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Abstract 

The Laoshan granite is an example of the widespread intraplate granitoids of early Cretaceous 

age in eastern continental China. The petrogenesis of these granitoids remains in dispute and we 

choose the Laoshan granite as the representative case to study these granitoids. Zircons from the 

Laoshan granite give a crystallization age of ~120 Ma, which is consistent with the emplacement 

age of ~ 126 Ma given by the bulk-rock Rb-Sr isochron. Representative samples from the granite 

show a large range of major element compositional variation (e.g., SiO2/MgO = 64 to 1937), 

reflecting a varying degree of fractional crystallization of plagioclase, alkali feldspar, amphibole, 

biotite and accessory phases as observed. The samples are enriched in light rare earth elements, Rb, 

Th and U, but depleted in Ba and Sr with negative Eu anomalies. The high 
87

Sr/
86

Sr (0.7083 to 

1.2265) is largely caused by variably high Rb/Sr (~ 0.31 to 91 with an average of ~ 13) due to 

feldspar fractionation. The low ƐNd(t) (−13.8 to −19.5), εHf(t) (−14.6 to −24.4), and (
206

Pb/
204

Pb)i 

(16.244 to 17.304) are consistent with significant contributions of the lower continental crust to 

magmas parental to the Laoshan granite. The origin of the parental magmas is best understood as 

resulting from anatexis of the lower crust (~20% - 25% partial melting of the mafic granulite) 

triggered by and mixed with the underplating and intruding basaltic magmas. The basaltic magmas 

were likely derived from melting of the thinning lithosphere being transformed into the 

asthenosphere as the result of “basal hydration weakening” with the water ultimately coming from 

dehydration of the stagnant paleo-Pacific slab in the mantle transition zone. 
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1 Introduction 

The Cretaceous Laoshan granite is one of the widespread Mesozoic granitoid intrusions in 

eastern continental China (Fig.1a). The petrogenesis of these granitoids is thought to be related to 

the paleo-Pacific plate subduction, but debate continues on actual mechanisms (Jahn et al., 1999; 

Li et al., 2014; Wang et al., 1995, 2001; Wu et al., 2002; Zhou and Li, 2000; Zhou et al., 2006). 

Niu et al. (2015) argued that all of the Jurassic-Cretaceous granitoids in the interiors of eastern 

continental China are of intraplate origin genetically associated with the lithosphere thinning 

beneath the region through basal hydration weakening (Niu, 2005) with the water ultimately 

coming from dehydration of the paleo-Pacific plate lying stagnant in the mantle transition. To test 

this hypothesis, we focus on the petrology and geochemistry of the Laoshan granite, which is on 

the east coast of continental China but was emplaced within the continental interiors in the 

Mesozoic (Niu et al., 2015; Niu and Tang, 2016; Tang et al., 2016). There are several studies on 

the Laoshan granite, but the petrogenesis is still controversial (Yan and Shi, 2014; Wei, 2008; 

Zhao et al., 1997). These authors mainly focus on the problematic A-type classification that 

overlaps with highly evolved I-type granitoids (Chappell and White, 2001; King et al., 1997; 

Whalen et al., 1987). In this paper, we report the results of our detailed petrological, 

geochronological and geochemical study on the Laoshan granite and discuss its petrogenesis, 

which offers an effective test on the hypothesis by Niu et al. (2015) as mentioned above. 
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2 Geological background and Petrography 

The Laoshan granite is located in the Jiaodong Peninsula on the east coast of continental 

China (Fig. 1). Three episodes (i.e., Triassic, Jurassic, and Cretaceous) of Mesozoic magmatism 

are recognized in the Jiaodong Peninsula (Guo et al., 2005; Goss et al., 2010; Liu et al., 2008; 

Yang et al., 2005a, 2005b; Zhao et al., 2017; Fig. 1b). The Cretaceous mafic rocks include the 

Jimo basalts and numerous mafic dikes of 130-67 Ma age (Cai et al., 2015; Liang et al., 2017; Ma 

et al., 2014, 2016; Yang et al., 2005a, 2005b; Ying et al., 2006; Zhang et al., 2011; Zhang et al., 

2012). The Laoshan pluton is an early Cretaceous granitoid intrusion, which is termed the Laoshan 

granite for discussion convenience. It is exposed in an area of ~ 600 km
2
 (Fig. 1c) and belongs to 

the 500 km long so-called Early Cretaceous A-type granite belt (from Taolin in Jiangsu, towards 

NEE, to Rizhao, Jiaonan, Qingdao, Laoshan, Haiyang, Rushan, and Weihai; Wang et al., 1995). It 

intruded the Cretaceous volcanic, Jurassic-Cretaceous sedimentary and Precambrian metamorphic 

rocks of the Jiaonan group (Fig. 1c). Our samples include monzogranite, syenogranite and 

alkali-feldspar granite in terms of modal mineralogy and the petrographic details (Table 1). The 

samples are light grey to pink in color and medium to fine in grain size. Most of the samples are 

relatively uniform with mafic magmatic enclaves (MMEs) present in places (e.g., QD15-03; 

Fig.2A). Both the MMEs and host have the same mineralogy but the MMEs have greater modal 

amphibole and biotite. The main mineral phases of monzogranites (Fig.2B) are feldspar, 

plagioclase and quartz. The alkali-feldspar granite (Fig.2C) is dominated by alkali-feldspar and 

quartz. The alkali feldspars are mainly perthitic potassium feldspar. Mafic minerals (1%~10%) are 

biotite and amphibole. Mafic alkali minerals like aegirine (Zhao et al., 1997) is not observed in our 
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samples. Accessory phases (＜1%) include apatite, sphene, magnetite, zircon and fluorite 

(Fig.2D). 

3 Analytical methods 

3.1 Zircon U-Pb dating 

Zircon separation was done in the Laboratory of the Langfang Institute of Regional 

Geological Survey using a combined method of heavy liquid, magnetic and manual selection 

under a binocular. The selected zircons were set in an epoxy mount before polished to expose 

zircon interiors. Cathodoluminescence（CL）images were taken at Beijing GeoAnalysis CO. Ltd to 

examine the internal structure of individual zircon grains needed for spot analysis. Zircon U-Pb 

dating was done using LA-ICP-MS in the Ocean Lithosphere and Mantle Dynamics Laboratory, 

Institute of Oceanology, Chinese Academy of Sciences (OLMDL-IOCAS). We used an Agilent 

7900 ICP-MS instrument coupled with 193 nm Photon Machines Excite Laser for analysis. 

Helium was applied as a carrier gas. The laser spot size was 35 μm. Zircon 91500 was used as the 

external standard for U-Pb dating (Wiedenbeck et al., 1995), and analyzed twice between every 

five unknowns. NIST 610 glass was used as an external standard for trace element analysis (Xiao 

et al., unpublished). The age calculation was done using the method of Liu et al. (2010) and the 

Concordia diagrams were plotted using Isoplot (Ludwing, 2003). 

3.2 Major and trace elements 

The bulk-rock major and trace element analysis was done in OLMDL-IOCAS. Bulk-rock 

major elements were analyzed using Agilent 5100 ICP-OES following the method of Kong et al. 
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(unpublished). Trace element analysis was done using ICP-MS (Agilent 7900) following Chen et 

al. (2017). The bulk-rock major (Appendix 1) and trace (Appendix 2) elements of USGS reference 

materials analyzed together with our samples agree well with reference values within error 

(GeoREM, http://georem.mpch-mainz.gwdg.de/). 

3.3 Bulk-rock Sr-Nd-Pb-Hf isotopes 

Bulk-rock Sr-Nd-Pb-Hf isotopes analysis was done in the Radiogenic Isotope Facility at the 

University of Queensland, Australia. The rock powders were dissolved in a mixture of 

double-distilled concentrated HNO3 and HF, and dried on a hot plate at 80°C. After converting any 

fluoride to nitrate, the dried residue was dissolved with 3 ml 2N HNO3 and 1.5 ml was loaded onto 

a stack of Sr-spec, Thru-spec and LN-spec resin columns to separate Sr, Nd, Pb, and Hf from the 

matrix, using a streamlined procedure modified after Míková and Denková (2007) and Yang et al. 

(2010).  

All the measured
 87

Sr/
86

Sr, 
143

Nd/
144

Nd, 
176

Hf/
177

Hf ratios were normalized to 
86

Sr/
88

Sr = 

0.1194, 
146

Nd/
144

Nd= 0.7219 and 
179

Hf/
177

Hf=0.7325, respectively. Analyses of NBS987 standard 

run during the same period gave
 87

Sr/
86

Sr=0.710249±9 (n=22, 2σ). In the course of 
143

Nd/
144

Nd 

and 
176

Hf/
177

Hf analysis, the in-house Nd standard, Ames Nd Metal and 10 ppm Hf ICP solution 

from Choice Analytical were used as instrument drift monitors, respectively. This in-house Nd 

Metal and Hf standards were cross-calibrated against the JNdi-1 Nd international standard and the 

JMC-475 Hf international standard, respectively. Analyses of in-house Nd standard gave 

143
Nd/

144
Nd= 0.511965±6 (n=12, 2σ). Analyses of in-house Hf standard yielded a mean 

176
Hf/

177
Hf of 0.282147±5 (n=39, 2σ). Pb isotope ratios were normalized for instrumental mass 
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fraction relative to NBS/SRM 997
 203

Tl/
205

Tl = 0.41891, which were then normalized against 

NBS981 (see Sun et al., 2017). The values of USGS reference materials run with our samples are 

given in Appendix 3, which agree with the reference values (GeoREM, 

http://georem.mpch-mainz.gwdg.de/). Procedures for Sr, Nd, Pb and Hf elemental column 

separation and analytical details are given in Guo et al. (2014) and Sun et al. (2017). 

4 Results 

4.1 Zircon U-Pb ages 

Zircons from LS15-15 and QD15-22 have been dated (Table 2). The zircons are mostly 

euhedral, transparent, ranging from 100 to 200 μm in size with length-to-width ratios of 1:1 - 2:1. 

The cathodoluminescence (CL) images show oscillatory zoning of magmatic origin. The zircons 

have varying U (48.46 to 439.44 ppm) and Th (105.83 to 723.63 ppm) concentrations with varied 

Th/U ratio of 0.94 - 2.18. After rejecting discordant analyses, we obtain zircon crystallization age 

of ~ 120 Ma within error (Fig. 3). This age is similar to the youngest ages of the granitoids in the 

region (Fig. 1; Guo et al., 2005; Goss et al., 2010). Captured zircon cores exist in both samples, 

plot along or close to the Concordia. Their age is around 140~130 Ma (Table 2), similar to the 

ages of Cretaceous granitoids in the region (Guo et al., 2005).  

4.2 Bulk-rock major and trace elements 

4.2.1 Major elements 

The samples (Fig. 4) are compositionally alkali rich (Na2O + K2O = 7.82 ~ 10.63 wt.%) and 

calc-alkaline (Rittmann Serial Indexσ [= (K2O+Na2O)
2
 / (SiO2-43), units in wt.%] ＜ 9; in 
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Appendix 6) without excess alkalis (A/NK＞1; Fig. 4). Previous classification of the Laoshan 

granite is largely based on SiO2 content (Fig. 4; Yan and Shi, 2014). The so-called A-type granites 

are actually highly evolved ones with high SiO2 (Fig.4) and low Al2O3 (Fig. 5). Our samples span 

a larger range of SiO2 than the data in the literature (Yan and Shi, 2014). Thus, the changes in 

alkali content between the I-type granite and the A-type granite in the literature can be observed 

(Fig.4). The changes of samples in alkali content was most likely controlled by fractional 

crystallization in consistence with the petrography. Because the liquidus temperature is inversely 

correlated with SiO2 but positively correlated with MgO during magma evolution, the ratio of 

SiO2/MgO can be an effective parameter to describe the extent of magma differentiation (see Fig. 

5). For example, magma cooling and mineral crystallization lead to increasing SiO2/MgO in the 

residual melts. Thus, the most evolved granite experienced highest extent of crystallization and 

thus have the highest SiO2/MgO. Note that by using the combined parameter SiO2/MgO, we 

emphasize that these samples represent products of varying extent of fractional crystallization 

(Fig.5) despite the fact that the granitoid rocks are not pure liquids, but mixtures of liquids with 

incompletely segregated crystals (both liquidus and residual phases). 

4.2.2 Trace elements 

Fig. 6a shows chondrite-normalized rare earth element (REE) patterns of the samples. They are 

enriched in light REEs (Appendix 6, Fig. 6a) and have varying negative Eu anomalies 

(Eu/Eu*=0.05–0.77, Fig. 7a). Four samples have low abundances from Sm to Tm, which can also 

be found in some highly fractional granites (Fig. 6, Qiu et al., 2008). Fig. 6b shows that the 

samples are enriched in Rb, Th and U, but depleted in Ba and Sr. This is consistent with the 
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negative Eu anomalies due to feldspar fractionation. Like most granites, our samples are 

characteristically depleted in Nb, Ta and Ti. The P depletion results from apatite fractionation.  

4.3 Bulk-rock Sr-Nd-Pb-Hf isotopes 

Bulk-rock Sr-Nd-Pb-Hf isotopic data are given in Appendix 7. The εNd(t), εHf(t), (
206

Pb/
204

Pb)i , 

(
207

Pb/
204

Pb)i and (
208

Pb/
204

Pb)i are calculated at 120Ma. Samples have variably high 
87

Sr/
86

Sr 

(0.7083 to1.2265; Fig. 7b) because of feldspar fractionation-reduced low Sr in the samples, hence 

the high Rb/Sr and high radiogenic 
87

Sr as manifested by the correlated negative Sr/Sr* and 

Eu/Eu* anomalies (Fig. 7a; Halliday et al., 1991; Sallet et al., 2000; Shao et al., 2015). Calculation 

of initial 
87

Sr/
86

Sr for such high Rb/Sr samples would become problematic (Cavazzini, 1994; 

Mahood and Halliday, 1988; Sallet et al., 2000), but the bulk-rock isochron gives a unique initial 

87
Sr/

86
Sr = 0.7061 and significant isochron age of ~126 Ma (Fig. 7b), representing the magma 

emplacement age and is consistent with the zircon crystallization ages (Fig. 3; also see section 5.3). 

Our samples have enriched εNd(t) (−13.8 to −19.5) and εHf(t) (−14.6 to −24.4), defining a trend that 

is on the extension of the mantle array (Fig. 8). Both Nd-Hf and Pb isotopes ((
206

Pb/
204

Pb)i = 

16.244 to 17.304) indicate a trend of magma mixing, with the enriched endmember and the less 

enriched endmember (Fig. 8, Fig.9). 

5 Discussion 

5.1 Intra-plate setting 

Previous studies (Zhao et al., 1997) used the tectonic discrimination plots to classify the 

calc-alkali granites into volcanic arc granite (VAG) and within plate granite (WPG). Here we 
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emphasize that the intra-plate tectonic setting of Laoshan granites in Mesozoic is already known 

(see above and below). It is thus unnecessary to use tectonic discrimination plots to interpret 

tectonic settings that are geologically incorrect. The Korean Peninsula has long been thought to be 

part of the North China Craton (once called Sino-Korean para-platform) with similar Precambrian 

basement (Zhai et al., 2005, 2007, 2016). Recent studies have been able to correlate the lithologies 

between the Jiaodong Peninsula and the Korean Peninsula (Hu et al., 2012; Oh and Kusky, 2007; 

Zhai et al., 2005, 2007, 2016). Besides, the paleomagnetic data analysis (Zhao et al., 1999), the 

combined method of seismic tomography and gravity data (Hu et al., 2012) confirm the traditional 

view. That is, the North China Craton and the Korean Peninsula have been a single coherent block 

since the early Paleozoic. However, how the Jiaodong Peninsula and Korean Peninsula may have 

actually correlated has not been explained until recently when Niu and Tang (2016) and Tang et al. 

(2016) elaborated the origin of the Yellow Seas as a continent-rifted basin since ~ 56 Ma. This 

means the Laoshan granite was emplaced in an intra-plate setting before the opening of the Yellow 

Sea. This is consistent with the contemporaneous granitoid magmatism in the Russian Far East (as 

young as ~ 56 Ma), South Korea and Southwest Japan (as young as 71 Ma; Tang et al., 2016). 

5.2 Origin of the Laoshan granite 

Several models have been proposed for the origin of the Laoshan granite in the literature, 

including (1) partial melting of residual basaltic lower crust that had been previously melted to 

produce I-type granites (Zhao et al., 1997), (2) low degree melting of intermediate to felsic lower 

crust under granulite facies (Wei, 2008), and (3) mixing of the asthenosphere-derived basaltic melt 

and the lower continental crust - derived melt (Yan and Shi, 2014). We evaluate these scenarios 
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and propose our explanation that is consistent with the geological, petrological and geochemical 

data. 

5.2.1 Assessing the model of lower continental crust anatexis 

Several experimental studies on partial melting of intermediate to felsic crustal rocks (Skjerlie 

and Johnston, 1992; Patiño Douce, 1997) have been proposed to explain the origin of granite 

similar to the Laoshan granite with high 
T
Fe2O3, K2O and low Al2O3, CaO, MgO, Sr, and Eu. All 

the existing models (Zhao et al., 1997; Wei, 2008; Yan and Shi, 2014) require melting of the lower 

continental crust for magmas parental to the Laoshan granite. Thus, it is necessary to test whether 

melting of the mafic lower continental crust can indeed produce magmas parental to the Laoshan 

granite. To quantify and assess the partial melting interpretation, we choose a mafic granulite 

(90DA1, SiO2 = 51.6 wt.%, MgO = 10.8 wt.%; Na2O+K2O = 2.52 wt.%; Zhou et al. 2002) and the 

average composition of the granulite of the Yangtze craton (YC-LCC, SiO2 = 65.7 wt.%, MgO = 

2.3 wt.%; Gao et al., 1998) as the source rocks to model partial melting of the mafic and 

intermediate lower continental crust separately. The MELTS (Ghiorso and Sack, 1995) used for 

the model is set at 10 kbars with the temperature range of 1200-700°C at 20K intervals (Fig. 10d). 

The calculation shows that 20% - 28% partial melting of the mafic granulite can produce melts 

that match the least evolved (low SiO2/MgO) composition of the Laoshan granite (Fig.10d). This 

corresponds to temperature condition of 900-1040°C, consistent with the least evolved 

compositions of the Laoshan granite. Varying extents of fractional crystallization from such least 

evolved samples can effectively explain the entire data range (e.g., SiO2/MgO) of the Laoshan 

granite. This is consistent with the major and trace element data as discussed below. Obviously, 
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melting of the intermediate or felsic YC-LCC cannot produce melts parental to the Laoshan 

granite. This model provides a conceptual clue to the feasibility of mafic crustal melting and 

provides clue to the hypothesis of lower continental crust melting for the granitoids in the 

continental interiors (Niu et al.,2015). 

5.2.2 Constraints on the source 

The model above shows that magmas parental to the Laoshan granite can be generated by 

anatexis of the lower continental crust, which is consistent with isotope data. The isotope 

compositions of the lower crust beneath the Jiaodong Peninsula vary greatly (Fig.8; Jahn et al., 

2008), and some values coincide with the Laoshan granite. In other words, some samples can be 

formed directly through anatexis. The lower continental crust with a normal geothermal gradients 

is seldom able to melt and anatexis requires excess heat source (e.g., Huppert and Sparks, 1988). 

Although minor volumes of partial melt can be produced by fluid-present melting at high water 

fugacity (Bergantz, 1989), because the Laoshan granitoid magmatism occurred in an “intra-plate” 

setting away from any known paleo-subduction zone (Fig. 11), the excess heat required for the 

anatexis must have come from mantle-derived basaltic melts (Niu, 2005; Niu et al., 2015; Zhou et 

al., 2006). Isotopically, the εNd(t) (−13.8 to −19.5) and εHf(t) (−14.6 to −24.4) values (Fig. 8) of the 

Laoshan granite lie between the range of the lower crust of the Jiaodong Peninsula (Jahn et al. 

2008) and the Mesozoic lithospheric mantle-derived melts (basalts from Guo et al., 2013; dolerite 

from Liang et al., 2017). The isotopic range of samples provide evidence for the crustal anatexis 

induced by mantle-derived basaltic melts. That is, the basaltic melts not only provide the heat but 

also contribute material to the Laoshan granite magmatism. This observation supports the 
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hypothesis of lower continental crust melting for the intra-plate granitoids (Niu et al.,2015; also 

see section 5.2.1 and section 5.2.3 below). 

The question then concerns the origin of the basaltic melts. Among the several ideas (see 

section 5.3) about the mechanism of widespread lithosphere thinning throughout entire eastern 

China in the Mesozoic (Niu, 2005, 2014; Niu et al., 2015), the physically most likely process is 

the basal hydration weakening. That is, the lithosphere was being thinned by converting the basal 

portions of the lithosphere into the asthenosphere, accompanied by partial melting and basaltic 

magmatism (Niu, 2005, 2006, 2009, 2014; Niu et al., 2015). Niu (2014) suggested that basaltic 

melts are most likely to have been derived from being-hydrated and -thinned lithosphere with the 

water coming from the paleo-Pacific plate lying stagnantly in the mantle transition zone. The 

ascent, intruding and underplating of the basaltic magmas provide the heat for the widespread 

crustal melting for the intra-plate granitoid magmatism in eastern China (Niu et al., 2015). 

Some studies (Yan and Shi, 2014; Zhao et al., 2017) suggested the upper continental crust as a 

candidate of the magma source, but this is not the case for the Laoshan granite. Because the 

basaltic melts required to provide the heat first encounter the deep crust to cause its melting, which 

prevents upper crustal melting. Upper crustal magma contamination is possible during magma 

ascent, but not the primary source. 

5.2.3 The magma mixing model 

As discussed above, we propose that the lithospheric mantle-derived basalts provide both heat 

and material for the primary magmas parental to the Laoshan granite. To quantitatively estimate 

the relative contributions of the lithosphere mantle-derived melts and the lower continental crust, 
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we used the average Nd isotope composition of the Mesozoic lithospheric mantle-derived melts in 

the Jiaodong Peninsula (basalts from Guo et al., 2013; dolerite from Liang et al., 2017) as the less 

enriched endmember, and the highest Nd isotope value of the lower continental crust of the 

Jiaodong Peninsula (Jahn et al., 2008) as the enriched endmember for binary isotope mixing 

calculation. The calculations show the significant contribution of the lower continental crust. This 

mixing calculation using Nd-Hf isotopes is conceptually illustrative on the significance of crustal 

melting induced by lithosphere-derived basaltic melts in the Mesozoic although the exact mass 

contributions cannot be constrained because of the two isotopic end-members cannot be well 

constrained. 

Our petrological modeling by lower continental crust anatexis (Fig.10d) shows that ~ 7% - 27% 

partial melting of the mafic granulite with 10% contribution of mantle-derived basaltic melts 

(Liang et al., 2017) can produce melts that match the least evolved (low SiO2/MgO) composition 

of the Laoshan granite. Hence, with all the uncertainties considered, ~ 20% – 25% melting of the 

mafic lower crust heated by and mixed with ~ 10% lithosphere-derived basaltic melts can explain 

the data. Varying extents of fractional crystallization from such least-evolved granitoid samples 

can explain the entire data range (e.g., SiO2/MgO) of the Laoshan granite (see below). We 

emphasize the above modeling and analysis to be conceptually significant for the petrogenesis of 

the magmas parental to the Laoshan granite. We also emphasize the estimated relative 

contributions of both crust and lithospheric mantle to be meaningful, although the exact mass 

contributions cannot be well constrained because of the many uncertainties discussed above. 
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5.3 Effect of crystallization on the petrogenesis of the Laoshan granite 

The large compositional variation of the Laoshan granite in terms of SiO2/MgO and the 

correlated variations with the abundances and ratios (i.e., A/NK and A/CNK) of other major 

elements result from varying extents of fractional crystallization from magmas parental to the 

Laoshan granite (Fig.5). With cooling and crystallization, SiO2/MgO decreases and the correlated 

trends with Al2O3, CaO, K2O Na2O, 
T
Fe2O3, TiO2 and P2O5 result from varying extent of fractional 

crystallization of alkali feldspar, plagioclase, amphibolite, biotite, sphene, ilmenite, apatite and 

zircon, which is consistent with the petrography. The crystallization of plagioclase and 

alkali-feldspar results in Sr depletion and the resulting high Rb/Sr, hence the variably high 

87
Sr/

86
Sr (Fig.7b; Shao et al., 2015) with 

87
Sr largely resulting from radioactive decay of 

87
Rb, 

hence, the significant 
87

Sr/
86

Sr-
87

Rb/
86

Sr bulk-rock isochron (Fig. 7b; Cavazzini, 1994; Mahood 

and Halliday, 1988; Sallet et al., 2000; Shao et al., 2105). Fig.10a shows that plagioclase and 

potassium feldspar fractionation is critical in controlling Rb and Sr abundances. Fig. 6 shows that 

potassium feldspar and plagioclase fractionation is the primary cause of the Sr depletion as 

manifested by the data trend in Sr-Rb space (Fig. 10a) and Sr-Ba space (Fig. 10b). The effect of 

plagioclase fraction is also obvious as shown by the Eu/Eu*-Sr/Sr* correlation (R
2
=0.6801; Fig. 

7a; Niu and O’Hara, 2009, Shao et al., 2015). 

To explain four samples with lower middle REEs from Sm to Tm (Fig. 6), we tried different 

mineral assemblages based on the petrography in fractional crystallization modeling (Fig.10c). 

The parental magma composition is assumed to be the value of QD15-01, which is not that highly 

evolved. Calculations indicate that the REE pattern is mainly controlled by fractionation of 
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amphibole, apatite and plagioclase. By assuming co-precipitation modes of 42% amphibole, 0.03% 

apatite and 57.97% plagioclase, about 50% to 60% fractional crystallization of these minerals can 

form REE patterns similar to those of the four samples (Fig. 10c).  

In summary, the primary magma parental to the Laoshan granite was derived by partial melting 

of the lower crust induced by and mixed with basaltic melts derived from the lithospheric mantle. 

Varying extents of fractional crystallization of such parental magmas led to the variably evolved 

compositions of the Laoshan granite samples. 

5.4 Tectonic significance 

As discussed above, the magma parental to the Laoshan granite was derived from lower 

continental crustal melting induced by lithospheric mantle-derived basaltic melts in an intraplate 

setting. The origin of the basaltic melts has been interpreted as relating to the Mesozoic 

subcontinental lithosphere thinning in eastern continental China (Fan et al., 2001; Gao et al., 2002; 

Guo et al., 2014; Liang et al., 2017; Liu et al., 2008; Niu, 2005; Niu et al., 2015). What is the 

mechanism of the lithospheric thinning and the cause of extensive granitoid magmatism in the 

Jurassic-Cretaceous Mesozoic? (1) Mantle plumes have been proposed as a mechanism causing 

the Mesozoic lithosphere thinning and the intra-plate magmatism in eastern China (Deng et al., 

2004), but contemporary continental flood basalts with domal uplift expected to be associated with 

mantle plumes (He et al., 2003) are missing in eastern China. Besides, the observation that the 

“cold” subducted Paleo- Pacific slab lies in the mantle transition-zone (between 410 and 660 km 

seismic discontinuities) beneath eastern China (Zhao, 2009) argues against the presence and 

working of hot mantle plumes beneath eastern China (Niu, 2005). (2) Lithosphere delamination 
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(e.g., Gao et al., 2009; Xu et al., 2006) is unlikely to happen because the compositionally buoyant 

subcontinental lithosphere cannot sink into the compositionally dense asthenosphere (Niu, 2005). 

(3) Lithosphere stretching induced asthenosphere upwelling can be ruled out because there is no 

stretching-related linear magmatism in eastern continental China (Niu, 2005). 

Physically, the most likely mechanism is the basal hydration weakening by converting the basal 

portions of the lithosphere (i.e., subcontinental lithospheric mantle or SCLM into the 

asthenosphere accompanied by partial melting and basaltic magmatism (Niu, 2005, 2006, 2009, 

2014; Niu et al., 2015). That is, the paleo-Pacific plate lying stagnant in the mantle transition zone 

release water by dehydration (Niu,2005). The water ascent in the form of hydrous melt can 

effectively hydrate the basal portion of the lithosphere and convert it to rigidity, strength and 

viscosity highly reduced asthenosphere (Niu, 2005, 2014), hence the lithosphere being thinned. 

Niu et al. (2015) demonstrate that the random distribution of the Jurassic-Cretaceous (~190 to ~90 

Ma) granitoids in eastern continental China in space and time is best explained as a special 

consequence of plate tectonics. They were genetically associated with the paleo-Pacific plate lying 

stagnant in the mantle transition zone beneath eastern continental China (Niu, 2005, 2014; Niu et 

al., 2015). Underplating and intrusion of the basaltic magmas as the result of lithospheric mantle 

melting caused by basal hydration weakening indirectly caused the crustal melting and the 

widespread granitoid magmatism in the interiors of eastern continental China (Niu et al., 2015). In 

summary, the origin of the Laoshan granite is consistent with the origin of the Cretaceous 

granitoids in the continental interiors of eastern China as discussed in Niu et al. (2015). It is 

genetically associated with the lithosphere thinning by means of basal hydration weakening (Niu, 
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2005, 2014) with the water ultimately, in the form of hydrous melt, coming from dehydration of 

the paleo-Pacific plate lying stagnant in the mantle transition zone (see Fig. 11; Niu et al., 2015). 

Xue et al. (2018) proposed that the petrogenesis of the Cretaceous granitoids along the southeast 

coast of continental China is more directly related to the active subduction of the paleo-Pacific 

plate with the mantle wedge derived basaltic melts (the more depleted endmember) 

intruding/underplating the overlying crust. Figs. 8 and 9 show that the Laoshan granite differs 

distinctly from those of the coastal granitoids (Xue et al., 2018; Hong et al., 2018). The result of 

the comparison is mutually corroborating with our understanding that the Laoshan granite was 

formed in the intraplate setting, rather than an active subduction setting. This observation supports 

the hypothesis of Niu et al. (2015) that the Cretaceous granitoids in the continental interiors of 

eastern China is a consequence of the lithosphere thinning by means of basal hydration weakening. 

The magmatism of the granitoids is ultimately controlled by the dehydration of the paleo-Pacific 

plate lying stagnant in the mantle transition zone (Niu, 2005, 2014). 

Conclusions 

1. The primary magmas parental to the Laoshan granite were derived by anatexis of the lower 

continental crust heated by and mixed with lithosphere-derived basaltic melts. 

2. The large compositional variation of the Laoshan granite results from varying extent of 

fractional crystallization as expressed in the SiO2/MgO variation diagrams. 

3. The Laoshan granite, like other widespread Cretaceous granitoids in the continental interiors of 

eastern China, is genetically associated with the lithosphere thinning by means of basal hydration 
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weakening (Niu et al., 2005). The magmatism is ultimately controlled by dehydration of the 

paleo-Pacific plate lying stagnant in the mantle transition zone, which releases water in the form 

of hydrous melt. The melts ascend and convert the basal portions of the mantle lithosphere into the 

viscosity-reduced asthenosphere. 
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Figure captions 

Fig. 1 (a) Simplified geological framework of eastern continental China. (b) Distribution of the 

Mesozoic intrusive and eruptive rocks in the Jiaodong Peninsula and the locations of the Laoshan 

granite and nearby intrusions (modified after the geological map of Shandong Province in 

1/1,500,000 scale from the Geological Atlas of China). (c) Geological sketch of the Laoshan 

granite and sample locations (modified after the Laoshan geological map of 1/200,000 scale). 

Fig. 2 Photograph in the field and photomicrographs in cross-polarized light. (A) shows the sharp 

contact of mafic magmatic enclave with the host granite (QD15-03); (B) shows the mineral 

assemblage and the granophyric texture of alkali feldspar granite (LS15-15); (C) shows the 

mineral assemblage of monzonitic granite (LS15-21); (D) shows fluorite in QD15-04. Afs = alkali 

feldspar; Pl = plagioclase; Qtz = quartz; Am = amphibole; Bi = biotite; Ap = apatite; Sph = sphene; 

Fl = Flourite. 

Fig.3 The Concordia diagrams show zircon U-Pb ages and representative CL images of zircons 

with analytical spots as indicated with yellow circles for LS15-15 and QD15-22. See Table 2 for 

analytical data. 

Fig.4 Portion of the total alkali versus silica (TAS) diagram (Cox et al., 1979; Wilson, 1989; 

Maitre et al., 1989) shows the compositional variation of samples. The curved solid line 

subdivides the alkalic (above) from sub-alkalic (below) rock types (Wilson, 1989; Maitre et al., 

1989). The A-type granite and I-type granite are literature data of Laoshan granitoid rocks (Zhao et 

al., 1997; Yan and Shi, 2014). 
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Fig.5 Bivariate plots of the major element oxides and ratios (e.g., A/NK= molar Al2O3 

/[Na2O+K2O], A/CNK = molar Al2O3 /[CaO+Na2O+K2O]) as a function of SiO2/MgO show a 

large range of major element compositional variation, reflecting a varying degree of fractional 

crystallization of plagioclase, alkali feldspar, amphibole, biotite and accessory phases as observed. 

The A-type granite and I-type granite are the literature data as Fig.4. 

Fig.6 Chondrite-normalized rare earth element and primitive mantle normalized incompatible 

element patterns for the Laoshan granite. For comparison, the literature data (A-type granite, 

I-type granite; see Fig.4) are also plotted. Chondrite and primitive mantle values are from Sun and 

McDonough (1989). Samples show various Eu anomalies as the result of plagioclase and alkali 

feldspar fractionation as Fig.7a. The lower values of middle rare earth elements from Sm to Tm in 

the four samples is mainly controlled by fractionation of amphibole, apatite and plagioclase. 

Fig.7 (a) The correlation between Eu/Eu* and Sr/Sr* (R
2
=0.7593; Fig. 7a) indicates the 

consequence of plagioclase-dominated fraction (Niu and O’Hara, 2009, Shao et al., 2016). (b) 

Rb/Sr isochron defined by Laoshan granite samples give a significant and consistent emplacement 

age of ~ 126 Ma, which is, expectedly, slightly older than the zircon crystallization ages (Fig. 3). 

Importantly, the isochron gives a tight and significant initial 
87

Sr/
86

Sr of 0.7061, pointing to 

uniform source (or mixed source) composition for the Laoshan granite. 

Fig.8 Hf-Nd isotope diagram illustrates that magmas parental to the Laoshan granite are derived 

from anatexis of the lower continental crust induced by and mixed with lithospheric 

mantle-derived basaltic magmas beneath eastern continental China. Binary isotope mixing 

calculations with the number of basaltic melts contribution use the lithosphere mantle-derived 
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melts data from Guo et al. (2013) and Liang et al. (2017) and the lower continental crust (LCC) 

data from Jahn et al (2008), in 5% intervals. Hf isotope of the literature data is inferred from Nd 

isotope following the equation (εHf=1.36εNd+2.95) given by Vervoort and Patchett (1996). The 

coastal granitiods are from Xue et al. (2018). 

Fig.9 (a) Initial 
207

Pb/
204

Pb vs. initial 
206

Pb/
204

Pb and (b) initial 
206

Pb/
204

Pb vs. initial 
208

Pb/
204

Pb 

diagrams show the Laoshan granites differ distinctly from those of the coastal granitoids (Hong et 

al., 2018). The North Hemisphere Reference Line (NHRL) refers to what from Hart (1984). EM2 

fields after Zindler and Hart (1986) are also shown. 

Fig.10 (a), (b) Rb-Sr and Ba-Sr covariation diagram, indicating that the evolution of the Laoshan 

granite was controlled largely by alkali-feldspar fractionation. Mineral fractionation vectors (Kf = 

K-feldspar; Pl = plagioclase; Am = amphibole; Bi=biotite) calculated using partition coefficients 

from Ewart and Griffin (1994), Nash and Crecraft (1985) and Bacon and Druitt (1988). Tick 

marks indicate the percentage of mineral phase removed, in 10% intervals. See Appendix 4 for 

relevant partition coefficients used to calculate. (c) Shows 20%, 30%, 50%, 60% fractional 

crystallization of the mineral assemblages of Model from assumed magma (QD15-01) along with 

the Laoshan granite on chondrite normalized rare earth element diagram. (d) Fe2O3 vs. SiO2/MgO. 

The MELTS (Ghiorso and Sack, 1995) used for the modeling is set at 10 kbars with the 

temperature range of 1200-700°C at 20K intervals. The composition of 90DA1-Granulite (Zhou et 

al. 2002) and YC-LCC (Gao et al., 1998) represent source materials of the partial melting 

modelling. Tick marks indicate the composition of melts, and the numbers show the extent of 

partial melting. The details of the calculation result and the mineral composition of the residues 
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are compiled in Appendix 5. The composition of mixing magma is calculated by using data of the 

melts of granulite (90%) with the partial melting range of 7% - 28% and the data of dolerite 

(LYYJ2-1) from Liang et al. (2017) represented the mantle-derived basaltic contribution (10%). 

Fig. 11 The conceptual model of the Cretaceous magmatism in the NW-SE cross section (modified 

after Niu et al., 2015) shows the intra-plate tectonic setting and origin of magmas parental to the 

Laoshan granite. The stagnant paleo-Pacific slab in the Mesozoic released water in the form of 

hydrous melts that ascended and weakened and converted the basal portions of the mantle 

lithosphere into asthenosphere while producing basaltic magma from the being-converted mantle 

lithosphere. Such magma rose and intruded the continental crust, providing both heat and material 

for the parental magmas of the Laoshan granite. 

Table caption 

Table 1 Petrography of the samples from the Laoshan granite (N=27). 

 

Table 1 Petrography of the samples from the Laoshan granite (N=27). 

Sample Rock Type 
GPS Mineral composition (%) 

Latitude (N) Longitude (E) Pl A Q Others 

LS15-06 alkali-feldspar granite 36.13 120.57 2 56 40 Mt, Bi, Ap 

LS15-07 alkali-feldspar granite 36.15 120.52 4 58 35 Amp, Bi, Mt, Zrn 

LS15-08 syenogranite 36.18 120.50 12 45 38 Amp, Bi, Mt  

LS15-11 alkali-feldspar granite 36.20 120.55 6 54 34 Amp, Bi, Mt, Zrn, Ap 

LS15-15 alkali-feldspar granite 36.25 120.62 3 64 28 Amp, Mt, Sph, Zrn 

LS15-16 alkali-feldspar granite 36.27 120.60 3 62 30 Bi, Mt, Sph 

LS15-19 alkali-feldspar granite 36.24 120.56 5 55 36 Mt, Amp, Bi, Chl 

LS15-20 alkali-feldspar granite 36.24 120.57 4 53 40 Bi, Mt, Amp 

LS15-21 syenogranite 36.09 120.42 20 43 30 Amp, Bi, Mt, Sph, Zrn, Ap  

LS15-23 syenogranite 36.19 120.46 20 38 35 Bi, Ap, Mt, Zrn, Amp 

LS15-25 syenogranite 36.19 120.43 30 40 25 Bi ,Amp, Ap, Mt, Zrn,Sph 
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LS15-28 alkali-feldspar granite 36.11 120.37 3 44 48 Mt 

LS15-30 alkali-feldspar granite 36.07 120.36 5 46 45 Bi, Mt,  Zrn 

QD15-01 syenogranite 36.39 120.87 15 47 30 Amp, Bi, Mt, Zrn, Sph 

QD15-02 monzonitic granite 36.39 120.87 35 40 20 Amp, Bi, Mt, Zrn 

QD15-03 monzonitic granite 36.41 120.87 35 38 22 Amp, Bi, Mt, Zrn 

QD15-04 syenogranite 36.49 120.86 10 43 40 Bi, Ap, Mt, Zrn, Chl, Fl 

QD15-08 alkali-feldspar granite 36.39 120.67 3 66 20  Bi, Mt, Chl 

QD15-10 syenogranite 36.37 120.62 12 42 38 Bi, Ap, Mt, Zrn 

QD15-11 alkali-feldspar granite 36.37 120.59 5 53 40 Bi, Ap, Mt, Zrn 

QD15-14 syenogranite 36.32 120.58 20 35 40 Bi, Ap, Mt, Zrn 

QD15-17 monzonitic granite 36.00 120.28 35 32 30 Bi, Mt 

QD15-24 syenogranite 36.03 120.04 25 43 30 Bi, Mt, Ap 

QD15-19 syenogranite 35.99 120.11 13 43 40 Bi, Amp, Mt 

QD15-22 monzonitic granite 36.03 120.11 36 38 20 Bi, Amp, Mt, Sph 

QD15-25 syenogranite 35.94 120.10 23 52 20 Amp, Bi, Mt, Chl  

QD15-27 syenogranite 35.94 120.06 15 55 25 Bi, Ap, Mt, Zrn, Amp 

Pl=Plagioclase; A=Alkali feldspar; Q=Quartz;  Bi=Biotite, Amp=Amphibole, Ap=Apatite, Mt=Magnetitie, 

Zrn=Zircon, Fl=Fluorite, Sph=Sphene, Chl=Chlorite. 

 

Table 2 LA-ICPMS zircon U-Pb data of Laoshan granites. 

Table 2  LA-ICPMS zircon U-Pb data of Laoshan granites. 
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Content (ppm)   Ratios Age (Ma) 
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1σ 
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0.0

025 

0.122

2 

0.0
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Appendices 

Appendix 1 Bulk-rock major elements of USGS reference materials run with samples. 

Appendix 2 Bulk-rock trace elements of USGS reference materials run with samples. 

Appendix 3 Bulk-rock Sr-Nd-Pb-Hf isotope of USGS reference materials JG-3 and BHVO-2 run 

with samples. 

Appendix 4 Relevant partition coefficients. 

Appendix 5 The calculation result of partial melting using MELTS. 

Appendix 6 Bulk-rock major and trace elements compositions of Laoshan granites. 

Appendix 7 Bulk-rock Sr-Nd-Pb-Hf isotopic compositions for Laoshan granites. 
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 The Laoshan granite resulted from fractional crystallization of the parental magma. 

 Anatexis of the LCC heated by and mixed with basic magma formed the parental magma. 

 The basal hydration weakening caused the lithosphere thinning with basic magmatism. 
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