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Abstract We present a spatial analysis of volcano distribution and morphology in the young,
intraoceanic Mariana Arc. Both the quality of fit to idealized models and the divergence from those ideals
indicate that Mariana Arc volcanoes are arranged into five great circle segments, rather than a single small
circle or multiple small circles. The alignment of magmatic centers suggests that magma transport is
controlled by the stress regime in the deep crust and/or lithospheric mantle of the Philippine Sea Plate, into
which the arc is emplaced, and that arc‐normal tension is the dominant process operating in the deep
lithosphere along the whole arc. Volcano morphologies indicate that the stress regime in the shallow crust
varies between arc‐normal tension and compression, which also implies that the stress field can vary with
depth in the arc lithosphere. We show that this horizontal and vertical stress partitioning can be related to
the changing dip of the subducting plate and the breadth of the zone where it is coupled with the overriding
plate. The variation in stress regime is consistent with both the distribution of seismicity in the Philippine
Sea Plate and with the structural fabrics of the nonvolcanic part of the plate margin to the south. Our
analysis suggests that the upper plate exerts the principal control on the distribution of volcanoes in the
Mariana Arc. Where tension in the deeper parts of arc lithosphere is sufficiently concentrated, then a distinct
volcanic front is produced.

Plain Language Summary When a slab of oceanic lithosphere descends into the mantle at a
subduction zone, a chain of volcanoes is often produced on the upper plate. Management of hazards and
resources produced by such volcanic arcs benefit from understanding the pathways taken by magma as it
travels through the subduction zone to the surface. We applied spatial analysis to the Mariana Arc to show
that magma pathways are controlled by the upper plate. There are five segments along the arc's length, each
forming a straight line on the Earth's surface (a great circle). The alignment of volcanoes results from the
deeper parts of the upper plate being under tension, perpendicular to the volcanic chain, due to forces
generated by the subduction zone. Shapes of the volcanoes themselves and their craters show that in its
shallow parts the forces on the upper plate are more varied. In the south, the upper plate is being pulled apart
in the same sense as the deep parts of the plate. This changes along the arc until the tension in the shallow
crust is perpendicular to the volcano alignment at the northern end of the arc. The shallow stress can be
related to changes in transmission of forces between the subducted slab and upper plate and to bending of
the upper plate as a result of subduction forces. We conclude that the stress in the upper plate is the main
factor controlling the distribution of magmatic systems in volcanic arcs.

1. Introduction

Locations of volcanic edifices provide an opportunity to explore magma generation and transport beneath
volcanic arcs (England & Katz, 2010). Processes occurring within the slab and mantle wedge, in particular
through addition of fluid from the subducted slab to the wedge, make significant contributions to subduction
zonemagmas; therefore, some relationship between the locations of arc volcanoes and subduction dynamics
can be anticipated (Carr et al., 1973; England et al., 2004; Gill, 1981; Marsh, 1979; Stoiber & Carr, 1973;
Syracuse & Abers, 2006; Tatsumi, 2005). England et al. (2004) approximated the distribution of arc volcanoes
as small circles to define an average depth to slab (H) in each arc for comparison with other subduction
dynamic parameters. This approach led them to propose that the locus of melting is related to the descent
speed of slabs, from which it was inferred that the thermal structure of the mantle wedge is an additional
key factor in localizing melting and, hence, volcano location (England et al., 2004; England & Katz, 2010).
While the small circle approximation reveals correlated parameters for many arcs, the metamorphic
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reactions that release fluid from subducted slabs occur over a range of pressures and temperatures depend-
ing on the thermal and compositional profile of each slab (Grove et al., 2009; Schmidt & Poli, 1998). Thus,
despite broadly similar H values within and between arcs (England & Katz, 2010; Jarrard, 1986; Wilson
et al., 2014), with an average close to 105 km, it should be no surprise that there are wide variations, from
about 60 to 200 km, in H within single subduction zones, often for volcanoes is close proximity (Pacey
et al., 2013; Syracuse & Abers, 2006).

While mantle wedge hydration is clearly vital to the creation of arc volcano sources, an alternative view of
volcano locations is that these are a function of structures or processes operating in the arc lithosphere, since
the locations of volcanoes are the surface expression of magmatic pathways through the upper plate. The
possibility that arc lithosphere might control arc volcano distribution was recognized from the early days
of plate tectonics (Isacks et al., 1968) and substantial interplay of upper plate structural features with both
spatial and temporal distributions of magmatism have been suggested in the Central American and Lesser
Antilles margins (Bolge et al., 2009; Burkart & Self, 1985; Feuillet et al., 2002; Feuillet et al., 2010; Morgan
et al., 2008; Weinberg, 1992). Pacey et al. (2013) demonstrated that volcanoes of the central Sunda Arc are
aligned into a series of great circle segments, an arrangement that had previously been proposed to result
from the locus of melt formation in many subduction systems (Marsh, 1979; Ranneft, 1979). In contrast to
these previous studies, however, Pacey et al. (2013) attributed this arrangement to control of magma trans-
port by the arc lithosphere because, with the exception of ocean island chains, most examples of great circle
features on the Earth's surface are accepted as consequences of lithospheric control. The most notable exam-
ples of this are the products of tension, as seen to control alignment of magmatism at oceanic spreading cen-
ters and continental rifts, or association with lithospheric‐scale fault systems, such as transverse and major
normal faults. Therefore, recognition of great circle alignment in volcanic arcs may provide ameans to deter-
mine the stress regime affecting arc lithosphere (Pacey et al., 2013). However, the margins mentioned above
are predominantly continental systems, where structures inherited over protracted geological histories may
also influence magmatic pathways.

To explore the distribution of arc volcanoes in an intraoceanic system, this paper examines the Mariana Arc
(Figure 1), which initiated approximately 5 million years ago as the latest of several arcs to form in response
to subduction of the Pacific Plate beneath the eastern margin of the Philippine Sea Plate (Fryer, 1996). The
Mariana Arc covers geologically young, extensional basement and structures associated with rifting of the
Mariana Ridge from the Mariana West Ridge (Bloomer et al., 1989; Hussong & Uyeda, 1981; Oakley et al.,
2009; Yamazaki et al., 2003). Its youth, intraoceanic setting and, relatively, simple geological history mean
that this margin is less susceptible to the structural and rheological complexities that influence continental
arcs (Fryer, 1996). Thus, the Mariana Arc is well suited to understand the effect of current tectonic develop-
ment upon arc volcano distributions. We demonstrate that the arrangement of Mariana Arc volcanoes is best
described by a pattern of great circle segments. This segmentation is consistent with tensional forces domi-
nating strain at the base of the arc lithosphere, thus focusing magma toward the volcanic arc. Comparison of
these alignments with volcano ellipticity and seafloor fabrics indicates that stress is vertically partitioned in
the arc lithosphere and that the nature of this partitioning varies along the arc. We develop a model for these
stress variations, which is consistent with both earthquake focal mechanisms within the volcanic arc and the
structural features of the nonvolcanic continuation of the Mariana margin to the southwest.

2. Mariana Arc

The intraoceanic Mariana Arc (Figure 1) is at the margin where subduction and volcanism have been
ongoing since the Eocene (Hussong & Uyeda, 1981). Located at the eastern edge of the Philippine Sea
Plate, where the Pacific Plate is subducted westward, the active Mariana Arc, which is dominated by basalt
and basaltic andesite magmatism (Bloomer et al., 1989), has previously been described as comprising the
Northern Seamount Province from 21° to 24°N, the Central Island Province from 16° (Anatahan) to 21°N
(Uracas), and the Southern Seamount Province from 13° to 16°N (Dixon & Stern, 1983). Designation of
boundaries between these provinces is arbitrary being based on volcano elevations with respect to sea level,
which overlooks the presence of seamount volcanism within the Central Island Province. The whole arc,
from Nikko in the north to Tracey in the south, comprises 60 groups of volcanic centers of which 26 are
active. Twenty of the active centers are submarine (Baker et al., 2008). The active arc is located
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Figure 1. Distribution of Mariana Arc volcanoes on a gnomonic projection with center at 139.305°E, 17.333°N. Red triangles with black outline are subaerial vol-
canoes (Smithsonian's Institute Global Volcanism Program; our Data Set GVP04); those with no outline are submarine (abbreviations in the supporting informa-
tion). Subaerial and submarine volcanoes between Farallon de Pajaros (FP) and Esmeralda (ES) are included in the second data set (GVP04+SM). All volcanoes
fromNikko (NI) in the north to Tracey (TR) in the south comprise Data Set B08 (Baker et al., 2008). Digital elevationmodel in 30 arc second resolution (Becker et al.,
2009) and additional 6 arc second resolution (Lim et al., 2013) from NOAA. Black dashed lines are backarc fracture zones. Thick red lines are sites of backarc
spreading (Martinez & Taylor, 2003; Oakley et al., 2009; Yamazaki et al., 2003). Black lines with arrows are sinistral strike‐slip faults (adapted from Stern & Smoot,
1998). Thin red to blue solid lines are slab contours in km beneath surface, from SLAB2.0 (Hayes et al., 2018). Green arrows illustrate backarc spreading directions
inferred from motion of islands (Kato et al., 2003) with length proportional to rate. Blue arrows are the relative plate motion of the Pacific Plate (PA) to the stable
Philippine Sea Plate (PS) with length proportional to rate that is annotated in mm/year (Argus et al., 2011).
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immediately to the west of Mariana Ridge, which is 100 km wide in the south and peaks at 300 m above sea
level in Guam, narrowing to 20 km width near Sarigan where its crest is 1,100 m below sea level. This ridge
forms a nonvolcanic island chain from Guam in the south to Asuncion in the north then becomes indistinct,
further north (Bloomer et al., 1989; Figure 1).

Hussong andUyeda (1981) proposed that active edifices in theMariana Arc are constructed on a basement of
backarc crust or rifted arc crust that subsided along steeply dipping normal faults, to the west of the Mariana
Ridge. Later, Bloomer et al. (1989) proposed that Mariana Arc edifices were aligned parallel to the West
Mariana Ridge, Mariana Trough, and the forearc, from which they suggested that normal faults channel
magma on its route to constructing the edifices. Accordingly, Bloomer et al. (1989) concluded that
Mariana Arc volcanism is controlled by the structural development of the upper plate. Moreover, Oakley
et al. (2009) interpreted scarps in the backarc, observed on seismic reflection profiles, as normal faults that
formed by backarc spreading with most of the faults facing toward the spreading axes. Thus, it is also impor-
tant to understand development of the backarc in order to understand the volcanism in the active arc.

The spreading‐related, active faulting in the Mariana backarc is different to that in most ocean basins (Fryer,
1996), especially at fast or superfast spreading ridges where active faulting is concentrated within a narrow
zone near the spreading axis (Edwards et al., 1991; Fornari et al., 2004). In contrast, diffuse extension of the
Mariana Trough occurs as widely distributed normal faulting across the backarc even though a spreading
axis is present and active (Fryer, 1995). Martínez et al. (1995) proposed that the diffuse deformation is caused
by far‐field strain as the upper plate deforms in response to subduction and described three types of struc-
tural development in the northern Mariana Trough: (1) asymmetric rifting between 22°15′N and 24°N, (2)
localized rifting where spreading axis start to separate from the active arc between ~21°N and 22°15′N,
and (3) concentrated rifting from 20°N to 21°N to where the spreading axis is separated from active arc
and forms deep grabens. This structural arrangement was later confirmed by identification of the rifting
to spreading transition zone at about 22°N, through seafloor‐spreading patterns in the bathymetry, magnetic
field lineaments, and bulls‐eye patterns in gravity data (Yamazaki et al., 2003). The same data also indicated
diachronous initiation of spreading. Observations by Yamazaki et al. (2003) suggest that spreading between
19°N and 20°N started before 5 Ma then propagated to the north, which is compatible with the conclusion of
Hussong and Uyeda (1981) who stated the spreading began after late Miocene.

Asymmetric spreading in the Mariana Trough has produced more backarc crust to the west of the spreading
axis than to the east (Karig et al., 1978; Oakley et al., 2009). Yamazaki et al. (2003) suggested that this resulted
from interaction of mantle upwelling beneath the active arc and the backarc spreading center. Deschamps
and Fujiwara (2003) proposed it could be caused by preexisting magmatism in the east leading to asymmetry
of crustal rheology, melting processes, and stress regime conditions, by resistance of the Pacific Plate slab in
the eastern margin to the northwestward relative motion of the Philippine Sea Plate or by rollback of the
Pacific Plate causing migration of the trench toward the east and southeast (Boutelier & Cruden, 2013;
Faccenna et al., 2009). Slab rollback plays a significant role in backarc basin formation by causing hinge
retreat and creating extension in the backarc (Macpherson & Hall, 1999; Macpherson & Hall, 2002); hence,
rollback of the Pacific Plate caused trench retreat and began the opening of Mariana backarc basin
(Faccenna et al., 2009).

The Mariana Trough spreading rate varies from north to the south. Based on modeling of magnetic anoma-
lies and deep ocean drilling core analyses, the spreading half‐rate to the west of the spreading center has var-
ied from 2 to 3 cm/year since late Miocene (Hussong & Uyeda, 1981; Yamazaki et al., 2003). GPS
observations conducted from 1991 to 1999 used the stable Eurasia reference frame for GPS stations in the
island arc to determine the present backarc spreading rate relative to the Philippine Sea Plate. The backarc
spreading rates are 15.9 ± 6.6mm/year with an azimuth of 57.8° ± 19.9° near Agrigan at the center of the arc,
with amaximum rate of 44.6 ± 2.7 mm/year directed toward 97.1° ± 4.1° near Guam in the south (Kato et al.,
2003). This study also showed lateral, N‐S motion in the residual data, which aligned with the model of
spreading developing in the center of the trough propagating to the north and south (Martínez et al.,
1995; Oakley et al., 2009).

Motion of the subducting Pacific Plate relative to the Philippine Sea Plate varies from north to south along
the trench (Argus et al., 2011; Becker et al., 2015). At about 23°N the rate of convergence is 34 mm/year with
an azimuth of N290°E (Argus et al., 2011). Convergence gradually decreases to the south, and the subduction
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direction rotates clockwise to 21 mm/year directed to N317°E at around 12°N (Figure 1). Thus, as the trench
azimuth rotates so does convergence obliquity from highly oblique in the north to orthogonal at about 13°N
then oblique in the opposite sense further south. Stern and Smoot (1998) noted that this obliquity variation
along the arc is manifest as the prevalence of left‐lateral, strike‐slip faults in the forearc north of 18°N con-
trasting with forearc grabens in the southern forearc (Figure 1).

When averaged from 80 to 400 km depth, the Pacific Plate has a steep dip of approximately 75° beneath the
Philippine Sea Plate (England et al., 2004), with some variation along the arc. Syracuse and Abers (2006)
showed that between 50 and 250 km depth, the average dip decreases from 60° under Farallon de Pajaros
(20.5°N) to 49° under the Esmeralda Bank (15°N). This is the same sense of variation as observed for depths
greater than 125 km, where dips are 84° at 21°N compared to 73° at 12°N (Lallemand et al., 2005). However,
at depths less than 125 km slab dips are steeper in the south, varying from 36° at about 21°N to 46° at 12°N
(Fukao et al., 2001; Lallemand et al., 2005; Miller, Gorbatov, et al., 2006; Miller, Kennett, et al., 2006).
Variations in slab dip play no systematic role in variations in the depth from arc volcanoes to the slab, how-
ever. Figure 1 shows that in the southernmost arc there is an almost 60 km variation in depth to slab between
Tracey and Northwest Rota seamounts. There is negligible variation in slab dip, or convergence rate and vec-
tor, between these volcanoes, which are separated by only 115 km.

Gvirtzman and Stern (2004) used the term “plate coupling,”which is different to “seismic coupling,” to refer
to the contact between upper and lower plates in a subduction zone. The steepening slab dip in the south,
possibly related to tearing of the subducting slab and asthenospheric upwelling under the upper plate
(Gvirtzman & Stern, 2004; Miller, Gorbatov, et al., 2006), also affects the zone in which such coupling occurs.
The plate coupling zone is the horizontal breadth of this region of plate coupling at the surface, which they
took to be represented by the distance from the trench to the front of the Mariana Ridge. This zone narrows
southward from 170 km at 17.5°N, in the center of the arc, to 100 km at 11°N, in the south (Gvirtzman &
Stern, 2004).

2.1. Data Sets

We employed three compilations of volcano locations to allow direct comparison of previous approaches
with the method applied here (Figure 1). Following England et al. (2004), the first data set (GVP04), which
largely equates to the subaerial Mariana Arc, takes the locations of 12 volcanoes from the Smithsonian
Institute Global Volcanism Program catalog (Global Volcanism Program, 2013), from Esmeralda at the
southern end to Farallon de Pajaros in the north. The second data set (GVP04+SM) includes all submarine
volcanoes between Esmeralda and Farallon de Pajaros, which increases the number of edifices to 21. The
third data set (B08) is taken from the study of Baker et al. (2008) on hydrothermal activity in the Mariana
Arc. This includes 37 volcanoes from Nikko in the north to Tracey in the south, which geochemical studies
suggest are all part of the volcanic arc (Baker et al., 2008; Pearce et al., 2005). The presence or absence of
hydrothermal emissions (Baker et al., 2008) was used to constrain the locus of active volcanic craters. For
centers lacking such emissions we used the least weathered crater morphologies to identify the most likely
location of active or recent volcanism. The complete lists of volcanic center location data sets are listed in the
supporting information.

3. Methods

We applied quantitative and objective methods to investigate the distribution of Mariana Arc volcanoes.
Small circles were fitted to each data set (i.e., GVP04, GVP04+SM, and B08), and the Hough Transform
method was applied to identify potential great circle alignments in B08 (Pacey et al., 2013). To determine
whether a segmented small circle model might be more appropriate, best fit small circles were also obtained
for the segments identified using the Hough Transform approach. Candidate great circle segments were
compared to the structural lineament trends in the backarc basement and to the ellipticity of arc volcanoes
(Nakamura, 1977). All results are integrated into a model that is evaluated against earthquake focal mechan-
isms and a structural understanding of the adjacent, amagmatic, southernmost part of the plate margin. A
more detailed explanation of the methods is presented in the supporting information.
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3.1. Geometric Fitting
3.1.1. Small Circles
The geometry of a small circle is defined by the coordinates of its center (latitude and longitude) and its
radius (r). The best fit small circles for the whole arc and for arc segments were obtained by varying those
parameters to minimize the standard root‐mean‐square misfit (rms‐misfit) of the volcanoes, as expressed
by the equation

m ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

1
dn

2

n

vuuut
;

where dn is the shortest (perpendicular) distance from each volcano to the small circle and n is the number of
the volcanoes in the data set. This equation weights each volcano in the calculation equally, in contrast to
alternative approaches that more heavily weight those volcanoes lying close to the small circle (e.g.,
England et al., 2004).
3.1.2. Great Circles: Hough Transform
To evaluate whether the Mariana Arc volcanoes are aligned as great circles, we used a Hough Transform
approach (Ballard, 1981; Duda & Hart, 1972). This method has been used in Earth sciences to detect aligned
structures, including volcanic vents and monogenetic volcanoes (Cebriá et al., 2011; Fernández‐Álvarez
et al., 2016; Martínez et al., 2000; von Veh & Németh, 2009; Wadge & Cross, 1988). Specific to arcs, Pacey
et al. (2013) applied a Hough Transform approach to identify great circle segmentation in the central
Sunda Arc. We have developed their method and applied this to determine potential alignment of
Mariana Arc volcanoes. The quality of data fit to each potential great circle was, again, quantified by rms‐
misfit. Initially, the endpoints of each segment were fixed as the locations of the two volcanoes at its ends
(Pacey et al., 2013). Then, linear transformations were applied iteratively to the length, center point, and
orientation of each potential alignment to minimize the misfit. Misfits for the overall arc were calculated
for all possible segment combinations and weighted based on the number of volcanoes in each arc‐segment.
The best fit combination of great circle segments was then identified by minimizing the total number of seg-
ments, where possible associating each volcano with one segment only; maximizing the number of volca-
noes on each segment; and minimizing the overall misfit.
3.1.3. Comparing Small and Great Circle Fits
We employed two approaches to compare the quality of fit of small and great circles. We used the Akaike
Information Criterion (AIC) to compare the segmented small circle and segmented great circle cases
because, although the number of segments are similar in each, the numbers of adjusted parameters (i.e.,
degrees of freedom) differ. A small circle has three degrees of freedom (radius, and central latitude and long-
itude) while a great circle has only two (central latitude and longitude). To allow direct comparison, we
adapted the least squares fit case of the AIC (Akaike, 1974) where the model estimator is the rms‐misfit that
we obtained from fitting the geometric models (Banks & Joyner, 2017; Burnham & Anderson, 2004). The
AIC is expressed as

AIC ¼ n log bσ2� �þ 2K;

where n is the number of data points, K is the number of adjusted parameters, and bσ2 is the estimator. Since
we use the rms‐misfit as model estimators,

bσ2 ¼ ∑ dnð Þ2
n

;

where dn is the residual or misfit from each volcano to its geometric model.

Given that the number of volcanoes in our data sets is small compared to the number of adjusted parameters
in our geometric fitting, the AIC parameters should be corrected (corrected Akaike Information Criterion
[AICc]) to prevent bias from the model with more adjusted parameters (Akpa & Unuabonah, 2011;
Hurvich & Tsai, 1989). The AICc parameter formula is expressed as
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AICc ¼ AIC þ 2K K þ 1ð Þ
n−K−1

;

hence,

AICc ¼ n log
∑ dnð Þ2

n

 !
þ 2K þ 2K K þ 1ð Þ

n−K−1
:

Since any AIC parameter represents the amount of information lost in fitting any model, models with the
lowest AICc values should be preferred (Akaike, 1974; Burnham & Anderson, 2004).

A segmented model, whether of small or great circles, will involve considerably more degrees of freedom
than for a single small circle; therefore, it is questionable how appropriate the AICc is for comparing a single
small circle with a segmented great circle model. Instead, we analyzed the systematic changes in misfit (resi-
duals) along the length of each segment with respect to ideal great and small circles. The principal behind
this is outlined in Figure 2. Relative to a great circle datum, a chain of volcanoes that form a great circle
on the surface of a sphere (Figure 2a) would have residuals (ΔGC) that produce a y ≈ 0 regression line

Figure 2. Use of residuals from fitting small and great circles to volcano distributions to determine true shape of arc segments. For volcanoes in great circle align-
ment (a) the residuals to a great circle (ΔGC) yield a linear regression with y ≈ 0 when plotted against distance along the segment (b), whereas the residuals for the
best fit small circle (ΔSC) form a polynomial curve (c). The reverse is true for volcanoes distributed as a small circle (d) where ΔGC varies as a polynomial curve
along the alignment (e), while ΔSC gives y ≈ 0 (f).
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when plotted against distance along the segment (Figure 2b). Residuals for the same chain of volcanoes with
respect to a small circle datum (ΔSC) would form a polynomial curve (Figure 2c). Conversely, if the volca-
noes are actually distributed as a small circle (Figure 2d), then the systematics of residual plots would be
reversed; that is, ΔGC plotted against along‐segment distance would generate a polynomial curve
(Figure 2e) and a line of y≈ 0 would be produced forΔSC (Figure 2f). The patterns predicted would be appar-
ent regardless of whether a single small circle datum or segmented circle datums are used, although segmen-
tation of either the data set or the datums would lead to inflections or reversals of the residual variation along
the length of the arc.

3.2. Surface Strain Observation
3.2.1. Lineament Mapping

Extensional faults are distributed widely across the backarc and not concentrated within a narrow zone near
the spreading axis (Fryer, 1996). Wemapped individual normal faults, with the assumption that they are still
in an early stage of development and can be considered as isolated structures (Cowie et al., 2000). Faults were
identified on the bathymetric surface as lineaments across which the seafloor depth changes significantly.
Backarc faults were assigned to a particular arc segment by projecting segment ends along the direction of
backarc spreading (Kato et al., 2003).

3.2.2. Volcano Ellipticity

Nakamura (1977) proposed a method to approximate tectonic stress orientation from volcano morphologies
by assuming that volcanoes experiencing a uniform, horizontal stress regime would produce a radially sym-
metrical central conduit and dike swarm in the shallow crust (Muller & Pollard, 1977). Using the Nakamura
and Uyeda (1980) principle, that the vertical stress around the volcanic arc always forms the intermediate
principal stress (σ2), the two‐dimensional near‐surface stress regime perpendicular to the trench can be
determined for any deviation from the ideal symmetrical arrangement toward an elliptical form. For a
two‐dimensional cross section perpendicular to the trench, trench‐perpendicular compression would pro-
duce a maximum horizontal stress (σHmax) parallel to the section. This, in turn, would produce volcanoes
that are elongated perpendicular to the trend of the arc (Figures 3a and 3b). Conversely, trench‐
perpendicular tensional stress would lead to a minimum horizontal stress (σHmin) perpendicular to the
trench and cause volcanoes to be elongated parallel to the arc (Figures 3c and 3d).

As proxies of elongation of themagmatic systems, Mariana Arc volcano ellipticity was determined for craters
(Marliyani, 2016) or, in their absence, the footprint of the edifice (Bonini, 2012; Tibaldi, 1995). For some edi-
fices the proximity of other volcanoes obscures the edifice shape; in which case, those volcanoes are not
included in this analysis. Ellipticity was quantified by determining the azimuth and length of the longest
and shortest axes, which are considered to approximate the orientation of horizontal maximum and mini-
mum stresses (σHmax and σHmin), respectively. Examples of volcano ellipticity observations are presented
in the supporting information.

3.3. Model Evaluation
3.3.1. Focal Mechanism Distributions

Apperson (1991) employed earthquake focal mechanisms at shallow and intermediate depths in subduction
zones to determine the seismic strain field of overriding plates. We applied the same method to focal
mechanisms of earthquakes Mw ≥ 5.5 from the Global CMT catalog database (Dziewonski et al., 1981;
Ekström et al., 2012) to evaluate the stress regime in the overriding plate. The analysis was carried out by
projecting the individual focal mechanisms onto cross sections located at the center of each of the segments
identified using the Hough Transform approach. Moment tensors were gathered in a swathe width equal to
the corresponding linear segment. We focused on depths from 0 to 30 km where the relevant focal
mechanisms appear.

3.3.2. Southern Mariana Structures

To further constrain the stress regime in the overriding plate, we studied the seafloor structures of the non-
volcanic, southwest continuation of the Mariana margin (Martinez et al., 2018). We extended the lineament
map to the SSW of Tracey seamount into a part of the subduction system from 140°E to 146°E and from 11°N
to 13°N that is referred to here as the Southern Mariana (Lim et al., 2013).
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4. Results
4.1. Geometric Fitting
4.1.1. Small Circles
The best fit small circle for GVP04 has an rms‐misfit of 2.5 km, essentially identical to the 2 km value
reported by England et al. (2004). Data set GVP04+SM, which shares geographical boundaries with
GVP04 but includes submarine volcanoes, yielded a small circle with a higher misfit of 3.9 km. Data set
B08, with geographical boundaries incorporating the whole Mariana Arc, gave the highest misfit of 8.4 km
(Table 1). Thus, the effect of including all the edifices of data set B08 is a small circle with significantly larger
misfit to the Mariana Arc than previously recognized.
4.1.2. Great Circles: Hough Transform
The Hough Transform method generated 12 potential great circle alignments within the Mariana Arc
(Figure 4a). These were optimized and combined, as discussed in section 3, to produce a refined pattern of
five, best fit, great circle segments (Table 2 and Figure 4b): north segment (rms‐misfit = 2.9 km), midnorth
segment (rms‐misfit = 3.2 km), central segment (rms‐misfit = 2.7 km), midsouth segment (rms‐misfit = 2.9
km), and south segment (rms‐misfit = 0.7 km). The combined misfit values for all segments are 3.3 km
before optimization and 2.7 km after optimization.
4.1.3. Comparing Small and Great Circle Fits
Once segments were identified from great circle fitting, their best fit small circles were also found.
Comparison of the great and small circles for each segment with the AICc shows that segmented great circles
are consistently better fitted to the arc than segmented small circles (Table 2). Treating the arc as a whole
(supporting information), the AICc value for a series of great circle segments is 60.6, which is lower, and sta-
tistically preferable, to the AICc value for a series of small circle segments (89.9). Although we prefer a dif-
ferent method to compare the segmented great circle model with a single small circle (next paragraph), the
AICc also returns a more favorable value for segmented great circles than for a single small circle (75.2).
Therefore, despite the differences in the degrees of freedom, the Mariana Arc is better approximated as seg-
ments of great circles than segments of small circles.

Comparison of residual plots for fits to small circle (ΔSC) and great circle (ΔGC) datums also indicate that a
segmented great circle model is preferable to either a single or segmented small circle model (Figure 5).

Figure 3. Estimation of shallow crustal stresses from volcano ellipticity (Marliyani, 2016; Nakamura & Uyeda, 1980). Vertical stress acts as the intermediate prin-
cipal stress in the volcanic arc (σv = σ2), implying that the minimum and maximum principal stress are horizontal (σHmax = σ1 and σHmin = σ3). (a and b)
Compression perpendicular to the trench produces maximum horizontal stress normal to arc trend, which is also the direction in which volcanoes are elongated. (c
and d) Tension perpendicular to the trench leads to maximum horizontal stress that is parallel to the arc and volcanoes that are elongated along the trend of the arc.
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Residuals to the best fit, whole arc small circle for each data set do not show systematic variation for the
whole arc (Figure 5a). However, for shorter distance along the B08 data set, the small circle residuals
show polynomial deviation. This is most evident in the south, from Tracey (TR) to West Saipan (WS), and
the north, from Nikko (Ni) to South Daikoku (SD). Inflections or reversals in the residual variation occur

Table 1
Small Circle Properties and Fitting Results for Each Data Set

Data Set n volcanoes RMS‐misfit (km) Radius (km) Center latitude (°N) Center longitude (°E)

GVP04 12 2.5 655.0 17.391 139.655
GVP04+SM 21 3.9 683.3 17.302 139.390
B08 37 8.4 688.7 17.333 139.305

Figure 4. Segmentation of Mariana Arc identified using the Hough Transform method; (a) black lines show 12 potential alignments identified using our Hough
Transform approach. (b) Best fit segment combination consists of five segments (blue lines) along the arc: north (10 volcanoes), midnorth (7), central (6), mid-
south (8), and south (6). Maps use gnomonic projection uponwhich great circles appear as straight lines. Blue arrows showmotion of the Pacific Plate relative to the
Philippine Sea Plate (Argus et al., 2011).
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Table 2
Mariana Arc Segments, With Volcanoes, Properties, and Fitting Results, for Both Great and Small Circles

Segments North Midnorth Central Midsouth South

Volcanoes Nikko SE Daikoku Cheref Zealandia W Saipan
Ichiyo Chamoro Poyo Sarigan Esmeralda
Syoyo Farallone de Pajaros Agrigan S Sarigan NW Rota #3
S Fukuyama Ahyi Pagan Anatahan W Rota
Fukujin Supply Reef Alamagan E Diamante NW Guam
Kasuga #1 Maug Guguan N Ruby 2 Tracey
NW Eifuku Asuncion Ruby
Eifuku W Tinian
Daikoku
S Daikoku

n volcano 10 7 6 8 6
Segmented great circle properties
Misfit (km) 3.00 3.17 3.92 4.14 0.78
Opt. misfit (km) 2.92 3.16 2.69 2.91 0.67
Distance (km) 322 199 270 204 216
XA (°E) 142.287 144.419 145.492 145.819 145.450
YA (°N) 23.124 21.210 19.413 16.880 15.298
XB (°E) 144.518 145.450 145.450 145.454 144.405
YB (°N) 21.016 19.698 17.305 15.076 13.635
Azimuth (CW of N) 316 327 350 12 31
Segmented small circle properties
Misfit (km) 3.79 3.89 2.12 2.71 3.16
Radius (km) 1066 721 662 613 853
Center latitude (°N) 28.569 16.916 17.221 16.989 18.339
Center longitude (°E) 151.154 139.222 139.612 140.011 138.052
AICc at each arc segment
Small circles 21.56 21.52 21.91 18.93 23.99
Great circles 14.94 14.14 13.16 13.85 5.82

Figure 5. Residuals of small and great circle fitting plotted against distance along arc. (a) ΔSC of GVP04, GVP04+SM, and B08 data sets against distance from
Tracey (TR). Full abbreviation list in Table S3. (b) ΔGC for Mariana Arc volcanoes from Data Set B08 using the best fit great circle alignments as the datum
(Figure 2b). All segments plot as lines approaching y = 0; (c)ΔSC for Mariana Arc volcanoes fromData Set B08 using a single best fit small circle for the whole arc as
the datum (Figure 2c; Table 1). (d)ΔSC forMariana Arc volcanoes fromData Set B08 using the best fit small circle to each segment as the datum. All of theΔGC and
ΔSC residual plots suggest that Mariana Arc volcanoes follow great circle alignment.
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close to the ends of segment identified using the Hough Transform. Figure 5c displays ΔSC residuals for the
five segments identified using the Hough Transform method relative to the best fit, whole arc small circle.
The residuals vary systematically along the length of each segment as anticipated for a distribution of volca-
noes as a great circle. None of the residual plots in Figure 5c yield ΔSC distributions that can be better
described as a straight line than a polynomial curve. This is corroborated by using a great circle datum for
each segment, which produces straight lines that closely approach y = 0 (Figure 5b). This approach also
replicates the result of the AICc approach by suggesting thatMariana Arc volcanoes are not arranged as mul-
tiple segments each constituting a different small circle (Figure 5d).

The analyses of distributions in this section lead us to reject the hypotheses that Mariana Arc volcanoes are
distributed either as a single small circle arc or as segments made up of multiple small circles. In view of
these observations, the simplest conclusion is that Mariana Arc volcanoes are distributed along five, great
circle segments, which we shall refer to as arc segments. Not only is this most consistent with the
Mariana Arc data, it is also most consistent with the Java arc system where a similar quantitative approach
has been applied (Pacey et al., 2013), and to less quantitative analysis of multiple arcs worldwide (Marsh,
1979; Ranneft, 1979).

4.2. Surface Strain and Stress
4.2.1. Backarc Structure

Orientations of backarc faults associated with each arc segment (Figure 6a) were compared to the backarc
spreading direction, the segment azimuths, and the motion of the Pacific Plate relative to the Philippine
Sea Plate. Rose diagrams show that fault orientations are perpendicular to the backarc spreading direction
(Figure 7). This is consistent with the interpretation of Oakley et al. (2009) that the faults are associated with
spreading. The arc‐segment azimuths are subparallel to the fault orientations. In the northern segment the
azimuths are slightly counter clockwise of the faults, and this offset gradually shifts to clockwise toward the
south, but the deviation never exceeds 10°. In contrast, the subduction direction of the Pacific Plate does not
show any systematic relationship to arc‐segment azimuths.

4.2.2. Volcano Ellipticity

There are significant differences in the relationship between arc‐segment azimuth and volcano ellipticity in
the northern and southern segments (Figures 6b and 7). Volcano ellipticities in the north arc segment are
elongated between N000°E and N080°E, the majority being strongly oblique to the segment azimuth
(N316°E), the backarc faults, the convergence direction, and the trench. Similar, but stronger, relationships
occur in the midnorth segment as the volcanoes are elongated between N040°E and N090°E while the seg-
ment trends toward N328°E. In contrast, the ellipticities of south arc‐segment volcanoes are mostly elon-
gated between N330°E and N020°E and, apart from West Saipan (WS), subparallel to the segment
azimuth, which is oriented N031°E. Between these segments, the central and midsouth segments trend
toward N350°E and N011°E, respectively. Volcano ellipticities in these two segments range between perpen-
dicular to and parallel to the segment orientations, ranging from N340°E to N070°E in the central segment
and from N045°E to N150°E in the midsouth segment.

5. Discussion

A relationship between averaged depths of subducted slabs beneath volcanoes (H) and descent speeds of
slabs in some arcs has been used to infer a geodynamic significance for H (England et al., 2004; Syracuse
& Abers, 2006). But several arcs, including Scotia, Java, Bali, Nicaragua, the Lesser Antilles, and Vanuatu,
do not fit the global trend while other individual arcs show large fluctuations in H over distances where
neither descent speed nor slab dip can vary (Syracuse & Abers, 2006). For example, in the central Sunda
arc values of H change by more than 100 km, over horizontal separations of less than 150 km (Pacey
et al., 2013). We have shown that Mariana is another example of this variation, since H for active arc volca-
noes, determined from the SLAB2 model (Hayes et al., 2018), ranges from 110 to 180 km across the arc. This
entire range is apparent over short distances in the south, from Tracey to Esmerelda, where there can be no
change in slab descent speed (Figures 1 and S1). Furthermore, White et al. (2019) have suggested that earth-
quakes in the mantle wedge behind the Mariana Arc may reflect significant transport of slab derived fluid
across a much greater breadth of the subduction margin than a simple, vertical conduit directly beneath
the volcanic arc. This conclusion is consistent with modeling of fluid flow within the mantle wedge
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(Wilson et al., 2014). Both these approaches further illustrate that caution should be applied in relating H to
the processes that localize volcanic and magmatic centers in arcs.

Several early studies of arcs that proposed that volcanoes form “linear”—in fact great circle—segments
attributed segmentation to processes in the mantle wedge or to structures and processes at the slab surface
(Carr et al., 1973; Marsh, 1979; Stoiber & Carr, 1973) or were equivocal as to the causes of such distribution
(e.g. Hughes et al., 1980; Ranneft, 1979). Pacey et al. (2013) documented great circle alignments of volcanoes
in the central and eastern Sunda Arc but concluded that both the alignment and its segmentation into an en
echelon arrangement resulted frommagma transport being focused by the arc lithosphere. Close study of the
Central American and Lesser Antilles systems has also demonstrated links between arc segmentation and
structural development in the upper plate (Bolge et al., 2009; Burkart & Self, 1985; Feuillet et al., 2002;
Morgan et al., 2008).

We propose that the great circle segmentation of the Mariana Arc reflects focusing of magma in the deep
crust and/or lithospheric mantle of the upper plate, as has been suggested for the central Sunda Arc.

Figure 6. Surface strain distribution of Mariana presented in gnomonic projection. (a) Faults in the backarc (dark red) compared to the orientation of arc segments
(thick, blue lines). Dashed‐dot lines are the boundaries used to attribute faults to particular arc segments. (b) Volcano ellipticity showing long (dark blue) and short
axis (light blue) directions. The latter is inferred to approximate the horizontal minimum principal stress (σ3) direction.
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Pacey et al. (2013) inferred that great circle segmentation in central Sunda occurred due to magma exploiting
stress‐related, upper plate weaknesses and identified three principal mechanisms that might contribute to
this: arc‐normal tension, oblique tectonics, or upper plate flexure. In the remainder of this section, we
evaluate these and potential alternative mechanisms in the Mariana Arc.

Alignment of contemporaneous volcanic, magmatic, and tectonic features in ocean ridge and rift settings is
widely accepted to reflect magma channeling by the plates through which magma is transported (e.g., Crane
& Ballard, 1981; Mazzarini, 2007; Rooney et al., 2011; Searle, 1992). Tension in the arc lithosphere might
result from rollback of the subducting slab (Macpherson & Hall, 1999; Macpherson & Hall, 2002) and links
between extension and volcanic productivity have been recognized in many arcs (Acocella & Funiciello,
2010; Smellie, 1995). The similarity of Mariana's arc‐segment orientations to tension indicators in the
immediate backarc (Figure 7) provides another indication that arc‐normal tensional stress in the upper plate
contributes to alignment of arc volcanoes. While tension, alone, would be consistent with the similar sense
of deep and shallow lithospheric strain that we have determined from volcano alignment and volcano mor-
phology, respectively, in the southern Mariana Arc, it cannot explain why the volcanoes of the north and
midnorth segments have ellipticities consistent with arc‐normal compression (Figure 7). Therefore, tension
across the whole depth of the upper plate is unlikely to be the sole, or principal, cause of segmentation.

The influence of oblique convergence upon subduction magmatism may differ from arc to arc, and both
transtension or transpression can focus magma flow within convergent margins (McCaffrey, 1992;
McNulty et al., 1998; Tikoff & Teyssier, 1992). Arc‐parallel faulting has been inferred to focus volcanic

Figure 7. Rose diagram for each arc segment comparing: arc‐segment azimuth (red), backarc spreading direction (light green, Kato et al., 2003), long axis of volcano
craters (dark blue) or edifices (light blue), backarc fault orientation (black), and relative plate motion of PA to PS plate (dark blue arrow, from Argus et al., 2011).
Initials are volcanoes where ellipticity was determined (abbreviations in the supporting information).
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centers in the Lesser Antilles (Feuillet et al., 2002) and Central America (Bolge et al., 2009). Unlike the
case in central Sunda, however, the Mariana arc‐segments do not show the consistent en echelon step
overs that led Pacey et al. (2013) to consider a role for oblique tectonics. Furthermore, the presence of
arc segmentation is independent of changes in both the presence of strike‐slip faulting in the Mariana
forearc, and the overall convergence vector. Strike slip faults, oriented at about N314°E, cut the
Mariana forearc north of 18°N where convergence becomes highly oblique (Stern & Smoot, 1998) but
are absent further south (Figure 1), yet segmentation of the arc persists there. Indeed, the great circle
segmentation persists along the entire length of the Mariana Arc as convergence varies from highly obli-
que in the north to entirely orthogonal at the latitude of the southernmost stratovolcanoes. Further
south, convergence is again oblique but in a reversed sense, yet there is no strongly developed chain
of arc volcanoes here (see below). Thus, we conclude that oblique convergence does not play a strong
role in producing segmentation of volcanism in the Mariana Arc, although it may influence the extent
of individual segments.

Downward flexure can produce compression in the shallow parts of a plate with simultaneous tension at
greater depth (Hieronymus & Bercovici, 2000). Indeed, during the earliest days of plate tectonics arc‐parallel
tension at the base of arc lithosphere was considered as a dynamic response to flexure (Isacks et al., 1968).
Husson (2006) modeled the development of negative dynamic topography in upper plates of subduction
zones due to the presence of the dense, subjacent slab. In the Mariana margin this effect was predicted to
produce maximum downward displacement of the Earth's surface in a broad, arc‐parallel band between
the Mariana Ridge and the backarc ridge axis (Husson, 2006), close to the location of the active arc. More
generally, Hassani et al. (1997) demonstrated the development of lithosphere flexure at convergent margins
due to the downward force from the slab as the hydrostatic suctionmaintained the coupling surface between
the slab and upper plate. Crameri et al. (2017) showed that vertical deflection of the upper plate due to down-
going slab could occur up to a thousand kilometers from the trench; however, the wavelength of the flexure
would depend on the upper plate's resistance to deformation based on its thickness and rheology (e.g., Meyer
& Schellart, 2013; Sharples et al., 2014). In any case, horizontal tension at the base of upper plate would still
occur regardless of the flexure wavelength as long as the coupling surface maintained the plate‐to‐plate con-
tact and resistance (Hassani et al., 1997). In older arcs, flexure of the upper plate may be augmented by the
load imposed by the arc, but this is unlikely to be a major effect in younger arcs such as Mariana (Waltham
et al., 2008). In addition, Bonnardot et al. (2008) also predicted the possible contribution frommantle corner
flow in enhancing the arc‐normal tension at the base of flexed upper plate. Thus, the key feature to induce
downward flexure of the upper plate is the operation of subduction, and, therefore, we consider this to be the
most viable mechanism for producing arc‐normal tension in the deeper parts of the upper plate along the
length of the margin.

Other processes that may generate upper plate stress can also be evaluated at the Mariana margin. Lateral
forces due to topographic or tectonic features may contribute to upper plate stress. For example, the topo-
graphic high of the Mariana Ridge (Bloomer et al., 1989) may exert tensional stress due to higher vertical
loading or gravitational effects (Artyushkov, 1973; Bada et al., 2001; Bird, 1991). However, the form of the
Mariana Ridge changes substantially along its length from around 100 km wide near Tracey seamount in
the south, where it emerges as the island of Guam, to approximately 20 km width near Guguan, north of
which it is not evident (Stern & Smoot, 1998; Figure 1). The presence of arc segmentation is not correlated
with the presence or absence of the Mariana Ridge, or any other, topographic feature. Thus, we conclude
that topographic effects have a negligible influence upon the development of segmentation in the
Mariana Arc but are limited, perhaps, to the near surface stress regime.

To the west of the arc, backarc extension across a broad part of the Mariana Trough is suggested by the wide-
spread distribution of normal faults (Fryer, 1995; Fryer, 1996; Martínez et al., 1995). A small ridge push effect
from the spreading center, potentially close to zero due to the subdued topography in the backarc, may con-
tribute to stress on the arc; however, a tensional stress regime induced as a passive response to the far‐field
rollback is likely to be dominant (Deschamps & Fujiwara, 2003; Macpherson & Hall, 2002; Nakakuki &
Mura, 2013). Nonetheless, Mariana shares a great circle segmentation pattern with other arcs that lack back-
arc basins, including Sunda and Central America (Marsh, 1979; Pacey et al., 2013), suggesting that backarc
spreading it not a primary control upon the development of arc segmentation.

10.1029/2019JB017391Journal of Geophysical Research: Solid Earth

ANDIKAGUMI ET AL. 15 of 27



Consideration of all the factors above leads us to infer that arc‐segmentation results from arc‐normal tension
in the deeper parts of the arc lithosphere, which is produced by tension and/or flexure of the plate upon
which the Mariana Arc is constructed. This contrasts with a more complex variation of stress in the shallow
upper plate, as indicated by volcano ellipticity (Figures 6 and 7) andmapped out in Figure 8 (Apperson, 1991;
Nakamura & Uyeda, 1980; Oakley et al., 2009). In the north and midnorth arc segments, volcanoes are gen-
erally elongated subnormal to arc‐segment azimuths (Figure 7), suggesting that horizontal maximum stress
is perpendicular to the segments and that trench‐perpendicular compression affects the shallow crust of the
northern segment. While this is consistent with the general expectation of plate margin compression
(Figure 3; Nakamura & Uyeda, 1980), it appears to contradict our interpretation of arc normal tension in
the deep arc lithosphere. This contradiction would be resolved if the plate is flexing downward (Hassani
et al., 1997; Hieronymus & Bercovici, 2001). In the south segment the volcano ellipticities suggest that hor-
izontal maximum stress in the shallow arc crust is parallel to the arc segments (Figure 7), conforming to the
conclusion reached for the deep crust but contrasting with the expectations from Nakamura and Uyeda
(1980). In the central and midsouth segments, the orientation of the major axis of ellipticity is more variable
suggesting a transition between trench‐perpendicular compression and trench‐perpendicular tension in the
shallow crust.

5.1. Vertical Stress Partitioning

The apparent contradiction of inferred deep and shallow stress regimes in the lithosphere of the north and
midnorth, and to a lesser extent in the central and midsouth, segments can be resolved by considering a
model of vertical stress partitioning in the overriding plate. The gradual increase in vertical stress (σv),
due to lithostatic pressure and rheological stratification, is recognized as an important control upon stress
geometry and can potentially cause different stress regimes in the shallow and deep crust (Hasegawa
et al., 1985; McGarr & Gay, 1978; Petrini & Podladchikov, 2000; Ranalli & Murphy, 1987). This increase
in vertical stress means that the stress orientations approximated from volcano ellipticity should strictly
be applied to the shallow lithosphere only and may not be the same as those in the deeper crust. In the shal-
low crust of an active arc, vertical stress acts as the intermediate principal stress (σv = σ2). However, increas-
ing vertical stress, due to lithostatic stress, in the deeper crust might modify the principal stress geometry
such that the vertical stress becomes the maximum principal stress (σv = σ1). Brace and Kohlstedt (1980)
explained the mechanism of stress regime changes at depth using the limit of lithospheric strength, which
is defined as the maximum difference between horizontal stress and vertical stress (σH− σv). With a thermal
gradient of 15 °C/km in a crustal column with hydrostatic pore pressure σH − σv would reach a maximum
value at about 15 km for a quartz rheology or 30 km for an olivine rheology, with shallower depths predicted
for their dry equivalents. At deeper levels, σH − σv would decrease gradually toward zero at 25 km for the
quartz rheology and 50 km for olivine. This change with depth provides a mechanism that could produce
different stress regimes at different depths, even in the absence of forces external to the crustal volume.
Therefore, it seems possible there is a mechanism that allows vertical partitioning of the stress regime in
the upper plate, as most evident in the northern segments of the Mariana Arc. Furthermore, the relation-
ships between shallow and deep stress appear to vary along the arc; they are aligned in the south but contra-
dictory in the north. Thus, the stress regime must also be responding to changes along the length of the
plate margin.

To further investigate vertical and horizontal stress partitioning in theMariana margin, we investigated how
the contrasting stress patterns vary with respect to along‐arc changes in subduction dynamic parameters.
The dip (δ) of the Pacific Plate beneath the Mariana Arc varies from south to north. Earthquake data show
that the general dip of the subducting plate is less steep in the south (Syracuse & Abers, 2006) but at depths
less than 125 km the slab dip (δsh) is actually steeper in the south (Fukao et al., 2001; Lallemand et al., 2005).
In assessing plate coupling between the two plates, Gvirtzman and Stern (2004) focused on the shallow slab
dip because this covers, and extends beyond, the depth range within which the Philippine Sea Plate and
Pacific Plate are in contact. The average crustal thickness within the volcanic arc ranges from 14.5 to 20
km (Hughes & Mahood, 2011; Zellmer, 2008), and the average plate thickness is about 50 km (Gvirtzman
& Stern, 2004). Therefore, δsh is likely to be a more important influence than δ upon the stress regime of
the overriding plate.
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Figure 8. Trench‐perpendicular stress regime in the shallow crust interpreted from volcano ellipticities, along with the backarc extension. Trench‐perpendicular
compression is marked by red shading, trench‐perpendicular tension by yellow shading and transition zone by orange shading. Map is a gnomonic projection. Blue
arrows show the PA‐PS relative motion.
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Gvirtzman and Stern (2004) estimated the extent of plate‐to‐plate coupling in the Mariana margin by mea-
suring the horizontal, perpendicular distance from the trench to Mariana Ridge. The breadth of this plate‐to‐
plate coupling zone is about 170 km in the vicinity of our central arc segment and narrows southward to 100
kmwhere we identify the south arc segment. Applying the Gvirtzman and Stern (2004) treatment to themar-
gin at our north arc‐segment suggests a coupling distance of up to 190 km. Assuming the thickness of the
forearc is constant along the length of the arc and that coupling distances are defined in the horizontal plane,
then the contact surface between the plates is approximated by the coupling distance divided by the cosine of
the slab dip. Using these assumptions suggests that the contact surface between the plates would be wider in
the north and narrower in the south.

Descent of the slab produces frictional resistance along the contact with the overriding plate. The downgoing
slab movement itself is induced by a slab pull force (Fsp; Carlson et al., 1983). Gvirtzman and Stern (2004)
proposed that the frictional resistance between the two plates and the downward movement of the subduct-
ing slab act to pull down the overriding plate. Since variations in this pull‐down force (Fpd) are likely to be
generated by changes in the surface resistance between the two plates, then Fpdwould be proportional to the
breadth of the contact surface. Therefore, Fpd would be stronger in the Mariana north arc segment and
weaker in the south arc segment.

Variation of δsh from north to south could also contribute further to modify the stress regime variation in the
Mariana Arc. As the subducting slab descends below the overriding plate, a horizontal slab push (Fup) force
is exerted upon the upper plate (Heuret & Lallemand, 2005). Since velocity and force are proportional, Fup
will be proportional to the subducting velocity of the downgoing slab (vslab) and the cosine of the shallow
slab dip. Assuming that vslab, normal to the trench, does not vary significantly along the length of the arc,
Fup would be controlled by δsh, and so the shallow slab dip in the north would generate stronger Fup than
the steeper dip in the south. Therefore, stronger compression would be exerted in the northern arc than
toward the south.

Variation in the pull‐down force may contribute to stronger upper plate flexure in the north compared to the
south. In the north, vertical stress partitioning is most distinct where it may be enhanced by the strong com-
pression from Fup. Meanwhile, in the south, vertical stress partitioning is less obvious as the segment experi-
ences stronger trench‐perpendicular tension due to the seaward trench rollback and weaker Fup. However,
tension of deeper arc lithosphere occurs in all segments and is responsible for generating magma pathways
in the deep crust of the Mariana Arc, which are manifest as arc segments.

Three‐dimensional mechanical modeling of the strain mechanisms proposed above is beyond the scope of
this study, but we can make a very simplified estimate of the possible magnitude of the operating stresses
by assuming that the thickness of the upper plate (z) is a constant 50 km along the margin, comprising 20
km crust and 30 km lithospheric mantle (Gvirtzman & Stern, 2004). Then, the average shear stress (τ)
operating along the plate interface is estimated as the product of the friction coefficient (μ), gravitational
acceleration (g), density (ρ), and upper plate thickness (τ = μ.g.ρ.z). For this purpose, we assumed a typi-
cal friction coefficients (μ) for plate‐to‐plate coupling of 0.032 ± 0.006 for crust with a density of 2,800
kg/m3, and 0.019 ± 0.004 for lithospheric mantle with density of 3,300 kg/m3 (Lamb, 2006). This results
in an estimated shear stress along the plate interface of approximately 36 MPa. Although this is toward
the upper end of estimates made for other subduction zones (e.g., Duarte et al., 2015; Holt et al., 2015;
Lamb, 2006), it is not unreasonable in view of the limited constraints on real friction coefficients and
on the thickness of lithosphere and crust. As the shear operates along the coupling surface, the horizontal
and vertical stresses can be estimated as vector components of the mean value. The horizontal stress com-
ponent, associated with Fup, is the product of τ cos δsh. Therefore, based on variation of δsh along the mar-
gin, the horizontal stress is estimated to be about 29 MPa in the north and 25 MPa in the south. This is a
small variation but one that is consistent with the changing forces we have proposed along the plate mar-
gin. The nonlithostatic component of vertical stress, arising from Fpd, is τ sin δsh leading to estimates of 21
MPa in the north and 25 MPa in the south. This decreases in vertical stress from north to south contrasts
with the suggestion above but is, again, small and would be eliminated or even reversed if, for example,
the arc lithosphere in the south were slightly thinner than and/or had proportionately more crust than
lithosphere in the north. In general, basal traction exerted upon the lithosphere by the asthenosphere
is thought to affect plates at a regional rather than at a local scale (Naliboff et al., 2009); therefore, we
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do not expect plate scale forces of the sort described by Forte et al. (2010) and Ghosh et al. (2013) to be
relevant to subduction zones. However, the more intensely focused flow of mantle generated by a sub-
ducting slab does have the potential to induce stress in the overriding plate (Bonnardot et al., 2008;
Hassani et al., 1997). Quantification of such stress is highly dependent upon assumptions about the rheo-
logical properties of the two plates and the mantle wedge, but estimates are of comparable magnitude to
those we have determined for the shear stress at the plate interface (Bonnardot et al., 2008).

Figure 9 is a schematic illustration of how we interpret the stress regime of the overriding plate responds to
changing dynamic parameters in the Mariana subduction system. The overall distribution of stress is similar
to that envisaged due to plate flexure (Hieronymus & Bercovici, 2000). In the northern part of the arc the
near‐surface crust is dominated by trench‐perpendicular compression that must give way to tension down-
ward and to extension toward the backarc (Figure 9a). We envisage this being accommodated in a transition
zone, which may have an intermediate stress state or may be composed of smaller domains of contrasting
stress. In the southern arc (Figure 9c) the trench‐normal tensional regime is expressed as spreading in the
backarc and tensional magma transport throughout most depths beneath the arc. The Mariana Ridge may
represent compression of the upper plate with some component of bending at these latitudes, and there
may also be some compression in the very shallow depths due to a volcano loading effect (Waltham et al.,
2008). In the central parts of the arc the transition between tension and compression extends closer to the
surface than in the north (Figure 9b). Like the north, the deeper crust beneath the central arc is under ten-
sion with the exact form of the volcano depending on the balance of tension and compression over the shal-
low depth range, where a loading effect may also come into play (Figure 9b). This geometry maintains a
tensional regime at depth under all parts of the active arc allowing magma to ascend into the arc lithosphere
where decreasing pressure and/or differentiation may aid further buoyant rise toward the surface regardless
of the stress in the shallower crust.

5.2. Model Evaluation

Two independent sets of observations can be used to test our interpretation of stress distribution in Mariana
Arc lithosphere. The first uses earthquake focal mechanisms as a direct measure of strain in the arc. The sec-
ond uses the structures present in the southward, nonvolcanic continuation of the upper plate to explore the
stresses that might be generated by subduction.
5.2.1. Earthquake Focal Mechanisms
Figure 10 shows trench‐perpendicular cross sections for each of the five arc segments. Focal mechanisms of
individual earthquakes are plotted on the sections, together with elevation profiles and our interpretation of
stress regime boundaries from Figure 9. Figure 10c also shows the Moho profile of the central Mariana Arc
from Takahashi et al. (2007). The location of these cross sections on the map view is in the supporting infor-
mation, Figure S6.

Most available focal mechanisms are concentrated at shallow and intermediate depths, from 10 to 22 km. In
the north and midnorth segments, compressional focal mechanisms are located in the forearc, and exten-
sional focal mechanisms occur in the backarc. Compressional mechanisms also occur near the trench, show-
ing compressional stress fields both at the toe of the overriding plate and in the slab. In the south segment,
extensional mechanisms are distributed widely from the backarc to the forearc, and compressional mechan-
isms are concentrated at the tip of the overriding plate. Between forearc and backarc compressional and
extensional focal mechanisms are colocated in the south segment, and the arc lies within such a zone at
the surface of the central and midsouth segments.

Seismic events are rare in the deep crust/shallow mantle zone beneath arcs. However, extensional events
have been recorded at about 10 to 20 km depth beneath the north and midnorth arc segments
(Figures 10a and 10b). In our model, this coincides with the deep expression of the great circle alignments,
which define the arc segments that we infer to be the main supply routes for arc magma. Of the remaining
events beneath the arc, most have an oblique sense but often with a strong normal component (Figures 10c
and 10d). The rarity of seismic events probably results from the rheology of the crust, its water content,
and/or temperatures at that depth (Maggi et al., 2000; Meissner & Strehlau, 1982; Wortel, 1982) but could
also be due to uncertainty in determining source locations of shallow to intermediate earthquakes
(Ekström et al., 2012). In addition, dykes that intruding the deeper crust would involve tensile failure and
so probably be aseismic (Grandin et al., 2011). Despite the low number of observations, these focal
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Figure 9. Schematic illustration of the stress regime in the (a) north and midnorth segments, (b) central and midsouth segments, and (c) south segment of the
Mariana Arc, showing volumes dominated by trench‐perpendicular compression (red), trench‐perpendicular tension (yellow), and the transition zone between
these (orange). The pull‐down force (Fpd) on the overriding plate is controlled by plate coupling and shallow slab dip (δsh) where slab dip in the north is shallower
than in the south (δ1< δ2< δ3). Slab dip also controls the force to the upper plate (Fup) from the motion of the subducting slab. Plate flexure acts to cause tension in
the deeper crust of the upper plate and focus magma flow into arc segments. There may also be a trench‐perpendicular compression effect from volcano loading.
The transition between the trench‐perpendicular compression and tension may exist as subdomains of each type of stress or a gradual transition from compression
to tension with depth. Dashed lines at the arc and inner trench wall show the upper and lower surfaces of the arc lithosphere before, or with less extreme, appli-
cation of the subduction related forces.
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Figure 10. Individual earthquake focal mechanisms from the CMT catalog (Dziewonski et al., 1981; Ekström et al., 2012) projected on cross sections of each seg-
ment (adapted from Apperson, 1991) with bathymetric profiles. Moho depth details are only available in the central segment (Takahashi et al., 2007). Sections were
plotted with GMT software (Wessel & Smith, 1998). Orange arrows describe the interpreted relative motion on the fault plane. Insets with gray background on
sections (a) to (d) show the focal mechanisms in map view (map) and cross section (cs) to illustrate the strike‐slip mechanisms. Abbreviations on insets describe the
deformation type: ex = extension; cp = compression; ss = strike slip; sn = sinistral; dx = dextral; ob = oblique; nt = (strike) normal to trench.
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mechanisms plots describe a strain pattern in the overriding plate that is consistent with our proposed model
of stress regime fluctuation in the Mariana Arc lithosphere (Figure 9).

Combining our result with the findings of Apperson (1991) implies that our approach should reveal upper
plate tension in other subduction zones. This is because Apperson (1991) concluded that subhorizontal,
arc‐normal tension was the principal stress regime in the overriding plates of most subduction zones, includ-
ing Mariana. If we are correct to infer that the segmentation pattern of the Mariana Arc is controlled by var-
iation in forces generated by the plate margin, then we predict that segmentation of other volcanic arcs will
reflect changes in the forces generated at each margin.
5.2.2. Southern Mariana
Lineament analysis of the Southern Mariana area reveals short wavelength features in the bathymetry that
are interpreted as normal faults (red lines on Figure 11) produced by extension perpendicular to the linea-
ment orientations. South of the West Mariana Ridge the principal lineaments are oriented NE‐SW at
140°E and ENE‐WSW at 141°E, which is generally parallel to the trench and indicates NNW‐SSE directed
extension (σ3). There are also a few lineaments near the trench that are oriented NNE‐SSW, cross‐cutting
the major lineaments. The main lineament orientation remains ENE‐WSW near 142°E and then deflects
to NE‐SW at about 143°E, which we infer means σ3 in a NW‐SE direction. The lineament orientation
becomes parallel to the main NNE‐SSW spreading axis near 144°E, consistent with σ3‐oriented WNW‐ESE.

Our study is consistent with the findings of Martínez et al. (2000) and Martinez et al. (2018), who showed
that lineaments display contrasting orientation on either side of the spreading axis at its southern end.
From the spreading axis to the West Mariana Ridge, as described above, most lineaments are parallel to
spreading axis orientations while from the spreading axis to the Mariana Ridge lineaments are normal to
the spreading axis and the trench (oriented in ENE‐WSW and ESE‐WNW directions). Ishihara et al.
(2001) recognized these shorter lineaments at about 144°E as showing minor extension in a NNE‐SSW direc-
tion, and GPS measurements also show a residual azimuth in N209°E direction near Guam (Kato et al.,
2003). The trench‐parallel lineaments formed during crustal accretion as a response to trench rollback in
a southward direction such that these lineaments conform to the spreading direction and trench axis.
Meanwhile, the trench‐normal lineaments propagated to accommodate the increase of Mariana trench cur-
vature (Martinez et al., 2018; Martínez et al., 2000) and thus appear as secondary structures on the surface.
These variations of lineament orientation are part of diffuse extension as a result of weakening of the upper
plate due to extensive hydration from the slab during early development of the subduction zone (Martinez
et al., 2018). The diffuse extension in the Southern Mariana area developed rapidly and restricted the devel-
opment of large, central arc‐type volcanoes south of Tracey seamount (Stern et al., 2013).

Our lineament mapping in Southern Mariana (11–13°N) shows σ3 mainly perpendicular to the trench,
despite the relatively oblique convergence (Figure 11). This is particularly evident between 140°N and
143.5°E consistent with our conclusion of trench‐perpendicular tension in the adjacent (south) Mariana
arc segment (Figures 7 and 8). A strong tensional regime is also consistent with the deep crustal tension
implied from the volcano alignment of the south arc segment. Therefore, we infer that the trench‐
perpendicular tensional stress in the south arc‐segment formed in a similar stress regime to structural linea-
ments of the Southern Mariana seafloor and was mainly caused by rollback of the subducting Pacific Plate.
Martinez et al. (2018) have suggested that the absence of discrete central arc volcanoes here is due to the
more diffuse focus of deep arc stress. This contrasts with the concentration of stress in the deep arc litho-
sphere between 13.5° and 23°N, which produces a more distinct arc front. Brounce et al. (2016) and
Martinez et al. (2018) have postulated that the Fina Nagu volcanic complex, immediately west of the south-
ern tip of theMariana Ridge (Figure 11), may have been generated by the samemechanisms as arc volcanoes
but that its elongate, multivent form may be due to focussing of magma by lithosphere deformation.
Interestingly, the NE‐SW arrangement of cones and vents of the Fina Nagu volcanic complex shows a similar
degree of alignment to that of stratovolcanoes into arc segments that we have identified throughout the rest
of the Mariana arc, albeit over a shorter distance, and is colinear with the principal lineaments immediately
to its southwest (Figure 11).

The tensional stress regime across Southern Mariana and the compressional stress regime at the plate mar-
gin can also be observed in the earthquake focal mechanisms. Figure 10f shows similar features to the south
arc segment, where extensional focal mechanisms are widely distributed in the overriding plate while
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compressional mechanisms are concentrated at its trenchward tip. Strike‐slip mechanisms are not observed
from the spreading axis to the upper plate toe. This suggests that the stress regime depicted in our model is
applicable to both the volcanic arc segments and the nonvolcanic region to the south west along the same
plate margin.

6. Conclusions

Spatial analyses indicate that Mariana Arc volcanoes are distributed as a series of five great circle segments
with lengths of 190 to 320 km. Two approaches demonstrate that the volcano locations are more consistent
with great circle segments than any combination of small circles. First, the AICc values indicate that the
great circle pattern (AICc = 60.6) is more consistent with volcano locations than either a series of small cir-
cles fit to multiple segments (AICc = 89.9) or a single small circle (AICc = 75.2). Second, deviation of volcano
locations from best fit small and great circles show systematic variations consistent with the Mariana Arc
volcanoes describing a segmented great circle distribution (Figure 5).

The subduction direction and obliquity of convergence have no systematic relationship to the segmentation
pattern. Arc‐segment azimuths are parallel to the orientations of faults in their adjacent backarc and so to
tension in the backarc. We infer that the arc segments are caused by tensional stress present in the deep
arc lithosphere. This creates pathways that magma can exploit, leading to the alignment of magmatic path-
ways and the volcanic edifices that are their surface expression. Therefore, each arc segment represents a
volume with relatively consistent tensional stress in the deep upper plate.

Elongation of volcanoes and/or their craters shows that the stress regime in the shallow crust of the north
and midnorth arc segments is dominated by trench‐perpendicular compression. We infer vertical and hor-
izontal partitioning of stress in the arc lithosphere to explain both the apparent contradiction between indi-
cators of deep (volcano alignment) and shallow (volcano elongation) stress in the north, and the change of
shallow crustal stress orientation along the arc from north to south. Vertical and horizontal stress partition-
ing is a product of variations in dynamic subduction forces resulting from the coupling zone between the
Pacific and Philippine Sea plates being wider in the north, where the slab dip is shallower, and narrower

Figure 11. Lineament map of the Southern Mariana area to the southwest of Tracey seamount. Light blue arrows indicate the minimum horizontal stress (σHmin)
as theminimum principal stress (σ3) direction identified from themapped lineament while dark blue arrows indicate themaximumhorizontal stress (σHmax) as the
maximum principal stress (σ1) direction. Principal lineament orientations imply that extension occurs normal to the trench with secondary extension parallel to the
trench to accommodate the strong curvature of the margin (Martinez et al., 2018).
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in the south. These differences reflect a stronger pull‐down force on the overriding plate and stronger,
trench‐perpendicular compressional force in the shallow parts of the upper plate in the north and midnorth
compared to the south segment. The pull‐down force contributes to flexure of the overriding plate that pro-
duces tension in the lower crust beneath the arc (Figure 9). In the south, rollback of the Pacific Plate means
that tension is prevalent throughout the full depth of the upper plate in the arc.
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