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ABSTRACT

This paper aims to provide a better understanding of the causal structure in a multivariate time series by introduc-

ing several statistical procedures for testing indirect and spurious causal effects. In practice, detecting these effects is a

complicated task, since the auxiliary variables that transmit/induce indirect/spurious causality are very often unknown.

The availability of hundreds of economic variables makes this task even more difficult since it is generally infeasible

to find the appropriate auxiliary variables among all the available ones. In addition, including hundreds of variables

and their lags in a regression equation is technically difficult. The paper proposes several statistical procedures to test

for the presence of indirect/spurious causality based on big data analysis. Furthermore, it suggests an identification

procedure to find the variables that transmit/induce the indirect/spurious causality. Finally, it provides an empirical

application where 135 economic variables were used to study a possible indirect causality from money/credit to income.
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1 Introduction

The concept of causality introduced by Wiener (1956) and Granger (1969) constitutes a basic notion

for analyzing dynamic relationships between time series. In studying Wiener-Granger causality,

predictability is the central issue, hence its importance to economists and policymakers. In practice,

Granger-causality is often investigated for bivariate processes. However, different conclusions may be

reached when more than two variables are considered. If more than two variables are present, non-

causality conditions become more complicated; see e.g. Lütkepohl (1993) and Dufour and Renault

(1998). In other words, even if a variable is Granger-causal in a bivariate model, it may not be

Granger-causal in a larger model involving more variables. In this case, we talk about an indirect

causality transmitted through a third variable(s); hereafter referred as auxiliary variable(s). For

instance, there may be a variable that drives both variables in the bivariate process, such that when

this variable is included into the model, a bivariate causal structure may disappear. In turn, it is

also possible that a variable is non-causal for another one in a bivariate model and becomes causal if

the information set is extended to include other variables as well. The latter situation corresponds

to what is known as a spurious causality. Ignoring these causal effects can lead to wrong economic

analysis, and consequently to inaccurate policy decisions. In this paper, we borrow from Hsiao (1982)

and the literature on factor analysis to introduce statistical procedures that help us detect indirect

and spurious causal effects.

The literature on Granger causality analysis is extensive and many tests and measures have

been introduced to detect and quantify both linear and non-linear Granger causality; for review see

Dufour and Taamouti (2010), Bouezmarni et al. (2012), and Song and Taamouti (2018). The original

definition of Granger (1969) that have been adopted in this literature implicitly assumes that all the

relevant information is available and used for the causality analysis. However, in practice only a very

limited information is considered and the omission of key variables (auxiliary variables) could lead

to a spurious causality or might not help detect a possible indirect causality between the variables of

interest. The relevance of the information set for Granger causality analysis was first pointed out by

Hsiao (1982) [see also Eichler (2007, 2012)], who formally introduced the concept of indirect/spurious

causality in a trivariate model. Hsiao (1982) provides a basic framework to explain the causal

relationships in a multivariate time series model based on Wiener-Granger notion of causality. He

focuses on establishing a Granger causal ordering of the events and on the reconciliation of the

disparity between the results obtained from the bivariate and multivariate analysis. He generalizes
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the Granger’s concept of causality to make some provision for spurious/indirect causality which

may arise in multivariate analysis. In particular, he shows that a certain type of spurious causality

vanishes when the information set is reduced. This observation leads to a strengthened definition of

(direct) causality by requiring an improvement in prediction irrespective of the used information set.

Finally, Hsiao (1982) characterizes the indirect/spurious causality in the context of VAR models and

discusses how to test these causal effects in the presence of known auxiliary variables.

It is worth mentioning that indirect/spurious causality might be linked to the omitted variables

bias problem. In the context of vector moving average model, Sims (1980) points out that the Granger

causal relations may appear in the model because of the omitted variables problem. Furthermore,

Lütkepohl (1982) shows that on the one hand Granger-causality in a bivariate system may be due

to omission of relevant variables, and on the other hand non-causality in a bivariate system may

theoretically result from neglected variables. For Lütkepohl (1982) the structure of the causal relation

between the variables of interest can only be obtained by including all relevant variables in the

model. He adds that “since many economic variables are important in the sense that they interact,

highdimensional time series model-building seems to be required”, but he also recognizes that the

latter “ does not seem to be an easy task.” This paper aims to use big data analysis techniques to

proposes statistical procedures that help to test for the presence of indirect/spurious causality.

The main issue of Hsiao (1982)’s framework is that the auxiliary variables that transmit/induce the

indirect/spurious causality are implicitly assumed to be known. However, in practice these variables

are unknown, except in the presence of an economic theory that explicitly specifies the auxiliary

variables, which complicates very much the task of testing for the presence of indirect/spurious

causality. The availability of hundreds of economic variables makes this task even harder as it

is generally infeasible to find the appropriate auxiliary variable(s) among all the available ones. In

addition, including hundreds of variables and their lags in a regression equation is technically difficult.

In this paper, we introduce several statistical procedures to test for the presence of indirect/spurious

causality using big data analysis. To overcome the problem of unknown relevant auxiliary variables,

a diffusion index, extracted using principal component analysis, is included in the regression equation

to represent all the variables that are available to practitioners. We derive the asymptotic distribu-

tions of the tests in the presence of the estimated index. Furthermore, we conduct a Monte Carlo

simulation to evaluate the performance of the proposed statistical procedures. The results show that

our procedures have good power for detecting indirect/spurious causality.

Unfortunately, the above statistical procedures only test for the presence/absence of indirect/spurious
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causality and cannot inform us about the variables of the big data that are responsible for the trans-

mission/induction of this indirect/spurious causality. Another contribution of this paper is we provide

an identification procedure which helps us identify the variables in the big data that transmit/induce

the indirect/spurious causality.

Finally, to show the practical relevance of the proposed tests, we use 135 economic variables to

examine the causality from money/credit to income. In particular, we test whether or not there is

an indirect causality from monetary policy/credit to income. Thereafter, if this indirect causality

exists, then we use the identification procedure discussed above to identify the auxiliary variable(s)

that are responsible for the transmission of this indirect causality. Our results show that there is an

indirect causality from credit to income, but not from money to income. In addition, the identification

procedure indicates that this indirect causality is mainly transmitted through short and long-term

interest rates. Hence, interest rates are responsible for the indirect causality from credit to income.

The plan of the paper is as follows. Section 2 presents the general theoretical framework which

underlies the definition of indirect/spurious causality. Section 3 provides some motivations for de-

riving statistical procedures that help detect indirect/spurious causality. In Section 4, we define the

regression models and hypotheses that we consider to test for indirect/spurious causality. In Section

5, we provide the asymptotic distributions of the tests. These distributions are derived based on the

asymptotic theory from the factor analysis. In Section 6, we propose a statistical procedure that

allows us to identify the auxiliary variables that transmit/induce the indirect/spurious causality. In

Section 7, we run a Monte Carlo simulation to investigate the finite sample properties of the tests

of indirect/spurious causality. Section 8 is devoted to an empirical application. The conclusion is

given in Section 9. Finally, the proofs, the parameter values of the data generating processes (DGPs)

used in the simulation, the simulation results for the empirical size and power, and the data and the

empirical results can be found in a separate companion Appendix, which is available online.

2 Framework

We consider three stochastic processes {Xt : t ∈ Z} , {Yt : t ∈ Z} , and {Zt : t ∈ Z}. For simplicity

of exposition, we assume that these processes are univariate. We denote IX(t) = {X(s) : s ≤ t},

IY (t) = {Y (s) : s ≤ t} and IZ(t) = {Z(s) : s ≤ t} the information sets which contain all the past

and present values of X, Y , and Z until time t, respectively. We denote I(t) the information set

that contains IX(t), IY (t) and IZ(t). I(t)− At, with At = IX(t), IY (t), IZ(t), contains all the elements
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of I(t) except those of At. Following Florens and Mouchart (1985a,b), the notion of non-causality

considered here is defined in terms of orthogonality conditions between subspaces of a Hilbert space

of random variables with finite second moments. We denote L2 ≡ L2(Ω,A, Q) the Hilbert space of

random variables defined on a common probability space (Ω,A, Q),with covariance as inner product.

For any information set Bt [some Hilbert subspace of L2], we denote P [Xt+1 |Bt] the best linear

forecast of Xt+1 based on the information set Bt. The corresponding prediction error is u (Xt+1 |Bt) =

Xt+1 − P [Xt+1 |Bt], and σ2
(
Xt+1 |Bt

)
is the variance of the prediction error. P [Xt+1 |Bt] is the or-

thogonal projection of Xt+1 on the subspace Bt. We now remind the reader of the following definitions

of indirect causality and spurious causality from Hsiao (1982) [see also the discussions in Eichler,

2007, 2012]. In the following, Z is used as a known auxiliary random variable. However, in the next

sections, when we describe the statistical procedures for testing indirect/spurious causality, Z will

be treated as an unknown auxiliary variable.

Definition 1 (Indirect Causality) : Y is an indirect cause of X, denoted Y
ind7→ X | I(t)− IY (t), iff

(i): Y Granger causes X with respect to the information set IX(t) :

P [Xt+1 | IX(t)] 6= P [Xt+1 | I(t)− IZ(t)], for some t > w,

(ii): Y does not Granger cause X with respect to the information set I(t)− IY (t) :

P [Xt+1 | I(t)− IY (t)] = P [Xt+1 | I(t)], ∀t > w,

(iii): (a) Y Granger causes Z and (b) Z Granger causes X with respect to the information sets

I(t)− IY (t) and I(t)− IZ(t), respectively:

P [Zt+1 |I(t)− IY (t)] 6= P [Zt+1 | I(t)], P [Xt+1 |I(t)− IZ(t)] 6= P [Xt+1 | I(t)], for some t > w,

where w is a “starting point” which is typically equal to a finite initial date [such as w = 0 or 1] or

to −∞; in the latter case I(t) is defined for all t ∈ Z.

Thus, the conditions [(i), (ii), (iii)] of Definition 1 must be satisfied in order to have an indirect

causality from Y to X in the presence of an auxiliary variable Z. Similar conditions can be obtained

for an indirect causality from X to Y . We now provide the necessary conditions for a spurious

causality from Y to X. We distinguish between two types of spurious causality.

Definition 2 (Spurious Causality) :
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1. Y is a spurious cause of type I for X if

1.(i): Y Granger causes X with respect to the information set I(t)− IY (t) :

P [Xt+1 | I(t)− IY (t)] 6= P [Xt+1 | I(t)], for some t > w,

1.(ii): Y does not Granger cause X with respect to the information set IX(t) :

P [Xt+1 | IX(t)] = P [Xt+1 | I(t)− IZ(t)], ∀t > w,

1.(iii): (a) Y Granger causes Z and (b) Z Granger causes X, both with respect to the informa-

tion sets I(t)− IY (t) and I(t)− IZ(t), respectively,

P [Zt+1 |I(t)− IY (t)] 6= P [Zt+1 | I(t)], P [Xt+1 |I(t)− IZ(t)] 6= P [Xt+1 | I(t)], for some t > w.

2. Y is a spurious cause of type II for X if

2.(i): Y Granger causes X with respect to the information set IX(t) :

P [Xt+1 | IX(t)] 6= P [Xt+1 | I(t)− IZ(t)], for some t > w,

2.(ii): Y does not Granger cause X with respect to the information set I(t)− IY (t) :

P [Xt+1 | I(t)− IY (t)] = P [Xt+1 | I(t)], ∀t > w,

2.(iii): (a) Z Granger causes Y and (b) Z Granger causes X, both with respect to the informa-

tion set I(t)− IZ(t) :

P [Yt+1 |I(t)− IZ(t)] 6= P [Yt+1 | I(t)], P [Xt+1 |I(t)− IZ(t)] 6= P [Xt+1 | I(t)], for some t > w.

Definition 2 shows that there are three conditions to satisfy for each type of spurious causality

from Y to X. Similar conditions can be obtained for the spurious causality from X to Y .

The above definitions will be used to construct statistical procedures that test for the presence of

indirect/spurious causality when the auxiliary variable Z is unknown.

3 Motivation

Unfortunately, most empirical studies on Granger causality analysis ignore indirect and spurious

causal effects. This might be explained by the lack of statistical procedures that detect these effects.

Up to now, the detection of indirect/spurious causality depends on the knowledge of relevant auxiliary
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variables, which can happen only in rare cases such as the existence of an economic theory that

identifies these variables. The following examples illustrate situations in which indirect/spurious

causality happens. To better understand these examples, we need the following lemma [Lütkepohl

(1993, pages 231-232)].

Lemma 1 [Linear transformation of a VARMA(p, q) process] Let Wt be a K-dimensional,

stable, invertible VARMA(p, q) process and let F be an M ×K matrix of rank M. Then the process

Wt,0 = FWt has a VARMA(p̄, q̄) representation with p̄ ≤ Kp and q̄ ≤ (K − 1)p+ q.

If we assume that Wt follows a VAR(p) [i.e. VARMA(p, 0)] model, then its linear transformation

Wt,0 = FWt has a VARMA(p̄, q̄) representation with p̄ ≤ Kp and q̄ ≤ (K − 1)p. We now start with

the following example on indirect causality.

Example 1 [Indirect Causality] This example illustrates an indirect causality between X and Y

transmitted through an auxiliary variable Z. We consider the following VAR(2) model:
Xt

Yt

Zt

 =


µX

µY

µZ

+


φ1
xx 0 φ1

xz

φ1
yx φ1

yy φ1
yz

0 φ1
zy φ1

zz



Xt−1

Yt−1

Zt−1

+


0 φ2

xy 0

0 0 0

0 0 0



Xt−2

Yt−2

Zt−2

+


εXt

εYt

εZt

 , (1)

with φ1
xz 6= 0, φ1

zy 6= 0, and φ1
zy = −φ2xy

φ1xz
. The error terms εXt , εYt , and εZt are assumed to be

independent of each other, but they can be relaxed to be serially correlated.

From the first equation of VAR system in (1), we have

Xt = µX + φ1
xxXt−1 + φ1

xzZt−1 + φ2
xyYt−2 + εXt . (2)

From the third equation of VAR system, we get

Zt = µZ + φ1
zyYt−1 + φ1

zzZt−1 + εZt . (3)

Using equations (2) and (3), we can easily check that condition (ii) of Definition 1 is satisfied. In

other words, if we replace Zt−1 in Equation (2) by its expression from Equation (3), we obtain

Xt = µX + φ1
xzµZ + φ1

xxXt−1 +
(
φ1
xzφ

1
zy + φ2

xy

)
Yt−2 + φ1

xzφ
1
zzZt−2 + φ1

xzεZt−2 + εXt ,

and since φ1
zy = −φ2

xy/φ
1
xz, we have φ1

xzφ
1
zy + φ2

xy = −φ2
xy + φ2

xy = 0, hence

Xt = µX + φ1
xzµZ + φ1

xxXt−1 + φ1
xzφ

1
zzZt−2 + φ1

xzεZt−2 + εXt ,
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which indicates that Y does not cause X in the presence of Z. Furthermore, since φ1
xz 6= 0 and φ1

zy 6=

0, from equations (2) and (3) we have Z Granger causes X and Y Granger causes Z, respectively,

hence condition (iii) of Definition 1 is satisfied.

Now, to check condition (i) of Definition 1, we use Lemma 1. The marginal process of (X, Y )′

can be obtained by taking the matrix F in Lemma 1 as:

F =

 1 0 0

0 1 0

 .
By Lemma 1, the process (X, Y )′ has a VARMA(p̄, q̄) representation with p̄ ≤ 6 and q̄ ≤ 4. Thus,

in the absence of Z and under some restrictions on the coefficients of VAR(2), Xt can be expressed

as a function of the past of Yt: Xt = µ̄X + αXXt−1 + αY Yt−1 + ε̄Xt, where µ̄X , αX , and αY are some

functions of the coefficients of VAR(2), and ε̄Xt is a new error term which depends on the error terms

of VAR(2) process in (1).

For a real example on indirect causality, the reader can consult the paper by Fackler (1985)

who found that neither money nor credit directly cause real output, but these variables play an

indirect role in income determination. Fackler also found that interest rates provide the link between

the financial and real sectors, thus they can be viewed as the auxiliary variables that transmit the

indirect causality from money/credit to income. In Section 8, we use the statistical procedures

that we propose in this paper to re-examine these findings and check if interest rates are effectively

the appropriate auxiliary variables. Our approach is practical because it does not require a priori

knowledge of auxiliary variables. The next example is about spurious causality.

Example 2 [Spurious Causality] This example illustrates a spurious causality of type I from Y

to X induced by an auxiliary variable Z. We consider the following VAR(1) model:
Xt

Yt

Zt

 =


µX

µY

µZ

+


φ1
xx 0 φ1

xz

φ1
yx φ1

yy φ1
yz

φ1
zx φ1

zy φ1
zz



Xt−1

Yt−1

Zt−1

+


εXt

εYt

εZt

 , (4)

with φ1
xz 6= 0 and φ1

zy 6= 0. The error terms εXt , εYt , and εZt are assumed to be independent of each

other, but they can be relaxed to be serially correlated.

From the first equation of VAR system in (4), we have

Xt = µX + φ1
xxXt−1 + φ1

xzZt−1 + εXt . (5)
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From the third equation of VAR system, we get

Zt = µZ + φ1
zxXt−1 + φ1

zyYt−1 + φ1
zzZt−1 + εZt . (6)

Using equations (5) and (6), we can easily check that condition 1.(i) of Definition 2 is satisfied. In

other words, if we replace Zt−1 in Equation (5) by its expression from Equation (6), we obtain

Xt = µX + φ1
xzµZ + φ1

xxXt−1 + φ1
xzφ

1
zxXt−2 + φ1

xzφ
1
zyYt−2 + φ1

xzφ
1
zzZt−2 + φ1

xzεZt−1 + εXt ,

which, for φ1
xz 6= 0 and φ1

zy 6= 0, indicates that Y does cause X in the presence of Z. Furthermore,

since φ1
xz 6= 0 and φ1

zy 6= 0, from equations (5) and (6) we have Z Granger causes X and Y Granger

causes Z, respectively, hence condition 1.(iii) of Definition 2 is satisfied.

To check condition 1.(ii) of Definition 2, we use Lemma 1. The marginal process of X can be

obtained by taking the matrix F in Lemma 1 as F = [ 1 0 0 ]. According to Lemma 1, the process

X has an ARMA(p̄, q̄) representation with p̄ ≤ 6 and q̄ ≤ 4. Thus, in the absence of Z and under

some restrictions on the coefficients of VAR(1), Xt can be expressed as a function of its own past:

Xt = µ̄X + φXXt−1 + ε̄Xt ,

where µ̄X and φX are some functions of the coefficients of VAR(1) and ε̄Xt is a moving average

process which depends on the error terms of VAR(1) process in (4).

4 Testing for indirect and spurious causalities

In this section, we describe the testing procedures that we use to test for indirect and spurious causal-

ity. Our statistical procedures are based on testing each condition in Definition 1 (or Definition 2)

separately. As discussed in Hsiao (1980, page 22), the advantage of testing separately each condition

against the maintained hypothesis (unconstrained model) is that the size of the test for each tested

condition is the same compared to a sequential test where the size has to be different in order to

guarantee the control of the Type I error. However, as have been argued by Hsiao (1980, page 22),

the disadvantage of running separate tests is that it is difficult to reject the null hypothesis- of in-

direct or spurious no causality- because “an otherwise significant coefficients might be contaminated

by other insignificant coefficients” of the estimated unconstrained model. Hsiao (1980) discusses an

alternative sequential test for testing indirect and spurious no-causality. Regarding the sequential

test, Hsiao (1980, page 22) writes: “The advantage of testing each hypothesis [condition] sequentially
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by treating the previously accepted null hypothesis as the maintained hypothesis is that the test is more

sharply focused. The disadvantage is that a test of ψij [ψij = 0, which corresponds to one of the

conditions of indirect or spurious no-causality] may either be accepted or rejected depending on the

order it is tested.” He adds that using a fixed significance level α in a sequential test will “increase

the Type I error from P1 = α to P2 = α + (1 − α)α, to P3 = α + 2(1 − α)α + (1 − α)2α,... when

we change the order of testing ψij = 0 from the first to the second and so on.” For these reasons we

decide to use the first alternative namely separate tests.

4.1 Testing for indirect causality

Definition 1 shows that there are three conditions that must be satisfied in order to have an indirect

causality from Y to X. The first one [condition (i)] is simple to test as it only involves the observed

variables X and Y. However, the other two conditions [conditions (ii) and (iii)] are difficult because

the auxiliary variable Z is unknown, thus not observed. In the following, we propose to use factor

analysis to identify Z. In particular, we use as a proxy of Z the factor(s) that we extract from a big

data using principal component analysis. Formally, condition (i) can be checked using the regression

Xt+1 = µ+

p∑
i=1

βiXt+1−i +

q∑
j=1

αjYt+1−j + εt+1 (7)

and a Wald-test for testing the null hypothesis

H0 : α1 = ... = αq = 0 vs H1 : No H0.

If H0 is rejected and Z is observed, we proceed to verify the condition (ii) using the regression

Xt+1 = η +

p̄∑
i=1

γiXt+1−i +

q̄∑
j=1

λjYt+1−j +
h̄∑
l=1

θlZt+1−l + et+1 (8)

and a Wald-test for testing the null hypothesis

H̄0 : λ1 = ... = λq̄ = 0 vs H̄1 : No H̄0.

If H̄0 is not rejected, we proceed to check the condition (iii) using the regressions

Zt+1 = ν +

ṗ∑
i=1

κiXt+1−i +

q̇∑
j=1

ψjYt+1−j +
ḣ∑
l=1

ρlZt+1−l + ut+1, (9)

Xt+1 = $ +

p̈∑
i=1

ξiXt+1−i +

q̈∑
j=1

δjYt+1−j +
ḧ∑
l=1

ςlZt+1−l + εt+1, (10)

9



and the Wald-tests for testing the null hypotheses

Ḣ0 : ψ1 = ... = ψq̇ = 0 vs Ḣ1 : No Ḣ0,

Ḧ0 : ς1 = ... = ςḧ = 0 vs Ḧ1 : No Ḧ0.

If both Ḣ0 and Ḧ0 are rejected, we conclude that Y indirectly causes X.

In practice, however, Z is not observed but it can be proxied by the factors that we extract

from a big data that contains all economic variables that are available to econometricians. Formally,

we consider an N -dimensional vector of large number of economic time series wt = (wt,1, ..., wt,N)′

observed at each time t. We denote byW = (w1, ..., wT )′ the (T ×N)-dimensional matrix in which the

t-th row is given by wt. We assume that k common factors ft are associated with the N -dimensional

vector wt according to the following equation:

wt = Λft + εt, (11)

where Λ is an (N × k)-dimensional matrix of factor loadings and εt’s are vectors of idiosyncratic

shocks that could be cross-sectionally and temporally dependent.

To extract f from the (T ×N)-dimensional matrix W , we consider the factor model in Equation

(11), which associates the N -dimensional vector wt with the k common factors ft. However, we

remind the reader that the factors ft and loadings Λ are not identified simultaneously since

wt = Λft + εt = Λ∆−1∆ft + εt = Λ∗f ∗t + εt, (12)

for Λ∗ = Λ∆−1, f ∗t = ∆ft, and ∆ a (k × k)-dimensional positive definite matrix. Thus, we will

only estimate the space spanned by the true factors and not the factors themselves. Simultaneous

identification of the factors is, however, not essential for the statistical procedures that we propose to

test for indirect/spurious causality. In other words, we only need to control for all available variables

and it doesn’t matter how they are weighted in the factors. Using Equation (11) and each element

wt,j of the vector wt, the factor model is given by

wt,j = ϑ′jft + εt,j, for j = 1, . . . , N,

where ϑj is a k-dimensional vector of factor loadings given by the j-th row of the matrix Λ. The

factors ft will be extracted using the principal component analysis (PCA) based on the following

nonlinear least squares objective function

V (f̃ , Λ̃) =
1

NT

N∑
j=1

T∑
t=1

(
wt,j − ϑ̃′j f̃t

)2

. (13)
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The function V (f̃ , Λ̃) depends on the hypothetical values of the factors f̃ = (f̃1, ..., f̃T )′ and factor

loadings Λ̃ = (ϑ̃1, ..ϑ̃N)′. Let f̂ and Λ̂ be the minimizers of V (f̃ , Λ̃). After concentrating out f̂ ,

minimizing V (f̃ , Λ̃) is equivalent to maximizing tr(Λ̃′Y ′Y Λ̃) subject to Λ̃′Λ̃
N

= Ik, where tr(·) denotes

the trace of a matrix and Ik is a (k × k)-dimensional identity matrix. This represents the classical

principal components problem that can be solved by setting the columns of Λ̂ to be equal to the

eigenvectors of W ′W corresponding to the k largest eigenvalues. The resulting principal components

estimator of the matrix of the factors f = (f1, ..., fT )′ is:

f̂ = (f̂1, ..., f̂T )′ =
W Λ̂

N
. (14)

The computation of f̂ requires the calculation of the eigenvectors of the N × N matrix W ′W for

N > T . Under some regularity conditions, Bai and Ng (2002) show that f̂ is a consistent estimator

of f ; see Theorem 1 of Bai and Ng (2002).

We next replace Z in equations (8)-(10) by the extracted factors f̂ . To simplify our analysis, we

let k = 1. In practice the selection of number of factors can be performed using the information

criteria suggested by Bai and Ng (2002). However, using only the first factor (that explains most of

the variation in the data) should be enough as it represents a linear combination of all variables in

the big data W. Now, to check condition (ii) of Definition 1, we use the feasible regression

Xt+1 = η +

p̄∑
i=1

γiXt+1−i +

q̄∑
j=1

λjYt+1−j +
h̄∑
l=1

θlf̂t+1−l + et+1 (15)

and the Wald-test for testing

H̄0 : λ1 = ... = λq̄ = 0 vs H̄1 : No H̄0. (16)

Similarly, to verify condition (iii), we use the feasible regressions

f̂t+1 = ν +

ṗ∑
i=1

κiXt+1−i +

q̇∑
j=1

ψjYt+1−j +
ḣ∑
l=1

ρlf̂t+1−l + ut+1, (17)

Xt+1 = $ +

p̈∑
i=1

ξiXt+1−i +

q̈∑
j=1

δjYt+1−j +
ḧ∑
l=1

ςlf̂t+1−l + εt+1 (18)

and the Wald-tests for testing the null hypotheses:

Ḣ0 : ψ1 = ... = ψq̇ = 0 vs Ḣ1 : No Ḣ0 (19)

Ḧ0 : ς1 = ... = ςḧ = 0 vs Ḧ1 : No Ḧ0. (20)

If both Ḣ0 and Ḧ0 are rejected, we conclude that Y indirectly causes X.
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4.2 Testing for spurious causality

To test for the spurious causality from Y to X, we need to check the conditions of Definition 2. For

the spurious causality of type I, we have to check if conditions 1.(i) -1.(iii) are satisfied. To test

condition 1.(i), we use the feasible regression

Xt+1 = µ+

p∑
i=1

βiXt+1−i +

q∑
j=1

αjYt+1−j +
k∑
l=1

πj f̂t+1−l + εt+1, (21)

and the Wald-test for testing the null hypothesis

H
(1)
0 : α1 = ... = αq = 0 vs H

(1)
1 : No H

(1)
0 . (22)

If H
(1)
0 is rejected, we proceed to test condition 1.(ii) using the regression

Xt+1 = η +

p̄∑
i=1

βiXt+1−i +

q̄∑
j=1

αjYt+1−j + et+1,

and a Wald-test for testing the null hypothesis

H̄
(1)
0 : α1 = ... = αq̄ = 0 vs H̄

(1)
1 : No H̄

(1)
0 . (23)

If H̄
(1)
0 is not rejected, we proceed to check the condition 1.(iii) before deciding about the presence of

spurious causality of type I. Condition 1.(iii) can be verified using the following feasible regressions:

f̂t+1 = ν +

ṗ∑
i=1

κiXt+1−i +

q̇∑
j=1

ψjYt+1−j +
ḣ∑
l=1

ρj f̂t+1−l + ut+1, (24)

Xt+1 = $ +

p̈∑
i=1

ξiXt+1−i +

q̈∑
j=1

δjYt+1−j +
ḧ∑
l=1

ςj f̂t+1−l + εt+1, (25)

and the Wald-tests for testing the null hypotheses:

Ḣ
(1)
0 : ψ1 = ... = ψq̇ = 0 vs Ḣ

(1)
1 : No Ḣ

(1)
0 , (26)

Ḧ
(1)
0 : ς1 = ... = ςḧ = 0 vs Ḧ

(1)
1 : No Ḧ

(1)
0 . (27)

If both Ḣ
(1)
0 and Ḧ

(1)
0 are rejected, we conclude that Y spuriously (type I) causes X.

For the spurious causality of type II, we need to check conditions 2.(i)-2.(iii). To test condition

2.(i), we use the regression

Xt+1 = µ+

p∑
i=1

βiXt+1−i +

q∑
j=1

αjYt+1−j + εt+1,
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and a Wald-test for testing the null hypothesis

H
(2)
0 : α1 = ... = αq = 0 vs H

(2)
1 : No H

(2)
0 .

If H
(2)
0 is rejected, we proceed to test condition 2.(ii) using the feasible regression

Xt+1 = η +

p̄∑
i=1

γiXt+1−i +

q̄∑
j=1

λjYt+1−j +
h̄∑
l=1

θlf̂t+1−l + et+1

and a Wald-test for testing the null hypothesis

H̄
(2)
0 : λ1 = ... = λq̄ = 0 vs H̄

(2)
1 : No H̄

(2)
0 . (28)

Thereafter, if H̄
(2)
0 is not rejected, we next check condition 2.(iii) before deciding about the presence of

spurious causality of type II. Condition 2.(iii) can be verified using the following feasible regressions:

Yt+1 = ν +
∑ṗ

i=1 κiXt+1−i +
∑q̇

j=1 ψjYt+1−j +
∑ḣ

l=1 ρj f̂t+1−l + ut+1,

Yt+1 = ν +
∑ṗ

i=1 κiXt+1−i +
∑q̇

j=1 ψjYt+1−j +
∑ḣ

l=1 ρj f̂t+1−l + ut+1,

and the Wald-tests for testing the null hypotheses:

Ḣ
(2)
0 : ρ1 = ... = ρḣ = 0 vs Ḣ

(2)
1 : No Ḣ

(2)
0 ,

Ḧ
(2)
0 : ς1 = ... = ςḧ = 0 vs Ḧ

(2)
1 : No Ḧ

(2)
0 .

(29)

If both Ḣ
(2)
0 and Ḧ

(2)
0 are rejected, we conclude that Y spuriously (type II) causes X.

5 Asymptotic distributions

In this section, we study the properties of indirect/spurious causality tests described in Section 4. In

particular, we use the results of Bai and Ng (2006) [see also their working paper Bai and Ng (2005)] to

provide the asymptotic distributions of these tests in the presence of a consistent estimator of factors

f . Bai and Ng’s (2006) methodology consists of estimating the common factors f from a panel of

data- which includes a large number of series (large N)- by the method of principal components and

then augmenting a standard regression with the estimated factors. They show that the ordinary least

squares estimates obtained from these factor-augmented regressions are square root T consistent and

asymptotically normal if
√
T/N → 0. Their approach, however, was not motivated by the importance

of detecting indirect and spurious causalities. In this paper, we show that their methodology can

be applied to test for the presence of indirect/spurious causality by helping overcome the problem

13



of unknown relevant auxiliary variables that we discussed in the previous sections. The assumptions

required for the consistency of f are given by the following conditions.

Assumption A: For a positive generic constant δ, we assume that: (A1) E ‖ft‖4 6 δ <∞ and

T−1
T∑
t=1

ftf
′
t

p−→ Σf > 0, where Σf is a (k × k) non-random positive definite matrix and ‖.‖ denotes

the Euclidean norm; (A2) If Λ is deterministic, then ‖λj‖ 6 δ < ∞, where λj is the j-th row

of the factor loadings matrix Λ. If it is stochastic, then E ‖λj‖4 6 δ. Furthermore, N−1Λ′Λ
p−→

ΣΛ > 0, as N −→ ∞, where ΣΛ is a (k × k) non-random matrix; (A3) For all N and T , we have:

(i) E(εt,i) = 0 and E |εt,i|8 ≤ δ; (ii) For N−1E (ε′sεt) = γN(s, t), we have |γN(s, s)| ≤ δ, where

s = 1, ...T , and T−1
∑

1≤s,t≤N |γN(s, t)| ≤ δ; (iii) For E (εt,iεt,j) = τij,t, we have |τt,ij| ≤ τij, ∀t, and

N−1
∑

1≤i,j≤N |τij| ≤ δ; (iv) For E (εt,iεs,j) = τts,ij, we have (TN)−1
∑

1≤i,j,s,t≤N |τts,ij| ≤ δ; and (v)

E

∣∣∣∣N− 1
2

N∑
i=1

[εt,iεs,j − E (εt,iεs,j)]

∣∣∣∣4 ≤ δ, ∀s, t; and (A4) E

(
N−1

N∑
i=1

∥∥∥∥T−1
T∑
t=1

ftεt,i

∥∥∥∥2
)
≤ δ.

Assumptions (A1) and (A2) are standard in the literature on factor analysis; see Stock and

Watson (2002), Bai and Ng (2002) and Bai (2003). They represent moment conditions on factors ft

and factor loadings Λ, and they ensure that the factors are non-degenerate and their contribution to

the variance of the data is nontrivial. Assumptions (A3)-(i) to (A3)-(v) allow for heteroskedasticity

and weak correlation between the components of the vector of idiosyncratic shocks εt in (11). Under

these assumptions both cross-sectional and serial correlations are allowed.

5.1 Indirect causality

We derive the asymptotic distributions of tests of conditions of indirect causality in Definition 1.

We focus on testing conditions (ii) and (iii), because the test of condition (i) depends only on the

observed variables X and Y . We introduce the following notations. Define the vector of param-

eters τ Ind1 = (η, γ′, λ′, θ′)′, where γ = (γ1, . . . , γp̄)
′, and λ and θ can be defined in similar way.

Let ẑt1 = (1, Xt, . . . , Xt+1−p̄, Yt, . . . , Yt+1−q̄, f̂t, . . . , f̂t+1−h̄)
′ and τ̂ Ind1 = (η̂, γ̂′, λ̂′, θ̂′)′, where τ̂ Ind1 is

the least squares estimates obtained from the regression of Xt+1 on the constant, (Xt, . . . , Xt+1−p̄)
′,

(Yt, . . . , Yt+1−q̄)
′, and the estimated factors (f̂t, . . . , f̂t+1−h̄)

′. Henceforth, 0m,n is the m× n matrix of

zeros and In is the n× n identity matrix.

First, we test condition (ii) using the following Wald-test statistic, which tests that all the coeffi-

cients of Yt, . . . , Yt+1−q̄ in the regression (15) are jointly equal to zero:

W Ind,λ
T =

(√
TRInd,λτ̂ Ind1

)(
RInd,λΣ̂τInd

1
RInd,λ′

)−1 (√
TRInd,λτ̂ Ind1

)′
, (30)
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where the selection matrix RInd,λ = (0q̄,1+p̄, Iq̄, 0q̄,h̄) and

Σ̂τInd
1

=

(
1

T

T−1∑
t=1

ẑt1ẑ
′
t1

)−1(
1

T

T−1∑
t=1

ê2
t+1ẑt1ẑ

′
t1

)(
1

T

T−1∑
t=1

ẑt1ẑ
′
t1

)−1

(31)

is the estimated variance-covariance matrix, with êt+1 := Xt+1 − ẑ′t1τ̂ Ind1 the least squares residuals.

The following theorem demonstrates that the W Ind,λ
T test statistic is asymptotically distributed as

a chi-squared distribution with q̄ degrees of freedom [The proof of Theorem 1 and those of the

theoretical results below can be found in a separate companion Appendix, which is available online].

Theorem 1 : Let Assumption A hold. Under the null hypothesis (16), if
√
T/N → 0,

W Ind,λ
T →d χ

2
q̄,

where the W Ind,λ
T test statistic is defined in (30).

Theorem 1 is stated under the general case of heteroskedasticity. However, the above result is

still valid under homoskedasticity, with a consistent estimator of variance-covariance matrix given by

Σ̂∗τInd
1

= σ̂2
e

(
1

T

T−1∑
t=1

ẑt1ẑ
′
t1

)−1

, (32)

where σ̂2
e = T−1

∑T−1
t=1 ê

2
t+1. It can be shown that the difference between the estimators in (31)

and (32) is asymptotically negligible under homoskedasticity. Furthermore, the proof of Theorem

1 indicates that for
√
T/N → 0, having estimated factors as regressors does not affect the root-T

consistency of the least squares estimates of τ Ind1 , except that the variance-covariance matrix ΣτInd
1

will be different, which can be consistently estimated by Σ̂τInd
1

. However, if
√
T/N → c > 0, then

there are two additional terms that do not vanish asymptotically, thus τ̂ Ind1 will have an asymptotic

bias term, reflecting the contribution of factors estimation uncertainty. For details on the source of

the bias term the reader is referred to the proof of Lemma 3 in the separate companion Appendix.

Unfortunately, this bias term complicates our analysis and requires additional work that is beyond the

scope of this paper [e.g., to allow for
√
T/N → c > 0, Ludvigson and Ng (2011) propose an analytical

bias correction and Gonçalves and Perron (2014) propose a residual-based bootstrap method]. Hence,

we focus on the case of
√
T/N → 0 and leave the general case for future study.

We now provide the test statistics that one can use to test condition (iii) or equivalently the null

hypotheses (19) and (20). The latter hypotheses can be tested using the following W Ind,ψ
T and W Ind,ς

T

test statistics that test if all the coefficients of the vectors (Yt, . . . , Yt+1−q̇)
′ and (f̂t, . . . , f̂t+1−ḧ)

′ in the
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regressions (17) and (18) are jointly equal to zero, respectively. The W Ind,ψ
T test statistic for testing

the null hypothesis (19) is given by:

W Ind,ψ
T =

(√
TRInd,ψ τ̂ Ind2

)(
RInd,ψΣ̂τInd

2
RInd,ψ′

)−1 (√
TRInd,ψ τ̂ Ind2

)′
, (33)

where τ̂ Ind2 = (ν̂, κ̂′, ψ̂′, ρ̂′)′, the selection matrix RInd,ψ = (0q̇,1+ṗ, Iq̇, 0q̇,ḣ), and

Σ̂τInd
2

=

(
1

T

T−1∑
t=1

ẑt2ẑ
′
t2

)−1(
1

T

T−1∑
t=1

û2
t+1ẑt2ẑ

′
t2

)(
1

T

T−1∑
t=1

ẑt2ẑ
′
t2

)−1

,

with ût+1 = f̂t+1 − ẑ′t2τ̂ Ind2 the least squares residuals from the regression in (17) and

ẑt2 = (1, Xt, . . . , Xt+1−ṗ, Yt, . . . , Yt+1−q̇, f̂t, . . . , f̂t+1−ḣ)
′.

Similarly, the W Ind,ς
T test statistic for testing the null hypothesis (20) is given by:

W Ind,ς
T =

(√
TRInd,ς τ̂ Ind3

)(
RInd,ςΣ̂τInd

3
RInd,ς′

)−1 (√
TRInd,ς τ̂ Ind3

)′
, (34)

where τ̂ Ind3 = ($̂, ξ̂′, δ̂′, ς̂ ′)′, the selection matrix RInd,ς = (0ḧ,1+p̈+q̈, Iḧ), and

Σ̂τInd
3

=

(
1

T

T−1∑
t=1

ẑt3ẑ
′
t3

)−1(
1

T

T−1∑
t=1

ε̂2t+1ẑt3ẑ
′
t3

)(
1

T

T−1∑
t=1

ẑt3ẑ
′
t3

)−1

,

with ε̂t+1 = Xt+1 − ẑ′t3τ̂ Ind3 the least squares residuals from the regression in (18) and

ẑt3 = (1, Xt, . . . , Xt+1−p̈, Yt, . . . , Yt+1−q̈, f̂t, . . . , f̂t+1−ḧ)
′.

The following theorem shows that the Wald-type test statistics W Ind,ψ
T and W Ind,ς

T are asymptotically

distributed as chi-squared distributions with q̇ and ḧ degrees of freedom, respectively.

Theorem 2 : Let Assumption A hold. Under the null hypotheses (19) and (20), if
√
T/N → 0,

W Ind,ψ
T →d χ

2
q̇ and W Ind,ς

T →d χ
2
ḧ
,

where the W Ind,ψ
T and W Ind,ς

T test statistics are defined in (33) and (34), respectively.

Similar to Theorem 1, the result in Theorem 2 is still valid under homoskedasticity, with consistent

estimators of the variance-covariance matrices ΣτInd
2

and ΣτInd
3

given by Σ̂∗
τInd
2

= σ̂2
u(
∑T−1

t=1 ẑt2ẑ
′
t2/T )−1

and Σ̂∗
τInd
3

= σ̂2
ε (
∑T−1

t=1 ẑt3ẑ
′
t3/T )−1, respectively, where σ̂2

u =
∑T−1

t=1 û
2
t+1/T and σ̂2

ε =
∑T−1

t=1 ε̂
2
t+1/T .

We can show that the difference between the estimators Σ̂τInd
2

and Σ̂∗
τInd
2

(resp. Σ̂τInd
3

and Σ̂∗
τInd
3

)

is negligible under homoskedasticity assumption. Moreover, our results show that for
√
T/N → 0,

16



having estimated factors as regressand or regressors does not affect the root-T consistency of the

least squares estimates of τ Ind2 and τ Ind3 , except that the variance-covariance matrices ΣτInd
2

and ΣτInd
3

will have different expressions, which can be consistently estimated by Σ̂τInd
2

and Σ̂τInd
3
, respectively.

However, if
√
T/N → c > 0, then there are additional terms that do not vanish even asymptotically,

thus τ̂ Ind2 and τ̂ Ind3 will have asymptotic bias terms; see the remarks after Theorem 1.

5.2 Spurious causality

We now study the asymptotic properties of tests of conditions of Definition 2. For type I spurious

causality, we focus on providing the asymptotic distributions of tests of conditions (i) and (iii), since

the test of condition (ii) only depends on observed variables X and Y and can be tested using the

standard test. For type II spurious causality, we only derive the asymptotic distributions of tests of

conditions (ii) and (iii), again because the test of condition (i) involves observed variables only.

Regarding the type I spurious causality, conditions (i), (iii)-(a) and (iii)-(b) can be tested using

the following Wald-type test statistics

W SI,α
T =

(√
TRsi,ατ̂ si1

)(
Rsi,αΣ̂τ̂si1

Rsi,α′
)−1 (√

TRsi,ατ̂ si1

)′
,

W SI,ψ
T =

(√
TRsi,ψ τ̂ si2

)(
Rsi,ψΣ̂τ̂si2

Rsi,ψ′
)−1 (√

TRsi,ψ τ̂ si2

)′
,

W SI,ς
T =

(√
TRsi,ς τ̂ si3

)(
Rsi,ςΣ̂τ̂si3

Rsi,ς′
)−1 (√

TRsi,ς τ̂ si3

)′
,

(35)

respectively, where τ̂ si1 = (µ̂, β̂′, α̂′, π̂′)′, τ̂ si2 = (ν̂, κ̂′, ψ̂′, ρ̂′)′, τ̂ si3 = ($̂, ξ̂′, δ̂′, ς̂ ′)′, the selection matrices

Rsi,α = (0q,1+p, Iq, 0q,k), R
si,ψ = (0q̇,1+ṗ, Iq̇, 0q̇,ḣ), R

si,ς = (0ḧ,1+p̈+q̈, Iḧ), and

Σ̂τsi1
=
(

1
T

∑T−1
t=1 ẑ

si
1tẑ

si′
t1

)−1 (
1
T

∑T−1
t=1 ε̂

2
t+1ẑ

si
t1ẑ

si′
t1

)(
1
T

∑T−1
t=1 ẑ

si
t1ẑ

si′
t1

)−1

,

Σ̂τsi2
=
(

1
T

∑T−1
t=1 ẑ

si
t2ẑ

si′
t2

)−1 (
1
T

∑T−1
t=1 û

2
t+1ẑ

si
t2ẑ

si′
t2

)(
1
T

∑T−1
t=1 ẑ

si
t3ẑ

si′
t3

)−1

,

Σ̂τsi3
=
(

1
T

∑T−1
t=1 ẑ

si
t3ẑ

si′
t3

)−1 (
1
T

∑T−1
t=1 ε̂

2
t+1ẑ

si
t3ẑ

si′
t3

)(
1
T

∑T−1
t=1 ẑ

si
t3ẑ

si′
t3

)−1

,

with ε̂t+1 = Xt+1− ẑsi1t
′τ̂ si1 , ût+1 = f̂t+1− ẑsit2τ̂ si2 , ε̂t+1 = Xt+1− ẑsit3′τ̂ si3 the least squares residuals, where

ẑsiit1 = (1, Xt, . . . , Xt+1−p, Yt, . . . , Yt+1−q, f̂t, . . . , f̂t+1−k)
′,

ẑsit2 = (1, Xt, . . . , Xt+1−ṗ, Yt, . . . , Yt+1−q̇, f̂t, . . . , f̂t+1−ḣ)
′,

ẑsit3 = (1, Xt, . . . , Xt+1−p̈, Yt, . . . , Yt+1−q̈, f̂t, . . . , f̂t+1−ḧ)
′.

The following theorem shows that the test statistics W SI,λ
T , W SI,ρ

T , and W SI,ς
T are asymptotically

distributed as chi-squared distributions with q, q̇, and ḧ degrees of freedom, respectively. The proof

of Theorem 3 is omitted since it is similar to those of Theorems 1 and 2.
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Theorem 3 : Let Assumption A holds. Under the null hypotheses (22), (26), and (27), respectively,

if
√
T/N → 0, then we have

W SI,α
T →d χ

2
q, W

SI,ψ
T →d χ

2
q̇, and W SI,ς

T →d χ
2
ḧ
,

where the test statistics W SI,α
T , W SI,ψ

T and W SI,ς
T are defined in (35), respectively.

Concerning the type II spurious causality, conditions (ii), (iii)-(a) and (iii)-(b) can be tested using

the following three Wald test statistics:

W SII,λ
T =

(√
TRsii,λτ̂ sii1

)(
Rsii,λΣ̂τ̂sii1

Rsii,λ′
)−1 (√

TRsii,λτ̂ sii1

)′
,

W SII,ρ
T =

(√
TRsii,ρτ̂ sii2

)(
Rsii,ρΣ̂τ̂sii2

Rsii,ρ′
)−1 (√

TRsii,ρτ̂ sii2

)′
,

W SII,ς
T =

(√
TRsii,ς τ̂ sii3

)(
Rsii,ςΣ̂τ̂sii3

Rsii,ς′
)−1 (√

TRsii,ς τ̂ sii3

)′
,

(36)

respectively, where τ̂ sii1 = (η̂, γ̂′, λ̂′, θ̂′)′, τ̂ sii2 = (ν̂, κ̂′, ψ̂′, ρ̂′)′, τ̂ sii3 = ($̂, ξ̂′, δ̂′, ς̂ ′)′, the selection matrices

Rsii,λ = (0q̄,1+p̄, Iq̄, 0q̄,h̄), R
sii,ρ = (0ḣ,1+ṗ+q̇, Iḣ), R

sii,ς = (0ḧ,1+p̈+q̈, Iḧ), and

Σ̂τsii1
=
(

1
T

∑T−1
t=1 ẑ

sii
t1 ẑ

sii′
t1

)−1 (
1
T

∑T−1
t=1 ê

2
t+1ẑ

sii
t1 ẑ

sii′
t1

)(
1
T

∑T−1
t=1 ẑ

sii
t1 ẑ

sii′
t1

)−1

,

Σ̂τsii2
=
(

1
T

∑T−1
t=1 ẑ

sii
t2 ẑ

sii′
t2

)−1 (
1
T

∑T−1
t=1 û

2
t+1ẑ

sii
t2 ẑ

sii′
t2

)(
1
T

∑T−1
t=1 ẑ

sii
t2 ẑ

sii′
t2

)−1

,

Σ̂τsii3
=
(

1
T

∑T−1
t=1 ẑ

sii
t3 ẑ

sii′
t3

)−1 (
1
T

∑T−1
t=1 ε̂

2
t+1ẑ

sii
t3 ẑ

sii′
t3

)(
1
T

∑T−1
t=1 ẑ

sii
t3 ẑ

sii′
t3

)−1

,

with êt+1 = Xt+1 − ẑsiit1 ′τ̂ sii1 , ût+1 = Yt+1 − ẑsiit2 τ̂ sii2 , ε̂t+1 = Xt+1 − ẑsiit3 ′τ̂ sii3 , and

ẑsiit1 = (1, Xt, . . . , Xt+1−p̄, Yt, . . . , Yt+1−q̄, f̂t, . . . , f̂t+1−h̄)
′,

ẑsiit2 = (1, Xt, . . . , Xt+1−ṗ, Yt, . . . , Yt+1−q̇, f̂t, . . . , f̂t+1−ḣ)
′,

ẑsiit3 = (1, Xt, . . . , Xt+1−p̈, Yt, . . . , Yt+1−q̈, f̂t, . . . , f̂t+1−ḧ)
′.

The following theorem demonstrates that the tests W SII,λ
T , W SII,ρ

T , and W SII,ς
T are asymptotically

distributed as chi-squared distributions with q̄, ḣ, and ḧ degrees of freedom, respectively. The proof

of Theorem 4 follows naturally in a similar way as the one of Theorem 1, and therefore is omitted.

Theorem 4 : Let Assumption A hold. Under the null hypotheses (28) and (29), respectively, if
√
T/N → 0, then we have

W SII,λ
T →d χ

2
q̄, W

SII,ρ
T →d χ

2
ḣ
, and W SII,ς

T →d χ
2
ḧ
,

where the test statistics W SII,λ
T , W SII,ρ

T and W SII,ς
T are defined in (36), respectively.

As in Section 5.1, the results in Theorems 3 and 4 show that for
√
T/N → 0, having estimated

factors as regressand or regressors does not affect the root-T consistency of the least squares estimates

of the coefficients used to test type I and type II spurious causalities. These results work under the

general case of heteroskedasticity, and they are still valid under homoskedasticity.
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6 Identification of the auxiliary variables

Unfortunately, the tests developed in the previous sections only detect the presence of indirect/spurious

causality and cannot provide information about the nature of the auxiliary variables that trans-

mit/induce these effects. In this section, we suggest a simple statistical procedure to identify the

auxiliary variables that are responsible for the transmission/induction of indirect/spurious causality.

The literature on the interpretation of factors extracted using factor analysis suggests to use

marginal regressions where each factor is regressed on each of the variables of the big data, see Lud-

vigson and Ng (2009) and the references therein. Thereafter, it uses the coefficient of determination

R2 to order the variables according to their importance in terms of explaining each factor. Thus,

the variable(s) that produce(s) high R2 are used to interpret the factor. Following this literature, we

propose to identify the auxiliary variable(s) in the following way:

1. Test the conditions of indirect/spurious causality using as an auxiliary variable ft = wt,j, for

j = 1, ..., N, where wt,j is one of the variables of the big data W defined in Section 4.1;

2. Eliminate all wt,j, for j = 1, ..., N, which do not satisfy the conditions of indirect/spurious

causality. We denote the subset of W with all variables satisfying the conditions of indirect/spurious

causality by W sub =
{(
w

(1)
t , ..., w

(N̄)
t

)
, for t = 1, ..., T and where N̄ ≤ N

}
. W sub can be viewed as

a subset of auxiliary variables that transmit/induce indirect/spurious causality. If this subset is

sufficiently large or because of possible interaction between the auxiliary variables, we can consider

the next additional step;

3. Use the factor analysis where k̄ common factors f subt are associated with the N̄ -dimensional

vector wsubt according to wsubt = Λsubf subt + εt, with wsubt = (w
(1)
t , ..., w

(N̄)
t )′ for t = 1, ..., T and Λsub

an
(
N̄ × k̄

)
-dimensional matrix of factor loadings and εt’s vectors of idiosyncratic shocks that could

be cross-sectionally and temporally dependent. We can then use the following marginal regressions,

as in Ludvigson and Ng (2009), to interpret f subt . Hereafter, we focus on one factor (f subt ), say the

one that explains most of the variation in the data, as it represents all the variables in the big data

W, since it is a linear combination of all these variables. Formally, we run the marginal regressions

f subt = αsubj + βsubj w
(j)
t + u

(j)
t for each j = 1, ..., N̄ and obtain the corresponding R2s. Thus, the

auxiliary factor f subt can be interpreted in terms of the variables in W sub that generate high R2s.
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7 Monte Carlo simulations

We assess the sizes and powers of the tests stated in Theorems 1-3 under a variety of data generating

processes (DGPs), different sample sizes and numbers of auxiliary variables.

7.1 Indirect causality

We first describe DGPs that we use in the simulations to assess the performance of the tests in

Theorems 1 and 2. These DGPs are constructed based on the Example 1 of Section 3 and such

that our assumptions are satisfied. Initially, we consider a set of DGPs in which indirect causality

is transmitted through one auxiliary variable Z1, among a total of N variables {Z1, ..., ZN} with N

large that represent the whole economy. In particular, we consider the following processes:

Xt = µ
(1)
X + φ

(1)
X Xt−1 + φ

(1)
Y Yt−1 + ε

(1)
Xt

with ε
(1)
Xt
∼ N (0, 1) , (37)

Xt = µ
(2)
X + φ

(2)
X Xt−1 + φ

(2)
Y Yt−2 + φ

(2)
Z Zt−1,1 + ε

(2)
Xt

with ε
(2)
Xt
∼ N (0, 1) , (38)

Zt,1 = µZ − φ(2)
Y /φ

(2)
Z Yt−1 + φZZt−1,1 + εZ1,t with εZ1,t ∼ N (0, 1) and φ

(2)
Z 6= 0, (39)

Zt,i = εZi,t ∼ N (0, 1) for i = 2, ..., N, with εZi,t mutually independent,

where the error terms ε
(1)
Xt
, ε

(2)
Xt
, and εZi,t for i = 1, ..., N , are assumed to be mutually independent

and X has to satisfy both equations (37) and (38). Numerical values for the coefficients µ
(1)
X , µ

(2)
X , µZ ,

φ
(1)
X , φ

(2)
X , φ

(1)
Y , φ

(2)
Y , φ

(2)
Z , φZ will be specified later. The functional forms of DGPs are selected such

that there is an indirect causality from Y to X. According to Definition (1), indirect causality occurs

if: (i) Y Granger causes X with respect to the information set IX(t); (ii) Y does not Granger cause X

with respect to the information set I(t)− IY (t); and (iii) Y Granger causes Z and Z Granger causes

X with respect to the information sets I(t)− IY (t) and I(t)− IZ(t), respectively. Thus, condition (i)

will be satisfied if we choose the coefficient φ
(1)
Y to be different from zero. Furthermore, if we assume

that φ
(2)
Z 6= 0 and φ

(2)
Y 6= 0, then Z Granger causes X and Y Granger causes Z, respectively, hence

condition (iii) is satisfied. What about condition (ii)? Combining equations (38) and (39) leads to

Xt =
(
µ

(2)
X + φ

(2)
Z µZ

)
+ φ

(2)
X Xt−1 + φ

(2)
Z φZZt−2,1 + φ

(2)
Z εZ1,t−1 + ε

(1)
Xt
,

which indicates that Y does not cause X in the presence of Z, hence condition (ii) is also satisfied.

Depending on whether or not φ
(1)
Y , φ

(2)
Z and φ

(2)
Y are taken to be equal to zero, the following steps

can be performed to simulate a sample of T observations on X, Y and Z under the absence/presence

of indirect causality from Y to X transmitted through the auxiliary variable Z1:
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(1) Choose the initial values X2, Z2 and Y1, and generate X3 using (38): X3 = µ
(2)
X +φ

(2)
X X2 +φ

(2)
Y Y1 +

φ
(2)
Z Z2 + ε

(1)
X3
, for ε

(2)
X3
∼ N(0, 1);

(2) Generate Y2 using (37): Y2 = (X3 − µ(1)
X − φ

(1)
X X2 − ε(1)

X3
)/φ

(1)
Y for ε

(1)
X3
∼ N(0, 1) and ε

(1)
X3
⊥ ε

(2)
X3

;

(3) Generate Z3,1 using (39): Z3,1 = µZ − φ(2)
Y /φ

(2)
Z Y2 + φZZ2 + εZ1,3 for εZ1,3 ∼ N(0, 1) and εZ1,3 ⊥

(ε
(1)
X3
, ε

(2)
X3

);

(4) Generate {Zt,i}Ni=2 with Zt,i mutually independent, using Zt,i = εZi,t ∼ N (0, 1);

(5) Repeat steps (1)-(4) T + 500 times and discard the first 500 observations to eliminate the effect

of initial values.

To examine the performance of tests in Theorem 1, Table 1 of the companion Appendix summa-

rizes the DGPs, with a direct causality from Y to X, that we use in our simulations and provides

four different sets of parameters that we choose to indicate various degrees of causality from Y to

X and different degrees of serial dependence in Z. It is straightforward to notice that DGP1 and

DGP3 are exhibiting a relatively weaker extent of direct causality from Y to X compared to DGP2

and DGP4, in terms of the coefficients in front of Yt−1; i.e. 0.3 versus 0.7. For the direct causality

set-up in Table 1, the auxiliary variables Zs give no extra useful information for predicting X and

we have used two different types of Zs, which can be either i.i.d. or AR(1) processes.

Furthermore, we consider the additional DGPs in Table 2 of the companion Appendix, which

correspond to equations (37)-(39) with four different sets of parameters that represent different

scenarios of indirect causality. Since Z1 is present in DGP5 to DGP8, different parameter values

indicate different degrees of indirect causality from Y to X transmitted through Z1. For instance, it

seems at first sight that there is a high causality from Y to X in DGP6 given by φ
(1)
Y = 0.7. However,

this causality is not direct and it disappears once controlling the effect of Z, hence following into the

context of indirect causality.

In the simulations, three different sample sizes are studied: T = 100, 200, and 400. In addition,

N is chosen to be varying according to the number of time periods T and satisfies
√
T/N → 0. In

particular, for each DGP in Tables 1 and 2, three different values of N are considered to examine

the effect of data richness on the performance of the tests. The nominal level 5% is used and results

for other levels are available upon request. Finally, all the results are based on 2000 replications.

Simulation results using DGP1 to DGP8 are reported in Tables 3-5 of the companion Appendix.

Observe that for testing condition (ii) of Definition (1), DGP1 to DGP4 are used to investigate the

power performance of the tests, and DGP5 to DGP8 are used to examine their size properties [see

Table 3 for details]. However, it is important to notice that the roles of null and alternative hypotheses
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are reversed when testing condition (iii) of Definition (1) based on the regression equations (17) and

(18) [see Tables 4 and 5 for details]. The results show that the empirical sizes are accurate for

different DGPs with various sample sizes T and numbers of auxiliary variables N . Furthermore, for

our simulation settings, it seems that the test of non-causality from Y to Z is substantially more

powerful than the test of non-causality from Z to X. Finally, the number N of auxiliary variables

Zs does not seem to affect greatly the performance of the tests given various sample sizes T .

To further illustrate the performance of the proposed tests, we consider the interesting case where

many auxiliary variables [10 variables in our simulation] are transmitting the indirect causality from

Y to X. In particular, we shall consider the following processes:

Xt = µ
(1)
X + φ

(1)
X Xt−1 + φ

(1)
Y Yt−1 + ε

(1)
Xt

with ε
(1)
Xt
∼ N (0, 1) , (40)

Xt = µ
(2)
X + φ

(2)
X Xt−1 + φ

(2)
Y Yt−2 +

10∑
j=1

φ
(2)
Zj
Zt−1,j + ε

(2)
Xt

with ε
(2)
Xt
∼ N (0, 1) , (41)

Zt,j = µZj
− (φ

(2)
Y /φ

(2)
Z )Yt−1 + φZj

Zt−1,j + εZj ,t with {εZj ,t}10
j=1 ∼ N (0, 1) and φ

(2)
Z 6= 0, (42)

Zt,i = εZi,t ∼ N (0, 1) for i = 11, ..., N, with εZi,t mutually independent,

where φ
(2)
Z :=

∑10
j=1 φ

(2)
Zj

. The latter condition guarantees that Y does not cause X in the presence of

Z, which satisfies condition (ii) of Definition (1). We now consider the five DGPs in Table 6 of the

companion Appendix and follow the steps described above to simulate the data on X, Y , and Z.

The DGPs in Table 6 are different from those in Tables 1 and 2. In particular, the values of

parameters in the former are much smaller, which indicates that the causal links are significantly

weaker when we consider ten auxiliary variables. The use of smaller values is also to ensure that the

processes under consideration are stationary. Due to the weak degree of causality, the power of tests

of indirect causality will be low when we use ten auxiliary variables instead of one, though the power

still increases as sample size increases.

Tables 7-9 of the companion Appendix report the empirical sizes and powers of the tests of

conditions (ii) and (iii) of an indirect causality from Y to X transmitted by 10 auxiliary variables.

Before discussing the results, recall that DGPs 11 to 13 are used to assess the empirical size of test

of condition (ii) [Theorem 1], whereas DGPs 9 and 10 are used to assess the empirical size of test

of condition (iii) [Theorem 2]. The results show that the proposed tests control very well the size

whatever the sample size T , the number of Zs, and the DGP under consideration. Regarding the

power, on one hand we find that the test of condition (ii) in Theorem 1 has low power, but as expected

it improves with the sample size T . On the other hand, the power of test of condition (iii) in Theorem
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2 is high and reaches one even when the sample size is small. The difference in the power performance

for testing different conditions of Definition (1) is mainly due to the particular design of our DGPs

specified either in one auxiliary variable case or ten auxiliary variables case. For example, in the latter

case we specified, Tables 8 and 9 show the results for checking condition (iii) of Definition (1), in

which Table 8 has significantly higher power when testing the first regression of condition (iii). This

is expected, as the process for {Zt,j}10
j=1 has large coefficients for Yt−1. On the other hand, in Table 9

when testing the second regression of condition (iii), the process for Xt (expressed as an equation of

Zt−1,j) has ten very small coefficients of Zt−1,j, leading to the less powerful results. Note that as the

magnitude of coefficients of Zt−1,j increases, the power increases as expected, see DGPs 11, 12 and 13

in Table 9. By designing other types of DGPs, we may have different power performance. However,

our theory predicts that the testing procedure should work for other general situations. Finally, we

find that both empirical size and power are quite stable when N changes.

7.2 Spurious causality

We describe the DGPs that we use to assess the performance of tests of spurious causality of type I

in Theorem 3. These DGPs are constructed based on the Example 2 of Section 3 and such that our

assumptions are satisfied. We first consider a set of DGPs in which the spurious causality of type

I is induced by one and only one auxiliary variable Z1, among a total of N variables {Z1, ..., ZN}

indicating the richness of the data environment. In particular, we consider the following processes:

Xt = µ
(1)
X + φ

(1)
X Xt−1 + ε

(1)
Xt

with ε
(1)
Xt
∼ N (0, 1) (43)

Xt = µ
(2)
X + φ

(2)
X Xt−1 + φ

(2)
Z Zt−1,1 + ε

(2)
Xt

with ε
(2)
Xt
∼ N (0, 1) (44)

Zt,1 = µZ + φ
(3)
Z Zt−1,1 + φ

(3)
Y Yt−1 + φ

(3)
X Xt−1 + εZ1,t with εZ1,t ∼ N (0, 1) , (45)

Zt,1 = εZi,t ∼ N (0, 1) for i = 2, ..., N, with εZi,t mutually independent,

where the error terms ε
(1)
Xt
, ε

(2)
Xt
, and εZi,t, for i = 1, ..., N , are assumed to be mutually independent

and X has to satisfy both (43) and (44). Numerical values for the coefficients µ
(1)
X , µ

(2)
X , µZ , φ

(1)
X , φ

(2)
X ,

φ
(3)
X , φ

(2)
Z , φ

(3)
Z , φ

(3)
Y will be specified later. The functional forms of DGPs of X and Z are selected

such that there is a spurious causality of type I from Y to X. According to Definition (2), spurious

causality of type I occurs if: (i) Y Granger causes X with respect to the information set I(t)− IY (t);

(ii) Y does not Granger cause X with respect to the information set IX(t); and (iii) Y Granger

causes Z and Z Granger causes X with respect to the information sets I(t)− IY (t) and I(t)− IZ(t),
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respectively. Thus, conditions (i) and (iii) will be satisfied if we choose the coefficients φ
(2)
Z and φ

(3)
Y

in (44) and (45) to be different from zero. Furthermore, condition (ii) is also satisfied according to

(43). To see why condition (i) is satisfied, note that by combining (44) and (45) we obtain

Xt =
(
µ

(2)
X + φ

(2)
Z µZ

)
+ φ

(2)
X Xt−1 + φ

(2)
Z φ

(3)
X Xt−2 + φ

(2)
Z φ

(3)
Y Yt−2 + φ

(2)
Z φ

(3)
Z Zt−2,1 + φ

(2)
Z εZ1,t−1 + ε

(2)
Xt
,

where Y does cause X in the presence of Z.

Depending on whether or not φ
(2)
Z and φ

(3)
Y are taken to be equal to zero, the following steps can

be performed to simulate a sample of T observations on X, Y and Z under the absence/presence of

spurious causality of type I from Y to X induced by the auxiliary variable Z1:

(1) Choose the initial value X1 and generate X2 and X3 using (43):

X2 = µ
(1)
X + φ

(1)
X X1 + ε

(1)
X2
, for ε

(1)
X2
∼ N(0, 1);

X3 = µ
(1)
X + φ

(1)
X X2 + ε

(1)
X3
, for ε

(1)
X3
∼ N(0, 1) and ε

(1)
X2
⊥ ε

(1)
X3

;

(2) Generate Z1,1 and Z2,1 using (44):

Z1,1 =
(
X2 − µ(2)

X − φ
(2)
X X1 − ε(2)

X2

)
/φ

(2)
Z , for φ

(2)
Z 6= 0, ε

(2)
X2
∼ N(0, 1), and ε

(2)
X2
⊥
(
ε

(1)
X2
, ε

(1)
X3

)
Z2,1 = X3 − µ(2)

X − φ
(2)
X X2 − ε(2)

X3
/φ

(2)
Z , for φ

(2)
Z 6= 0, ε

(2)
X3
∼ N(0, 1), and ε

(2)
X3
⊥
(
ε

(2)
X,2, ε

(1)
X,2, ε

(1)
X,3

)
;

(3) Generate Y1 using (45):

Y1 =
(
Z2,1 − µZ − φ(3)

Z Z1,1 − φ(3)
X X1 − εZ1,2

)
/φ

(3)
Y , for εZ1,2 ∼ N(0, 1) and εZ1,2 ⊥

(
ε

(2)
X2
, ε

(1)
X2
, ε

(1)
X3

)
;

(4) Generate {Zt,i}Ni=2 with Zt,i mutually independent, using Zt,i = εZi,t ∼ N (0, 1);

(5) Repeat steps (1)-(4) T + 500 times and discard the first 500 observations to eliminate the effects

of initial values.

To examine the size of tests in Theorem 3, Table 10 of the companion Appendix summarizes

the DGPs, when there is no causality from Y to X, that we use in our simulations. Regarding

the assessment of the power, we consider the DGPs in Table 11 of the companion Appendix that

correspond to equations (43), (44), and (45) with four different sets of parameters that represent

different scenarios of spurious causality of type I. As in Section 7.1, three sample sizes are studied;

T = 100, 200, 400, and N is chosen to be varying according to the sample sizes T . The nominal level

5% is studied and results for other levels are omitted. All the results are based on 2000 replications.

Tables 12 to 14 of the companion Appendix report the empirical size and power of tests of

conditions of spurious causality of Type I under the DGPs in tables 10 and 11. On the one hand,

the results, using DGPs 14 to 17, show that the proposed tests control the size reasonably whatever

24



the sample size T and the number of auxiliary variables N . The size control is achieved by all the

tests in Theorem 3 and under all the DGPs, except DGP 16 for which the empirical size is slightly

higher than the nominal level of 5%. On the other hand, the empirical power of the tests reaches

one for all DGPs [DGP18 to DGP21], even when the sample size is small and whatever the number

of auxiliary variables. Finally, the case of multiple auxiliary variable Zs is omitted for the sake of

brevity. Simulations for spurious causality of type II are also omitted.

8 Empirical application

We use the tests proposed in the above sections to test for the presence of an indirect causality

from credit/money to real activity. Studying the interaction between real activity (income) and

monetary policy measures (money) and credit is of great importance to economists, because of its

role in stabilizing the economy and for economic welfare; see e.g. Friedman (1981), Friedman and

Kuttner (1992), and Balke (2000), Uhlig (2005) and references therein. In this section we use our

methodology to re-examine this old relationship and identify the channels behind its existence.

Fackler (1985) was among the first to examine the channels behind the impact of credit/money

on real activity. As pointed out by this paper [see Section 3], in studying the relationship between

money and income, empirical evidence suggests that important information may be lost by ignoring

some variables such as the one that comes from credit market. He argued that empirical results on

examining money-income causal relationship might differ depending on the information set one has

at hands. His analysis shows that the results based on bivariate causality analysis are misleading

and often overturned when one extends the information set and includes other key variables such as

the ones related to the credit. In particular, he found that interest rates play the role of an auxiliary

variable that transmits the causality between financial and real sectors. In other words, money/credit

does not directly influence real output; but it plays at most an indirect role in income determination.

To obtain his results, Fackler (1985) applied an ad hoc approach in which the auxiliary variables

were predetermined or specified at the beginning of the analysis and not selected by any statistical

method. Furthermore, his tests were run in the presence of only few variables, thus this excluded the

hundred of economic variables that might play a role in income determination.

Our objective is to use the tests proposed in Section 5.1 to re-examine the existence of an indirect

causality from money/credit to income using a recent dataset that contains more than 130 economic

variables. In particular, we would like to confirm whether or not there is an indirect causality
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from money/credit to income. Thereafter, if this indirect causality exists, we would like to use the

algorithm discussed in Section 6 to identify the auxiliary variable(s) that transmit this causality and

compare them with those used in Fackler (1985). In this application income is measured by Industrial

Production Index (IPI), money is measured by M1 Money Stock [hereafter M1SL using the FRED],

and we consider two measures of credit: Commercial and Industrial Loans [hereafter BUSLOANS]

and Securities in Bank Credit at All Commercial Banks [hereafter INVEST].

8.1 Data

We consider a big data set that consists of monthly observations on 135 economic variables from

Federal Reserve Bank of St. Louis (FRED). The sample runs from January 1959 to May 2016 for a

total of 689 observations. All the variables are reported in Tables 15-20 of the companion Appendix.

In particular, we consider 8 groups of variables: (1) Output and income with 17 variables; (2) Labor

market with 32 variables; (3) Housing with 10 variables; (4) Consumption, orders, and inventories

with 14 variables; (5) Money and credit with 14 variables; (6) Interest and exchange rates with 22

variables; (7) Prices with 21 variables; and (8) Stock market with 5 variables. This big data mimic

the coverage of datasets already used in the literature and it is updated in real-time through the

FRED database. A detailed description of the dataset can be found in McCracken and Ng (2015).

8.2 Results

First, using Akaike information criterion, our results show that regressions (7), (15), (17), and

(18) with 3 or 4 lagged terms suffice to test the conditions of a possibly indirect causality from

money/credit to income. Table 21 of the companion Appendix reports the p-values for testing the

conditions in Definition (1). On one hand, we find that there is no indirect causality from money

to income, as the first condition [money Granger causes income without the presence of other vari-

ables] is not satisfied. Consequently, this renders the subsequent testing procedure unnecessary, even

though all the following conditions are satisfied. Hence, we conclude that money is not Granger

indirectly causing income, which goes against the findings in Fackler (1985). In Table 21, we only

include the results from one measure of money, i.e. M1SL, for illustration. In fact all other money

measures fail to pass the indirect causality tests and demonstrate quantitatively similar results.

On the other hand, the measures of credit [BUSLOANS and INVEST] fit to our testing paradigm

well. In particular, the p-value for the first condition [BUSLOANS Granger causing income without
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the presence of other variables] is equal to 0.0728. However, once the auxiliary variable f [extracted

from 135 economic variables] is included, BUSLOANS does not Granger cause income any more with

a high p-value of 0.5618. Lastly, for the third condition, BUSLOANS appears to Granger cause the

auxiliary variable f and f furthermore Granger causes income with p-values of 0.0385 and 0.0005,

respectively. This leads us to believe that Commercial and Industrial Loans serves as an indirect

source of income. For the credit measure INVEST, the same argument applies and the four p-values

again help us to conclude that INVEST Granger causes income, but only in an indirect way. These

results are in line with the findings in Fackler (1985).

Now that we have found that there is an indirect causality from credit to income, we next use

the procedure outlined in Section 6 to identify the auxiliary variables that transmit this causality.

The results are summarized in Table 22 of the companion Appendix, where the first and second

columns report the auxiliary variables that transmit the indirect causality from Commercial and

Industrial Loans and Securities in Bank Credit at All Commercial Banks to income, respectively. On

one hand, we see that 18 auxiliary variables are responsible for the transmission of indirect causality

from BUSLOANS to income. These variables belong to five groups: (i) Labor market; (ii) Housing;

(iii) Consumption, orders, and inventories; (iv) Interest and exchange rates; and (v) Stock market.

The variables from the other groups are found to be silent. We also find that most of the auxiliary

variables [11 over a total of 18] belong to the group on interest and exchange rates. These variables

are: Effective Federal Funds Rate, 3-Month AA Financial Commercial Paper Rate, 1-Year Treasury

Rate, Moody’s Seasoned Baa Corporate Bond Yield, 3-Month Treasury C Minus FEDFUNDS, 6-

Month Treasury C Minus FEDFUNDS, 1-Year Treasury C Minus FEDFUNDS, 5-Year Treasury C

Minus FEDFUNDS, 10-Year Treasury C Minus FEDFUNDS, Moody’s Aaa Corporate Bond Minus

FEDFUNDS, and Moody’s Baa Corporate Bond Minus FEDFUNDS. Thus, it seems that the short

and long-term interest rates are the main auxiliary variables that transmit the indirect causality from

BUSLOANS to income, which is in line with the findings in Fackler (1985). Fackler (1985) wrote:

“What is presumably relevant for income determination, and especially for the investment component

of income, is the long-term interest rate.”

Regarding the indirect causality from INVEST to income, column 2 of Table 22 shows that 14

auxiliary variables are responsible for the transmission of this causality. These variables belong to

five groups: (i) Output and income; (ii) Housing; (iii) Consumption, ordered inventories; (iv) Interest

and exchange rates; and (v) Stock market. The dominant groups with highest numbers of auxiliary

variables are Housing and Interest and exchange rates. Thus, in addition to the short and long-term
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interest rates, the housing sector is essential for transmitting the causality from credit to income,

which is different from the findings in Fackler (1985).

9 Conclusion

We introduced several statistical procedures for testing indirect and spurious causal effects. In prac-

tice, detecting indirect/spurious causality is a complicated task, since the pertinent auxiliary vari-

ables that transmit/induce the indirect/spurious causality are very often unknown. The availability

of hundreds of economic variables makes this task even harder as it is generally infeasible to find

the appropriate auxiliary variable(s) among all the available ones. We proposed several statistical

procedures to test for the presence of an indirect/spurious causality using big data analysis. A dif-

fusion index was included in the regression equation to represent all the variables that are available

to practitioners. We derived the asymptotic distributions of the tests in the presence of an esti-

mated index. Furthermore, we conducted a Monte Carlo simulation to evaluate the performance of

the proposed statistical procedures. The results showed that our procedures have good power for

detecting indirect/spurious causality. Finally, we provided an empirical application where hundreds

of variables are used to study a possible indirect causality from money/credit to income.
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ABSTRACT

This online appendix contains the proofs of the theoretical results derived in the main paper. It also

provides the parameter values of the data generating processes (DGPs) used in the simulation study in

Section 7 of the main paper, the simulation results for the empirical size and power of the test procedures

developed in the main paper, and the data and the empirical results discussed in Section 8 of the main

paper.

1 Proofs

This appendix provides the proofs of Theorems 1 to 4 in the main text of the main paper. We first

introduce some notations, which are adapted from Bai and Ng (2006). Let V̂ be the (k×k) diagonal matrix

consisting of the k largest eigenvalues of WW ′/(TN) and let H = V̂ −1(f̂ ′f/T )(Λ′Λ/N) be the rotation

matrix, due to the fact that f̂ can only consistently estimate Hf , the space spanned by the true factors f .

Let Φ0 =diag(I1+p̄+q̄, V
−1QΣΛ) being block diagonal, where V =plim V̂ , Q =plim f̂ ′f/T and ΣΛ is defined

in Assumption A of the main paper.

Three auxiliary lemmas are first given below. The first one is due to Bai and Ng (2005).

Lemma 1: Take ẑt to be ẑtj, or ẑsiitj , or ẑ
si
tj for any j = 1, 2, 3, which are defined in Section 5 of the

main paper. Let zt be the corresponding infeasible regressors and ēt+1 be any of the error terms in the

corresponding regression. Let δ2
NT = min[N,T ]. Then under Assumption A, we have: (i) 1

T

∑T
t=1 ||f̂t −

Hft||2 = Op
(
δ−2
NT

)
; (ii) 1

T

∑T
t=1(f̂t − Hft)z′t = Op

(
δ−2
NT

)
; (iii) 1

T

∑T
t=1(f̂t − Hft)ẑ′t = Op

(
δ−2
NT

)
; and (iv)

1
T

∑T
t=1(f̂t −Hft)ē′t+1 = Op

(
δ−2
NT

)
.

Lemma 2: Let ẑt and zt be the feasible and infeasible regressors defined in Lemma 1. Let δ2
NT = min[N,T ].



Then under Assumption A, we have: (i) 1
T

∑T
t=1(f̂t+1 − Hft+1)z′t = Op

(
δ−2
NT

)
and (ii) 1

T

∑T
t=1(f̂t+1 −

Hft+1)ẑ′t = Op
(
δ−2
NT

)
.

Proof of Lemma 2: They are similar to the proofs of results (ii) and (iii) in Lemma 1.

Lemma 3: Consider the infeasible regression (15) or (18) of the main paper. Let τ be the parameter to

be estimated and τ̂ its ordinary least squares estimate obtained from a regression of Xt+1 on the vector of

regressors ẑt, with ẑt includes the intercept, lagged values of Xt, Yt, and the estimated factors f̂t and its

lags. Suppose Assumption A hold. If
√
T/N → 0, then

√
T (τ̂ − τ)→d N(0,Στ ),

where Στ = Φ
′−1
0 Σ−1

zz Σzz,eΣ
−1
zz Φ−1

0 . Moreover, a consistent estimator of the variance covariance matrix Στ

is given by

Σ̂τ =

(
1

T

T−1∑
t=1

ẑtẑ
′
t

)−1(
1

T

T−1∑
t=1

ê2
t+1ẑtẑ

′
t

)(
1

T

T−1∑
t=1

ẑtẑ
′
t

)−1

,

where êt+1 = Xt+1 − ẑ′tτ̂ are the least squares residuals.

Proof of Lemma 3: For Lemma 3, we will only prove the case for regression (15) in the main paper as

the proof for the limiting distribution of τ̂ in regression (18) of the main paper is identical and hence it is

omitted. The proof is much similar to that of Theorem 1 in Bai and Ng (2006). Without loss of generality,

assume p̄ = q̄ = h̄ = 1, and define zt = (1, Xt, Yt, ft)
′ and ẑt = (1, Xt, Yt, f̂t)

′ so that τ = (η, γ, λ, θH−1)′ are

the parameters from the infeasible regression when ft is observed.

From the infeasible regression (15) in the main paper, adding and subtracting terms, we obtain

Xt+1 = η + γXt + λYt + θft + et+1 = η + γXt + λYt + θH−1f̂t + et+1 + θH−1(Hft − f̂t)

= ẑ′tτ + et+1 + θH−1(Hft − f̂t).

In matrix notation, X = ẑτ + e + (fH ′ − f̂)H−1′θ, where X = (X2, . . . , XT )′, ẑ = (ẑ1, . . . , ẑT−1)′, e =

(e2, . . . , eT )′, f = (f1, . . . , fT−1)′ and f̂ = (f̂1, . . . , f̂T−1)′. Therefore, the ordinary least squares estimator of

τ is given by

τ̂ = (ẑ′ẑ)−1ẑ′X = τ + (ẑ′ẑ)−1ẑ′e+ (ẑ′ẑ)−1ẑ′(fH ′ − f̂)H−1′θ.

Thus,
√
T (τ̂ − τ) = (T−1ẑ′ẑ)−1T−1/2ẑ′e+ (T−1ẑ′ẑ)−1[T−1/2ẑ′(fH ′ − f̂)]H−1′θ.

By the result (iii) of Lemma 1, the second term on the right-hand side of the above equation isOp(T 1/2/min(N,T )) =

op(1) if
√
T/N → 0. Define Wt = (1, Xt, Yt)

′ so that T−1/2ẑ′e = T−1/2(e′W, e′f̂)′. Due to the fact that

T−1/2f̂ ′e = T−1/2Hf ′e+ T−1/2(f̂ − fH ′)′e, we have

T−1/2f̂ ′e = T−1/2Hf ′e+ op(1)

2



by the result (iv) of Lemma 1 and
√
T/N → 0. Thus, we get that T−1/2f̂ ′e = T−1/2(e′W, e′fH ′)′ + op(1) =

T−1/2Φz′e+ op(1), with Φ = diag(I,H) a block diagonal matrix. Therefore,

√
T (τ̂ − τ) = (T−1ẑ′ẑ)−1T−1/2ẑ′e+ op(1) = (T−1ẑ′ẑ)−1ΦT−1/2z′e+ op(1).

Under standard assumptions, we have T−1/2
∑T−1

t=1 ztet+1 →d N(0,Σzz,e) with Σzz,e = plimT−1
∑T−1

t=1 e2
t+1ztz

′
t.

Therefore,
√
T (τ̂ − τ)→d N(0,Στ ) with the asymptotic variance covariance matrix given by

Στ = plim
(
ẑ′ẑ

T

)−1

Φ

(
1

T

T−1∑
t=1

e2
t+1ztz

′
t

)
Φ′
(
ẑ′ẑ

T

)−1

,

where Φ = diag(I,H) is a block diagonal matrix with the probability limit Φ0. Following Bai and Ng (2006),

Στ = Φ
′−1
0 Σ−1

zz Σzz,eΣ
−1
zz Φ−1

0 .

In addition, by Bai and Ng (2006), Σ̂τ is a consistent estimator for Στ .

Proof of Theorem 1: We focus on the case where p̄ = q̄ = h̄ = 1. Under heteroskedasticity, the

corresponding Wald-statistic is defined by

W Ind,λ
T =

(√
TRInd,λτ̂

)(
RInd,λΣ̂τR

Ind,λ′
)−1 (√

TRInd,λτ̂
)′
,

where RInd,λ = (0, 0, 1, 0). Since RInd,λτ = 0 under the null hypothesis of λ = 0, we can apply the central

limit theorem in Lemma 3 for regression (15) in the main paper to obtain
√
TRInd,λτ̂ =

√
TRInd,λ(τ̂−τ)→d

N(0, RInd,λΣτR
Ind,λ′). Furthermore, by the consistency of Σ̂τ we have W

Ind,λ
T →d χ

2
1. Note that if et+1 is

homoskedastic, then the proof is analogous to the heteroskedastic case, except Σ̂τ →p σ
2
eΣzz which can be

consistently estimated by σ̂2
e

(
1
T

∑T−1
t=1 ẑtẑ

′
t

)−1
, with σ̂2

e = (1/T )
∑T−1

t=1 ê2
t+1 a consistent estimator of σ

2
e and

êt+1 the least squares residuals.

Proof of Theorem 2: The proof of W Ind,ς
T →d χ

2
ḧ
for testing ς1 = . . . = ς q̈ = 0 in regression (18) of

the main paper follows immediately from Lemma 3 and the proof of Theorem 1. We now establish the

asymptotic chi-squared distribution for the test of the null hypothesis Ḣ0 : ψ1 = . . . = ψq̇ = 0 in regression

(17) of the main paper. For simplicity of exposition, let ṗ = q̇ = ḣ = 1. Following the steps in the proof of

Theorem 1, we note that the infeasible regression (17) in the main paper can be rewritten as

H−1f̂t+1 = ẑ′tτ + ut+1 + ρH−1(Hft − f̂t)−H−1(Hft+1 − f̂t+1).

In the following, we denote τ = (ν, κ, ψ, ρH−1)′ and ẑt = (1, Xt, Yt, f̂t)
′. It is important to remark that,

comparing with the standard set up in Theorem 1, the above expression has an extra termH−1(Hft+1−f̂t+1),

because the dependent variable also has to be replaced by the estimated factors f̂t+1 in the feasible regression.

We now write the model in matrix form

f̂1H−1′ = ẑτ + u+ (fH ′ − f̂)H−1′ρ− (f1H ′ − f̂1)H−1′ , (1)

3



where f̂1 = (f̂2, . . . , f̂T )′, f1 = (f2, . . . , fT )′, f̂ = (f̂1, . . . , f̂T−1)′ and f = (f1, . . . , fT−1)′, u = (u2, . . . , uT )′

and ẑ = (ẑ1, . . . , ẑT−1)′. Hence, least squares estimation of (1 ) yields

√
T (τ̂ − τ) =

(
T−1ẑ′ẑ

)−1
T−1/2ẑ′u+

(
T−1ẑ′ẑ

)−1
[
T−1/2ẑ′

(
fH ′ − f̂

)]
H−1′ρ

−
(
T−1ẑ′ẑ

)−1
[
T−1/2ẑ′

(
f1H ′ − f̂1

)]
H−1′ .

The second term on the right-hand side of last equation is Op(T 1/2/min(N,T )) = op(1) by the result (iii) of

Lemma 1 if
√
T/N → 0. In addition, the third term is T−1/2

∑T
t=1(f̂t+1−Hft+1)ẑ′t = Op

(
T 1/2/min(N,T )

)
=

op(1) when
√
T/N → 0 according to (ii) of Lemma 2.

By the result (iv) of Lemma 1 and
√
T/N → 0, T−1/2ẑ′−1/2Φz′u + op(1), with Φ = diag(I,H) a block

diagonal matrix, we obtain that
√
T (τ̂ − τ) = (T−1ẑ′ẑ)−1ΦT−1/2z′u + op(1) and

√
T (τ̂ − τ) →d N(0,Στ ),

where Στ can be consistently estimated using

Σ̂τ =

(
1

T

T−1∑
t=1

ẑtẑ
′
t

)−1(
1

T

T−1∑
t=1

û2
t+1ẑtẑ

′
t

)(
1

T

T−1∑
t=1

ẑtẑ
′
t

)−1

with ût+1 the OLS residuals. Finally, let RInd,ψ = (0, 0, 1, 0). The rest of the proof for the Wald-statistic

W Ind,ψ
T =

(√
TRInd,ψ τ̂

)(
RInd,ψΣ̂τR

Ind,ψ′
)−1 (√

TRInd,ψ τ̂
)′
→d χ

2
1 follows straightforwardly from the re-

sults on the asymptotic normality of τ̂ ,
√
TRInd,ψ τ̂ =

√
TRInd,ψ(τ̂ −τ)→d N(0, RInd,ψΣτR

Ind,ψ′) under the

null hypothesis of ψ = 0, and the consistency of Σ̂τ to Στ .

2 DGPs and simulation results

This section describes the parameter values of the data generating processes (DGPs) used in the simulation

study in Section 7 of the main paper. It also provides the simulation results for the empirical size and power

of the test procedures developed in the main paper.
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Table 1: Data-generating processes: Direct causality

DGPs Variables of interest

Xt = Yt = Zt,j for j = 1, . . . , N

DGP1 0.5 + 0.2Xt−1 + 0.3Yt−1 + εt,1 0.5 + 0.5Yt−1 + εt,2 Zt,1 = εt,3, Zt,j = εt,j+2

DGP2 0.5 + 0.2Xt−1 + 0.7Yt−1 + εt,1 0.5 + 0.5Yt−1 + εt,2 Zt,1 = εt,3, Zt,j = εt,j+2

DGP3 0.5 + 0.2Xt−1 + 0.3Yt−1 + εt,1 0.5 + 0.5Yt−1 + εt,2 Zt,1 = 0.5 + 0.5Zt−1,1 + εt,3, Zt,j = εt,j+2

DGP4 0.5 + 0.2Xt−1 + 0.7Yt−1 + εt,1 0.5 + 0.5Yt−1 + εt,2 Zt,1 = 0.5 + 0.5Zt−1,1 + εt,3, Zt,j = εt,j+2

Note: This table summarizes the DGPs, with a direct causality from Y to X, considered in the simulation study in

Section 7 of the main paper to examine the performance of the tests in Theorem 1 of the main paper for testing the

nulls outlined in (16), (19) and (20) of the main paper. The error terms εt,i, for i = 1, 2, 3, and εt,j+2 for j = 2, . . . , N

are N + 2 mutually independent standard normal random variables, where N can be large indicating the richness of

the data environment. Notice that DGP1 and DGP3 are exhibiting a relatively weaker extent of direct causality from

Y to X compared to DGP2 and DGP4, in terms of the coeffi cients in front of Yt−1; i.e. 0.3 versus 0.7.

Table 2: Data-generating processes: Indirect causality transmitted by one auxiliary variable

DGPs Coeffi cients

Constants X Y Z

DGP5 µ
(1)
X = µ

(2)
X = µZ = 0.5 φ

(1)
X = φ

(2)
X = 0.2 φ

(1)
Y = φ

(2)
Y = 0.3 φ

(2)
Z = φZ = 0.4

DGP6 µ
(1)
X = µ

(2)
X = µZ = 0.5 φ

(1)
X = φ

(2)
X = 0.2 φ

(1)
Y = φ

(2)
Y = 0.7 φ

(2)
Z = φZ = 0.8

DGP7 µ
(1)
X = µ

(2)
X = µZ = 0.5 φ

(1)
X = φ

(2)
X = 0.3 φ

(1)
Y = φ

(2)
Y = 0.2 φ

(2)
Z = φZ = 0.4

DGP8 µ
(1)
X = µ

(2)
X = µZ = 0.5 φ

(1)
X = φ

(2)
X = 0.7 φ

(1)
Y = φ

(2)
Y = 0.2 φ

(2)
Z = φZ = 0.8

Note: This table summarizes the DGPs with an indirect causality from Y to X, considered in the simulation study

in Section 7 of the main paper to examine the performance of the tests in Theorem 1 of the main paper for testing the

nulls outlined in (16), (19) and (20) of the main paper. The coeffi cients in this table are the coeffi cients of regression

equations in (37)-(39) of the main paper. The error terms εt,i for i = 1, 2, 3 and εt,j+2 for j = 2, . . . , N are N + 2

mutually independent standard normal random variables, where N can be large indicating the richness of the data

environment.
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Table 3: Empirical rejection rates of the proposed test in regression (15) based on one Z

DGPs

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8

T = 100

N = 100 32.9 68.2 34.3 66.3 5.4 5.4 5.0 5.5

N = 200 30.9 65.8 31.9 67.2 4.9 5.2 5.2 5.2

N = 400 32.4 65.4 29.3 65.2 5.0 5.0 5.3 8.0

T = 200

N = 200 56.3 93.9 57.6 91.8 4.4 6.0 4.8 5.1

N = 400 55.9 91.7 57.9 93.1 5.0 5.7 4.6 6.3

N = 600 55.1 93.2 57.5 93.1 5.0 6.5 5.0 7.5

T = 400

N = 400 87.4 99.9 85.8 99.9 7.3 5.2 6.1 6.9

N = 600 86.3 99.7 84.9 99.9 5.0 5.0 4.5 7.3

N = 800 86.4 99.9 85.4 99.9 5.3 4.6 4.6 8.6

Note: This table reports the empirical size and power of the test stated in Theorem 1 of the main paper for testing

condition (ii) of Definition 1 of indirect causality from Y to X at α = 5% significance level in regression (15) of the

main paper. The number of simulations is equal to 2000 replications. The indirect causality is transmitted by one

auxiliary variable.
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Table 4: Empirical rejection rates of the proposed test in regression (17) based on one Z

DGPs

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8

T = 100

N = 100 5.3 5.8 5.0 5.3 100.0 100.0 100.0 100.0

N = 200 4.6 6.0 4.8 5.2 100.0 100.0 100.0 100.0

N = 400 4.7 5.2 5.0 5.5 100.0 100.0 100.0 100.0

T = 200

N = 200 5.6 4.7 5.1 5.4 100.0 100.0 100.0 100.0

N = 400 4.8 4.7 4.6 4.7 100.0 100.0 100.0 100.0

N = 600 5.9 4.9 5.6 5.4 100.0 100.0 100.0 100.0

T = 400

N = 400 4.5 4.4 5.0 5.0 100.0 100.0 100.0 100.0

N = 600 4.7 4.9 6.1 4.9 100.0 100.0 100.0 100.0

N = 800 5.2 5.6 5.1 4.9 100.0 100.0 100.0 100.0

Note: This table reports the empirical size and power of the test stated in Theorem 2 of the main paper for testing

the null hypothesis (19) in the main paper for the condition (iii) of Definition 1 of indirect causality from Y to X at

α = 5% significance level in regression (17) of the main paper. The number of simulations is equal to 2000 replications.

The indirect causality is transmitted by one auxiliary variable.
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Table 5: Empirical rejection rates of the proposed test in regression (18) based on one Z

DGPs

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8

T = 100

N = 100 5.2 5.5 4.5 4.8 48.9 99.7 38.8 41.6

N = 200 4.6 4.8 5.0 4.8 47.6 99.7 37.3 41.2

N = 400 5.5 5.4 5.9 4.8 47.5 98.8 37.4 39.2

T = 200

N = 200 5.5 4.4 6.1 4.5 79.2 100.0 65.4 74.5

N = 400 5.0 5.8 5.5 5.7 79.4 100.0 65.9 74.1

N = 600 5.1 4.6 5.2 4.8 76.7 100.0 65.6 72.5

T = 400

N = 400 5.0 4.3 5.3 4.4 97.5 100.0 92.7 96.6

N = 600 5.0 5.0 4.8 4.7 97.7 100.0 92.7 97.1

N = 800 5.2 4.4 4.9 5.0 96.7 100.0 92.5 96.4

Note: This table reports the empirical size and power of the test stated in Theorem 2 of the main paper for testing

the null hypothesis (20) in the main paper for the condition (iii) of Definition 1 of indirect causality from Y to X at

α = 5% significance level in regression (18). The number of simulations is equal to 2000. The indirect causality is

transmitted by one auxiliary variable.
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Table 6: Data-generating processes: Direct causality and indirect causality transmitted by many auxiliary

variables

DGPs Variables of Interest

Xt = Yt = Zt

Direct Causality

DGP9 0.5 + 0.5Xt−1+0.1Y t−1+ε1t 0.5 + 0.5Y t−1+ε2t
Zt,j= εj+2,t, for j = 1, . . . , 10,

Zt,j= εj+2,t, for j = 11, . . . , N

DGP10 0.5 + 0.5Xt−1+0.1Y t−1+ε1t 0.5 + 0.5Y t−1+ε2t
Zt,j= 0.5 + 0.5Zj,t−1+εj+2,t, for j = 1, .., 10,

Zt,j= εj+2,t, for j = 11, .., N

Indirect Causality

DGP11 φ
(1)
X = φ

(2)
X = 0.1 φ

(1)
Y = φ

(2)
Y = 0.05 φ

(2)
Z1

= · · · = φ
(2)
Z10

= 0.01, φZ1 = · · · = φZ10 = 0.2

DGP12 φ
(1)
X = φ

(2)
X = 0.2 φ

(1)
Y = φ

(2)
Y = 0.3 φ

(2)
Z1

= · · · = φ
(2)
Z10

= 0.05, φZ1 = · · · = φZ10 = 0.4

DGP13 φ
(1)
X = φ

(2)
X = 0.2 φ

(1)
Y = φ

(2)
Y = 0.7 φ

(2)
Z1

= · · · = φ
(2)
Z10

= 0.1, φZ1 = · · · = φZ10 = 0.8

Note: This table summarizes the DGPs, with direct and indirect causalities from Y to X, considered in the simulation

study in Section 7 of the main paper to examine the performance of the tests for the hypothesis testing problems outlined

in (16), (19) and (20) of the main paper. The error terms εt,i for j = 1, . . . , N + 2 are mutually independent standard

normal random variables, where N can be large indicating the richness of the data environment. The constant terms

µ
(1)
X , µ

(2)
X , µZ1 , · · · , µZ10 in the equations (40), (41) and (42) of the main paper for DGP11-DGP13 are all equal to

0.5 : µ
(1)
X = µ

(2)
X = µZ1= · · · = µZ10= 0.5.
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Table 7: Empirical rejection rates of the proposed test in regression (15) based on ten Zs

DGPs

DGP9 DGP10 DGP11 DGP12 DGP13

T = 100

N = 100 7.0 7.9 4.2 5.0 4.8

N = 200 9.0 9.7 5.6 4.8 5.8

N = 400 9.3 9.6 4.3 5.1 4.4

T = 200

N = 200 12.0 13.3 4.4 4.8 4.8

N = 400 11.9 12.0 5.3 5.0 5.0

N = 600 12.7 14.0 5.2 4.3 5.0

T = 400

N = 400 21.1 20.4 4.8 5.7 4.9

N = 600 20.7 19.2 5.0 5.4 4.6

N = 800 19.4 21.2 5.3 4.8 5.3

Note: This table reports the empirical size and power of the test stated in Theorem 1 of the main paper for testing

condition (ii) of Definition 1 of indirect causality from Y to X at α = 5% significance level in regression (15) of the main

paper. The number of simulations is equal to 2000. The indirect causality is transmitted by ten auxiliary variables.
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Table 8: Empirical rejection rates of the proposed test in regression (17) based on ten Zs

DGPs

DGP9 DGP10 DGP11 DGP12 DGP13

T = 100

N = 100 5.9 5.5 100.0 100.0 100.0

N = 200 5.9 6.6 100.0 100.0 100.0

N = 400 5.6 5.7 100.0 100.0 100.0

T = 200

N = 200 4.5 5.4 100.0 100.0 100.0

N = 400 6.2 4.6 100.0 100.0 100.0

N = 600 5.8 5.2 100.0 100.0 100.0

T = 400

N = 400 4.6 4.9 100.0 100.0 100.0

N = 600 5.2 5.0 100.0 100.0 100.0

N = 800 5.2 6.7 100.0 100.0 100.0

Note: This table reports the empirical size and power of the test stated in Theorem 2 of the main paper for testing

the null hypothesis (19) in the main paper of the condition (iii) of Definition 1 of indirect causality from Y to X

at α = 5% significance level in regression (17) of the main paper. The number of simulations is equal to 2000. The

indirect causality is transmitted by ten auxiliary variables.
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Table 9: Empirical rejection rates of the proposed test in regression (18) based on ten Zs

DGPs

DGP9 DGP10 DGP11 DGP12 DGP13

T = 100

N = 100 5.3 5.6 8.0 32.7 99.5

N = 200 4.5 5.3 7.9 33.9 99.3

N = 400 4.9 5.1 8.6 31.8 99.0

T = 200

N = 200 5.4 4.6 10.5 57.4 100.0

N = 400 5.5 5.9 10.2 58.6 100.0

N = 600 4.9 5.0 9.1 57.2 100.0

T = 400

N = 400 4.9 4.3 14.4 85.4 100.0

N = 600 5.2 5.6 15.4 85.0 100.0

N = 800 4.7 4.9 14.8 85.4 100.0

Note: This table reports the empirical size and power of the test stated in Theorem 2 of the main paper for testing

the null hypothesis (20) in the main paper of the condition (iii) of Definition 1 of indirect causality from Y to X

at α = 5% significance level in regression (18) of the main paper. The number of simulations is equal to 2000. The

indirect causality is transmitted by ten auxiliary variables.
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Table 10: Data-generating processes: Non-causality cases

DGPs Variables of Interest

Xt = Yt = Zt,j for j = 1, . . . , N

DGP14 0.5 + 0.8Xt−1 + εt,1 0.5 + 0.8Yt−1 + εt,2 Zt,1 = εt,3, Zt,j = εt,j+2

DGP15 0.5 + 0.2Xt−1 + εt,1 0.5 + 0.2Yt−1 + εt,2 Zt,1 = εt,3, Zt,j = εt,j+2

DGP16 0.5 + 0.8Xt−1 + εt,1 0.5 + 0.8Yt−1 + εt,2 Zt,1 = 0.5 + 0.8Zt−1,1 + εt,3, Zt,j = εt,j+2

DGP17 0.5 + 0.2Xt−1 + εt,1 0.5 + 0.2Yt−1 + εt,2 Zt,1 = 0.5 + 0.2Zt−1,1 + εt,3, Zt,j = εt,j+2

Note: This table summarizes the DGPs, with no spurious causality of type I from Y to X, considered in the simulation

study in Section 7 of the main paper to examine the size of the tests for the hypothesis testing problems outlined in

(22), (26), and (27) of the main paper. The error terms εt,i for j = 1, . . . , N + 2 are mutually independent standard

normal random variables, where N can be large indicating the richness of the data environment.

Table 11: Data-generating processes: Spurious causality of type I

DGPs Coeffi cients

Constants X Y Z

DGP18 µ
(1)
X = µ

(2)
X = µZ = 0.5 φ

(1)
X = φ

(2)
X = φ

(3)
X = 0.1 φ

(3)
Y = 0.1 φ

(2)
Z = φ

(3)
Z = 0.1

DGP19 µ
(1)
X = µ

(2)
X = µZ = 0.5 φ

(1)
X = φ

(2)
X = φ

(3)
X = 0.2 φ

(3)
Y = 0.2 φ

(2)
Z = φ

(3)
Z = 0.2

DGP20 µ
(1)
X = µ

(2)
X = µZ = 0.5 φ

(1)
X = φ

(2)
X = φ

(3)
X = 0.3 φ

(3)
Y = 0.3 φ

(2)
Z = φ

(3)
Z = 0.3

DGP21 µ
(1)
X = µ

(2)
X = µZ = 0.5 φ

(1)
X = φ

(2)
X = φ

(3)
X = 0.4 φ

(3)
Y = 0.4 φ

(2)
Z = φ

(3)
Z = 0.4

Note: This table summarizes the DGPs, with a spurious causality of type I from Y to X, considered in the simulation

study in Section 7 of the main paper to examine the power of the tests for the hypothesis testing problems outlined in

(22), (26), and (27) of the main paper. The error terms εt,i for j = 1, . . . , N + 2 are mutually independent standard

normal random variables, where N can be large indicating the richness of the data environment.
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Table 12: Empirical rejection rates of the proposed test in regression (21) based on one Z

DGPs

DGP14 DGP15 DGP16 DGP17 DGP18 DGP19 DGP20 DGP21

T = 100

N = 100 6.6 4.7 5.9 5.3 100.0 100.0 100.0 100.0

N = 200 6.6 5.1 7.2 5.8 100.0 100.0 100.0 100.0

N = 400 6.7 5.7 6.5 5.4 100.0 100.0 100.0 100.0

T = 200

N = 200 6.4 5.0 6.9 5.6 100.0 100.0 100.0 100.0

N = 400 5.7 5.1 6.6 5.2 100.0 100.0 100.0 100.0

N = 600 6.2 5.5 6.9 5.4 100.0 100.0 100.0 100.0

T = 400

N = 400 5.2 5.2 5.8 5.3 100.0 100.0 100.0 100.0

N = 600 5.2 4.9 5.6 4.7 100.0 100.0 100.0 100.0

N = 800 5.6 5.5 5.3 4.6 100.0 100.0 100.0 100.0

Note: This table reports the empirical size and power of the test stated in Theorem 3 of the main paper for testing

condition (i) of Definition 2 of spurious causality of type I from Y to X at α = 5% significance level in regression (22)

of the main paper. The number of simulations is equal to 2000.
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Table 13: Empirical rejection rates of the proposed test in regression (24) based on one Z

DGPs

DGP14 DGP15 DGP16 DGP17 DGP18 DGP19 DGP20 DGP21

T = 100

N = 100 5.3 5.4 7.3 5.4 100.0 100.0 100.0 100.0

N = 200 5.3 4.8 8.2 5.1 100.0 100.0 100.0 100.0

N = 400 5.6 5.3 7.4 4.1 100.0 100.0 100.0 100.0

T = 200

N = 200 4.6 5.0 7.6 5.1 100.0 100.0 100.0 100.0

N = 400 4.8 4.6 7.1 5.1 100.0 100.0 100.0 100.0

N = 600 5.5 4.7 6.7 5.2 100.0 100.0 100.0 100.0

T = 400

N = 400 5.0 5.3 8.0 5.1 100.0 100.0 100.0 100.0

N = 600 6.2 3.9 8.0 5.4 100.0 100.0 100.0 100.0

N = 800 5.0 4.6 7.6 5.0 100.0 100.0 100.0 100.0

Note: This table reports the empirical size and power of the test stated in Theorem 3 of the main paper for testing

the null hypothesis (26) in the main paper of the condition (iii) of Definition 2 of spurious causality of type I from Y

to X at α = 5% significance level in regression (24) of the main paper. The number of simulations is equal to 2000.
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Table 14: Empirical rejection rates of the proposed test in regression (25) based on one Z

DGPs

DGP14 DGP15 DGP16 DGP17 DGP18 DGP19 DGP20 DGP21

T = 100

N = 100 5.0 5.4 7.0 4.8 100.0 100.0 100.0 100.0

N = 200 4.2 4.6 5.7 5.7 100.0 100.0 100.0 100.0

N = 400 4.7 4.4 6.4 5.6 100.0 100.0 100.0 100.0

T = 200

N = 200 4.2 5.7 5.1 5.0 100.0 100.0 100.0 100.0

N = 400 5.1 5.1 5.6 4.1 100.0 100.0 100.0 100.0

N = 600 4.7 5.0 4.8 4.9 100.0 100.0 100.0 100.0

T = 400

N = 400 5.5 4.5 5.5 4.5 100.0 100.0 100.0 100.0

N = 600 4.8 5.0 4.5 4.7 100.0 100.0 100.0 100.0

N = 800 4.3 5.3 5.9 5.3 100.0 100.0 100.0 100.0

Note: This table reports the empirical size and power of the test stated in Theorem 3 of the main paper for testing

the null hypothesis (27) in the main paper of the condition (iii) of Definition 2 of spurious causality of type I from Y

to X at α = 5% significance level in regression (25) of the main paper. The number of simulations is equal to 2000.
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3 Data and empirical results

This section describes the dataset used in the empirical application of the main paper [see their Section 8],

and it provides the empirical results obtained using this data.

The dataset consists of monthly observations on 135 economic variables from Federal Reserve Bank of

St. Louis (FRED). The sample runs from January 1959 to May 2016 for a total of 689 observations. All the

variables are reported in Tables 15-20 below. In particular, the following 8 groups of variables are considered:

(1) Output and income with 17 variables; (2) Labor market with 32 variables; (3) Housing with 10 variables;

(4) Consumption, orders, and inventories with 14 variables; (5) Money and credit with 14 variables; (6)

Interest and exchange rates with 22 variables; (7) Prices with 21 variables; and (8) Stock market with 5

variables. This big data mimic the coverage of datasets already used in the literature and it is updated in

real-time through the FRED database. A detailed description of the dataset can be found in McCracken

and Ng (2015).
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Table 15: Description of the variables of the big data

id tcode fred description

Group 1: Output and income

1 1 5 RPI Real Personal Income

2 2 5 W875RX1 Real personal income ex transfer receipts

3 6 5 INDPRO IP Index

4 7 5 IPFPNSS IP: Final Products and Nonindustrial Supplies

5 8 5 IPFINAL IP: Final Products (Market Group)

6 9 5 IPCONGD IP: Consumer Goods

7 10 5 IPDCONGD IP: Durable Consumer Goods

8 11 5 IPNCONGD IP: Nondurable Consumer Goods

9 12 5 IPBUSEQ IP: Business Equipment

10 13 5 IPMAT IP: Materials

11 14 5 IPDMAT IP: Durable Materials

12 15 5 IPNMAT IP: Nondurable Materials

13 16 5 IPMANSICS IP: Manufacturing (SIC)

14 17 5 IPB51222s IP: Residential Utilities

15 18 5 IPFUELS IP: Fuels

16 19 1 NAPMPI ISM Manufacturing: Production Index

17 20 2 CUMFNS Capacity Utilization: Manufacturing

Group 2: Labor market

1 21 2 HWI Help-Wanted Index for United States

2 22 2 HWIURATIO Ratio of Help Wanted/No. Unemployed

3 23 5 CLF16OV Civilian Labor Force

4 24 5 CE16OV Civilian Employment

5 25 2 UNRATE Civilian Unemployment Rate

6 26 2 UEMPMEAN Average Duration of Unemployment (Weeks)

7 27 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks

8 28 5 UEMP5TO14 Civilians Unemployed for 5-14 Weeks

9 29 5 UEMP15OV Civilians Unemployed - 15 Weeks & Over

10 30 5 UEMP15T26 Civilians Unemployed for 15-26 Weeks

Note: This table presents the variables included in the groups “Output and income”and “Labor market”.
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Table 16: Description of the variables of big data (Cont.)

id tcode fred description

Group 2: Labor market (Cont.)

11 31 5 UEMP27OV Civilians Unemployed for 27 Weeks and Over

12 32 5 CLAIMSx Initial Claims

13 33 5 PAYEMS All Employees: Total nonfarm

14 34 5 USGOOD All Employees: Goods-Producing Industries

15 35 5 CES1021000001 All Employees: Mining and Logging: Mining

16 36 5 USCONS All Employees: Construction

17 37 5 MANEMP All Employees: Manufacturing

18 38 5 DMANEMP All Employees: Durable goods

19 39 5 NDMANEMP All Employees: Nondurable goods

20 40 5 SRVPRD All Employees: Service-Providing Industries

21 41 5 USTPU All Employees: Trade, Transportation & Utilities

22 42 5 USWTRADE All Employees: Wholesale Trade

23 43 5 USTRADE All Employees: Retail Trade

24 44 5 USFIRE All Employees: Financial Activities

25 45 5 USGOVT All Employees: Government

26 46 1 CES0600000007 Avg Weekly Hours : Goods-Producing

27 47 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing

28 48 1 AWHMAN Avg Weekly Hours : Manufacturing

29 49 1 NAPMEI ISM Manufacturing: Employment Index

30 127 6 CES0600000008 Avg Hourly Earnings : Goods-Producing

31 128 6 CES2000000008 Avg Hourly Earnings : Construction

32 129 6 CES3000000008 Avg Hourly Earnings : Manufacturing

Group 3: Housing

1 50 4 HOUST Housing Starts: Total New Privately Owned

2 51 4 HOUSTNE Housing Starts, Northeast

3 52 4 HOUSTMW Housing Starts, Midwest

4 53 4 HOUSTS Housing Starts, South

5 54 4 HOUSTW Housing Starts, West

Note: This table presents the variables included in the groups “Labor market”and “Housing”.
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Table 17: Description of the variables of big data (Cont.)

id tcode fred description

Group 3: Housing (Cont.)

6 55 4 PERMIT New Private Housing Permits (SAAR)

7 56 4 PERMITNE New Private Housing Permits, Northeast (SAAR)

8 57 4 PERMITMW New Private Housing Permits, Midwest (SAAR)

9 58 4 PERMITS New Private Housing Permits, South (SAAR)

10 59 4 PERMITW New Private Housing Permits, West (SAAR)

Group 4: Consumption, orders, and inventories

1 3 5 DPCERA3M086SBEA Real personal consumption expenditures

2 4 5 CMRMTSPLx Real Manu. and Trade Industries Sales

3 5 5 RETAILx Retail and Food Services Sales

4 60 1 NAPM ISM : PMI Composite Index

5 61 1 NAPMNOI ISM : New Orders Index

6 62 1 NAPMSDI ISM : Supplier Deliveries Index

7 63 1 NAPMII ISM : Inventories Index

8 64 5 ACOGNO New Orders for Consumer Goods

9 65 5 AMDMNOx New Orders for Durable Goods

10 66 5 ANDENOx New Orders for Nondefense Capital Goods

11 67 5 AMDMUOx Unfilled Orders for Durable Goods

12 68 5 BUSINVx Total Business Inventories

13 69 2 ISRATIOx Total Business: Inventories to Sales Ratio

14 130 2 UMCSENTx Consumer Sentiment Index

Group 5: Money and credit

1 70 6 M1SL M1 Money Stock

2 71 6 M2SL M2 Money Stock

3 72 5 M2REAL Real M2 Money Stock

4 73 6 AMBSL St. Louis Adjusted Monetary Base

5 74 6 TOTRESNS Total Reserves of Depository Institutions

6 75 7 NONBORRES Reserves Of Depository Institutions

7 76 6 BUSLOANS Commercial and Industrial Loans

Note: This table presents the variables included in the groups “Housing”, “Consumption, orders, and inventories”

and “Money and credit”.
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Table 18: Description of the variables of big data (Cont.)

id tcode fred description

Group 5: Money and credit (Cont.)

8 77 6 REALLN Real Estate Loans at All Commercial Banks

9 78 6 NONREVSL Total Nonrevolving Credit

10 79 2 CONSPI Nonrevolving consumer credit to Personal Income

11 131 6 MZMSL MZM Money Stock

12 132 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding

13 133 6 DTCTHFNM Total Consumer Loans and Leases Outstanding

14 134 6 INVEST Securities in Bank Credit at All Commercial Banks

Group 6: Interest and exchange rates

1 84 2 FEDFUNDS Effective Federal Funds Rate

2 85 2 CP3Mx 3-Month AA Financial Commercial Paper Rate

3 86 2 TB3MS 3-Month Treasury Bill:

4 87 2 TB6MS 6-Month Treasury Bill:

5 88 2 GS1 1-Year Treasury Rate

6 89 2 GS5 5-Year Treasury Rate

7 90 2 GS10 10-Year Treasury Rate

8 91 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield

9 92 2 BAA Moody’s Seasoned Baa Corporate Bond Yield

10 93 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS

11 94 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS

12 95 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS

13 96 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS

14 97 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS

15 98 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS

16 99 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS

17 100 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS

18 101 5 TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies

19 102 5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate

20 103 5 EXJPUSx Japan / U.S. Foreign Exchange Rate

Note: This table presents the variables included in the groups “Money and credit”and “Interest and exchange rates”.
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Table 19: Description of the variables of big data (Cont.)

id tcode fred description

Group 6: Interest and exchange rates (Cont.)

21 104 5 EXUSUKx U.S. / U.K. Foreign Exchange Rate

22 105 5 EXCAUSx Canada / U.S. Foreign Exchange Rate

Group 7: Prices

1 106 6 WPSFD49207 PPI: Finished Goods

2 107 6 WPSFD49502 PPI: Finished Consumer Goods

3 108 6 WPSID61 PPI: Intermediate Materials

4 109 6 WPSID62 PPI: Crude Materials

5 110 6 OILPRICEx Crude Oil, spliced WTI and Cushing

6 111 6 PPICMM PPI: Metals and metal products:

7 112 1 NAPMPRI ISM Manufacturing: Prices Index

8 113 6 CPIAUCSL CPI : All Items

9 114 6 CPIAPPSL CPI : Apparel

10 115 6 CPITRNSL CPI : Transportation

11 116 6 CPIMEDSL CPI : Medical Care

12 117 6 CUSR0000SAC CPI : Commodities

13 118 6 CUUR0000SAD CPI : Durables

14 119 6 CUSR0000SAS CPI : Services

15 120 6 CPIULFSL CPI : All Items Less Food

16 121 6 CUUR0000SA0L2 CPI : All items less shelter

17 122 6 CUSR0000SA0L5 CPI : All items less medical care

18 123 6 PCEPI Personal Cons. Expend.: Chain Index

19 124 6 DDURRG3M086SBEA Personal Cons. Exp: Durable goods

20 125 6 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods

Note: This table presents the variables included in the groups “Interest and exchange rates”and “Prices”.
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Table 20: Description of the variables of big data (Cont.)

id tcode fred description

Group 7: Prices (Cont.)

21 126 6 DSERRG3M086SBEA Personal Cons. Exp: Services

Group 8: Stock market

1 80 5 S&P 500 S&P’s Common Stock Price Index: Composite

2 81 5 S&P: indust S&P’s Common Stock Price Index: Industrials

3 82 2 S&P div yield S&P’s Composite Common Stock: Dividend Yield

4 83 5 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio

5 135 1 VXOCLSx VXO

Note: This table presents the variables included in the groups “Prices”and “Stock market”.

Table 21: Testing Indirect Causality between Income and Money, Credit

Tested conditions Causal variable (Y )

Money BUSLOANS INVEST

(i): Y → X 0.8655 0.0728 0.0717

(ii): Y → X |f 0.8098 0.5618 0.4222

(iii).a: Y → f |X 0.0195 0.0385 0.0011

(iii).b: f → X |Y 0.0012 0.0005 0.0009

Note: This table summarizes the results of testing conditions (i)-(iii) of Definition 1 of an indirect causality from

Y =Money, Commercial and Industrial Loans [BUSLOANS] and Securities in Bank Credit at All Commercial Banks

[INVEST] to X =Income. f represents the factors extracted from the big data set [see Section 4.1 of the main paper].

Money is measured by M1 Money Stock (M1SL) in Table 17.

23



Table 22: Identification of the auxiliary variables responsible for the transmission of indirect causality from

Credit, Investment to Income

Auxiliary variables (Z)

Indirect causality from BUSLOANS to Income Indirect causality from INVEST to Income

All Employees: Mining and Logging: Mining IP: Nondurable Materials

Avg Weekly Overtime Hours : Manufacturing Housing Starts: Total New Privately Owned

New Private Housing Permits (SAAR) Housing Starts, West

New Private Housing Permits, South (SAAR) New Private Housing Permits (SAAR)

New Private Housing Permits, West (SAAR) New Private Housing Permits, Midwest (SAAR)

Total Business: Inventories to Sales Ratio New Private Housing Permits, South (SAAR)

Effective Federal Funds Rate New Private Housing Permits, West (SAAR)

3-Month AA Financial Commercial Paper Rate Real Manu. and Trade Industries Sales

1-Year Treasury Rate Total Business: Inventories to Sales Ratio

Moody’s Seasoned Baa Corporate Bond Yield 5-Year Treasury C Minus FEDFUNDS

3-Month Treasury C Minus FEDFUNDS 10-Year Treasury C Minus FEDFUNDS

6-Month Treasury C Minus FEDFUNDS Moody’s Aaa Corporate Bond Minus FEDFUNDS

1-Year Treasury C Minus FEDFUNDS Moody’s Baa Corporate Bond Minus FEDFUNDS

5-Year Treasury C Minus FEDFUNDS S&P’s Composite Common Stock: Dividend Yield

10-Year Treasury C Minus FEDFUNDS -

Moody’s Aaa Corporate Bond Minus FEDFUNDS -

Moody’s Baa Corporate Bond Minus FEDFUNDS -

S&P’s Composite Common Stock: Dividend Yield -

Note: This table summarizes the results of identifying the auxiliary variables responsible for the transmission of

indirect causality from credit measured by Commercial and Industrial Loans and Securities in Bank Credit at All

Commercial Banks to Income. The results are obtained using the statistical procedure described in Section 6 of the

main paper and based on the big data described in tables 15-20.
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