
Imprecise probabilistic inference for software run

reliability growth models

Lev V. Utkin1, Frank P.A. Coolen2

1Telematics Department, Central Scientific Research Institute of Robotics and Technical
Cybernetics, Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg,

Russia
2Department of Mathematical Sciences, Durham University, UK

Abstract

This paper presents the application of an inferential statistical approach
which combines imprecise Bayesian methods with likelihood inference, to
a standard software run reliability growth model. The main idea of the
approach is to divide the set of model parameters into two subsets related
to fundamentally different aspects of the overall model, and to combine an
imprecise Bayesian method related to one of the subsets of the model parame-
ters with maximum likelihood estimation for the other subset. In accordance
with the first subset and statistical data, the imprecise Bayesian model is con-
structed, which provides lower and upper predictive probability distributions
depending on the second subset of parameters. These further parameters are
then estimated by a maximum likelihood method. This method is applied
to a basic software run reliability growth model and it is shown to perform
better than a standard model. Several aspects related to the method are dis-
cussed, including its advantages, its wider applicability and the possibility to
include relevant expert judgements.

Keywords: Bayesian inference, imprecise probabilities, lower and upper
probability distributions, maximum likelihood estimation, software run
reliability growth.

1. Introduction

One of the main goals of analysing software system development is to
predict its future reliability based on past experience, for which one typically

Preprint submitted to Journal of Uncertain Systems October 11, 2018

constructs a statistical model to quantify uncertainties and to enable learn-
ing from data. There is a variety of statistical theories and methods for such
inference, and researchers often strongly advocate one specific general theory,
e.g. the Bayesian approach, whilst rejecting other approaches that also have
their merits. In this paper we explore combined use of imprecise Bayesian
methods [1, 11], where sets of prior distributions are used, with maximum
likelihood estimation, both on different subsets of all parameters appearing in
a statistical model. At first look, these methods may appear to have little in
common and one may favour either a complete (imprecise) Bayesian approach
or maximum likelihood estimation of all parameters. However, if one consid-
ers a Bayesian approach as using a weighted likelihood function, with weights
reflecting prior knowledge, then the two methods are less contradictory and
exploration of the opportunity to combine both into a hybrid method is of
interest. In this paper we develop this hybrid method for a generalization
of a well-known software run reliability model. Detailed fundamental analy-
sis and further exploration of this hybrid approach will be important for its
full justification, in particular with regard to possible interpretations of the
resulting inferences; this is left as a topic for future research.

An important feature of many systems is change of some of their charac-
teristics over time, which has to be taken into account when constructing a
statistical model for the system. For example, a common approach for mea-
suring software reliability [15] is by using a statistical model whose parame-
ters are generally estimated from available data on software failures, and the
model may be obtained by observing the overall trend of reliability growth
during the debugging process. In other words, a software reliability growth
model describes how observation of failures, and correcting the underlying
faults, such as occurs in software development when the software is being
tested and debugged, affect the reliability of software. The word “growth” is
rather conventional to describe reliability models with important character-
istics changing over time, it does not restrict use of such models to systems
whose reliability actually improves. In other words, a growth model can be
regarded to be a mathematical expression which fits experimental data from
systems with some important changes over time.

Suppose thatX1, ..., Xn is a series of random variables withXi the number
of successful software runs between the (i− 1)-th and i-th software failures,
for i = 1, . . . , n. We suppose that variable Xi is governed by a probability
distribution function pi(x | b,d) depending on two vectors of parameters b
and d. The vector b contains parameters of the probability distribution un-

2

der consideration. The vector d of parameters characterizes the growth, i.e.,
the growth is modelled by a function f(i,d) which characterizes the change of
the system behaviour (‘growth’). For example in software reliability analysis,
the function f mainly shows how parameters b of the probability distribu-
tion pi change with the number i of corrected errors or faults. Generally, the
vector b depends on d and the number i, which is the index of the random
variable Xi under consideration.

It should be noted that the growth function is explicitly stated in some
models. For instance, Littlewood and Verrall [6] suggest software reliability
models with linear and quadratic forms for the function f with two parame-
ters d = (d0, d1): f(i,d) = d0 + d1i or f(i,d) = d0 + d1i

2. In these models,
the growth function is included as parameter of a gamma distribution, which
changes with the number of corrected errors in the software.

Clearly, the growth function f may model different characteristics. In
software reliability models, it typically enables possible changes of the pa-
rameters b of the probability distribution of random variables Xi to reflect
actual changes to software systems, mostly due to fault corrections. In such
models, we assume a form of f and wish to learn about the parameters d of
f from data.

There are several approaches for inference about growth models on the
basis of statistical data. Nowadays, the most popular inferential methods
tend to use the likelihood function as main mechanism to link model pa-
rameters and statistical data. For models such as reliability growth models,
estimation is required both for parameters of the basic probability model and
parameters explicitly modelling the growth behaviour. This may involve a
substantial number of parameters, with possibly relatively few data available.
In this paper, we explore a possible way for dealing with this, by considering
imprecise Bayesian inference for one subset of parameters, and a maximum
likelihood approach to estimate the other subset of parameters. Such im-
precise Bayesian inference has been presented, without a link to maximum
likelihood for further parameters, by Walter, Augustin and Peters [14] with
application to linear regression models. Typically, a precise parametric model
is assumed, with imprecision following through the use of sets of conjugate
prior distributions [2, 8, 13]. It is theoretically feasible to use sets of priors
for all parameters combined, but this may well lead to very wide posterior
intervals for inferences of interest. Furthermore, if one can estimate some
of the parameters by means of maximum likelihood methods, it could also
be attractive with regard to not having to assign informative (sets of) prior

3

distributions, in particular if they are on a feature about which no clear ex-
pert judgement is available or which one strongly wishes to infer from the
data. Exploring this possibility to combine imprecise Bayesian inference for
some of the model parameters with maximum likelihood estimation for other
parameters, is the main aim of this paper. It is particularly studied for soft-
ware reliability growth models as their parameters naturally divide into two
groups, as will be discussed in Section 4.

The approach we propose in this paper is as follows. By using imprecise
Bayesian inference, we can exclude all the parameters of the vector b from
the model, and derive a set of predictive cumulative distribution functions
(CDFs) such that their lower and upper bounds are conditional on all the
parameters of the vector d. This is followed by estimation of the parameters
of the vector d, for which we use the modified maximum likelihood estimation
method which is explained in Section 2. This approach allows us to reduce the
number of parameters in the model and to maximize the likelihood function
only over parameters of the vector d without considering the parameters of
vector b. Even further, it can be applied if one explicitly wishes to take expert
judgement into account on the part of the model corresponding to parameters
b, and this expert judgement is best reflected by imprecise probabilities,
while no such prior information is available for the model aspects related to
parameters d, for which, however, one can use process data.

This paper is organized as follows. Section 2 explains the modified maxi-
mum likelihood estimation. Section 3 presents the imprecise Bayesian models
used as part of the full model. Section 4 presents a general scheme for the full
model construction. Section 5 presents the software run reliability growth
model considered in this paper, which is illustrated in Section 6 and compared
to a standard model in Section 7. Section 8 explains how additional prior
information can be included in the model. The paper ends with concluding
remarks in Section 9.

2. Modified maximum likelihood estimation

Let K = (k1, ..., kn) be a realization of X1, ..., Xn, where the ki, i =
1, . . . , n, are non-negative integers. If probability distributions pi(ki | b,d)
of the random variables Xi, i = 1, ..., n, are known or assumed, then the
standard way for obtaining the parameters b and d of a growth model is to

4

maximize the likelihood function

L(K | b,d) =
n∏
i=1

pi(ki | b,d)

over a set of parameters b and d. Values of the parameters b and d should
be chosen in order to maximize L(K | b,d).

Many well-known software reliability growth models presented in the lit-
erature have been implemented with such standard maximum likelihood es-
timation. Such models differ only by assumptions about the probability dis-
tributions pi and the growth function f . For example, for pi the exponential
distribution is used in the Jelinski-Moranda model [5], while the Rayleigh
distribution is used in the Schick-Wolverton model [10] and the Beta distri-
bution in the Littlewood-Verrall model [6].

Suppose that the random variable Xi is governed by an unknown CDF
Fi(k) which is only known to belong to the set Mi(d) defined by the lower
and upper CDFs

F i(k | d) = inf
Mi(d)

F (k), (1)

F i(k | d) = sup
Mi(d)

F (k). (2)

It should be noted that the set Mi(d) is the set of all CDFs bounded
by F i(k | d) and F i(k | d), so it is not the set of parametric distributions
having the same parametric form as the bounding distributions. This is an
important feature of the proposed approach for combined imprecise Bayesian
and likelihood inference in this paper. Moreover, the bounds F i(k | d)
and F i(k | d) are assumed not to depend on the parameters b, which is
achieved by taking the predictive CDFs resulting from the imprecise Bayesian
approach applied with regard to the parameters b.

The likelihood function can be written in the following form:

L(K | d) = Pr {X1 = k1, ..., Xn = kn} .

Proposition 1 explains how the above likelihood function is maximized
over all distributions belonging to M1(d), ...,Mn(d).

5

Proposition 1. Suppose that discrete random variables X1, ..., Xn are gov-
erned by a probability distribution F (k) from sets Mi defined by bounds (1)-
(2), respectively. If X1, ..., Xn are independent, then

max
M1,...,Mn

Pr {X1 = k1, ..., Xn = kn}

=
n∏
i=1

{
F i(ki)− F i(ki − 1)

}
. (3)

Proof. Denote N = {1, 2, ..., n}, M = (m1, ...,mn). Let I{1,...,ki}(m) be the
indicator function taking the value 1 if m ≤ ki. The indicator functions
are used in order to represent all probabilities in the form of expectations
of indicator functions and to write the natural extension for computing the
maximal value of Pr {X1 = k1, ..., Xn = kn} in its standard form. The upper
bound for the joint probability Pr {X1 = k1, ..., Xn = kn} can be found by
solving the following optimization problem:

max
∞∑

m1=1

· · ·
∞∑

mn=1

I{k1,...,kn}(M)
n∏
i=1

pi(mi),

subject to
∞∑
m=1

pi(m) = 1,

F i(j) ≤
∞∑
m=1

I{1,...,j}(m)pi(m) ≤ F i(j),

i = 1, ..., n, j = 1, 2...

The objective function can be rewritten as follows:

n∏
i=1

∞∑
mi=1

(
I{1,..,ki}(mi)− I{1,..,ki−1}(mi)pi(mi)

)
.

We introduce new variables

Fi(j) =
∞∑

mi=1

I{1,...,j}(mi)pi(mi).

6

Then we can rewrite the optimization problem as

max
n∏
i=1

{Fi(j)− Fi(j − 1)} ,

subject to
F i(j) ≤ Fi(j) ≤ F i(j),

F i(j − 1) ≤ Fi(j − 1) ≤ F i(j − 1), i = 1, ..., n.

By using the known rules of interval analysis, we obtain (3), which completes
the proof.

Proposition 1 generalizes the standard likelihood estimation for precise
probability models.

3. Imprecise Bayesian models as a way for obtaining the set M

We now consider how to derive the set M(d). A straightforward way is
to use ideas similar to Walley’s imprecise Bayesian approach [12, 13].

3.1. Standard Bayesian analysis

One of the efficient approaches to estimation of the model parameters is
Bayesian analysis [3, 9]. It treats parameters of concern as random variables
which are assigned a prior probability distribution before observations be-
come available. If we assume that the random variable has a probability dis-
tribution with vector of unknown parameters b, then these parameters would
be regarded as random variables with a prior probability density π(b | c),
characterized by (hyper-)parameters c. In this case, the Bayesian approach
can be applied for computing the CDF for the random variable of interest,
with the parameter b integrated out:

F (k | c) =

∫
Ω

F (k | b) · π(b | c)db.

Here Ω is the set of values of b.
Central to the Bayesian approach is the derivation of the posterior dis-

tribution of the unknown parameters, given both the data and the assumed
prior density for these parameters, and achieved by application of Bayes’
theorem. Suppose that the prior distribution π(b | c) represents our un-
certainty with regard to b prior to collecting information in the form of

7

a set K = (k1, ..., kn) of observed values of independent random variables
X1, ..., Xn. Let p(k) be the probability mass function for the observed data
k given b. Then the posterior distribution π(b | K, c), which is the condi-
tional distribution of b given the observed data K and prior parameters c,
is computed as

π(b | K, c) ∝ p(k1) · · · p(kn) · π(b | c).

Here π(b | K, c) represents updated beliefs about b, with information K
taken into account.

The prior distribution is often chosen to facilitate calculation of the pos-
terior, especially through the use of conjugate priors [3]. If the posterior
distribution π(b | K, c) and the prior distribution π(b | c) both belong to
the same family of distributions, then π is called a conjugate prior for p.

3.2. Imprecise prior models

A critical feature of any Bayesian analysis is the choice of a prior distri-
bution, which is often done by considering the choice of (hyper-)parameters
of an assumed parametric prior probability distribution. This is both impor-
tant if one aims at modelling prior information and if one aims to choose a
prior distribution in order to reflect the absence of prior information about
the parameters. In this paper we focus on the latter case, where a so-
called non-informative prior has to be constructed. Many criteria for non-
informativeness, and methods to determine non-informative priors, have been
proposed in the literature [3, 9], with many methods applying the Bayes-
Laplace postulate or the principle of insufficient reason. However, this choice
meets some difficulties or problems. In particular, Walley [13] provides ex-
amples illustrating possible problems and shortcomings of the principle of
insufficient reason.

An alternative way for using the Bayesian approach if one wishes not to
take prior knowledge into account is through the use of a class P of (non-
informative) prior distributions π [1, 12], which can overcome most problems
that can occur when single non-informative priors are used. Such a class
of priors can be considered through the lower and upper probabilities of an
event A, given by

P (A) = sup{Pπ(A) : π ∈ P},
P (A) = inf{Pπ(A) : π ∈ P},

8

respectively. As pointed out by Walley [13], the class P is “not a class of
reasonable priors, but a reasonable class of priors”. This means that each
single member of the class is not a reasonable model for prior ignorance,
because no single distribution can model ignorance satisfactorily, but the
whole class is a reasonable model for prior ignorance. When we have little
prior information, the upper probability of a non-trivial event should be close
to one and the lower probability should be close to zero. This means that
the prior probability of the event may be arbitrary from 0 to 1.

Quaeghebeur and de Cooman [8] proposed a class of imprecise probability
models in the framework of the so-called exponential families of probability
distributions [3]. These models significantly extend a set of Bayesian im-
precise models and give a possibility to develop a framework for imprecise
growth models. In our approach, the set P is used in the imprecise Bayesian
framework to take data into account with regard to parameters b, and thus to
generate the set M of predictive distributions with lower and upper bounds
which allow us to apply Proposition 1 for maximum likelihood estimation of
the parameters d.

4. A general scheme of the model construction

We now present a general scheme for our proposed method which com-
bines imprecise Bayesian inference and maximum likelihood estimation. We
present it using the setting of reliability growth models discussed earlier in
this paper, but the general idea is more widely applicable. The first task is to
define the sets M1(d), ...,Mn(d), or their bounds, by using an appropriate
imprecise Bayesian model. It consists of four steps.

1. We divide the set of parameters into two subsets. The first subset
contains the parameters b of the assumed probability distribution p
of the random variables X1, ..., Xn. The second subset consists of the
growth parameters d.

2. For the assumed probability distribution p of the random variables, we
choose an appropriate conjugate prior π(b | c) with parameters c.

3. We construct the corresponding imprecise Bayesian model on the basis
of results of Walley [13] or Quaeghebeur and de Cooman [8]. At that
point we replace the parameters c by new parameters including the
hyperparameter s (see [8, 13] and examples below). The produced set
P depends on the hyperparameter s.

9

4. By using n observations k1, ..., kn, we write the lower and upper pre-
dictive CDFs, F i(k | d, s) and F i(k | d, s), respectively, as functions
of the parameters d and the hyperparameter s for every debugging
period. These functions form the sets M1(d), ...,Mn(d). (Note that
the setMi(d) also depends on the hyperparameter s, but we omit this
parameter for ease of notation.)

After completing the four steps of the first task, the setsM1(d), ...,Mn(d)
have been derived and these sets do not depend on the parameters b or c.
They depend only on the growth parameters d, the hyperparameter s for
the imprecise prior class, and the numbers i of the debugging periods. The
second task is to estimate the parameters d, this consists of two steps.

1. The likelihood function L(K | d, s) is derived by applying Proposition
1.

2. Values of the parameters d, for fixed s, should be chosen in order to
maximize L(K | d, s).

Note that the parameters b do not appear in the process, as they have
been integrated out with the use of a class of priors to derive predictive dis-
tributions, and this process also implicitly replaced the parameters c by s.
Clearly, the step to get the parameters b out of the model, without explicitly
estimating their values, is imprecise and leads to imprecise predictive prob-
abilities for the random variables of interest. For example, if we construct a
software reliability model, then we are looking for the predictive behaviour
of the analyzed software after n corrections of errors. In other words, we
have to compute the probability measures of time to the (n + 1)-th failure,
in particular, the lower and upper probability distributions of time to the
(n+ 1)-th failure. These bounds are totally determined by the parameters d
and s in our approach, with s chosen to specify the class of priors, and d to
be estimated by our proposed maximum likelihood approach in the second
stage of our method.

In the following sections, we illustrate our method by considering some
special cases which apply known imprecise Bayesian models and consider
well-known software reliability growth models.

5. A software run reliability growth model

A detailed description of software run reliability models is given in [4]. A
run is a minimum execution unit of software. Any software execution process

10

can be divided into a series of runs. When a run is executed, the software
either passes or fails. Usually it is assumed that after observing a software
failure, the software is corrected and that this action actually removes the
software error that caused the failure, hence the software improves due to this
action and therefore the term “reliability growth” tends to be used. There
are many variations to this basic scenario in the literature, we do not address
these here.

LetX be a run lifetime of software, that is, X is a discrete random variable
taking the value k if the software fails during the k-th run, so after k − 1
successful runs. The run lifetime distribution (probability mass function) is
denoted by p(k) = Pr{X = k}.

5.1. The imprecise beta-geometric model

If we assume that the random variable X (run lifetime of software) is
governed by the geometric distribution with parameter r and probability
mass function

p(k | r) = (1− r)k−1r, k = 1, 2, ...,

then the set M can be constructed by using an imprecise model that is
similar to the beta-binomial model proposed by Walley [13]. The Beta prior
distribution of the random variable r, with parameters α > 0 and β > 0 and
denoted by Beta(α, β), has probability density function

π(r) =
1

B(α, β)
rα−1(1− r)β−1, 0 ≤ r ≤ 1.

Here B(α, β) is the standard beta function.
Using the general notation introduced before in this paper for our new

method, we write b = (r), c = (α, β). If we observe k runs of software
between the (i − 1)-th and i-th software failures, and we assume that the
number of such runs is geometrically distributed with parameter r, then the
posterior distribution π(r | k, c) is again a beta distribution, namely

π(r | k, c) = Beta(α + 1, β + k).

Here Bayesian analysis leads to the probability distribution of the number
of events with parameters α and β. We can call this a beta-geometric model.
In the beta-binomial model, Walley proposed to replace these parameters by
introducing s and γ, with α = sγ and β = s − sγ, and then the parameter

11

γ is allowed to take on any value in the interval from 0 to 1, hence a set
of prior distributions is created which only depends on the choice of s > 0,
and which trivially leads to a corresponding set of posterior distributions.
The hyperparameter s determines the influence of the prior distribution on
posterior probabilities [13]. The beta-geometric model proposed here can
be given the same imprecise Bayesian treatment, resulting in what we call
the imprecise beta-geometric model. The lower and upper bounds can be
obtained by minimizing and maximizing the probabilities of events over all
values γ in [0, 1].

5.2. The imprecise Bayesian growth model

In contrast to Walley’s imprecise beta-binomial model, we use a similar
model by assuming that the i-th run lifetime of software Xi is governed by the
geometric distribution with parameter ri, i = 1, ..., n (in place of the binomial
distribution). Suppose that the probability ri is a random variable having
the beta distribution with prior parameters α and β + f(i, ϕ). Here f(i, ϕ)
is a function characterizing the software reliability growth (see Section 1).
In other words, the growth behaviour of the software during the debugging
process is modeled by changing the parameter β of the beta distribution. In
particular, if we accept f(i, ϕ) = (i−1)·ϕ, then this model takes some features
of the Littlewood-Verall model [6]. For simplicity, we will use this form of
the function f(i, ϕ). In this case, we get a model with three parameters,
including two parameters α and β of the distribution and one parameter ϕ
of the reliability growth. The general notation introduced above can be used
by defining c = (α, β) and d = (ϕ).

The construction of the model is based on the idea of dividing the set of
parameters α, β, ϕ into two subsets and to consider the imprecise Bayesian
model on the set Mi(ϕ) of CDFs bounded by lower CDFs F i(k | ϕ, α, β)
and upper CDFs F i(k | ϕ, α, β), which are defined by the set of parameters
c = (α, β) for a fixed parameter ϕ, for i = 1, ..., n. In other words, we fix ϕ
and construct the sets of CDFs Fi(k) with bounds depending on f(i, ϕ) by
using the imprecise beta-geometric model.

After constructing the set Mi(ϕ) of CDFs Fi(k | ϕ) through F i(k |
ϕ, α, β) and F i(k | ϕ, α, β) for every i = 1, ..., n, and by assuming that the
random variables X1, ..., Xn are independent, the likelihood function can be
written and maximized by application of Proposition 1, leading to the value
ϕ0 that maximises this likelihood and which we consider to be an appropriate
estimate of ϕ.

12

The parameters of the i-th posterior beta distribution after n observations
are

α∗ = α + n, β∗i = β +Di(ϕ),

where

Di(ϕ) = Kn + f(i, ϕ), Kn =
n∑
j=1

(kj − 1).

Note that the posterior parameter β∗i for the i-th posterior beta distribu-
tion is β∗i = β+f(i, ϕ). In addition, we get Kn runs of the software during n
periods of observations. This implies that the posterior parameter β∗i for the
i-th period of debugging is defined by n periods of observations. This is an
important feature and it is the reason for using the index i for the posterior
parameter β∗i .

It can be also seen from the above that the posterior parameters depend
on d. In the considered special case, β∗i depends on f(i, ϕ). Now we can
write the predictive CDF for the i-th step of the software debugging process,
after n observations, as

Fi(k | ϕ, α, β) =

∫ 1

0

(1− (1− p)k) · Beta(α∗, β∗i)dp

= 1−
∫ 1

0

Γ(α∗ + β∗i)

Γ(α∗)Γ(β∗i)
pα

∗−1(1− p)β∗
i +k−1dp

= 1− Γ(α∗ + β∗i)

Γ(β∗i)

Γ(β∗i + k)

Γ(α∗ + β∗i + k)

= 1− B(α∗ + β∗i , k)

B(β∗i , k)
.

Similarly, the probability mass function is

pi(k | ϕ, α, β) =

∫ 1

0

p(1− p)k−1 · Γ(α∗ + β∗i)

Γ(α∗)Γ(β∗i)
pα

∗−1(1− p)β∗
i −1dp

=
Γ(α∗ + β∗i)

Γ(α∗)Γ(β∗i)

Γ(α∗ + 1)Γ(β∗i + k − 1)

Γ(α∗ + β∗i + k)
.

The expected number of successful runs after the i-th step of the software
debugging process is

EXi+1 =
α∗ + β∗i − 1

α∗ − 1
.

13

We introduce new parameters s > 0 and γ ∈ [0, 1] such that

α = sγ, β = s− sγ.

Here the parameter s plays the same role as the hyperparameter in Walley’s
imprecise beta-binomial model [13]. Then the predictive CDF for the i-th
step of the software debugging process can be written as

Fi(k | ϕ, γ, s) = 1− B(s+ n+Di(ϕ), k)

B(s− sγ +Di(ϕ), k)
. (4)

The above representation of the predictive CDF in terms of beta functions
shows that it increases as γ increases in the interval [0, 1], because the beta
function B(x, y) is decreasing in x for x > 0. Hence, the lower bound for the
function Fi(k | ϕ, γ, s) is

F i(k | ϕ, s) = inf
0≤γ≤1

Fi(k | ϕ, γ, s) = Fi(k | ϕ, 0, s)

= 1− B(s+ n+Di(ϕ), k)

B(s+Di(ϕ), k)
,

and the upper bound for the function Fi(k | ϕ, γ, s) is

F i(k | ϕ, s) = sup
0≤γ≤1

Fi(k | ϕ, γ, s) = Fi(k | ϕ, 1, s)

= 1− B(s+ n+Di(ϕ), k)

B(Di(ϕ), k)
.

With these lower and upper CDFs, it follows from Proposition 1 that the
likelihood function is of the form:

L∗(K | ϕ, s) =
n∏
i=1

(
F i(ki | ϕ, s)− F i(ki − 1 | ϕ, s)

)
=

n∏
i=1

(
B(Ci(ϕ, s), ki − 1)

B(s+Di(ϕ), ki − 1)
− B(Ci(ϕ, s), ki)

B(Di(ϕ), ki)

)
.

Here Ci(ϕ, s) = s+n+Di(ϕ), and this likelihood function is to be maximized
overMi(ϕ) for given s. The optimal value ϕ0 of ϕ can be found by numeri-
cally solving the equation ∂ lnL∗(K | ϕ, s)/∂ϕ = 0. Once we have calculated
the estimate of the parameter ϕ, we can derive the lower and upper software

14

run failure functions after the n-th software failure, i.e., we can compute the
lower and upper CDFs of the (n+ 1)-th failure

F n+1(k, s) = 1− B(s+ n+Dn+1(ϕ0), k)

B(s+Dn+1(ϕ0), k)
,

F n+1(k, s) = 1− B(s+ n+Dn+1(ϕ0), k)

B(Dn+1(ϕ0), k)
.

The lower and upper expected numbers of successful runs after the n-th
software failure are

EsXn+1 =
n+ s+Kn + f(n+ 1, ϕ)− 1

s+ n− 1
,

EsXn+1 =
n+ s+Kn + f(n+ 1, ϕ)− 1

n− 1
.

It should be noted that computing the optimal value ϕ0 is generally not
a simple task. However, it can be simplified for some special cases of s. We
will use the well-known property of beta functions B(a, b) = B(b, a) and the
following equality:

B(a, b− 1) =
a+ b− 1

b− 1
B(a, b).

Hence, we have

B(Ci(ϕ, s), ki − 1)

B(s+Di(ϕ), ki − 1)
=

B(Ci(ϕ, s), ki)

B(s+Di(ϕ), ki)
· Ci(ϕ, s) + ki − 1

s+Di(ϕ) + ki − 1
.

If s = 1, then we can write

B(s+Di(ϕ), ki) = B(1 +Di(ϕ), ki) =
Di(ϕ)

Di(ϕ) + ki
B(Di(ϕ), ki).

Hence

B(Ci(ϕ, 1), ki − 1)

B(1 +Di(ϕ), ki − 1)
=

B(Ci(ϕ, 1), ki)

B(Di(ϕ), ki)
· Ci(ϕ, 1) + ki − 1

Di(ϕ) + ki
· Di(ϕ) + ki

Di(ϕ)

=
B(Ci(ϕ, 1), ki)

B(Di(ϕ), ki)
· Ci(ϕ, 1) + ki − 1

Di(ϕ)

=
B(Ci(ϕ, 1), ki)

B(Di(ϕ), ki)
· n+Di(ϕ) + ki

Di(ϕ)
.

15

By substituting the last expression into the i-th term of the likelihood func-
tion L∗i (K | ϕ, s), we get

L∗i (K | ϕ, 1) =
B(Ci(ϕ, 1), ki)

B(Di(ϕ), ki)
·
(
n+Di(ϕ) + ki

Di(ϕ)
− 1

)
=

B(n+ 1 +Di(ϕ), ki)

B(Di(ϕ), ki)
·
(
n+ ki
Di(ϕ)

)
.

Hence, the logarithm of the likelihood function is

lnL∗(K | ϕ, 1) =
n∑
i=1

(
ln

(
n+ ki
Di(ϕ)

)
+ ln

(
B(n+ 1 +Di(ϕ), ki)

B(Di(ϕ), ki)

))
.

Since ki is integer, we can use the equality

B(a, n) =
(n− 1)!∏n−1
i=0 (a+ i)

.

Then
B(n+ 1 +Di(ϕ), ki)

B(Di(ϕ), ki)
=

∏ki−1
j=0 (Di(ϕ) + j)∏ki−1

j=0 (n+ 1 +Di(ϕ) + j)
.

Hence, the logarithm of the likelihood function is

lnL∗(K | ϕ, 1) =
n∑
i=1

ln

(
n+ ki
Di(ϕ)

)
+

n∑
i=1

ki−1∑
j=0

ln (Di(ϕ) + j)

−
n∑
i=1

ki−1∑
j=0

ln (n+ 1 +Di(ϕ) + j)

=
n∑
i=1

ln (n+ ki) +
n∑
i=1

ki−1∑
j=1

ln (Di(ϕ) + j)

−
n∑
i=1

ki−1∑
j=0

ln (n+ 1 +Di(ϕ) + j) .

Now the optimal value ϕ0 of the parameter ϕ can be found from the
following equation:

∂ lnL∗(K | ϕ, 1)

∂ϕ
= 0.

16

By substituting the corresponding expression for lnL∗(K | ϕ, 1) into the
above equation, we get

n∑
i=1

df(i, ϕ)

dϕ

(
ki−1∑
j=1

1

Di(ϕ) + j
−

ki−1∑
j=0

1

n+ 1 +Di(ϕ) + j

)
= 0. (5)

By taking into account the form of the growth function, (i − 1) · ϕ, we
obtain the equation

n∑
i=1

(i− 1)

(
ki−1∑
j=1

1

Kn + (i− 1)ϕ+ j
−

ki−1∑
j=0

1

n+ 1 +Kn + (i− 1)ϕ+ j

)
= 0.

It should be noted that the special case s = 2 allows us to obtain also a
rather simple equation for computing the optimal value ϕ0 of the parameter
ϕ. The main advantage of the above approach is that we have to find only
one parameter. This allows us to solve equation (5) by arbitrary numerical
methods without major difficulties.

6. An illustrative example

Suppose that the following three numbers of runs between software fail-
ures have been recorded: k1 = 10, k2 = 30, k3 = 60. Assuming s = 1,
equation (5) becomes(

30−1∑
j=1

2

97 + 2ϕ+ j
−

30−1∑
j=0

2

4 + 97 + 2ϕ+ j

)

+

(
60−1∑
j=1

3

97 + 3ϕ+ j
−

60−1∑
j=0

3

4 + 97 + 3ϕ+ j

)
= 0.

This equation has the solution ϕ = 25.2. Hence we get

F
(1)
4 (m) = 1− Beta(1 + 3 + 97 + 3 · 25.2,m)

Beta(1 + 97 + 3 · 25.2,m)
,

F
(1)

4 (m) = 1− Beta(1 + 3 + 97 + 3 · 25.2,m)

Beta(97 + 3 · 25.2,m)
.

17

Figure 1: The functions F
(1)
4 (m) and F

(1)

4 (m)

The functions F
(1)
4 (m) and F

(1)

4 (m) are shown in Figure 1. The lower and
upper mean runs to failure after the third step of the debugging process can
be computed as

E1X4 =
3 + 1 + 97 + 3 · 25.2− 1

1 + 3− 1
= 58.5,

E1
X4 =

3 + 1 + 97 + 3 · 25.2− 1

3− 1
= 87.8.

Let us compare the proposed model with a simple geometric SRM, note
that this is not the geometric model proposed by Moranda [7]. We consider
a model that can be regarded as a discrete analogue of the Jelinski-Moranda
model [5], with the mean number of runs between the (j − 1)-th and j-th
software failures being equal to

1

pj
=

1

φ(N − (j − 1))
,

where N is the initial (unknown) number of faults in the software, φ is the
parameter, pj is the parameter of the geometric distribution between the
(j − 1)-th and j-th software failures, i.e., the probability that software fails

18

at a run after the (j− 1)-th failure. The logarithmic likelihood function is of
the form

lnL(K|φ,N) =
n∑
j=1

(ln pj + (kj − 1) ln(1− pj))

=
n∑
j=1

(lnφ(N − j + 1) + (kj − 1) ln(1− φ(N − j + 1))) .

Hence, we get the following system of equations for computing the parameters
N and φ:

∂ lnL(K|φ,N)

∂N
=

n∑
j=1

(
1

N − j + 1
+

kj − 1

(N − j + 1)− 1/φ

)
= 0,

∂ lnL(K|φ,N)

∂φ
=
n

φ
+

n∑
j=1

(
kj − 1

φ− 1/(N − j + 1)

)
= 0.

By substituting the debugging data, we obtain

1

N
+

10− 1

N − 1/φ
+

1

N − 1
+

30− 1

N − 1− 1/φ
+

1

N − 2
+

60− 1

N − 2− 1/φ
= 0,

3

φ
+

10− 1

φ− 1/N
+ 2

30− 1

φ− 1/(N − 1)
+ 3

60− 1

φ− 1/(N − 2)
= 0.

The above system has a set of solutions. However, only one solution satisfies
the conditions

0 ≤ φ(N − (j − 1)) ≤ 1, j = 1, 2, 3, 4,

namely N = 0.774 and φ = −3.96× 10−2. Hence

pn+1 = φ(N − n) = −3.96× 10−2 · (0.774− 3) = 8.82× 10−2,

and
Fn+1(m) = 1− (1− pn+1)m = 1− (1− 8.82× 10−2)m.

It can be seen from Figure 2 that the predicted results based on this discrete
analogue of Jelinski-Moranda model appear to be too optimistic.

19

Figure 2: The functions F
(1)
4 (m), F

(1)

4 (m) and F4(m) (dotted)

7. Comparison of the proposed SRGM with a standard SRGM

We compare the proposed model and the discrete analogue of Jelinski-
Moranda model by using a software reliability data set introduced by Jelinski
and Moranda [5], it is shown in Table 1. The data consist of the number of
days between the 26 failures that occurred during the production phase of
specific software. The data represent the calendar time data corresponding
to the continuous random times to failures. However, to illustrate the new
model presented in this paper, we regard the days to failure as the discrete
number of successful runs between software failures.

In order to evaluate the proposed model we try to make a prediction of
the (i+1)-st discrete mean time to software failure starting from i = 3, we set
s = 1. By having the mean times to failures, we can compare these with the
actual times to failures given in Table 1. Moreover, we compare the results
for the proposed model and for the discrete analogue of the Jelinski-Moranda
model as described in Section 6.

The thick curve with the cross markers in Figure 3 is the set of real
software reliability data ki. The curve with the triangle markers is the set
of predicted expectations EXi+1, i = 3, ..., 25, obtained by using the discrete
analogue of the Jelinski-Moranda model. The two curves with the square
markers are the lower and upper predicted expectations, EXn+1 and EXn+1,
respectively.

In order to illustrate the quality of the proposed model when the amount
of statistical data is small, we provide the same curves for i = 3, ..., 16,

20

i ki i ki i ki
1 9 11 1 21 11
2 12 12 6 22 33
3 11 13 1 23 7
4 4 14 9 24 91
5 7 15 4 25 2
6 2 16 1 26 1
7 5 17 3
8 8 18 3
9 5 19 6
10 7 20 1

Table 1: A software reliability data set

Figure 3: Predicted expected values of successful runs to failure for different models with
s = 1

21

Figure 4: Predicted expected values of numbers of successful runs to failure for different
models for i = 3, ..., 16 with s = 1

in Figure 4. This shows that the first three times to failure, that is k1 =
9, k2 = 12 and k3 = 11, have substantial impact on the predicted values
from the discrete analogue of the Jelinski-Moranda model. In spite of the
clear deterioration of the software (k4 = 4, k5 = 7, k6 = 2), the Jelinski-
Moranda model “remembers” the first three times to failure and provides
overestimated values of predicted expectations of the numbers of runs. The
method proposed in this paper reacts quicker to new observations.

In order to investigate the quality of the models, we introduce the follow-
ing measures of model quality, based on the deviation of the predicted ex-
pectations EXi+1 from the observations ki+1: the largest deviation, denoted
by R1 (EXi+1); the mean value of the deviations, denoted by R2 (EXi+1); the
standard deviation of the deviations, denoted by R3 (EXi+1). These measures
are

R1 (EXi+1) = max
i=1,...,M

|EXi+1 − ki+1| ,

R2 (EXi+1) = M−1

M∑
i=1

|EXi+1 − ki+1| ,

22

R3 (EXi+1) = M−1

√√√√ M∑
i=1

(EXi+1 − ki+1)2,

where M is the number of predicted times to failure.
Using the data set, we compute the corresponding measures of quality,

with s = 1, after predicting 23 failures (from the 4-th test till the 26-th
test; note that each prediction of a failure time is based only on the previous
failure times). For our newly proposed model, we get

R1

(
E(1)Xi+1

)
= 84.398, R2

(
E(1)Xi+1

)
= 8.233, R3

(
E(1)Xi+1

)
= 3.988,

R1

(
E(1)

Xi+1

)
= 84.098, R2

(
E(1)

Xi+1

)
= 8.427, R3

(
E(1)

Xi+1

)
= 3.988,

while for the discrete analogue of the Jelinski-Moranda model, we get

R1 (EXi+1) = 75.062, R2 (EXi+1) = 11.762, R3 (EXi+1) = 4.215.

These results show that the quality of the proposed imprecise Bayesian model
appears to be better in comparison with the discrete analogue of the Jelinski-
Moranda model when all the deviations are considered, but when only the
maximum deviation is considered it performs a bit less. This is typical for
our approach, as for small numbers of observations there is much imprecision
which can lead to a large deviation for early data observations.

We compute the same measures after predicting only ten failures (from
the 4-th test till the 13-th test, so just the first 10 of the 23 failures that had
been predicted before). In this case, we get for the proposed model

R1

(
E(1)Xi+1

)
= 4.919, R2

(
E(1)Xi+1

)
= 3.199, R3

(
E(1)Xi+1

)
= 1.078,

R1

(
E(1)

Xi+1

)
= 8.065, R2

(
E(1)

Xi+1

)
= 3.530, R3

(
E(1)

Xi+1

)
= 1.269,

and for the discrete analogue of the Jelinski-Moranda model

R1 (EXi+1) = 8.823, R2 (EXi+1) = 5.205, R3 (EXi+1) = 1.858.

These values show that the predictive properties of the proposed imprecise
Bayesian model are better in comparison to the discrete analogue of the
Jelinski-Moranda model when the number of tests is rather small.

23

A remaining question is how the hyperparameter s influences the pre-
dictive quality of the model. Using the data set, we compute the quality
measures with s = 4 for the proposed model after predicting 23 failures,
these are

R1

(
E(4)Xi+1

)
= 84.885, R2

(
E(4)Xi+1

)
= 8.201, R3

(
E(4)Xi+1

)
= 4.004,

R1

(
E(4)

Xi+1

)
= 83.774, R2

(
E(4)

Xi+1

)
= 8.933, R3

(
E(4)

Xi+1

)
= 4.050,

and after predicting 10 failures, these are

R1

(
E(4)Xi+1

)
= 5.249, R2

(
E(4)Xi+1

)
= 3.137, R3

(
E(4)Xi+1

)
= 1.045,

R1

(
E(4)

Xi+1

)
= 18.925, R2

(
E(4)

Xi+1

)
= 4.523, R3

(
E(4)

Xi+1

)
= 2.165.

The corresponding curves of the predicted expectations are shown in Figure 5.
Comparing these values with the corresponding values for s = 1, given above,
we see that the increased imprecision for s = 4 leads to larger maximum
deviations than for s = 1, which is again due to the large imprecision for the
first prediction in the series, but the further results are pretty similar, hence
the method learns quite quickly from the data.

8. Use of prior information

The proposed software reliability growth model is based on the assump-
tion that there is no prior information about the reliability behaviour of
the software considered. However, we may have such information in various
forms. Therefore, it is interesting to consider briefly how this information
impacts on the software reliability prediction quality.

Let us consider one possible kind of expert prior information. Suppose
that an expert provides the following judgement about the software reliability
before the debugging process: ‘The software will function without a failure
on average longer than V = 20 runs (or days)’. By taking into account that
the run lifetime of software is governed by the geometric distribution with
parameter r, we can formalize the judgement as

EX =
1

r
≥ V = 20.

24

Figure 5: Predicted expected values of numbers of successful runs to failure for different
models for i = 3, ..., 16 with s = 4

Hence r ≤ 1/V = 0.05. It should be noted that we have used r ∈ [0, 1] in
the imprecise model. On the other hand, the parameter γ in the imprecise
model is the expected value of the parameter r. This implies that we can now
restrict the set of values of γ to the interval [0, 1/V] instead of the interval
[0, 1].

We study how this prior information changes the measures of model qual-
ity. We denote the prior set of the parameter γ by [γL, γU]. Then

F i(k | ϕ, s) = Fi(k | ϕ, γL, s) = 1− B(s+ n+Di(ϕ), k)

B(s− sγL +Di(ϕ), k)
,

F i(k | ϕ, s) = Fi(k | ϕ, γU , s) = 1− B(s+ n+Di(ϕ), k)

B(s− sγU +Di(ϕ), k)
,

and

L∗(K | ϕ, s) =
n∏
i=1

(
B(Ci(ϕ, s), ki − 1)

B(s− sγL +Di(ϕ), ki − 1)
− B(Ci(ϕ, s), ki)

B(s− sγU +Di(ϕ), ki)

)
.

The lower and upper expected numbers of successful runs after the n-th

25

software failure are

EsXn+1 =
n+ s+Kn + f(n+ 1, ϕ)− 1

sγU + n− 1
,

EsXn+1 =
n+ s+Kn + f(n+ 1, ϕ)− 1

sγL + n− 1
.

Using the data set from Table 1, the corresponding measures of quality
with s = 1 and γ ∈ [0, 0.05] after predicting 23 failures (from the 4-th test
till the 26-th test) by use of the newly proposed model, are

R1

(
E(1)Xi+1

)
= 84.113, R2

(
E(1)Xi+1

)
= 8.291, R3

(
E(1)Xi+1

)
= 3.981,

R1

(
E(1)

Xi+1

)
= 84.098, R2

(
E(1)

Xi+1

)
= 8.303, R3

(
E(1)

Xi+1

)
= 3.982.

It can be seen from the numerical results that most measures of quality are
approximately equal to the same measures obtained for the case γ ∈ [0, 1].
This results from the fact that quite a large number of data observations are
used.

We compute the same measures after predicting 10 failures (from the 4-
th test till 13-th test). In this case, we get the following measures for the
proposed model

R1

(
E(1)Xi+1

)
= 6.629, R2

(
E(1)Xi+1

)
= 3.239, R3

(
E(1)Xi+1

)
= 1.149,

R1

(
E(1)

Xi+1

)
= 6.895, R2

(
E(1)

Xi+1

)
= 3.259, R3

(
E(1)

Xi+1

)
= 1.116.

We can again see that the measures of quality are approximately equivalent
to the same measures obtained for the case γ ∈ [0, 1].

Let us now consider γ ∈ [0, 0.01], corresponding to prior judgement EX ≥
100. It can be clearly seen from Table 1 that this prior information conflicts
with the data. The corresponding measures of quality with s = 1 after
predicting 23 failures are

R1

(
E(1)Xi+1

)
= 84.101, R2

(
E(1)Xi+1

)
= 8.646, R3

(
E(1)Xi+1

)
= 4.003,

R1

(
E(1)

Xi+1

)
= 84.098, R2

(
E(1)

Xi+1

)
= 8.649, R3

(
E(1)

Xi+1

)
= 4.003.

26

These measures do not differ substantially from the same measures obtained
in the previous cases. This can again be explained by the quite large number
of observed statistical data. However, if we take only 10 failures, then the
prediction quality is worse than in the previous case, reflected by the values

R1

(
E(1)Xi+1

)
= 8.884, R2

(
E(1)Xi+1

)
= 4.039, R3

(
E(1)Xi+1

)
= 1.493,

R1

(
E(1)

Xi+1

)
= 8.885, R2

(
E(1)

Xi+1

)
= 4.045, R3

(
E(1)

Xi+1

)
= 1.497.

It follows from the above that the inclusion of incorrect, and quite precise,
prior information can lead to the worse predictions in comparison to models
with imprecision aimed at including little or no prior information.

9. Concluding remarks

In this paper we have proposed a way towards development of statisti-
cal methods that combine imprecise Bayesian inference for one subset of all
parameters with maximum likelihood estimation for the other parameters.
The key to this approach is Proposition 1, which provides a generalization
of maximum likelihood estimation for discrete variables with sets of distri-
butions.

We presented the main idea of the new framework in this paper as an
extension of the imprecise Bayesian models [8, 13] to situations where the
process considered has some changeable behaviour, which we also wish to
estimate using the data. In line with most reported developments in such
imprecise Bayesian models, we presented it from the perspective of a non-
informative set of prior distributions, but it may also be useful to apply
this new method with an informative prior set of distributions. When such
sets are also defined using conjugate priors in the same way as for these
non-informative prior sets, that can be done in a relatively straightforward
manner building on the approach presented in this paper. We chose to focus
our presentation on software reliability growth models, as these typically have
clear divisions of the parameters according to the different roles, for which
we consider our proposed method particularly suitable.

The setMi(d) used in this paper is the set of all CDFs bounded by F i and
F i. One could also consider the use of only a set of parametric distributions,
all with the same parametric form as the bounding distributions. However,
following this approach, maximization of the likelihood function over a set of

27

distributions with parameters c would be reduced to its maximization over
a set of parameters c. In this case, we get the standard statistical model
completely based on the maximum likelihood estimation, which does not
differ from many well-known models of software reliability.

In this paper, we did not consider continuous random variables, but of
course this case is very important. However, Proposition 1 can be extended
to the continuous case, so the method can also be developed for continuous
random variables X1, ..., Xn. In this case, the likelihood function can be
written as

L(X) = lim
41→0,...,4n→0

Pr {x1 ≤ X1 ≤ x1 +41, .., xn ≤ Xn ≤ xn +4n}
41 · · · 4n

,

and this suggests that maximum likelihood estimates for the parameters can
be derived by maximizing

max
M1,...,Mn

L(X) =
n∏
i=1

(
F i(xi)− F i(xi)

)
δ(xi). (6)

Here δ(xi) is the Dirac function which has unit area concentrated in the
immediate vicinity of the point xi. L(X) achieves its maximum by taking
the probability density functions such that ρi(xi) =

(
F i(xi)− F i(xi)

)
δ(xi).

However, whether or not condition (6) is fully correct is yet to be established,
which is an important topic for further research.

Acknowledgements

Part of the research reported in this paper took place during a visit of
Prof. Utkin to Durham University in November 2016, funded through a ‘Re-
search in Pairs’ (Scheme 4) grant from the London Mathematical Society. We
thank an anonymous reviewer for supportive comments that led to improved
presentation.

References

[1] T. Augustin, F.P.A. Coolen, G. de Cooman and M.C.M. Troffaes. In-
troduction to Imprecise Probabilities. Wiley, Chichester, 2014.

[2] J.M. Bernard. An introduction to the imprecise Dirichlet model for
multinomial data. International Journal of Approximate Reasoning,
39:123–150, 2005.

28

[3] J.M. Bernardo and A.F.M. Smith. Bayesian Theory. Wiley, Chichester,
1994.

[4] K.Y. Cai. Towards a conceptual framework of software run reliability
modeling. Information Sciences, 126:137–163, 2000.

[5] Z. Jelinski and P.B. Moranda. Software reliability research. In:
W. Greiberger, editor, Statistical Computer Performance Evaluation,
pages 464–484. Academic Press, New York, 1972.

[6] B. Littlewood and J. Verall. A Bayesian reliability growth model for
computer software. Applied Statistics, 22:332–346, 1973.

[7] P.B. Moranda. Event-altered rate models for general reliability analysis.
IEEE Transactions on Reliability, R-28:376–381, 1979.

[8] E. Quaeghebeur and G. de Cooman. Imprecise probability models for
inference in exponential families. In: J.M. Bernard, T. Seidenfeld and
M. Zaffalon, editors, Proc. of the 4rd Int. Symposium on Imprecise Prob-
abilities and Their Applications, ISIPTA’05, Pittsburgh, Pennsylvania,
July 2005. Carnegie Mellon University.

[9] C.P. Robert. The Bayesian Choice. Springer, New York, 1994.

[10] G.J. Schick and R.W. Wolverton. An analysis of competing software re-
liability models. IEEE Transactions on Software Engineering, SE-4:104–
120, 1978.

[11] L.V. Utkin and F.P.A. Coolen. Imprecise reliability: an introductory
overview. In: G. Levitin, editor, Computational Intelligence in Relia-
bility Engineering, Volume 2: New Metaheuristics, Neural and Fuzzy
Techniques in Reliability. Springer, Berlin, pp. 261–306, 2007.

[12] P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman
and Hall, London, 1991.

[13] P. Walley. Inferences from multinomial data: Learning about a bag of
marbles (with discussion). Journal of the Royal Statistical Society, Series
B, 58:3–57, 1996.

29

[14] G. Walter, Th. Augustin and A. Peters. Linear regression analysis un-
der sets of conjugate priors. In: G. de Cooman, J. Vejnarova and M.
Zaffalon, editors, Proceedings of the Fifth International Symposium on
Imprecise Probabilities and Their Applications, pages 445–455, Prague,
Czech Republic, 2007.

[15] M. Xie. Software Reliability Modeling. World Scientific, 1991.

30

