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Abstract

This paper presents intuitive interpretations of tightly focused beams of light by drawing analogies
with two-dimensional electrostatics, magnetostatics and fluid dynamics. We use a Helmholtz
decomposition of the transverse electric field components in the transverse plane to introduce
generalized radial and azimuthal polarization states. This reveals the interplay between transverse and
longitudinal electric field components in a transparent fashion. Our approach yields a comprehensive
understanding of tightly focused laser beams, which we illustrate through several insightful examples.

1. Introduction

Unless the beam’s transverse electric field components are divergence-free in the two-dimensional transverse
plane [1], tightly focused light typically leads to a non-negligible longitudinal electric field component [2, 3],
where the terms longitudinal and transverse electric field components refer to the components of the electric
field that are parallel or perpendicular, respectively, to the direction of the mean Poynting flux. Having a
longitudinal electric field component does not add a new degree of freedom, in the sense that all components of
the electric and magnetic fields are still fixed by prescribing two components in a plane. However, it is the electric
field component parallel to the direction of the Poynting flux, and that makes it somewhat special. Taking the
longitudinal electric field component properly into account leads to a range of novel physical phenomena, such
as a significant decrease of the focal spot size [4, 5], the realization of so-called ‘needle beams’ [6] and M6bius
strips in the polarization oflight [7]. In the context of light-matter interaction, taking into account the effect of
the longitudinal electric field component can be crucial [8], and it may even dominate over the transverse
components [9].

While the longitudinal electric field component and its interplay with the transverse components has
attracted significant interest over the last two decades [3, 10, 11, 12], the discussion has usually been limited to
special cases assuming certain spatial symmetries, and a simple and general intuitive picture would be highly
desirable. This paper aims to provide such a picture, and presents a novel approach towards an intuitive
understanding of tightly focused beams by making analogies with fluid dynamics and with two-dimensional
magneto- and electrostatics. For this, a two-dimensional Helmholtz decomposition of the transverse electric
field components in the transverse plane [1] is key. The Helmholtz decomposition allows the generalization of
the notion of ‘radial’ and ‘azimuthal’ polarization in the following way: radial polarization corresponds to an
electric field that is ‘curl-free’ in the transverse plane—which as we shall see can be interpreted as a flow solely
due to sinks and sources without vorticity—and is the part of the field that gives rise to the longitudinal
polarization. An azimuthally polarized electric field is ‘divergence-free’ in the transverse plane—analogous with a
flow solely due to vorticity without any sinks or sources—and does not give rise to any longitudinal electric field
component. Employing those polarization states turns out to be very useful for computing numerically exact
solutions to Maxwell’s equations with structured electric field components, and moreover facilitates an intuitive
understanding of tightly focused vector beams.
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The paper is organized as follows. In section 2 we introduce the nomenclature, present the equations of
motion, and detail the connection between radially and azimuthally polarized fields, and curl- and divergence-
free solutions in the transverse plane. In section 3 we draw analogies with electrostatics, magnetostatics and fluid
dynamics, hence presenting intuitive interpretations of fields that are ‘divergence-free’ and ‘curl-free’ in the
transverse plane. Finally, in section 4 we present several intuitive examples to illustrate the analogies and convey
an appreciation of the concept of generalized radial and azimuthal polarization states. Starting with basic
Laguerre—Gaussian (LG) modes, we show constructions of complex random and topological beams.

2.Model

The three electric field components of a tightly focused monochromatic beam (frequency w, wavelength A = 27
¢/w, vacuum light velocity ¢) in free space are described by

sz(rJJ Z) + kgE(Ila Z) =0, (1)

V- E(I‘J_, Z) = VJ_ . EJ_ + 8ZEZ = 0. (2)
We have introduced k¢ = w?/c? = (2/\)?, the transverse coordinates r;, = (x, y), and the transverse electric
field components E |, = (E,, E,). In what follows, we consider the wavelength A to be a fixed scaling parameter to
equation (1). Note that E represents the complex amplitude vector of the beam; the full electric field has an
additional trivial time-dependence exp(—iwt) that is omitted here.
For a given amplitude vector in the focal plane’ Ef(r,) = E(r,,z = 0), the propagation in the positive z
direction can be easily computed in the transverse spatial Fourier domain as

Bk, 2) = B (k)etk00z, 3)

where k, (k) = k¢ — k? andk, = (k,, k,); the symbol ~ denotes the Fourier transform with respecttor . It
is important to note that E' cannot be arbitrarily prescribed in all three components. We use a two-dimensional
Helmbholtz decomposition to depict the most general expression for the two transverse components, as [1]

£ [0xV(rD) 0 1\[0W(r)
EL(TL) = _(8},V(rl)] + (_1 O)(@;,W(I‘L))’ (4)

where V (r ) and W (r|) denote arbitrary (sufficiently well behaved) scalar potentials. The first term, which we
denote EfiV = —V, V, corresponds to a field that is curl-free in the transverse two-dimensional plane, that is,

V. x E%Y = 0. The second term we denote E{"Y = (0,W, —0,W),which gives rise to a divergence-free field in
the transverse two-dimensional plane,” thatis, V, - E}" = 0. The longitudinal electric field component E, is
therefore coupled solely to E;Y, and together with the potential Vit obeys a Poisson equation

ALV (r) = 0.E|,—o(rD). (5)

Because the z dependence of E, is known from equation (3), E/ can be readily obtained in Fourier space from

A . Af
ki V() = ik (kD E; (k). (6)
For given potentials Vand W the full solution can therefore be written in transverse Fourier space as
—k,
_ ky
Bk, 2) =i kj V) + [ =k, |W k) [eiketez, @)
= 0
kz (kJ_)

Hence, the potential V generates the electric field E, the three vector components of which are in general
nonzero. By way of contrast, the potential W generates the electric field E", the longitudinal component of
which vanishes (E) = 0). For reasons which become clear in section 4.1 we will call " radially polarized, and
E" azimuthally polarized. Other polarization states imply certain conditions on the potentials Vand W:
transverse linear polarization, with o E, = (1 — o) E,with0 < o < 1,requires

[aky — (1 — @)k, 1V (k) = [ak, + (1 — @)k JW (k)); ®)

> Any other z = constant plane could also be used.

6 . . C . . . L.
The electric field in vacuum always fulfills V - E = 0. Hence, the restriction ‘in the transverse two-dimensional plane’ is crucial in the
present context.
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Table 1. Analogy with electrostatics in two dimensions.

Electrostatics (2D) W = 0solutions
Charge: p(x, ) —0,E,|,—o
Curl-free: VL xE; =0 V. x EtV =0
Field: E. =-V.o EfYV = -wv
Poisson-eq.: A =— pxy) AV = 0,E,|,—o

and transverse circular polarization, with E, = =+ iE,, requires
Vik) = +iW (k). ©)

These definitions do not involve the longitudinal component E,, which is why they are termed transverse. From
equations (8) and (9), the well-known fact that any nonzero linearly or circularly polarized field necessarily gives
rise to a longitudinal electric field component becomes immediately clear; in these cases Vis nonzero and hasa
nontrivial spatial dependence, and hence equation (5) gives rise to a nonzero E,. Throughout this paper, we will
refer to these transverse polarization states when we mention linear and circular polarization. We note, however,
that in the definitions for linear and circular polarization involving all three electric field components (see, e.g.
[11]) both cases would be elliptically polarized.

Before we consider analogies and interpretations of the expressions found, we would like to connect our
approach to the respective literature. The generating potentials for tightly focused vector beams were formulated
in[11, 13]: given a scalar solution W to the scalar Helmholtz equation, we can write down the transverse
magnetic polarized field (TM polarization) as B o (9, ¥, —0,V, 0), and the associated electric field reads
E x (0,0,9, 0,0,¥, — 02V — ai\If). Hence, a TM beam corresponds to a field E with V oc 9,¥ in our
nomenclature. The transverse electric polarized field (TE polarization) can be readily obtained via the dual
transformation E — ¢Band B — —E /¢, corresponding to a field E" with W o< ¥ in our nomenclature.
However, the notations TM and TE polarization are usually used in the context of two-dimensional systems with
translational invariance in one direction (Fresnel reflection, waveguides, etc.), and thus we do not adopt them
here. Moreover, this paper focuses primarily on the electric field E and henceforth we will not discuss the
magnetic field B. An experimental visualization of the structures presented in this work would entail some form
of atom-light interactions, and it is well known that the electric field dominates the magnetic field when
interacting with charges in a medium (see, e.g. [14]).

3. Interpretations and analogies

Let us now interpret the equations from the last section and lay out analogies with two-dimensional electro- and
magnetostatics and fluid dynamics.

3.1. Curl-free fields produced by potential V
We first consider fields E" that are curl-free in the transverse plane, that is, fields obtained when W = 0. The aim
is to understand how the transverse electric field components E:V relate to the longitudinal component E; .
Equation (5) represents a Poisson equation in two dimensions for the potential V(x, ), the solution of which in
transverse Fourier space is given by equation (6). The source term for this Poisson equation is given by 0,E,|,—o,
which depends on the transverse coordinates r| only.

The source term 0,E,|,— involves the longitudinal derivative, and not the component EZf directly. However,
making use of equation (3) in transverse Fourier space we can approximate the source term to lowest order as

K

2
0.E.l.—o(k) = ik, () E; (k) & ikoE; (ko) + (’)( kl), (10)

thereby disposing of this derivative term. Equation (10) is of course only a rough estimate, with an error that
grows with the degree of the light’s non-paraxiality. It nevertheless gives an idea of the qualitative behavior of Ef,
as will be illustrated in section 4.

To see the analogy with two-dimensional electrostatics, we must simply identify — 0, E,|,—, with a charge
density p(x, y). The transverse electric field components E%" then follow from the same equations as the two-
dimensional electrostatic field E (x, y), as summarized in table 1.

There is, however, a subtlety related to this analogy requiring comment. The optical field amplitude E is
complex-valued, and the full electric field has a temporal dependence that is hidden in this representation,
unlike the two-dimensional electrostatic field which is real-valued and time-independent. Thus, in general, we
must separate the real and imaginary parts of E and solve two ‘electrostatic’ problems.

3
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Table 2. Analogy with magnetostatics in two dimensions.

Magnetostatics with J$ = J3(r))e, V = 0Osolutions
Current: toJs = OxB) — 0,B; O.Ef — 0,Ef
Div.-free: V. B, =0 v, - Efiw —0
Field: BY = (9,AS, —0:AS) EYY = (0,W, —9.W)
Poisson-eq.: ANA; = —pls AW= @E; - 8XE§

3.2. Divergence-free fields produced by potential W

Here we are interested in solutions E" that are divergence-free in the transverse plane (V = 0, and consequently
EY = 0). The potential W can be interpreted as the longitudinal component of a vector potential, that is,

EfW = V x We,. Then, by taking the curl of this equation, we get

AW () = 9,E{(r) — OxE}(rD), (11)

a Poisson equation for the potential W.
This leads to a straightforward analogy with magnetostatics’. If we identify the potential W with the only
nonzero component A} of a magnetic vector potential

A (rL) = AZS (ri) €z (12)

the induced static magnetic field BS = V x A° can be associated with E5". The static current density follows
from V x B® = p,]J*, and flows perpendicular to the (x,y) plane under consideration. Hence, J; is the only
nonzero component, and corresponds to the negative source term in equation (11). The complete magnetostatic
analogy is summarized in table 2.

A similar remark as given above concerning the complex-valued optical field amplitude applies, in that two
real-valued magnetostatic problems may need to be solved to describe one curl-free optical field. Furthermore, it
is important to note that this represents a formal analogy only; the analog magnetic field B® must not be confused
with the magnetic field B of the vector beam (see also the discussion at the very end of section 2).

3.3. Fields produced by both potentials Vand W

In the most general situation, both potentials V.and W are nonzero. In this case the optical field

Ef = EYV + E®W hasaperfect analogy in fluid dynamics [15]. For a fluid with density o and flow velocity field
u, conservation of mass dictates the continuity equation

Oro(r, t) + V- [o(x, u(r, )] = 0. 13)

We consider alayer of this fluid ina z = constant plane, e.g. z = 0, with in- and outflow gu, into the layer. We
denote the flow velocity field in this layer u'(r;) = u(r;, z = 0). In the stationary situation (9,0 = 0), and
furthermore assuming homogenity and incompressibility (Vo = 0), we find that

Vi - ul(r) = —0,u,l,—o(r)). (14)

Equation (14) is identical to equation (2) if we identify u', with E!, and we write u} = u'f + u}%, where u} is

curl-freeinthez = O plane (V, x u}f = 0),and u}¥ divergence-free (V, - u}4f = 0).

The analogy between u’; and E*Y follows immediately: the curl-free velocity field u}* can be written as the
negative gradient of the so-called velocity potential ¢, and the spatial in- and outflow rate J,u,|,—¢ actsasa
source term in the Poisson equation for the velocity potential, as shown in table 3.

Following [15], let us now turn towards the divergence-free (two-dimensional) velocity field u}%', which

obeys the continuity equation

L,cf Lcf
L L

Beuy ' (x1) + Oyuy ¥ (r) = 0. (15)

This implies that the differential dy) = u>¥dy — u;’df dx is exact, and the scalar stream function 1 can be found
(up to a constant) as line integral from some reference point O to a given point P

P(P) — Y(O) = fo " ay = fo "ty - uy 4 dx. (16)

In particular any integration curve joining the two points yields the same result”. In fluid dynamics, the stream
function characterizes the flow velocity quite intuitively, as already suggested by its name. The ‘flux’ across a

We follow the common terminology which labels magnetic fields of stationary currents as magnetostatic, even though time inversion
symmetry is violated.

8 . . .
We consider a simply connected region.
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Table 3. Analogy with curl-free velocity field flow.

Fluid dynamics (2D) W = 0solutions
Sources and sinks: O,uz),—o 8,E,|,—o
Curl-free: V. xu =0 V. xEfV=0
Field: uif =-Vig  EfV=-WV
Poisson-eq.: AL ¢ = O,uy),—g AV = 8,E|,_o

Table 4. Analogy with divergence-free velocity field flow.

Fluid dynamics (2D) V = 0solutions
Vorticity: Q= ('Lu} — 8yui BxEyf — OYEJE
Div.-free: Vv, - ulidf =0 Vv - Efiw =0
Field: i = (9,9, —0,1) EfY = O,W, —0W)
Poisson-eq.: Ay =—-Q AW = @E,f — afo

closed curve, thatis, P = O, is zero. Since the ‘flux’ across any curve joining the two points P and O depends
only on the values of ¢ at these two points, it is clear that ¢ is constant along a streamline.
In fluid dynamics, one commonly defines the vorticity as

w=Vxu = (8xuyl — 8yu}c)ez = Qe,. (17)

The vorticity vector is oriented perpendicular to our plane of interest, and its nonzero component €2, together
with the stream function 1), obeys a Poisson equation:

Ay(r) = —Q(ry). (18)
Hence, E" can be interpreted as the divergence-free velocity field u}% of a two-dimensional incompressible
fluid, which is composed of vortices only and does not contain sources or sinks. The potential W must be
associated with the fluid stream function ) determined by the longitudinal component €2 of the vorticity w. The
full analogy is summarized in table 4.

In summary, we note that two-dimensional incompressible fluid dynamics permits coverage of the cases of
both curl- and divergence-free fields (V= 0 and W = 0, respectively), as shown in tables 3 and 4, and thus
represents a unified analogy. One must bear in mind, however, that in fluid dynamics the flow velocity field u is
real valued, and so in general two fluid problems are necessary to represent one complex optical field.

4. Examples

We now present several intuitive examples to illustrate our findings, highlighting the concept of generalized
radial and azimuthal polarization, and exploiting the aforementioned analogies to construct numerically exact
vector beams.

There are two general remarks to be made before prescribing any potential or field components. Firstly, the
relevant quantities must not contain any evanescent amplitudes, that is, in the transverse Fourier domain k; all
fields and potentials must be zero for k3 > k. Otherwise, equation (3) gives an exponentially growing solution
for negative z, which renders it unphysical in the bulk. Therefore, in the examples that follow we systematically
apply the filter function

1 2 2
exp| ————— | for ki < k
Hi, (k) = WXGK — ko)’ o (19)
0 for kI > k¢

to these quantities. Secondly, equation (2) implies that Ezf (k; = 0) = 0 for solutions propagating in the z
direction. This is automatically fulfilled when EZf (or 0,E,|,—0) is computed from a given potential V. However, if
EZf (or 0,E,|,—o) is prescribed, special care must be taken. A suitable filter function is then

Hy(k) = 1 — e GM, (20)

which we have applied in the examples below when needed.
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Figure 1. A real-valued Gaussian potential V o< exp(—2r{ /\2) produces a radially polarized beam. The transverse electric field E" is
indicated by arrows. The induced field components and the ‘charge density’ — 0, E,|,—( are shown on the right.

4.1. Radial and azimuthal polarization

Let us first consider the simplest examples of bell-shaped Vand W potentials, producing classic radially and
azimuthally polarized vector beams, respectively. In terms of LG profiles, we therefore take LG (r,), that s, a
simple Gaussian, fixing its width to 0 = \/2. As explained above, we must filter the potentials in the transverse
Fourier domain by multiplying them by Hy, in order to remove evanescent waves.

4.1.1. Gaussian ‘electrostatic potential’ V

Given that we use the constraint W = 0, and V'is chosen to be a real-valued function, we require only the real
parts of E*V and 9, E,|,—o, and the imaginary part of E}. We therefore depict these components only in figure 1,
which displays the resulting radially polarized beam. It follows straightforwardly that we get two dipole-like light
distributions in the transverse electric field components from such a bell-shaped ‘electrostatic potential’ V.
Going further with this analogy, the ‘charge density’ —,E,|,—q oc (1 — 2r{ /X)exp(—2r? /)?) inducing sucha
potential consists of a positive hump and a negative ring. The shape of this ‘charge density’ is very close to the
longitudinal component E', which justifies the estimation given by equation (10).

4.1.2. Gaussian ‘magnetic vector potential’ W

In order to produce an azimuthally polarized vector beam, we simply let Wbe the real-valued Gaussian, and set
V = 0. Figure 2 shows that the vector field E" is tangential to the contour lines of W. This is exactly what one
would expect from the magnetostatic analogy, where W corresponds to the longitudinal component A; of the
magnetic vector potential. We do not depict the static current density J; that would generate such a vector
potential and respective magnetostatic field. However, its profile has exactly the same form as the ‘charge
density’ —0,E,|,—¢ in figure 1: a positive bell-shaped current density at the center, surrounded by a negative ring-
like return current.

4.1.3. Circularly polarized vortex beam

In section 2, we discussed how to choose the potentials Vand Wsuch that the transverse fields are circularly
polarized, namely £iW = V. Hence, complex superposition of the fields shown in figures 1 and 2 should give a
circularly polarized beam. In figure 3 we display the resulting transverse field components E! and E)f ,which are

indeed two singly charged vortices. The corresponding longitudinal electric field component E is not shown,
because it is the same as that shown in figure 1.

This rather straightforward construction of circularly polarized beams works for any pair of generalized
radially and azimuthally polarized beams with £iW = V. The motivation for this consideration stems from the
fact thatin such an arrangement one has a beam that is both linearly (the longitudinal electric field component)
aswell as circularly polarized (the transverse polarization components). This could play an important role for
imprinting structures onto matter, since the longitudinal electric field component could drive a different
transition to the transverse electric field components.
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Figure 2. A real-valued Gaussian potential W oc exp(—2rf /) produces an azimuthally polarized beam. The purely transverse
electric field E*Y is indicated by arrows. The induced field components are shown on the right (Ef = 0).
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Figure 3. Transverse field components of a circularly polarized single charge vortex beam produced by complex superposition of
figures 1 and 2, thatis, V = iW oc exp(—2r? /)).

4.2. Longitudinal vortex beam

Let us now use our previous findings to construct a beam featuring a singly charged vortex in its longitudinal
component Ef. Because such a vortex is composed of two orthogonal dipoles in the real and imaginary parts, we
may start with a dipole. Moreover, we want to make use of the fluid dynamics analogy, and prescribe a real-
valued dipole in the ‘spatial in- and outflow rate,” 9,E,|,—o o< x exp(—2r? /)?). The induced velocity potential is
easily obtained in the transverse Fourier domain as

™% oc Hy ky exp(— Nk2/8) /K2, Q1)

where we apply the filter function Hy, to remove any evanescent waves. The resulting potential in position space
is shown in figure 4, together with all electric field components. In terms of the fluid dynamics analogy, where we
interpret the transverse field as the flow velocity, a very intuitive picture arises: peak and trough of the dipole in
0,E,|,—¢ actlike source and sink for the ‘flow.” With the approximation equation (10), even the longitudinal
component E! by itself can be identified with the source of the ‘transverse flow.”

In principle, we can now construct a beam with the desired singly charged vortex in its longitudinal
component by employing the potential V (x, y) = ¢4 (x, y) & ipdiPole(y, x), that is, by adding ¢dirole
rotated by £7/2 as the imaginary part of V. The resulting beam is radially polarized in the generalized sense

7
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Figure 4. A real-valued dipole is prescribed in 0, E,|,—o, and the resulting potential V = ¢4iPol¢ (see text for details) is used to compute
the electric field components.
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Figure 5. The real-valued potential W (x, y) = —¢%P°(y, x) (see text for details) produces Efw = —E;’V of figure 4.

introduced earlier, because W = 0. Itis, however, not the easiest realization of a longitudinal vortex, as we will
see below.

The transverse electric field components EXY and E)f’v shown in figure 4 appear to be relatively intricate, and
so the natural question arises whether it is possible to simplify the ‘transverse flow’ by adding a divergence-free
velocity field through an appropriate stream function . The main flow is clearly in the positive x direction, and
so we may choose the stream function ¢ such that the y component of the total flow velocity is zero. Equation (8)
tells us that 1} = —k, &dlpde /k, will suffice, which translates into 1 (x, y) = —¢P°(y, x) in position space.
And indeed, figure 5 confirms that Eyf’W = —Eyf’v, that is, the total ‘transverse flow’ is parallel to e,.

Hence, the potentials V (x, y) = ¢34 (x, y) £ ip3P°(y, x)and W (x, y) = —pdP°l(y, x) £
igdirole (x, y) produce a longitudinal vortex as well, but with much simpler transverse field components. Figure 6
shows the resulting optical fields (for the + sign), and it even turns out that transverse components are bell-
shaped. Moreover, the transverse field is circularly polarized, as W = iV. We have therefore constructed the
solution reported in [16], where a longitudinal vortex was achieved by tightly focusing a circularly polarized bell-
shaped light distribution.

Itis important to note that the choice of the ‘stream function’ Wis the degree of freedom one has when only
the longitudinal electric field component is prescribed. In the present example, we used W to simplify the
transverse electric field components. In section 4.4, we will demonstrate that W can be used as well to engineer
certain topological properties of the transverse fields.
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Figure 6. A bell-shaped circularly polarized transverse field produces a singly charged vortex in E.. The off-axis sign flips in the phase
plot are due to the filter function Hy, (see text).
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Figure 7. A random profile is prescribed in J (EZf ) (see text for details). The real-valued ‘charge density’ —0,E,|,— looks very similar.
Corresponding potential Vand transverse field components are shown as well.

4.3.Random beam

Let us prescribe a rather complicated longitudinal field component Ef—a random beam, as shown in figure 7.
For this case, we simply consider a super-Gaussian beam profile in EZf , exp(—r'%/(10\)'?), and multiply the
latter with complex random numbers at each point of the numerical grid. The complex-valued random
numbers are constructed as f = & exp(27i&,), with real-valued random numbers & , € [0, 1]. The resulting
beam profile is then multiplied in transverse Fourier space by both filter functions Hy, and Hy, as introduced
above. In order to facilitate comparison with previous figures, we choose to show ZT(EZf ), such that all other
derived quantities in figure 7 are real valued. Furthermore, we plot only the center part of the beam.

We now make several important remarks regarding figure 7. First of all, the ‘charge density’ — 0, E,|,—o, to
once more take the electrostatic analogy, features a pattern very close to that prescribed in J(E.). This means
that even here the approximation equation (10) yields insight, and the longitudinal component Ef can be
identified directly as a ‘charge density.” Moreover, figure 7 shows very nicely how the landscape of the
‘electrostatic potential” 93(V') induced by TJ(EZf ) ‘shapes’ the transverse electric field components %(Efiv). In
contrast to the previous examples, the peaks and troughs of J(E) cannot be directly related to the peaks and
troughs of 2R(V). This can be understood by thinking of V'as being a convolution between the Green’s function
of the two-dimensional Poisson equation (which is long-ranged) and the ‘charge density’: the convolution
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Figure 8. Two linked trefoils in different components of the electric field: the blue line represents the vortex line in E,, the black line
the vortex line in E,. The corresponding (semi-infinite) profiles in Ef are shown in the upper panels.

cannot resolve the delicate structure of the source term and simply smears it out. This also explains why the
structures in the transverse field components are larger than those in E.

4.4. Linked trefoils in transverse and longitudinal components
We discussed the remaining degrees of freedom when fixing the longitudinal electric field component E! in
section 4.2, where they were exploited to simplify the transverse profiles. In principle, nothing prevents us from
prescribing two field components, say E! and Eyf ,in the focal plane. This allows us to engineer both transverse
and longitudinal components, and the potentials Vand W determine the complete optical field via equation (7).

Here, we will demonstrate the tremendous possibilities of creating customized vector beams by creating
knotted vortex lines in the longitudinal and one transverse electric field component (E,). Apart from optics,
knotted and linked vortex lines have also recently been studied in a range of different contexts, such as classical
fluid dynamics [17], excitable media [18—21], nematic colloids [22—24] and superfluids such as Bose—Einstein
condensates [25, 26]. In the present context, optical vortex knots [1, 27, 28] can be used to imprint topological
light structures onto the latter [29, 30].

The topology of the two knots we envisage is sketched in figure 8: the vortexlines of the E, and E,
components form two linked trefoil knots. To create such a vector beam, the respective components can be
prescribed in the focal plane as

Ej = 5LGgy — 7LGg; + 40LGgy — 18LGgj — 30LG3, (22)
Ef = 8LGJ; — 18LGJ; + 40LG}; — 18LG; — 34LGY, (23)

with o, = 0.42Xand 0, = 0.5\ The formulas of equation (23) were obtained according to [27, 30], with
coefficients adapted to the non-paraxial situation [1]. We filter in transverse Fourier space with Hy, and H,
where the latter is only necessary for E_.

Even though at first glance the two linked vortex knots in figure 8 may seem somewhat contrived, they
highlight that vortex lines in different electric field components can be chosen to be arbitrarily close without
reconnecting. This is not possible for vortex lines in a single electric field component, which could be of
importance when considering inscribing these vortex lines onto matter. Furthermore, such a topology
demonstrates the tremendous possibilities of structured light.

The transverse electric field component Ef is fully determined by equation (23). Even though Ef and Eyf

have finite support, E! is nonzero on a semi-infinite interval and thus impractical (see figure 8). Such semi-
infinite field components occur when at least one of the other components integrated over the respective

variable does not vanish: in our case, EAyf,Z (kx = 0, k) = 0.Nevertheless, this problem of impractical field
components can be circumvented by simply attenuating the beam with, e.g. a sufficiently wide super-Gaussian
profile, without affecting the propagation of the components of interest close to the optical axis. Additional
satellite spots will appear far from the axis, but we have checked that for a super-Gaussian exp[—r'’/(101)!°]
those spots do not interfere with the linked vortex knots.
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5. Conclusions

In this paper we have presented a systematic route to construct numerically exact vector beams. By means of a
Helmholtz decomposition of the transverse electric field components in a plane transverse to the optical axis, we
show that the full electromagnetic field can be generated by two scalar potentials Vand W. The potential V
produces ‘curl-free’ (in the transverse plane) fields with a nonzero longitudinal component. The potential W
produces ‘divergence-free’ (in the transverse plane) fields with zero longitudinal component. We suggest
naming these generalized radial and azimuthal polarization states, respectively. The decomposition of the optical
field into generalized radial (W = 0) and azimuthal (V = 0) polarization states allows us to draw several analogies
with other physical systems, that is, electrostatics, magnetostatics, and fluid dynamics. By means of these
analogies, it is possible develop an intuitive understanding of the interrelation between longitudinal and
transverse electric field components, and the scalar potentials assume a ‘physical meaning’. Finally, we presented
several examples to illustrate the proposed decomposition and analogies. Besides rather simple configurations
such as longitudinal vortices, we demonstrated arbitrary random beams as well as sophisticated topological light
configurations. In all these examples, the above analogies were used to explain features in the respective electric
field components, or even to conceive the beam configurations.

We believe that our findings will broaden the range of accessible vector beams extensively and trigger further
theoretical and experimental investigations involving structured light.
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