < 0.85),

and

3 3
B.4 Ag — A < i A—ALlp.
( ) ;| 0 k\F AG{A?%QVAS};| le

Equation (B.4) implies that the generalization of Lemma 4.11 does not hold in U(2).
For later purposes, we transform one of the matrices { A1, A2, A3} to be the iden-
tity matrix Is. Set

By = A3 Ag, By = A3 Ay, k=1,2,3.
Then we have B3 = I5. Using the definition of the Frobenius norm, we obtain
(B.5) |By — By|p = |B2 — Bs|r = |Bs — Bi|r = V6r,

and, for small r,

3 3

B.6 By — Bi|r < min B — Bi|r < |B1 — L|r + |B2 — L] F.
(B.6) ;I 0 — Bk|r Be{Bl,Bz,BB},;| klp < |Bi— 2| + [B2 — Io|r

Let us consider the graph shown in Figure 6. This is a graph with vertex set
V = {2y, 2w}, edge set B = {{z,y}, {y, 2}, { w}, {w, 2}, {y, w}}, and a signature
o : E°" — U(2) as shown in the figure.

PrOPOSITION B.1. For the graph as shown in Figure 6, we have

tp(V) = T:VH_ljg@) Z w:z:y|0:1:y7—(y) —7(z)|r < 7{2%2 Z |UzyTT(y) —77(2)|F,
{zyrebs {z.y}eE

where T is a representative of the set

Cr(V)={r:V = U(2):7 is constant on T w.r.t. c}.

Oyy=l>

w

Fic. 6. A counterexample.
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Proof. Observe that Ty = (V, {{z, y}, {y,w},{y, 2}}) is a spanning tree and that
the function 7, = I5 is a constant function on 77 with respect to o. We calculate

> owyrr () = 71y ()P = By — L|a1 + By — L|p

{z,y}eE
(B.6) &
> |Bo — Bl
k=1
= Z |02yTo(y) — T0(2)|F,s
{z,y}€FE

where the switching function 7y is defined via 79(z) = 70(y) = 70(2) = Bo, To(w) = Is.
Therefore, by definition, we have

(B.7) G (V)< Y lowymn(y) — 7 (2)] e
{z.y}eE

The graph in Figure 6 has eight spanning trees, which we denote by T;, « =1,2,...,8.
We claim that

(B8) Y lowyr(y) — 0, (2)|p =B — Llp+|Ba— Llp Vi=12,...8.
{z,y}€FE

The proposition then follows immediately from (B.7) and (B.8).
Claim (B.8) can be checked directly with the help of (B.5) for all choices of
spanning trees. ]
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