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Abstract. Clique-width is an important graph parameter due to its algorithmic and structural
properties. A graph class is hereditary if it can be characterized by a (not necessarily finite) set H of
forbidden induced subgraphs. We study the boundedness of clique-width of hereditary graph classes
closed under complementation. First, we extend the known classification for the |H| = 1 case by
classifying the boundedness of clique-width for every set H of self-complementary graphs. We then
completely settle the |H| = 2 case. In particular, we determine one new class of (H,H)-free graphs of
bounded clique-width (as a side effect, this leaves only five classes of (H1, H2)-free graphs, for which
it is not known whether their clique-width is bounded). Once we have obtained the classification of
the |H| = 2 case, we research the effect of forbidding self-complementary graphs on the boundedness
of clique-width. Surprisingly, we show that for every set F of self-complementary graphs on at
least five vertices, the classification of the boundedness of clique-width for ({H,H} ∪ F)-free graphs
coincides with the one for the |H| = 2 case if and only if F does not include the bull.
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1. Introduction. Many graph-theoretic problems that are computationally hard
for general graphs may still be solvable in polynomial time if the input graph can be
decomposed into large parts of “similarly behaving” vertices. Such decompositions
may lead to an algorithmic speedup and are often defined via some type of graph
construction. One particular type is to use vertex labels and to allow certain graph
operations, which ensure that vertices labeled alike will always keep the same label and
thus behave identically. The clique-width cw(G) of a graph G is the minimum number
of different labels needed to construct G using four such operations (see section 2 for
details). Clique-width has been studied extensively both in algorithmic and structural
graph theory. The main reason for its popularity is that, indeed, many well-known
NP-hard problems [16, 27, 38, 43], such as Coloring and Hamilton Cycle, become
polynomial-time solvable on any graph class G of bounded clique-width, that is, for
which there exists a constant c, such that every graph in G has clique-width at most c.
Graph Isomorphism is also polynomial-time solvable on such graph classes [32].
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1108 BLANCHÉ ET AL.

Having bounded clique-width is equivalent to having bounded rank-width [42] and
having bounded NLC-width [36], two other well-known width parameters. However,
despite these close relationships, clique-width is a notoriously difficult graph parame-
ter, and our understanding of it is still very limited. For instance, no polynomial-time
algorithms are known for computing the clique-width of very restricted graph classes,
such as unit interval graphs, or for deciding whether a graph has clique-width at
most 4.1 In order to get a better understanding of clique-width and to identify new
“islands of tractability” for central NP-hard problems, many graph classes of bounded
and unbounded clique-width have been identified; see, for instance, the Information
System on Graph Classes and their Inclusions [26], which keeps a record of such graph
classes. In this paper we study the following research question:

What kinds of properties of a graph class ensure that its clique-width is bounded?

We refer to the surveys [33, 37] for examples of such properties. Here, we con-
sider graph complements. The complement G of a graph G is the graph with vertex
set V (G) and edge set {uv | uv /∈ E(G)} and has clique-width cw(G) ≤ 2 cw(G) [17].
This result implies that a graph class G has bounded clique-width if and only if the
class consisting of all complements of graphs in G has bounded clique-width. Due
to this, we initiate a systematic study of the boundedness of clique-width for graph
classes G closed under complementation, that is, for every graph G ∈ G, its comple-
ment G also belongs to G.

To get a handle on graph classes closed under complementation, we restrict our-
selves to graph classes that are not only closed under complementation but also under
vertex deletion. This is a natural assumption, as deleting a vertex does not increase
the clique-width of a graph. A graph class closed under vertex deletion is said to be
hereditary and can be characterized by a (not necessarily finite) set H of forbidden
induced subgraphs. Over the years many results on the (un)boundedness of clique-
width of hereditary graph classes have appeared. We briefly survey some of these
results below.

A hereditary graph class of graphs is monogenic orH-free if it can be characterized
by one forbidden induced subgraph H, and bigenic or (H1, H2)-free if it can be char-
acterized by two forbidden induced subgraphs H1 and H2. It is well known (see [25])
that a class of H-free graphs has bounded clique-width if and only if H is an induced
subgraph of P4.2 By combining known results [3, 7, 9, 10, 11, 12, 13, 19, 20, 23, 41]
with new results for bigenic graph classes, Dabrowski and Paulusma [25] classified the
(un)boundedness of clique-width of (H1, H2)-free graphs for all but 13 pairs (H1, H2)
(up to an equivalence relation). Afterwards, five new classes of (H1, H2)-free graphs
were identified by Dabrowski, Dross, and Paulusma, [18] and two others were iden-
tified by Dabrowski, Lozin, and Paulusma [22] and Bonamy et al. [4], respectively.
Other systematic studies were performed for H-free weakly chordal graphs [7], H-free
chordal graphs [7] (two open cases), H-free triangle-free graphs [22] (two open cases),
H-free bipartite graphs [24], H-free split graphs [6] (two open cases), and H-free
graphs, where H is any set of 1-vertex extensions of the P4 [8] or any set of graphs on
at most four vertices [9]. Clique-width results or techniques for these graph classes
impacted upon each other and could also be used for obtaining new results for bigenic
graph classes.

1It is known that computing clique-width is NP-hard in general [29] and that deciding whether
a graph has clique-width at most 3 is polynomial-time solvable [15].

2We refer to section 2 for all the notation used in this section.
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CLIQUE-WIDTH FOR GRAPH CLASSES 1109

K1,3 K1,3 P1 + P4 P1 + P4 2P1 + P3 2P1 + P3 sP1 sP1

Fig. 1. Graphs H for which the clique-width of (H,H)-free graphs is bounded. For sP1 and sP1

the s = 5 case is shown.

P1 P4 C5 bull

Fig. 2. The four nonempty self-complementary graphs on fewer than eight vertices [44].

Our contribution. Recall that we investigate the clique-width of hereditary
graph classes closed under complementation. A graph that contains no induced sub-
graph isomorphic to a graph in a set H is said to be H-free. We first consider the
|H| = 1 case. The class of H-free graphs is closed under complementation if and only
if H is a self-complementary graph, that is, H = H. Self-complementary graphs have
been extensively studied; see [28] for a survey. From the aforementioned result for
P4-free graphs, we find that the only self-complementary graphs H for which the class
of H-free graphs has bounded clique-width are H = P1 and H = P4. In section 3 we
prove the following generalization of this result.

Theorem 1. Let H be a set of nonempty self-complementary graphs. Then the
class of H-free graphs has bounded clique-width if and only if either P1 ∈ H or P4 ∈ H.

We now consider the |H| = 2 case. Let H = {H1, H2}. Due to Theorem 1 we may
assume H2 = H1 and H1 is not self-complementary. The class of (2P1+P3, 2P1 + P3)-
free graphs was one of the remaining bigenic graph classes, and the only bigenic
graph class closed under complementation, for which boundedness of clique-width
was open. In section 4 we settle this case by proving that the clique-width of this
class is bounded. In the same section we combine this new result with known results
to prove the following theorem, which, together with Theorem 1, shows to what
extent the property of being closed under complementation helps with bounding the
clique-width for bigenic graph classes (see also Figure 1).

Theorem 2. For a graph H, the class of (H,H)-free graphs has bounded clique-
width if and only if H or H is an induced subgraph of K1,3, P1 +P4, 2P1 +P3, or sP1

for some s ≥ 1.

For the |H| = 3 case, where {H1, H2, H3} = H, we observe that a class of
(H1, H2, H3)-free graphs is closed under complementation if and only if either ev-
ery Hi is self-complementary, or one Hi is self-complementary and the other two
graphs Hj and Hk are complements of each other. By Theorem 1, we only need to
consider (H1, H1, H2)-free graphs, where H1 is not self-complementary, H2 is self-
complementary, and neither H1 nor H2 is an induced subgraph of P4. The next two
smallest self-complementary graphs H2 are the C5 and the bull (see also Figure 2).
Observe that any self-complementary graph on n vertices must contain 1

2

(
n
2

)
edges

and this number must be an integer, so n = 4q or n = 4q + 1 for some integer q ≥ 0.
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1110 BLANCHÉ ET AL.

X1 X2 X3 X4 X5

X6 X7 X8 X9 X10

Fig. 3. The ten self-complementary graphs on eight vertices [44].

There are exactly ten nonisomorphic self-complementary graphs on eight vertices [44]
and we depict these in Figure 3.

It is known that split graphs or, equivalently, (2P2, 2P2, C5)-free graphs have un-
bounded clique-width [41]. In section 5 we determine three new hereditary graph
classes of unbounded clique-width, which imply that the class of (H,H,C5)-free
graphs has unbounded clique-width if H ∈ {K1,3 +P1, 2P2, 3P1 +P2, S1,1,2}. By com-
bining this with known results, we discovered that the classification of boundedness
of clique-width for (H,H,C5)-free graphs coincides with the one of Theorem 2. This
raised the question of whether the same is true for other sets of self-complementary
graphs F 6= {C5}. If F contains the bull, then the answer is negative: by Theorem 2,
both the class of (S1,1,2, S1,1,2)-free graphs and the class of (2P2, C4)-free graphs have
unbounded clique-width, but both the class of (S1,1,2, S1,1,2,bull)-free graphs and even
the class of (P5, P5,bull)-free graphs have bounded clique-width [8]. However, also in
section 5, we prove that the bull is the only exception (apart from the trivial cases
when H ′ ∈ {P1, P4} which yield bounded clique-width of (H,H,H ′)-free graphs for
any graph H).

Theorem 3. Let F be a set of self-complementary graphs on at least five vertices
not equal to the bull. For a graph H, the class of ({H,H}∪F)-free graphs has bounded
clique-width if and only if H or H is an induced subgraph of K1,3, P1 +P4, 2P1 +P3,
or sP1 for some s ≥ 1.

In section 6 we discuss a number of consequences of our results, in particular for
the Coloring problem, and discuss directions for future work.

2. Preliminaries. Throughout our paper we consider only finite, undirected
graphs without multiple edges or self-loops. Below we define further graph terminol-
ogy.

Given two graphs G and H, an isomorphism from G to H is a bijection f :
V (G) → V (H) such that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). If such an
isomorphism exists, we say that G and H are isomorphic.

The disjoint union (V (G)∪ V (H), E(G)∪E(H)) of two vertex-disjoint graphs G
and H is denoted by G+H and the disjoint union of r copies of a graph G is denoted
by rG. The complement of a graph G, denoted by G, has vertex set V (G) = V (G)
and an edge between two distinct vertices if and only if these two vertices are not
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CLIQUE-WIDTH FOR GRAPH CLASSES 1111

adjacent in G. A graph G is self-complementary if G is isomorphic to G. For a
subset S ⊆ V (G), we let G[S] denote the subgraph of G induced by S, which has
vertex set S and edge set {uv | u, v ∈ S, uv ∈ E(G)}. If S = {s1, . . . , sr}, then, to
simplify notation, we may also write G[s1, . . . , sr] instead of G[{s1, . . . , sr}]. We use
G \ S to denote the graph obtained from G by deleting every vertex in S, that is,
G \ S = G[V (G) \ S]; if S = {v}, we may write G \ v instead. We write G′ ⊆i G to
indicate that G′ is an induced subgraph of G.

A graph G = (V,E) is empty if V = E = ∅, otherwise it is nonempty. The
graphs Cr, Kr, K1,r−1, and Pr denote the cycle, complete graph, star, and path on r
vertices, respectively. The graphs K3 and K1,3 are also called the triangle and claw,
respectively. A graph G is a linear forest if every component of G is a path (on at
least one vertex). The graph Sh,i,j , for 1 ≤ h ≤ i ≤ j, denotes the subdivided claw,
that is, the tree that has only one vertex x of degree 3 and exactly three leaves, which
are of distance h, i, and j from x, respectively. Observe that S1,1,1 = K1,3. We let S
be the class of graphs each component of which is either a subdivided claw or a path
on at least one vertex.

For a set of graphs H, a graph G is H-free (or (H)-free) if it has no induced
subgraph isomorphic to a graph in H. If H = {H1, . . . ,Hp} for some integer p, then
we may write (H1, . . . ,Hp)-free instead of ({H1, . . . ,Hp})-free, or, if p = 1, we may
simply write H1-free.

For a graph G = (V,E), the set N(u) = {v ∈ V | uv ∈ E} denotes the neighbor-
hood of u ∈ V . A component in G is trivial if it contains exactly one vertex, otherwise,
it is nontrivial. A graph is bipartite if its vertex set can be partitioned into two (pos-
sibly empty) independent sets. A graph is split if its vertex set can be partitioned
into a (possibly empty) independent set and a (possibly empty) clique. Split graphs
have been characterized as follows.

Lemma 1 ([30]). A graph G is split if and only if it is (2P2, C4, C5)-free.

Let X be a set of vertices in a graph G = (V,E). A vertex y ∈ V \ X is
complete to X if it is adjacent to every vertex of X and anticomplete to X if it is
nonadjacent to every vertex of X. Similarly, a set of vertices Y ⊆ V \X is complete
(resp., anticomplete) to X if every vertex in Y is complete (resp., anticomplete) to X.
We say that the edges between two disjoint sets of vertices X and Y form a matching
(resp., comatching) if each vertex in X has at most one neighbor (resp., nonneighbor)
in Y and vice versa. A vertex y ∈ V \X distinguishes X if y has both a neighbor and
a nonneighbor in X. The set X is a module of G if no vertex in V \X distinguishes X.
A module X is nontrivial if 1 < |X| < |V |, otherwise it is trivial. A graph is prime if
it has only trivial modules.

To help reduce the amount of case analysis needed to prove Theorems 2 and 3,
we prove the following lemma.

Lemma 2. Let H ∈ S. Then H is (K1,3 + P1, 2P2, 3P1 + P2, S1,1,2)-free if and
only if H is an induced subgraph of K1,3, P1 + P4, 2P1 + P3, or sP1 for some s ≥ 1.

Proof. Let H ∈ S. First suppose H is an induced subgraph of K1,3, P1 + P4,
2P1 +P3, or sP1 for some s ≥ 1. It is readily seen that H is (K1,3 +P1, 2P2, 3P1 +P2,
S1,1,2)-free.

Now suppose that H is (K1,3 +P1, 2P2, 3P1 +P2, S1,1,2)-free. If H is not a linear
forest then since H ∈ S, it contains an induced subgraph isomorphic to K1,3. We
may assume that H is not an induced subgraph of K1,3, otherwise we are done. In
this case H contains an induced subgraph that is a one-vertex extension of K1,3.
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Since H ∈ S, this means that H contains K1,3 +P1 or S1,1,2 as an induced subgraph,
a contradiction. We may therefore assume that H is a linear forest.

Since H is a linear forest, it is isomorphic to Pi1 +Pi2 + · · ·+Pik for some positive
integers i1 ≥ i2 ≥ · · · ≥ ik. We may assume that i1 ≥ 2, otherwise H = sP1 for
some s ≥ 1. Since H is 2P2-free, it follows that i1 ≤ 4 and, if k ≥ 2, then i2 ≤ 1,
so H has exactly one nontrivial component and that component is isomorphic to P2,
P3, or P4. So H = Ps + tP1 for some s ∈ {2, 3, 4} and t ≥ 0. If s = 4 then t ≤ 1,
since H is (3P1 +P2)-free, in which case H is an induced subgraph of P1 +P4 and we
are done. If s ∈ {2, 3} then t ≤ 2, since H is (3P1 + P2)-free, in which case H is an
induced subgraph of 2P1 + P3 and we are done. This completes the proof.

2.1. Clique-width. The clique-width of a graph G, denoted by cw(G), is the
minimum number of labels needed to construct G by using the following four opera-
tions:

1. creating a new graph consisting of a single vertex v with label i;
2. taking the disjoint union of two labeled graphs G1 and G2;
3. joining each vertex with label i to each vertex with label j (i 6= j);
4. renaming label i to j.

Note that the clique-width of a graph is the maximum of the clique-width of its
components: we can construct each component separately, then take the disjoint
union of the resulting labeled graphs.

A class of graphs G has bounded clique-width if there is a constant c such that
the clique-width of every graph in G is at most c; otherwise the clique-width of G is
unbounded.

Let G be a graph. We define the following operations. For an induced subgraph
G′ ⊆i G (or a vertex set X ⊆ V (G)), the subgraph complementation operation, acting
on G with respect to G′ (resp., X), replaces every edge present in G′ (resp., G[X]) by
a nonedge, and vice versa. Similarly, for two disjoint vertex subsets S and T in G, the
bipartite complementation operation with respect to S and T acts on G by replacing
every edge with one end-vertex in S and the other one in T by a nonedge and vice
versa.

We now state some useful facts about how the above operations (and some other
ones) influence the clique-width of a graph. We will use these facts throughout the
paper. Let k ≥ 0 be a constant and let γ be some graph operation. We say that a
graph class G′ is (k, γ)-obtained from a graph class G if the following two conditions
hold:

1. every graph in G′ is obtained from a graph in G by performing γ at most k
times, and

2. for every G ∈ G there exists at least one graph in G′ obtained from G by
performing γ at most k times.

We say that γ preserves boundedness of clique-width if for every finite constant k and
every graph class G, every graph class G′ that is (k, γ)-obtained from G has bounded
clique-width if and only if G has bounded clique-width. Note that condition 1 is
necessary for this definition to be meaningful, as without it the class of all graphs
(which has unbounded clique-width) would be (k, γ)-obtained from every other graph
class. Similarly, condition 2 is necessary, otherwise every graph class would be (k, γ)-
obtained from the class of all graphs.
Fact 1. Vertex deletion preserves boundedness of clique-width [39].

Fact 2. Subgraph complementation preserves boundedness of clique-width [37].

Fact 3. Bipartite complementation preserves boundedness of clique-width [37].
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As hereditary graph classes are closed under vertex deletion by definition, apply-
ing a vertex deletion to a graph from a hereditary graph class G results in another
graph from G. This means that using Fact 1, it is “safe” to apply a bounded number of
vertex deletions, as this will not only avoid the clique-width changing by “too much,”
but also ensure that the graph under consideration does not leave G. However, this
does not necessarily hold if we instead apply a subgraph complementation or a bipar-
tite complementation, so we must take more care when applying these operations and
using Facts 2 and 3. To ensure this, throughout all our proofs, we only use subgraph
complementations or bipartite complementations for four purposes.

1. We can apply a subgraph complementation to a whole graph G; this results
in the complement G. Fact 2 implies that a class of graphs G has bounded
clique-width if and only if the class of graphs whose complements lie in G has
bounded clique-width.

2. When proving that a class of graphs G has unbounded clique-width, we take
a known class G′ of unbounded clique-width and for every graph G′ ∈ G′ we
show how to use subgraph complementations and bipartite complementations
a bounded number of times to change G′ into a graph G ∈ G. Then Facts 2
and 3 imply that G also has unbounded clique-width.

3. Similarly to purpose 2, when proving that a class of graphs G has bounded
clique-width, we use the properties of graphs in G to show that we can ap-
ply subgraph complementations and bipartite complementations (along with
vertex deletions) to modify an arbitrary graph G ∈ G into a graph G′ that
belongs to some graph class G′ known to have bounded clique-width. As
long as we only use these operations a bounded number of times, Facts 1–3
imply that G must also have bounded clique-width. Note that the obtained
graph G′ is not necessarily in G in this case.

4. Again when proving that a class of graphs G has bounded clique-width, we
use subgraph complementations and bipartite complementations (along with
vertex deletions) to modify an arbitrary graph G ∈ G into the disjoint union
of some induced subgraphs of G that have a simpler structure than G itself.
We can then deal with these simpler induced subgraphs separately. Since G
is closed under taking induced subgraphs, we can make use of properties we
have proved for the class G.

We need the following lemmas on clique-width, the first one of which is easy to
show.

Lemma 3. The clique-width of a graph of maximum degree at most 2 is at most 4.

Lemma 4 ([25]). Let H be a graph. The class of H-free graphs has bounded
clique-width if and only if H ⊆i P4.

Lemma 5 ([40]). Let {H1, . . . ,Hp} be a finite set of graphs. If Hi /∈ S for all
i ∈ {1, . . . , p} then the class of (H1, . . . ,Hp)-free graphs has unbounded clique-width.

Lemma 6 ([17]). Let G be a graph and let P be the set of all induced subgraphs
of G that are prime. Then cw(G) = maxH∈P cw(H).

3. The proof of Theorem 1. We first prove the following lemma, which we
will also use in the proof of Theorem 3.

Lemma 7. If G is a (C4, C5,K4)-free self-complementary graph then G is an in-
duced subgraph of the bull.
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1114 BLANCHÉ ET AL.

Proof. Suppose, for contradiction, thatG is a (C4, C5,K4)-free self-complementary
graph on n vertices that is not an induced subgraph of the bull. Since G is C5-free
and is not an induced subgraph of the bull, it is not equal to P1, P4, C5, or the
bull. As these are the only nonempty self-complementary graphs on fewer than eight
vertices (see Figure 2), G must have at least eight vertices. Since G is C4-free and
self-complementary, it is also 2P2-free, so it is (C4, C5, 2P2)-free. Then, by Lemma 1,
G must be a split graph, so its vertex set can be partitioned into a clique C and
an independent set I. Since G is K4-free and self-complementary, it is also 4P1-free.
Therefore |C|, |I| ≤ 3, so G has at most six vertices, a contradiction. This completes
the proof.

We are now ready to prove Theorem 1. Note that this theorem holds even if H
is infinite.

Theorem 1 (restated). Let H be a set of nonempty self-complementary graphs.
Then the class of H-free graphs has bounded clique-width if and only if either P1 ∈ H
or P4 ∈ H.

Proof. Suppose there is a graph H ∈ H ∩ {P1, P4}. Then the class of H-free
graphs is a subclass of the class of P4-free graphs, which have bounded clique-
width by Lemma 4. Now suppose that H ∩ {P1, P4} = ∅. The only nonempty
self-complementary graphs on at most five vertices that are not equal to P1 and P4

are the bull and the C5 (see Figure 2). By Lemma 7, it follows that every graph in H
contains an induced subgraph isomorphic to the bull, C4, C5, or K4. Therefore the
class of H-free graphs contains the class of (bull, C4, C5,K4)-free graphs, which has
unbounded clique-width by Lemma 5.

4. The proof of Theorem 2. In this section we prove Theorem 2 by com-
bining known results with the new result that (2P1 + P3, 2P1 + P3)-free graphs have
bounded clique-width. We prove this result in the following way. We first prove three
useful structural lemmas, namely, Lemmas 8–10; we will use these lemmas repeat-
edly throughout the proof. Next, we prove Lemmas 11 and 12, which state that if a
(2P1 +P3, 2P1 + P3)-free graph G contains an induced C5 or C6, respectively, then G
has bounded clique-width. We do this by partitioning the vertices outside this cycle
into sets, depending on their neighborhood in the cycle. We then analyze the edges
within these sets and between pairs of such sets. After a lengthy case analysis, we
find that G has bounded clique-width in both these cases. By Fact 2 it only remains
to analyze (2P1 + P3, 2P1 + P3)-free graphs that are also (C5, C6, C6)-free. Next, in
Lemma 13, we show that if such graphs are prime, then they are either K7-free or
K7-free. In Lemma 15 we use the fact that (2P1 + P3, 2P1 + P3)-free graphs are χ-
bounded (that is, their chromatic number is bounded by a function of their clique
number) to deal with the case where a graph in the class is K7-free. Finally, we
combine all these results together to obtain the new result (Theorem 4).

We start by proving the aforementioned structural lemmas. Recall that if X
and Y are disjoint sets of vertices in a graph, we say that the edges between these
two sets form a matching if each vertex in X has at most one neighbor in Y and
vice versa (if each vertex has exactly one such neighbor, we say that the matching is
perfect). Similarly, the edges between these sets form a comatching if each vertex in X
has at most one nonneighbor in Y and vice versa. Also note that when describing
a set as being a clique or an independent set, we allow the case where this set is
empty.
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Lemma 8. Let G be a (2P1 + P3, 2P1 + P3)-free graph whose vertex set can be
partitioned into two sets X and Y , each of which is a clique or an independent set.
Then by deleting at most one vertex from each of X and Y , it is possible to obtain
subsets such that the edges between them form a matching or a comatching.

Proof. Given two disjoint sets of vertices, we say that with respect to these sets,
a vertex is full if it is adjacent to all but at most one vertex in the other set, and it
is empty if it is adjacent to at most one vertex in the other set. If every vertex in the
two sets is full, then the edges between the two sets form a comatching, and if every
vertex in the two sets is empty, then the edges between them form a matching.

Claim 1. Each vertex in X and Y is either full or empty.
If a vertex in, say, X is neither full nor empty, then it has two neighbors and two
nonneighbors in Y , and these five vertices induce a 2P1 + P3 if Y is an independent
set, or a 2P1 + P3 if Y is a clique. This completes the proof of the claim.

To prove the lemma, we must show that, after discarding at most one vertex from
each of X and Y , we have a pair of sets such that every vertex is full or every vertex
is empty with respect to this pair. We note that if a vertex is full (or empty) with
respect to X and Y then it is also full (or empty) with respect to any pair of subsets
of X and Y , respectively, so if we establish or assume fullness (or emptiness) before
discarding a vertex, then it still holds afterwards.

We consider a number of cases.

Case 1. Neither X nor Y contains two full vertices, or neither X nor Y contains two
empty vertices.
By deleting at most one vertex from each of X and Y , we can obtain a pair of sets
where either every vertex is full or every vertex is empty. This completes the proof of
Case 1.

Case 2. |X| ≤ 2 or |Y | ≤ 2.
By symmetry we may assume that |X| ≤ 2. If X is empty or contains exactly one
vertex, the lemma is immediate, so we may assume that X contains exactly two
vertices, say x and x′. Consider the pair of sets {x} and Y . Every vertex in Y is both
full and empty with respect to {x} and Y , and, by Claim 1, x is either full or empty
with respect to {x} and Y . This completes the proof of Case 2.

Case 3. There are vertices x1, x2 ∈ X and y1 ∈ Y such that x1 and x2 are complete
to Y \ {y1}.
In this case, every vertex in Y \ {y1} is adjacent to both x1 and x2, so it cannot be
empty with respect to X and Y . By Claim 1, it follows that every vertex in Y \ {y1}
is full. We may assume that |Y | ≥ 3 (otherwise we apply Case 2). Let y2 and y3 be
vertices in Y \ {y1}. As y2 and y3 are both full with respect to X and Y \ {y1}, all
but at most two vertices of X are adjacent to both y2 and y3. Note that if a vertex x
is adjacent to both y2 and y3 then it must be full with respect to X and Y \ {y1}. If
at most one vertex of X is empty with respect to X and Y \ {y1} then by discarding
this vertex (if it exists) from X and discarding y1 from Y , we are done.

So we may assume that X contains exactly two vertices x3 and x4 that are not
full with respect to X and Y \ {y1} and thus are empty. Suppose that |Y | ≥ 4. Then
there are three full vertices in Y \ {y1} that must each be adjacent to at least one
of x3 and x4. Thus at least one of x3 and x4 has at least two neighbors in Y \ {y1}
contradicting the fact that they are both empty with respect to X and Y \ {y1}.
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Thus we may now assume that |Y | = 3, so Y \{y1} = {y2, y3}. By assumption, x3
and x4 are not full with respect to X and {y2, y3}, so they must have two nonneighbors
in {y2, y3}, i.e., they must be anticomplete to {y2, y3}. Thus y2 has two nonneighbors
in X, so it is empty with respect to X and Y . Since |X| ≥ 4, this means that y2
is not full with respect to X and Y , a contradiction. This completes the proof of
Case 3.

We note that if, in Case 3, we swap X and Y , or write anticomplete instead of
complete, we obtain further cases with essentially the same proof. We now assume
that neither these cases, nor Cases 1 and 2, hold.

Claim 2. If there are two full vertices x1, x2 ∈ X, then they have distinct nonneighbors
in Y . If there are two empty vertices x1, x2 ∈ X, then they have distinct neighbors
in Y .
We prove the first statement (the second follows by symmetry). If x1 and x2 are both
complete to Y then Case 3 would apply with any vertex in Y chosen as y1. Suppose
instead that y1 is the unique nonneighbor of x1. Then x2 must have a nonneighbor
in Y that is different from y1, otherwise Case 3 would apply. This completes the proof
of the claim.

Claim 3. There are at least two empty vertices in X and at least two full vertices
in Y or vice versa.
As Case 1 does not apply, we know that one of X and Y contains two empty ver-
tices, and one of X and Y contains two full vertices. We are done unless these two
properties belong to the same set. So let us suppose that, without loss of general-
ity, it is X that contains two empty vertices and two full vertices, which we may
assume are distinct (if a vertex in X is both full and empty, then |Y | ≤ 2 and
Case 2 applies). By Claim 2, the two empty vertices of X have distinct neighbors y1
and y2 in Y . If y1 and y2 are both full, we are done. If, say, y1 is empty, then,
as it is adjacent to one of the empty vertices in X, it cannot be adjacent to ei-
ther of the full vertices in X, contradicting Claim 2. This completes the proof of
Claim 3.

We immediately use Claim 3. Let us assume, without loss of generality, that
x1, x2 ∈ X are empty and y1, y2 ∈ Y are full with respect to X and Y . More-
over, by Claim 2, we may assume that y1 is the unique neighbor of x1 and y2 is
the unique neighbor of x2 (so x1 is the unique nonneighbor of y2 and x2 is the
unique nonneighbor of y1). Thus every vertex of X \ {x1, x2} is complete to {y1, y2},
and therefore, by Claim 1, full with respect to X and Y . Similarly, every vertex
of Y \ {y1, y2} is anticomplete to {x1, x2}, and therefore empty with respect to X
and Y .

If |X| = 3, then every vertex in {x1, x2} and Y is empty with respect to {x1, x2}
and Y . Otherwise we can find distinct vertices x3, x4 in X \ {x1, x2} which we know
are both full and both complete to {y1, y2}. Hence, by Claim 2, there are distinct
vertices y3, y4 in Y \{y1, y2} such that y3 is the unique nonneighbor of x3 and y4 is the
unique nonneighbor of x4. If X and Y are independent sets then G[x1, y4, y2, x4, y3]
is a 2P1 +P3. If X is an independent set and Y is a clique then G[y1, y2, y3, x3, x4] is
a 2P1 + P3. If X is a clique and Y is an independent set then G[x3, x4, x2, y1, y2] is a
2P1 + P3. Finally if X and Y are cliques then G[x3, y1, y2, x1, y4] is a 2P1 + P3. This
contradiction completes the proof.

Lemma 9. Let G be a (2P1 + P3, 2P1 + P3)-free graph whose vertex set can be
partitioned into a clique X and an independent set Y . Then by deleting at most three
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vertices from each of X and Y , it is possible to obtain subsets that are either complete
or anticomplete to each other.

Proof. Let G be such a graph. By Lemma 8, by deleting at most one vertex from
each of X and Y , we may reduce to the case where the edges between X and Y form
a matching or a comatching. (Note that after this we may delete at most two further
vertices from each of X and Y .) Complementing the graph if necessary (in which case
we also swap X and Y ), we may assume that the edges between X and Y form a
matching. Let x1y1, . . . , xiyi be the edges between X and Y , with x1, . . . , xi ∈ X and
y1, . . . , yi ∈ Y . If i ≥ 4 then G[y1, y2, y3, x3, x4] is a 2P1 + P3, a contradiction. We
may therefore assume that i ≤ 3. Deleting the vertices x1, x2, y3 (if they are present)
completes the proof.

Lemma 10. The class of those (2P1 + P3, 2P1 + P3)-free graphs whose vertex set
can be partitioned into at most three cliques and at most three independent sets has
bounded clique-width.

Proof. Let G be a (2P1 + P3, 2P1 + P3)-free graph whose vertex set can be par-
titioned into three (possibly empty) cliques K1, K2, K3 and three (possibly empty)
independent sets I1, I2, I3. By Lemma 9 and Fact 1, we may delete at most
2 × 3 × 3 × 3 = 54 vertices, after which every Ki is either complete or anticom-
plete to every Ij . By Lemma 8 and Fact 1, we may delete at most 2 × 2 ×

(
3
2

)
= 12

vertices, after which the edges between any two cliques Ki, Kj and the edges be-
tween any two independent sets Ii, Ij either form a matching or a comatching. If
the edges form a comatching, then by Fact 3 we may apply a bipartite complemen-
tation between these sets. If a set Ki is complete to some set Ij then by Fact 3, we
may apply a bipartite complementation between them. Finally, by Fact 2, we may
complement every clique Ki. The resulting graph has maximum degree at most 2,
and therefore has clique-width at most 4 by Lemma 3. It follows that G has bounded
clique-width.

Lemma 11. The class of (2P1+P3, 2P1 + P3)-free graphs containing an induced C5

has bounded clique-width.

Proof. Suppose G is a (2P1 + P3, 2P1 + P3)-free graph containing an induced
cycle C on five vertices, say v1, . . . , v5 in that order. For S ⊆ {1, . . . , 5}, let VS be the
set of vertices x ∈ V (G) \ V (C) such that N(x)∩ V (C) = {vi | i ∈ S}. We say that a
set VS is large if it contains at least five vertices, otherwise it is small.

To ease notation, in the following claims, subscripts on vertex sets should be
interpreted modulo 5 and whenever possible we will write Vi instead of V{i} and Vi,j
instead of V{i,j} and so on.

Claim 1. We may assume that for S ⊆ {1, 2, 3, 4, 5}, the set VS is either large or
empty.
If a set VS is small, but not empty, then by Fact 1, we may delete all vertices of this
set. If later in our proof we delete vertices in some set VS and in doing so make a
large set VS become small, we may immediately delete the remaining vertices in VS .
The above arguments involve deleting a total of at most 25 × 4 vertices. By Fact 1,
the claim follows.

Claim 2. For i ∈ {1, 2, 3, 4, 5}, V∅ ∪ Vi ∪ Vi+1 ∪ Vi,i+1 is a clique.
Indeed, if x, y ∈ V∅∪V1∪V2∪V1,2 are nonadjacent then G[x, y, v3, v4, v5] is a 2P1+P3,
a contradiction. The claim follows by symmetry.
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Table 1
The correspondence between the sets WT and the sets VS .

V1 = W2,3,4,5 V2 = W1,2,3,5 V3 = W1,3,4,5 V4 = W1,2,3,4 V5 = W1,2,4,5

V1,2 = W2,3,5 V2,3 = W1,3,5 V3,4 = W1,3,4 V4,5 = W1,2,4 V1,5 = W2,4,5

V1,3 = W3,4,5 V2,4 = W1,2,3 V3,5 = W1,4,5 V1,4 = W2,3,4 V2,5 = W1,2,5

V1,2,3 = W3,5 V2,3,4 = W1,3 V3,4,5 = W1,4 V1,4,5 = W2,4 V1,2,5 = W2,5

V1,2,4 = W2,3 V2,3,5 = W1,5 V1,3,4 = W3,4 V2,4,5 = W1,2 V1,3,5 = W4,5

V1,2,3,4 = W3 V1,2,3,5 = W5 V1,2,4,5 = W2 V1,3,4,5 = W4 V2,3,4,5 = W1

V∅ = W1,2,3,4,5 V1,2,3,4,5 = W∅

Claim 3. For i ∈ {1, 2, 3, 4, 5}, G[Vi,i+2] is P3-free.
Indeed, if G[V1,3] contains an induced P3, say on vertices x, y, z, then G[v2, v4, x, y, z]
is a 2P1 + P3, a contradiction. The claim follows by symmetry.

Note that since G is a (2P1 +P3, 2P1 + P3)-free graph containing a C5, it follows
that G is also a (2P1 + P3, 2P1 + P3)-free graph containing a C5, namely, on the
vertices v1, v3, v5, v2, v4, in that order. Let w1 = v1, w2 = v3, w3 = v5, w4 =
v2, and w5 = v4. For S ⊆ {1, 2, 3, 4, 5}, we say that a vertex x not in C belongs
to WS if N(x) ∩ V (C) = {wi | i ∈ S} in the graph G. We define the function
σ : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} as follows: σ(1) = 1, σ(3) = 2, σ(5) = 3, σ(2) = 4,
and σ(4) = 5. Now for S, T ⊆ {1, 2, 3, 4, 5}, x ∈ VS if and only if x ∈ WT , where
T = {1, 2, 3, 4, 5} \ {σ(i) | i ∈ S}. Therefore, we may assume that any claims proved
for a set VS in G also hold for the set WS in G.

For convenience we provide Table 1, which lists the correspondence between the
sets WT and the sets VS .

We therefore get the following two corollaries of Claims 2 and 3, respectively. We
include the argument for the first corollary to demonstrate how this “casting to the
complement” argument works.

Claim 4. For i ∈ {1, 2, 3, 4, 5}, Vi,i+1,i+3 ∪ Vi,i+1,i+2,i+3 ∪ Vi,i+1,i+3,i+4 ∪ V1,2,3,4,5 is
an independent set.
Indeed, for i = 1, Vi,i+1,i+3∪Vi,i+1,i+2,i+3∪Vi,i+1,i+3,i+4∪V1,2,3,4,5 is V1,2,4∪V1,2,3,4∪
V1,2,4,5 ∪ V1,2,3,4,5, which is equal to W2,3 ∪W3 ∪W2 ∪W∅. By Claim 2, W2,3 ∪W3 ∪
W2 ∪W∅ is an independent set. The claim follows by complementing and symmetry.

Claim 5. For i ∈ {1, 2, 3, 4, 5}, G[Vi,i+1,i+2] is (P1 + P2)-free.

Claim 6. We may assume that for distinct S, T ⊆ {1, 2, 3, 4, 5} if VS is an independent
set and VT is a clique then VS is either complete or anticomplete to VT .
Let S, T ⊆ {1, . . . , 5} be distinct. If VS is an independent set and VT is a clique,
then by Lemma 9, we may delete at most three vertices from each of these sets, such
that in the resulting graph, VS will be complete or anticomplete to VT . Doing this

for every pair of independent set VS and a clique VT we delete at most
(
25

2

)
× 2 × 3

vertices from G. The claim follows by Fact 1.

Claim 7. We may assume that for distinct S, T ⊆ {1, 2, 3, 4, 5}, if VS and VT are both
independent sets then the edges between VS and VT form a comatching.
Let S, T ⊆ {1, . . . , 5} be distinct. We may assume that VS and VT are not empty,
in which case they must both be large, i.e., |VS |, |VT | ≥ 5. If VS and VT are both
independent sets, then by Lemma 8, we may delete at most one vertex from each
of these sets, such that in the resulting graph, the edges between VS and VT form a
matching or a comatching. Note that after this modification we only have the weaker
bound |VS |, |VT | ≥ 4 in the resulting graph. Suppose, for contradiction, that the edges
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between VS and VT form a matching. Without loss of generality assume there is an
i ∈ T \ S. Since |VS | ≥ 4, there must be vertices x, x′ ∈ VS . Since each vertex in VS
has at most one neighbor in VT and |VT | ≥ 4, there must be vertices y, y′ ∈ VT that
are nonadjacent to both x and x′. Then G[x, x′, y, vi, y

′] is a 2P1+P3, a contradiction.
Therefore the edges between VS and VT must indeed form a comatching. The claim
follows by Fact 1.

In many cases, we can prove a stronger claim, as follows.

Claim 8. For distinct S, T ⊆ {1, 2, 3, 4, 5}, if VS and VT are both independent and
there is an i ∈ {1, 2, 3, 4, 5} with i /∈ S and i /∈ T then VS is complete to VT .
Let S, T ⊆ {1, . . . , 5} be distinct and suppose there is an i ∈ {1, 2, 3, 4, 5} with i /∈ S
and i /∈ T . We may assume VS and VT are not empty, so they must be large. By
Claim 7, we may assume that the edges between VS and VT form a comatching.
Suppose, for contradiction that x ∈ VS is nonadjacent to y ∈ VT . Since VS is large,
there must be vertices x′, x′′ ∈ VS \ {x} and these vertices must be adjacent to y.
Now G[vi, x, x

′, y, x′′] is a 2P1 + P3, a contradiction. Therefore VS must be complete
to VT . The claim follows.

Casting to the complement we get the following as a corollary to the above two
claims.

Claim 9. We may assume that for distinct S, T ⊆ {1, 2, 3, 4, 5}, if VS and VT are both
cliques then the edges between VS and VT form a matching.

Claim 10. For distinct S, T ⊆ {1, 2, 3, 4, 5}, if VS and VT are both cliques and there
is an i ∈ {1, 2, 3, 4, 5} with i ∈ VS and i ∈ VT then VS is anticomplete to VT .

Claim 11. For i ∈ {1, . . . , 5}, if {i, i+ 1} ⊆ S ∩ T and T 6= S then either VS or VT is
empty.
Suppose S and T are as described above, but VS and VT are both nonempty. By
Claim 1, VS and VT must be large. Without loss of generality, we may assume that
1, 2 ∈ S ∩ T and 3 ∈ T \ S or S = {1, 2}, T = {1, 2, 4}.

First consider the case where 1, 2 ∈ S ∩ T and 3 ∈ T \ S. If x ∈ VS and
y ∈ VT are adjacent then G[y, v2, v1, v3, x] is a 2P1 + P3, a contradiction. There-
fore VS is anticomplete to VT . Suppose x, x′ ∈ VS and y, y′ ∈ VT . If x is adjacent
to x′ then G[v1, v2, x, y, x

′] is a 2P1 + P3, a contradiction. If y is adjacent to y′ then
G[v1, v2, y, x, y

′] is a 2P1 + P3, a contradiction. Therefore x must be nonadjacent to x′

and y must be nonadjacent to y′. This means that G[x, x′, y, v3, y
′] is a 2P1 + P3, a

contradiction.
Now consider the case where S = {1, 2}, T = {1, 2, 4}. Then V1,2 is a clique

and V1,2,4 is an independent set, by Claims 2 and 4, respectively. By Claim 6, V1,2
must be complete or anticomplete to V1,2,4. Suppose x, x′ ∈ V1,2 and y, y′ ∈ V1,2,4.
If V1,2 is anticomplete to V1,2,4 then G[v1, v2, x, y, x

′] is a 2P1 + P3. If V1,2 is complete
to V1,2,4 then G[v3, v5, y, x, y

′] is a 2P1+P3. This is a contradiction. The claim follows
by symmetry.

Casting Claim 11 to the complement, we obtain the following corollary.

Claim 12. For i ∈ {1, . . . , 5}, if {i, i+ 2} ∩ (S ∪ T ) = ∅ and T 6= S then VS or VT is
empty.

We now give a brief outline of the remainder of the proof. First, in Claims 13–
24 we will analyze the edges between different sets VS and sets of the form Vi,i+2.
Next, in Claim 25 we will consider the case where a set Vi,i+2 is neither a clique
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nor an independent set. We will then assume that this case does not hold, in which
case every set of the form Vi,i+2 is either a clique or an independent set. Casting to
the complement, we will get the same conclusion for all sets of the form Vi,i+1,i+2.
Combined with Claims 2 and 4, this means that every set VS is either a clique or
an independent set. By Fact 1, we may delete the vertices v1, . . . , v5 of the original
cycle. By Claim 6, if VS is a clique and VT is an independent set, then applying at
most one bipartite complementation (which we may do by Fact 3) we can remove
all edges between VS and VT . It is therefore sufficient to consider the case where all
sets VS are cliques or all sets VT are independent. If there are at most three large
cliques and at most three large independent sets, then by Lemma 10 we can bound
the clique-width of the graph induced on these sets. In the proof of Claim 27 we
consider the situation where a set of the form Vi,i+2 is a large clique. Having dealt
with this case, we may assume that every set of the form Vi,i+2 is an independent set
(so, casting to the complement, every set of the form Vi,i+1,i+2 is a clique) and we
deal with this case in Claim 29. Finally, we deal with the case where all sets of the
form Vi,i+2 and Vi,i+1,i+2 are empty.

Claim 13. For i ∈ {1, 2, 3, 4, 5}, if Vi,i+2 and Vi+1 are large then Vi,i+2 is either an
independent set or a clique.
Suppose, that both V1,3 and V2 are nonempty. Then, by Claim 1, they must both be
large. Suppose that V1,3 is not a clique. Then there are y, y′ ∈ V1,3 that are nonadja-
cent. Suppose x ∈ V2 is nonadjacent to y′. Then G[v4, y

′, v2, x, y] or G[x, v4, y, v1, y
′]

is a 2P1 + P3 if x is adjacent or nonadjacent to y, respectively. Therefore x must be
complete to {y, y′}. By Claim 3, G[V1,3] is P3-free, so it is a disjoint union of cliques.
Since y and y′ were chosen arbitrarily and V1,3 is not a clique, it follows that x must
be complete to V1,3. Therefore V2 is complete to V1,3. By Claim 2, V2 is a clique.
If x, x′ ∈ V2, z, z′ ∈ V1,3 with z adjacent to z′ then G[x, x′, z, v2, z

′] is a 2P1 + P3, a
contradiction. Therefore if V1,3 is not a clique then it must be an independent set.
The claim follows by symmetry.

Claim 14. For i ∈ {1, 2, 3, 4, 5}, if Vi,i+2 and Vi+1,i+3 are both large then either
(i) both Vi,i+2 and Vi+1,i+3 are cliques or

(ii) at least one of them is an independent set and the two sets are complete to
each other.

By Claim 3, G[V1,3] and G[V2,4] are P3-free, so every component in these graphs is
a clique. Suppose G[V1,3] is not a clique, so there are nonadjacent vertices x, x′ ∈ V1,3.
Suppose y ∈ V2,4 is nonadjacent to x′. Then G[x′, v5, v2, y, x] or G[y, v5, x, v3, x

′] is a
2P1 +P3 if y is adjacent or nonadjacent to x, respectively. This contradiction implies
that y is complete to {x, x′}. Since we assumed that V1,3 was not a clique and x
and x′ were chosen to be arbitrary nonadjacent vertices in V1,3, it follows that y must
be complete to V1,3. Therefore if V1,3 is not a clique then V2,4 is complete to V1,3.
Similarly, if V2,4 is not a clique then V2,4 is complete to V1,3.

Now suppose that neither V1,3 nor V2,4 is an independent set. If they are both
cliques, then we are done, so assume for contradiction that at least one of them is not
a clique. Then V1,3 is complete to V2,4. We can find x, x′ ∈ V1,3 that are adjacent
and y, y′ ∈ V2,4 that are adjacent. However, this means that G[x, x′, y, v1, y

′] is a
2P1 + P3, a contradiction. The claim follows by symmetry.

Claim 15. For i ∈ {1, 2, 3, 4, 5} and S = {i, i+1} or S = {i+1, i+2}, if Vi,i+2 and VS
are large then either Vi,i+2 is a clique that is anticomplete to VS or an independent
set that is complete to VS.
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By Claim 2, V1,2 is a clique. By Claim 3, G[V1,3] is P3-free, so it is a disjoint union
of cliques. If y ∈ V1,3 is adjacent to x ∈ V1,2, but nonadjacent to x′ ∈ V1,2 then
G[v1, x, x

′, y, v2] is a 2P1 + P3, a contradiction. Therefore every vertex of V1,3 is
either complete or anticomplete to V1,2.

Suppose y, y′ ∈ V1,3 are adjacent and suppose x, x′ ∈ V1,2. Suppose y is complete
to V1,2. Then G[x, x′, y, v2, y

′] or G[v1, y, x, y
′, x′] is a 2P1 + P3, if y′ is complete or

anticomplete to V1,2, respectively. This contradiction implies that if y, y′ ∈ V1,3 are
adjacent then they are both anticomplete to V1,2. It follows that every nontrivial
component of G[V1,3] is anticomplete to V1,2. In particular, if V1,3 is a clique, then it
is anticomplete to V1,2.

Now suppose that V1,3 is not a clique, so there are nonadjacent vertices
y, y′ ∈ V1,3. Choose a vertex x ∈ V1,2. Suppose y′ is anticomplete to V1,2. Then
G[v4, y

′, y, x, v2] or G[x, v5, y, v3, y
′] is a 2P1 + P3 if y is complete or anticomplete

to V1,2, respectively. Therefore both y and y′ must be complete to V1,2. Since every
nontrivial component of G[V1,3] is anticomplete to V1,2 and G[V1,3] is a disjoint union
of cliques, it follows that y and y′ must belong to trivial components of G[V1,3]. Since y
and y′ were arbitrary nonadjacent vertices in V1,3, it follows that every component
of G[V1,3] must be trivial. Therefore if V1,3 is not a clique then it is an independent
set and it is complete to V1,2. The claim follows by symmetry.

Claim 16. We may assume that for i ∈ {1, 2, 3, 4, 5} if Vi,i+2 and Vi+3,i+4 are large
then either Vi,i+2 is a clique or Vi,i+2 is anticomplete to Vi+3,i+4.
If y ∈ V1,3 has two neighbors x, x′ ∈ V4,5, then x is adjacent to x′ by Claim 2, so
G[x, x′, v4, y, v5] is a 2P1 + P3, a contradiction. Therefore every vertex of V1,3 has at
most one neighbor in V4,5.

By Claim 3, G[V1,3] is P3-free, so it is a disjoint union of cliques. Suppose V1,3
is not a clique, so there are nonadjacent vertices y, y′ ∈ V1,3. If x ∈ V4,5 is adjacent
to y, but nonadjacent to y′ then G[v2, y

′, y, x, v4] is a 2P1 + P3, a contradiction.
Therefore every vertex of V4,5 is complete or anticomplete to {y, y′}. Since y and y′

were arbitrary nonadjacent vertices in V1,3 and V1,3 is a disjoint union of (at least
two) cliques, it follows that every vertex of V4,5 is complete or anticomplete to V1,3.
Since every vertex of V1,3 has at most one neighbor in V4,5, at most one vertex in V4,5
is complete to V1,3. If such a vertex exists then by Fact 1, we may delete it. Therefore
we may assume that either V1,3 is a clique or V1,3 is anticomplete to V4,5. The claim
follows by symmetry.

Claim 17. We may assume the following: for i ∈ {1, 2, 3, 4, 5}, if Vi,i+2 and Vi,i+1,i+2

are both large then all of the following statements hold:
(i) Either Vi,i+2 is an independent set or Vi,i+1,i+2 is a clique.

(ii) If Vi,i+2 is not an independent set then it is anticomplete to Vi,i+1,i+2.
(iii) If Vi,i+1,i+2 is not a clique then it is complete to Vi,i+2.
Suppose V1,3 and V1,2,3 are large. By Claim 3, G[V1,3] is P3-free, so it is a disjoint

union of cliques. By Claim 5, G[V1,2,3] is (P1+P2)-free, so its complement is a disjoint
union of cliques. We consider three cases.

Case 1. V1,2,3 is independent.
We will show that in this case V1,3 must be an independent set which is complete
to V1,2,3. If x ∈ V1,3 is nonadjacent to y, y′ ∈ V1,2,3 then G[x, v4, y, v2, y

′] is a 2P1+P3,
a contradiction. Therefore every vertex in V1,3 has at most one nonneighbor in V1,2,3.
Suppose x, x′ ∈ V1,3 are adjacent. Since V1,2,3 is large, there must be a vertex y ∈ V1,2,3
that is adjacent to both x and x′. Then G[y, v3, x, v2, x

′] is a 2P1 + P3. Therefore V1,3
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must be independent. If x, x′ ∈ V1,3 are nonadjacent and y ∈ V1,2,3 is adjacent to x,
but not to x′, then G[x′, v4, x, y, v2] is a 2P1 + P3, a contradiction. Therefore every
vertex of V1,2,3 is either complete or anticomplete to V1,3. Suppose there is a vertex
y ∈ V1,2,3 that is anticomplete to V1,3. Since every vertex of V1,3 has at most one
nonneighbor in V1,2,3, there must be a vertex y′ ∈ V1,2,3 that is complete to V1,3. Now
G[v4, y

′, x, y, x′] is a 2P1 + P3, a contradiction. Therefore V1,2,3 is complete to V1,3.
We conclude that if V1,2,3 is an independent set then V1,3 must also be an independent
set and furthermore V1,3 must be complete to V1,2,3. By symmetry, if Vi,i+1,i+2 is an
independent set then statements (i)–(iii) of the claim hold.

Case 2. V1,3 is a clique.
Casting to the complement as before, the clique V1,3 in G becomes the independent
set W3,4,5 in G and the set V1,2,3 in G becomes the set W3,5 in G. By the above
argument, this means that in G, W3,5 must be an independent set and it must be
complete to W3,4,5. Therefore in G the set V1,2,3 must be a clique and it must be
anticomplete to V1,3. By symmetry, if Vi,i+2 is a clique then statements (i)–(iii) of
the claim hold.

Case 3. V1,2,3 is not independent and V1,3 is not a clique.
If x, x′ ∈ V1,3 are nonadjacent and y ∈ V1,2,3 is adjacent to x, but not x′ then
G[v4, x

′, x, y, v2] is a 2P1 +P3, a contradiction. Since G[V1,3] is a disjoint union of (at
least two) cliques, it follows that every vertex of V1,2,3 is complete or anticomplete
to V1,3. If y, y′ ∈ V1,2,3 are adjacent and x ∈ V1,3 is adjacent to y, but not y′, then
G[y, v1, y

′, x, v2] is a 2P1 + P3, a contradiction. Since G[V1,2,3] is the complement of a
disjoint union of (at least two) cliques, it follows that every vertex of V1,3 is complete
or anticomplete to V1,2,3. We conclude that V1,3 is complete or anticomplete to V1,2,3.

Suppose for contradiction that V1,3 is not an independent set and V1,3 is complete
to V1,2,3. Choose adjacent vertices x, x′ ∈ V1,3 and adjacent vertices y, y′ ∈ V1,2,3.
Then G[y, y′, x, v2, x

′] is a 2P1 + P3, a contradiction. Therefore either V1,3 is inde-
pendent or it is anticomplete to V1,2,3. By symmetry statement (ii) of the claim
holds.

Suppose for contradiction that V1,2,3 is not a clique and V1,2,3 is anticomplete
to V1,3. Choose nonadjacent vertices y, y′ ∈ V1,2,3 and nonadjacent vertices x, x′ ∈
V1,3. Then G[x, x′, y, v2, y

′] is a 2P1 + P3, a contradiction. Therefore either V1,2,3 is
a clique or it is complete to V1,2,3. By symmetry statement (iii) of the claim holds.

Note that if V1,3 is not independent then it is anticomplete to V1,2,3 and that
if V1,2,3 is not a clique then it is complete to V1,3. Since V1,3 and V1,2,3 are large,
it follows that either V1,2,3 is an independent set or V1,3 is a clique. By symmetry
statement (i) of the claim holds. This completes the proof of Claim 17.

Claim 18. We may assume that for i ∈ {1, 2, 3, 4, 5} and S ∈ {{i + 1, i + 2, i + 3},
{i, i+ 1, i+ 4}}, if Vi,i+2 and VS are large then one of the following cases holds:

(i) Vi,i+2 and VS are cliques and Vi,i+2 is anticomplete to VS.
(ii) Vi,i+2 is independent and complete to VS.
Suppose V1,3 and V2,3,4 are large. By Claim 3, G[V1,3] is P3-free, so it is a disjoint

union of cliques. By Claim 5, G[V1,2,3] is (P1+P2)-free, so its complement is a disjoint
union of cliques.

First suppose that V1,3 is not a clique. Let x, x′ ∈ V1,3 be nonadjacent and sup-
pose y ∈ V2,3,4 is nonadjacent to x′. Then G[x′, v5, x, y, v2] or G[x, x′, v2, y, v4] is a
2P1 + P3 if x is adjacent or nonadjacent to y, respectively. Since G[V1,3] is a dis-

D
ow

nl
oa

de
d 

05
/1

5/
20

 to
 1

29
.2

34
.0

.7
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CLIQUE-WIDTH FOR GRAPH CLASSES 1123

joint union of (at least two) cliques, this contradiction implies that V2,3,4 is complete
to V1,3. If x, x′ ∈ V1,3 are adjacent and y ∈ V2,3,4 then G[y, v3, x, v2, x

′] is a 2P1 + P3,
a contradiction. Therefore V1,3 must be independent, so statement (ii) of the claim
holds.

Now suppose that V1,3 is a clique. Again, if y ∈ V2,3,4 is adjacent to x, x′ ∈ V1,3
then G[y, v3, x, v2, x

′] is a 2P1 + P3, a contradiction. Therefore every vertex of V2,3,4
has at most one neighbor in V1,3. Suppose y, y′ ∈ V2,3,4 are nonadjacent. Since V1,3
is large, there must be a vertex x ∈ V1,3 that is nonadjacent to both y and y′. Now
G[x, v5, y, v2, y

′] is a 2P1 + P3, a contradiction. Therefore V2,3,4 must be a clique.
Suppose x ∈ V1,3 and y, y′ ∈ V2,3,4 with x adjacent to y, but not to y′. Then
G[y, v3, y

′, x, v2] is a 2P1 + P3, a contradiction. Therefore every vertex of V1,3 is ei-
ther complete or anticomplete to V2,3,4. Since every vertex of V2,3,4 has at most one
neighbor in V1,3, at most one vertex of V1,3 is complete to V2,3,4. If such a vertex exists
then by Fact 1, we may delete it. Therefore we may assume that V1,3 is anticomplete
to V2,3,4, so statement (i) of the claim holds. The claim follows by symmetry.

Claim 19. We may assume that for i ∈ {1, 2, 3, 4, 5} and S ∈ {{i + 2, i + 3, i + 4},
{i, i+ 3, i+ 4}}, if Vi,i+2 and VS are large then one of the following cases holds:

(i) Vi,i+2 and VS are independent and Vi,i+2 is complete to VS.
(ii) VS is a clique and anticomplete to Vi,i+2.

By symmetry we only need to prove the claim for the case where i = 1 and S =
{3, 4, 5}. In this case the sets Vi,i+2 and VS are V1,3 and V3,4,5, respectively, which
are equal to W3,4,5 and W1,4, respectively (see also Table 1). The claim follows by
casting to the complement and applying Claim 18.

Claim 20. For i ∈ {1, 2, 3, 4, 5} and S ∈ {{i, i+ 1, i+ 3}, {i+ 1, i+ 2, i+ 4}}, if Vi,i+2

and VS are large then Vi,i+2 is independent and it is complete to VS.
By Claim 4, V1,2,4 is independent. Suppose x ∈ V1,3 and y, y′ ∈ V1,2,4 with x nonad-
jacent to y′. Then G[y′, v5, v3, x, y] or G[v5, x, y, v2, y

′] is a 2P1 +P3 if x is adjacent or
nonadjacent to y, respectively. Therefore V1,3 is complete to V1,2,4. If x, x′ ∈ V1,3 are
adjacent and y ∈ V1,2,4 then G[v1, y, x, v2, x

′] is a 2P1 + P3, a contradiction. There-
fore V1,3 is independent. The claim follows by symmetry.

Claim 21. For i ∈ {1, 2, 3, 4, 5}, if Vi,i+2 and Vi+1,i+3,i+4 are large then G[Vi,i+2 ∪
Vi+1,i+3,i+4] has bounded clique-width.
Suppose V1,3 and V2,4,5 are large. By Claim 3, G[V1,3] is P3-free, so it is a disjoint union
of cliques. By Claim 4, V2,4,5 is independent. If x ∈ V1,3 is nonadjacent to y, y′ ∈ V2,4,5
then G[y, y′, v1, x, v3] is a 2P1 + P3, a contradiction. Therefore every vertex of V1,3
has at most one nonneighbor in V2,4,5. If x, x′ ∈ V1,3 are nonadjacent and y ∈ V2,4,5 is
nonadjacent to x and x′ then G[x, x′, v2, y, v4] is a 2P1+P3, a contradiction. Therefore
every vertex of V2,4,5 is complete to all but at most one component of V1,3. Let G′

be the graph obtained from G[V1,3 ∪ V2,4,5] by applying a bipartite complementation
between V1,3 and V2,4,5. By Fact 3, G[V1,3∪V2,4,5] has bounded clique-width if and only

if every component of G′ has bounded clique-width. Now consider a component CG′

of G′. We will prove that CG′
has bounded clique-width. We first note that CG′

consists of either a single vertex (in which case it has clique-width 1), or a clique in V1,3
together with an independent set in V2,4,5, no two vertices of which have a common

neighbor in the clique. By Fact 2, we may complement the clique V (CG′
) ∩ V1,3

in CG′
. The resulting graph C ′G

′
is a disjoint union of stars, which has clique-width

at most 2. We conclude that CG′
has bounded clique-width.
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Claim 22. For i ∈ {1, 2, 3, 4, 5} and S ∈ {{i, i+ 1, i+ 2, i+ 3}, {i, i+ 1, i+ 2, i+ 4}},
if Vi,i+2 and VS are large then Vi,i+2 is independent and it is complete to VS.
Suppose V1,3 and V1,2,3,4 are large. By Claim 3, G[V1,3] is P3-free, so it is a disjoint
union of cliques. By Claim 4, V1,2,3,4 is independent.

Suppose x ∈ V1,3 has two nonneighbors y, y′ ∈ V1,2,3,4. Then G[x, v5, y, v2, y
′]

is a 2P1 + P3, a contradiction. It follows that every vertex of V1,3 has at most one
nonneighbor in V1,2,3,4.

Suppose, for contradiction, that V1,3 is not an independent set. Let x, x′ ∈ V1,3 be
adjacent vertices. If y ∈ V1,2,3,4 is adjacent to both x and x′ then G[y, v3, x, v2, x

′] is a
2P1 + P3, a contradiction. Therefore every vertex of V1,2,3,4 has at most one neighbor
in {x, x′}. Since V1,2,3,4 is large, there must be two vertices y′, y′′ ∈ V1,2,3,4 that are
nonadjacent to the same vertex in {x, x′}. This is a contradiction since every vertex
of V1,3 has at most one nonneighbor in V1,2,3,4. It follows that V1,3 is an independent
set. Since 5 /∈ {1, 3} ∪ {1, 2, 3, 4}, Claim 8 implies that V1,3 is complete to V1,2,3,4.
The claim follows by symmetry.

Claim 23. We may assume that for i ∈ {1, 2, 3, 4, 5} and S ∈ {{i, i + 1, i + 3, i + 4},
{i + 1, i + 2, i + 3, i + 4}, {1, 2, 3, 4, 5}}, if Vi,i+2 and VS are large then one of the
following holds:

(i) Vi,i+2 is an independent set or
(ii) Vi,i+2 is the disjoint union of a (possibly empty) clique that is anticomplete

to VS and a (possibly empty) independent set that is complete to VS.
Suppose V1,3 and VS are large for S ∈ {{1, 2, 4, 5}, {1, 2, 3, 4, 5}} (the S = {2, 3, 4, 5}

case is symmetric). By Claim 3, G[V1,3] is P3-free, so it is a disjoint union of cliques.
By Claim 4, VS is independent.

If x, x′ ∈ V1,3 are nonadjacent and y ∈ VS is anticomplete to {x, x′} then
G[x, x′, v2, y, v4] is a 2P1 + P3, a contradiction. Since G[V1,3] is a disjoint union
of cliques, it follows that every vertex of VS is complete to all but at most one com-
ponent of G[V1,3]. If x, x′ ∈ V1,3 are adjacent and y ∈ VS is complete to {x, x′} then
G[v1, y, x, v2, x

′] is a 2P1 + P3, a contradiction. Therefore no vertex of VS has two
neighbors in the same component of G[V1,3]. It follows that G[V1,3] contains at most
one nontrivial component. In other words, either V1,3 is an independent set or the
disjoint union of a clique and an independent set.

Suppose that V1,3 is not an independent set. Then G[V1,3] contains a nontrivial
component C ′. We may assume C ′ contains at least three vertices, otherwise we may
delete it by Fact 1. No vertex of VS can have two neighbors in C ′ and every ver-
tex of VS is complete to all but at most one component of G[V1,3]. Therefore every
vertex of VS is complete to the independent set V1,3 \ V (C ′). Suppose x ∈ VS has a
neighbor y ∈ V (C ′). Since V (C ′) contains at least three vertices, and every vertex
of VS has at most one neighbor in V (C ′), we can find vertices y′, y′′ ∈ V (C ′) that are
nonadjacent to x. Now G[v1, y, y

′, x, y′′] is a 2P1 + P3, a contradiction. Therefore VS
is anticomplete to V (C ′).

We conclude that either V1,3 is an independent set or it is the disjoint union of an
independent set that is complete to VS and a clique that is anticomplete to VS . The
claim follows by symmetry.

Claim 24. For i ∈ {1, 2, 3, 4, 5}, if Vi,i+2 and Vi,i+2,i+3,i+4 are large then Vi,i+2 is an
independent set that is complete to Vi,i+2,i+3,i+4.
Suppose V1,3 and V1,3,4,5 are large. By Claim 3, G[V1,3] is P3-free, so it is a disjoint
union of cliques. By Claim 4, V1,3,4,5 is independent.
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Suppose x ∈ V1,3 is nonadjacent to y, y′ ∈ V1,3,4,5. Then G[v2, x, y, v4, y
′] is a

2P1 +P3, a contradiction. Therefore every vertex of V1,3 has at most one nonneighbor
in V1,3,4,5. Suppose x, x′ ∈ V1,3 are adjacent. Since V1,3,4,5 is large, there must be
a vertex y ∈ V1,3,4,5 that is adjacent to both x and x′. Now G[y, v1, x, v5, x

′] is an
2P1 + P3, a contradiction. Therefore V1,3 must be an independent set. If x, x′ ∈ V1,3
and y ∈ V1,3,4,5 is adjacent to x, but not to x′ then G[x′, v2, x, y, v4] is a 2P1 + P3,
a contradiction. Therefore every vertex of V1,3,4,5 must be either complete or anti-
complete to V1,3. Since every vertex of V1,3 has at most one nonneighbor in V1,3,4,5,
it follows that at most one vertex of V1,3,4,5 may be anticomplete to V1,3. Suppose
x, x′ ∈ V1,3. If y ∈ V1,3,4,5 is anticomplete to V1,3 and y′ ∈ V1,3,4,5 is complete to V1,3
then G[y, v2, x, y

′, x′] is a 2P1 +P3. We conclude that V1,3 is complete to V1,3,4,5. The
claim follows by symmetry.

The next two claims will allow us to assume that every set VS is either a clique
or an independent set.

Claim 25. For i ∈ {1, 2, 3, 4, 5}, if Vi,i+2 is large then we may assume it is an inde-
pendent set or a clique.
Suppose V1,3 is large and that it is not a clique or an independent set.

By Claim 12, if VS is large for some S ⊆ {1, 2, 3, 4, 5} with S 6= {1, 3} then
S ∩ {2, 4} 6= ∅ and S ∩ {2, 5} 6= ∅. It follows that V∅, V4, V5, V1, V1,4, V1,5, V3, V3,4,
V3,5, V1,3,4, and V1,3,5 are empty. V2 is empty by Claim 13. V1,2 and V2,3 are empty
by Claim 15. V2,3,4 and V1,2,5 are empty by Claim 18. V1,2,3,4 and V1,2,3,5 are empty
by Claim 22. V1,3,4,5 is empty by Claim 24. V1,2,4 and V2,3,5 are empty by Claim 20.
Therefore in addition to V1,3, only the following sets may be nonempty: V4,5, V2,4,
V2,5, V1,2,3, V3,4,5, V1,4,5, V2,4,5, V1,2,4,5, V2,3,4,5, and V1,2,3,4,5.

Suppose V2,4,5 = W1,2 is large. By Claim 12 if a set VS is large for some
S ⊆ {1, 2, 3, 4, 5} with S 6= {2, 4, 5} then S ∩ {1, 3} 6= ∅. It follows that V4,5,
V2,4, and V2,5 are empty. By Claim 11 if VS is large for some S ⊆ {1, 2, 3, 4, 5}
with S 6= {2, 4, 5} then {4, 5} 6⊆ S. It follows that V3,4,5, V1,4,5, V1,2,4,5, V2,3,4,5,
and V1,2,3,4,5 are empty. Therefore, apart from V1,3 and V2,4,5, only the set V1,2,3
can be large. By Claim 17, if V1,2,3 is large then it is a clique that is anticomplete
to V1,3. Casting to the complement (see also Table 1), since V1,2,3 is a clique in G,
it follows that W3,5 = V1,2,3 is an independent set in G, so by Claim 16, W3,5 is
anticomplete to W1,2 = V2,4,5 in G. Therefore in the graph G, V1,2,3 = W3,5 is a
clique that is complete to V2,4,5 = W1,2 and anticomplete to V1,3. By Fact 1, we may
delete the five vertices in the original cycle C. By Fact 3, we may apply a bipartite
complementation between V2,4,5 and V1,2,3. This separates the graph into two parts:
G[V1,3 ∪ V2,4,5], which has bounded clique-width by Claim 21 and G[V1,2,3], which is
a clique and so has clique-width at most 2. Therefore if V2,4,5 is large then G has
bounded clique-width. Thus we may assume that V2,4,5 = ∅.

We will now show how to disconnect V1,3 from the rest of the graph. Note that V4,5
is anticomplete to V1,3 by Claim 16. V1,2,3 is anticomplete to V1,3 by Claim 17. V3,4,5
and V1,4,5 are anticomplete to V1,3 by Claim 19. V2,4 and V2,5 are complete to V1,3
by Claim 14. By Fact 3, we may apply a bipartite complementation between V1,3
and {v1, v3} ∪ V2,4 ∪ V2,5. By Claim 23, for S ∈ {{1, 2, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}},
either VS is empty or V1,3 is the disjoint union of a clique C ′ that is anticomplete
to VS and an independent set I that is complete to VS . If V1,3 does have this
form, then by Fact 3, we may apply a bipartite complementation between I and
V1,2,4,5 ∪ V2,3,4,5 ∪ V1,2,3,4,5. Doing this removes all edges from V1,3 to vertices not
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in V1,3. By Claim 3, G[V1,3] is a P3-free graph, so it is a disjoint union of cliques and
thus has clique-width at most 2.

We conclude that if V1,3 is large, but is neither a clique nor an independent set,
then G[V1,3] has bounded clique-width and we can remove all edges from V1,3 to ver-
tices not in V1,3. We may therefore remove all vertices in V1,3 from the graph. The
claim follows by symmetry.

Claim 26. For i ∈ {1, 2, 3, 4, 5}, if Vi,i+1,i+2 is large then we may assume it is an
independent set or a clique.
This follows from Claim 25 by casting to the complement (see also Table 1).

Note that by Claims 2, 4, 25, and 26, we may assume that every large set VS is
either a clique or an independent set.

Claim 27. For i ∈ {1, 2, 3, 4, 5}, if Vi,i+2 is large then we may assume it is an inde-
pendent set.
Suppose that V1,3 is large, but not an independent set. By Claim 25, we may
assume that it is a clique. We will show how to disconnect V1,3 (or a part of
the graph that contains V1,3 and has bounded clique-width) from the rest of the
graph. First, by Fact 1, we may delete the five vertices of the original cycle C. Let
G′ = G[

⋃
VS | VS is a clique] and let G′′ = G[

⋃
VS | VS is an independent set]. By

Claim 6, if VS is a clique and VT is an independent set, then VS is either complete
or anticomplete to VT . If VS is complete to VT , by Fact 3, we may apply a bipartite
complementation between these sets. Doing so for every pair of a clique VS and an in-
dependent set VT that are complete to each other, we disconnectG′ fromG′′. Since our
aim is to show how to remove the clique V1,3 from G, it is therefore sufficient to show
how to remove it from G′. In other words, we may assume that if VT is an independent
set then VT = ∅. That is, we may assume that every set VS is a (possibly empty) clique.

By Claim 4, V1,2,4, V2,3,5, V1,3,4, V2,4,5, V1,3,5, V1,2,3,4, V1,2,3,5, V1,2,4,5, V1,3,4,5,
V2,3,4,5, and V1,2,3,4,5 are independent sets, so we may assume that they are empty.
Since V1,3 is a large, by Claim 12 if VS is large for some S ⊆ {1, 2, 3, 4, 5} with
S 6= {1, 3} then S ∩ {2, 4} 6= ∅ and S ∩ {2, 5} 6= ∅. It follows that V∅, V4, V5, V1, V1,4,
V1,5, V3, V3,4, V3,5 are empty. This means that apart from V1,3, only the following sets
can be large: V1,2, V2,3, V1,2,3, V2,3,4, V3,4,5, V1,4,5, V1,2,5, V2, V4,5, V2,4, V2,5 and recall
that all these sets are (possibly empty) cliques by assumption (see also Figure 4). For
two of these sets, if there is an i ∈ S ∩ T then VS is anticomplete to VT by Claim 10.
Since {1, 3}∩ ({2}∪ {4, 5}∪ {2, 4}∪ {2, 5}) = ∅, at most one of the sets V2, V4,5, V2,4,
and V2,5 is large by Claim 12. We consider several cases.

Case 1. V2,4 or V2,5 is large.
By symmetry, we may assume V2,4 is large. Then V2, V4,5, and V2,5 are empty, as
stated above. Also, V1,3 and V2,4 are anticomplete to V1,2, V2,3, V1,2,3, V2,3,4, V3,4,5,
V1,4,5, and V1,2,5 by Claim 10. This means that G[V1,3∪V2,4] is disconnected from the
rest of G′. By Lemma 10, G[V1,3 ∪ V2,4] has bounded clique-width. This completes
the case.

Case 2. V2 is large.
Then V4,5, V2,4, and V2,5 are empty, as stated above. Since {3, 5} /∈ {2} ∪ {1, 2} and
{1, 4} /∈ {2} ∪ {2, 3}, Claim 12 implies that V1,2 and V2,3 are empty. Now V1,3, V1,2,3,
V2,3,4, V3,4,5, V1,4,5, and V1,2,5 are pairwise anticomplete by Claim 10. By Claim 9, the
edges between V2 and each of V1,3, V1,2,3, V2,3,4, V3,4,5, V1,4,5, and V1,2,5 form match-
ings. By Fact 2, we can complement all of the large sets. We obtain a graph which
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V1,3

V2,3

V1,2

V1,4,5

V3,4,5

V1,2,5

V2,3,4

V1,2,3

V2,5

V2,4

V4,5

V2

Fig. 4. The set of possible cliques when V1,3 is a clique. Two sets are joined by a line if the
edges between them form a matching (recall that a matching may contain no edges, in which case
the two sets are anticomplete to each other). Two sets are joined by a dashed line if at most one of
them is large and the other is empty. Two sets are not joined by a line if they are anticomplete to
each other. These properties follow from Claims 9, 10, 11, and 12.

is a disjoint union of stars, which have clique-width at most 2. It follows that G′ =
G[V1,3∪V1,2,3∪V2,3,4∪V3,4,5∪V1,4,5∪V1,2,5] has bounded clique-width. This completes
the case.

Case 3. V4,5 is large.
Then V2, V2,4, and V2,5 are empty, as stated above. Since V4,5 is large and {4, 5} ⊆
{3, 4, 5}, {1, 4, 5}, Claim 11 implies that V3,4,5 and V1,4,5 are empty. Now V1,3, V1,2,
V2,3, V1,2,3, V2,3,4, and V1,2,5 are pairwise anticomplete by Claim 10. By Claim 9,
the edges between V4,5 and each of V1,3, V1,2, V2,3, V1,2,3, V2,3,4, and V1,2,5 form
matchings. By Fact 2, we can complement all of the large sets. We obtain a graph
which is a disjoint union of stars, which have clique-width at most 2. It follows that
G′ = G[V1,3∪V4,5∪V1,2∪V2,3∪V1,2,3∪V2,3,4∪V1,2,5] has bounded clique-width. This
completes the case.

Case 4. V2, V4,5, V2,4, and V2,5 are empty.
V1,3 is anticomplete to V1,2, V2,3, V1,2,3, V2,3,4, V3,4,5, V1,4,5, and V1,2,5 by Claim 10.
Therefore G′[V1,3] = G[V1,3] is disconnected from the rest of G′. Since V1,3 is a clique,
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G[V1,3] has clique-width at most 2. We may therefore remove V1,3 from the graph.
This completes the case.

Since one of the above cases must hold by Claim 1, this completes the proof of
the claim when i = 1. The claim follows by symmetry.

Claim 28. For i ∈ {1, 2, 3, 4, 5}, if Vi,i+1,i+2 is large then we may assume it is a clique.
This follows from Claim 27 by casting to the complement (see also Table 1).

Claim 29. For i ∈ {1, 2, 3, 4, 5}, we may assume Vi,i+2 is empty.
Suppose that V1,3 is large. By Claim 27, we may assume that it is an independent
set. We will show how to disconnect V1,3 (or a part of the graph that contains V1,3
and has bounded clique-width) from the rest of the graph. First, by Fact 1, we may
delete the five vertices of the original cycle C. Let G′ = G[

⋃
VS | VS is a clique] and

let G′′ = G[
⋃
VS | VS is an independent set]. By Claim 6, if VS is a clique and VT is

an independent set, then VS is either complete or anticomplete to VT . If VS is com-
plete to VT , by Fact 3, we may apply a bipartite complementation between these sets.
Doing so for every pair of a clique VS and an independent set VT that are complete
to each other, we disconnect G′ from G′′. Since our aim is to show how to remove
the independent set V1,3 from G, it is therefore sufficient to show how to remove it
from G′′. In other words, we may assume that if VS is a clique then VS = ∅. That is,
we may assume that every set VT is a (possibly empty) independent set.

By Claim 2, V∅, V1, V2, V3, V4, V5, V1,2, V2,3, V3,4, V4,5, and V1,5 are cliques, so
we may assume that they are empty. By Claim 28, V1,2,3, V2,3,4, V3,4,5, V1,4,5, and
V1,2,5 are cliques, so we may assume that they are empty.

Since V1,3 is large, by Claim 12, if VS is large for some S ⊆ {1, 2, 3, 4, 5} with
S 6= {1, 3} then S ∩ {2, 4} 6= ∅ and S ∩ {2, 5} 6= ∅. It follows that V1,4, V3,5, V1,3,4,
and V1,3,5 are empty.

This means that apart from V1,3, only the following sets can be large: V2,4, V2,5,
V1,2,4, V2,3,5, V1,2,3,4, V1,2,3,5, V1,3,4,5, V2,4,5, V1,2,4,5, V2,3,4,5, and V1,2,3,4,5 and note
that they are all (possibly empty) independent sets by assumption (see also Figure 5).
For two of these sets, if there is an i ∈ {1, 2, 3, 4, 5} such that i /∈ S and i /∈ T then VS
is complete to VT by Claim 8.

Since {4, 5} ⊆ {1, 2, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 4, 5}, {2, 4, 5}, at most one of the sets
V1,2,3,4,5, V2,3,4,5, V1,2,4,5, and V2,4,5 is large by Claim 11. We consider several cases.

Case 1. V1,2,3,4,5 is large.
Then, since

• {1, 2} ⊆ {1, 2, 4},
• {2, 3} ⊆ {2, 3, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, and
• {4, 5} ⊆ {1, 3, 4, 5}, {2, 4, 5}, {1, 2, 4, 5}, {2, 3, 4, 5},

Claim 11 implies that V1,2,4, V2,3,5, V1,2,3,4, V1,2,3,5, V1,3,4,5, V2,4,5, V1,2,4,5, and V2,3,4,5
are empty. Now {1, 3} ∩ ({2, 4} ∪ {2, 5}) = ∅, so Claim 12 implies that either V2,4
or V2,5 is empty. By symmetry we may assume that V2,5 is empty. This means that
only the sets V1,3, V1,2,3,4,5, and V2,4, are large. By Lemma 10, it follows that G′′ has
bounded clique-width. This completes the case.

Case 2. V2,3,4,5 or V1,2,4,5 is large.
By symmetry, we may assume that V2,3,4,5 is large. Then, since

• {2, 3} ⊆ {2, 3, 5}, {1, 2, 3, 4}, {1, 2, 3, 5} and
• {4, 5} ⊆ {1, 3, 4, 5}, {2, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 4, 5},D
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V1,3

V1,2,3,4,5

V1,3,4,5

V2,3,4,5

V1,2,4,5

V1,2,3,5

V1,2,3,4

V2,4,5

V2,3,5

V1,2,4

V2,5

V2,4

Fig. 5. The set of possible independent sets when V1,3 is an independent set. Two sets are
joined by a line if the edges between them form a comatching. Two sets are joined by a dashed line
if at most one of them is large. Two sets are not joined by a line if they are complete to each other.
These properties follow from Claims 7, 8, 11, and 12.

Claim 11 implies that V2,3,5, V1,2,3,4, V1,2,3,5, V1,3,4,5, V2,4,5, V1,2,4,5, and V1,2,3,4,5 are
empty. This means that apart from V1,3 and V2,3,4,5, only the sets V2,4, V2,5, and V1,2,4
can be large. Now 4 /∈ {2, 5} ∪ {1, 3}, 1 /∈ {2, 5} ∪ {2, 3, 4, 5}, and 3 /∈ {2, 5} ∪ {2, 4} ∪
{1, 2, 4}, so by Claim 8, V2,5 is complete to all the other large sets. By Fact 3, we
may apply a bipartite complementation between V2,5 and V1,3 ∪V2,3,4,5 ∪V2,4 ∪V1,2,4.
This will disconnect G[V2,5] from the rest of G′′. Since V2,5 is an independent set,
G[V2,5] has clique-width at most 1. We may therefore assume that V2,5 is empty. Since
{3, 5}∩({2, 4}∪{1, 2, 4}) = ∅, Claim 12 implies that either V2,4 or V1,2,4 is empty. This
means that only at most three sets VS are large: V1,3, V2,3,4,5, and either V2,4 or V1,2,4.
By Lemma 10, it follows that G′′ has bounded clique-width. This completes the case.

Case 3. V2,4,5 is large.
Then, since

• {4, 5} ⊆ {1, 3, 4, 5}, {1, 2, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5},
Claim 11 implies that V1,3,4,5, V1,2,4,5, V2,3,4,5, and V1,2,3,4,5 are empty. Since {1, 3} ∩
({2, 4} ∪ {2, 4, 5}) = ∅ and {1, 3} ∩ ({2, 5} ∪ {2, 4, 5}) = ∅, Claim 12 implies that V2,4
and V2,5 are empty. This means that apart from V1,3 and V2,4,5, only the following sets
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may be large: V1,2,4, V2,3,5, V1,2,3,4, and V1,2,3,5. Since {1, 2} ⊆ {1, 2, 4}, {1, 2, 3, 4},
{1, 2, 3, 5}, Claim 11 implies that at most one of V1,2,4, V1,2,3,4, and V1,2,3,5 is large.
Since {2, 3} ⊆ {2, 3, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, Claim 11 implies that at most one of
V2,3,5, V1,2,3,4, and V1,2,3,5 is large. Since 5 /∈ {1, 2, 4} ∪ {1, 3}, 3 /∈ {1, 2, 4} ∪ {2, 4, 5},
4 /∈ {2, 3, 5} ∪ {1, 3}, 1 /∈ {2, 3, 5} ∪ {2, 4, 5}, Claim 8 implies that V1,3 and V2,4,5
are both complete to both V1,2,4 and V2,3,5. Therefore, if V1,2,4 or V2,3,5 are large,
then V1,2,3,4 and V1,2,3,5 are empty and by Fact 3 we can apply a bipartite comple-
mentation between V1,3∪V2,4,5 and V1,2,4∪V2,3,5. This will disconnect G[V1,3∪V2,4,5]
from the rest of the graph. By Claim 21, G[V1,3 ∪ V2,4,5] has bounded clique-width.
We may therefore assume that V1,2,4 and V2,3,5 are empty. This means that at most
three sets VS are large: V1,3, V2,4,5, and either V1,2,3,4 or V1,2,3,5. By Lemma 10, it
follows that G′′ has bounded clique-width. This completes the case.

Case 4. V1,2,3,4,5, V2,3,4,5, V1,2,4,5, and V2,4,5 are empty.
The only sets apart from V1,3 that can be large are V2,4, V2,5, V1,2,4, V2,3,5, V1,2,3,4,
V1,2,3,5, and V1,3,4,5. Since 4 /∈ {1, 3} ∪ {2, 5}, {2, 3, 5}, {1, 2, 3, 5}, 5 /∈ {1, 3} ∪ {2, 4} ∪
{1, 2, 4}∪{1, 2, 3, 4}, and 2 /∈ {1, 3}∪{1, 3, 4, 5}, Claim 8 implies that V1,3 is complete
to all the other large sets. Applying a bipartite complementation between V1,3 and
V2,4∪V2,5∪V1,2,4∪V2,3,5∪V1,2,3,4∪V1,2,3,5∪V1,3,4,5 disconnects G[V1,3] from the rest
of G′′. Since V1,3 is an independent set, G[V1,3] has clique-width at most 1. Therefore,
by Fact 3, we may delete V1,3 from the graph. This completes the case.

Since one of the above cases must hold, this completes the proof of the claim
when i = 1. The claim follows by symmetry.

Claim 30. For i ∈ {1, 2, 3, 4, 5}, we may assume Vi,i+1,i+2 is empty.
This follows from Claim 29 by casting to the complement (see also Table 1).

We are now ready to complete the proof of the lemma. First, by Fact 1, we may
delete the five vertices of the original cycle C. Let G′ = G[

⋃
VS | VS is a clique] and

let G′′ = G[
⋃
VS | VS is an independent set]. By Claim 6, if VS is a clique and VT

is an independent set, then VS is either complete or anticomplete to VT . If VS is
complete to VT , by Fact 3, we may apply a bipartite complementation between these
sets. Doing so for every pair of a clique VS and an independent set VT that are
complete to each other, we disconnect G′ from G′′. By Fact 3 it is sufficient to show
that G′ and G′′ have bounded clique-width. In fact, it is sufficient to show that G′

has bounded clique-width, since then we can obtain the same result for G′′ by casting
to the complement (see also Table 1) and applying Fact 2. In the remainder of the
proof, we show that G′ has bounded clique-width.

Note that only the following sets VS can remain: V∅, V1, V2, V3, V4, V5, V1,2, V2,3,
V3,4, V4,5, and V1,5. Note that all of these sets are cliques by Claim 2 and by Claim 9
the edges between any two of these sets form a matching.

If V∅ is large then, since {1, 3} ∩ (∅ ∪ {4} ∪ {4, 5}) = ∅, Claim 12 implies that V4
and V4,5 are empty. Similarly, every set apart from V∅ is empty, so G′ is a com-
plete graph and therefore has clique-width 2. We may therefore assume that V∅ is
empty.

Suppose that V1 is large. Since {2, 5} ∩ ({1} ∪ {3} ∪ {4} ∪ {3, 4}) = ∅, {2, 4} ∩
({1} ∪ {5} ∪ {1, 5}) = ∅ and {3, 5} ∩ ({1} ∪ {2} ∪ {1, 2}) = ∅, Claim 12 implies that
V3, V4, V3,4, V5, V1,5, V2, and V1,2 are empty. Therefore only V1, V2,3, and V4,5 can be
large. Hence by Lemma 10 the graph G′ has bounded clique-width. We may there-
fore assume that V1 is empty. By symmetry, we may assume that Vi is empty for all
i ∈ {1, 2, 3, 4, 5}.
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Now by Claim 10 if j ∈ {i+1, i−1} then Vi,i+1 is anticomplete to Vj,j+1. For every
i ∈ {1, 2, 3, 4, 5}, by Claim 9 the edges between Vi,i+1 and Vi+2,i+3 form a matching.
By Fact 2, we may apply a complementation to each set Vi,i+1. We obtain a graph of
maximum degree at most 2, which therefore has clique-width at most 4 by Lemma 3.
This completes the proof of the lemma.

Lemma 12. The class of (2P1+P3, 2P1 + P3)-free graphs containing an induced C6

has bounded clique-width.

Proof. Suppose G is a (2P1 + P3, 2P1 + P3)-free graph containing an induced
cycle C on six vertices, say v1, . . . , v6 in order. By Lemma 11, we may assume that G
is C5-free. For S ⊆ {1, . . . , 6}, let VS be the set of vertices x ∈ V (G)\V (C) such that
N(x) ∩ V (C) = {vi | i ∈ S}. We say that a set VS is large if it contains at least two
vertices, otherwise it is small.

To ease notation, in the following claims, subscripts on vertex sets should be
interpreted modulo 6 and whenever possible we will write Vi instead of V{i} and Vi,j
instead of V{i,j} and so on.

Claim 1. We may assume that for S ⊆ {1, . . . , 6}, the set VS is either large or empty.
If a set VS is small, but not empty, then by Fact 1, we may delete all vertices of this
set. If later in our proof we delete vertices in some set VS and in doing so make a
large set VS become small, we may immediately delete the remaining vertices in VS .
The above arguments involve deleting a total of at most 26 vertices. By Fact 1, the
claim follows.

Claim 2. For S ⊆ {1, . . . , 6} if |S| ≤ 1 then VS = ∅.
If x ∈ V∅ ∪V2 then G[x, v1, v3, v4, v5] is a 2P1 +P3, a contradiction. The claim follows
by symmetry.

Claim 3. For i ∈ {1, . . . , 6}, Vi,i+1 is a clique.
Suppose that x, x′ ∈ V1,2 are nonadjacent. Then G[x, x′, v3, v4, v5] is a 2P1 + P3, a
contradiction. The claim follows by symmetry.

Claim 4. For i ∈ {1, . . . , 6}, Vi,i+1,i+2 is a clique.
Suppose that x, x′ ∈ V1,2,3 are nonadjacent. Then G[x, x′, v4, v5, v6] is a 2P1 + P3, a
contradiction. The claim follows by symmetry.

Claim 5. For i ∈ {1, . . . , 6}, Vi,i+2 is empty.
If x ∈ V1,3 then G[x, v2, v4, v5, v6] is a 2P1 + P3, a contradiction. The claim follows
by symmetry.

Claim 6. For i ∈ {1, . . . , 6}, Vi,i+3 ∪ Vi,i+1,i+3 ∪ Vi,i+2,i+3 ∪ Vi,i+1,i+2,i+3 is empty.
If x ∈ V1,4 ∪ V1,2,4 ∪ V1,3,4 ∪ V1,2,3,4 then G[x, v4, v5, v6, v1] is a C5, a contradiction.
The claim follows by symmetry.

Claim 7. For i ∈ {1, 2}, G[Vi,i+2,i+4] is P3-free.
Suppose x, x′, x′′ ∈ V1,3,5 are such that G[x, x′, x′′] is a P3. Then G[v2, v4, x, x

′, x′′] is
a 2P1 + P3, a contradiction. The claim follows by symmetry.

Claim 8. For i ∈ {1, . . . , 6}, Vi,i+1,i+2,i+4 is empty.
Suppose for contradiction that V1,2,3,5 is not empty. By Claim 1, there are two
vertices x, x′ ∈ V1,2,3,5. If x is adjacent to x′ then G[x, x′, v1, v5, v2] is a 2P1 + P3. If x
is nonadjacent to x′ then G[v4, v6, x, v2, x

′] is a 2P1 + P3. This contradiction implies
that V1,2,3,5 is empty. The claim follows by symmetry.

D
ow

nl
oa

de
d 

05
/1

5/
20

 to
 1

29
.2

34
.0

.7
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1132 BLANCHÉ ET AL.

Claim 9. For i ∈ {1, . . . , 6}, Vi,i+1,i+3,i+4 ∪ Vi,i+1,i+2,i+3,i+4 ∪ Vi,i+1,i+3,i+4,i+5 ∪
Vi,i+1,i+2,i+3,i+4,i+5 is an independent set.
Suppose that x, x′ ∈ V1,2,4,5 ∪ V1,2,3,4,5 ∪ V1,2,4,5,6 ∪ V1,2,3,4,5,6 are adjacent. Then
the graph G[x, x′, v1, v4, v2] is a 2P1 + P3, a contradiction. The claim follows by
symmetry.

By Claims 1–9, only the following sets can be nonempty:
• Vi,i+1 for i ∈ {1, . . . , 6}, which are cliques;
• Vi,i+1,i+2 for i ∈ {1, . . . , 6}, which are cliques;
• Vi,i+2,i+4 for i ∈ {1, 2}, which induce P3-free graphs in G;
• Vi,i+1,i+3,i+4 for i ∈ {1, 2, 3}, which are independent sets;
• Vi,i+1,i+2,i+3,i+4 for i ∈ {1, . . . , 6}, which are independent sets; and
• V1,2,3,4,5,6, which is an independent set.

In the remainder of the proof, we will prove a number of claims. First, we will show
that we can remove sets of the form Vi,i+1 (Claim 14), and of the form Vi,i+1,i+2

(Claim 18) from the graph. Then we will show that for T ⊆ {1, . . . , 6} with |T | ≥ 4
we can remove VT from the graph (Claims 22 and 23). This will leave only the
sets V1,3,5 and V2,4,6 and the last stage will be to deal with these sets.

Claim 10. We may assume that for distinct S, T ⊆ {1, . . . , 6} if VS is an independent
set and VT is a clique then VS is either complete or anticomplete to VT .
Let S, T ⊆ {1, . . . , 6} be distinct. If VS is an independent set and VT is a clique, then
by Lemma 9, we may delete at most three vertices from each of these sets, such that
in the resulting graph, VS will be complete or anticomplete to VT . Doing this for

every pair of an independent set VS and a clique VT we delete at most
(
26

2

)
× 2 × 3

vertices from G. The claim follows by Fact 1.

Claim 11. For i ∈ {1, 2} and j ∈ {1, . . . , 6}, if Vi,i+2,i+4 is large then Vj,j+1 is empty.
Suppose, for contradiction, that x ∈ V1,3,5 and y ∈ V1,2. Then G[v4, v6, v2, y, x] or
G[y, v6, x, v3, v4] is a 2P1 + P3 if x is adjacent or nonadjacent to y, respectively. This
is a contradiction. The claim follows by symmetry.

Claim 12. For i ∈ {1, 2, 3}, either Vi,i+1 or Vi+3,i+4 is empty.
Suppose x ∈ V1,2 and y ∈ V4,5. If x is adjacent to y then G[x, v2, v3, v4, y] is a C5. If x
is nonadjacent to y then G[y, v3, x, v1, v6] is a 2P1 + P3, a contradiction. The claim
follows by symmetry.

Claim 13. For i, j ∈ {1, . . . , 6}, Vi,i+1,i+2 is anticomplete to Vj,j+1.
Let i = 1, j ∈ {2, 3, 4} (the other cases follow by symmetry). If V1,2,3 and Vj,j+1

are not empty then by Claim 1 they must be large. Suppose x, x′ ∈ V1,2,3 and
y ∈ Vj,j+1 with x adjacent to y. By Claim 4, x must be adjacent to x′. If j = 2 then
G[x, v2, v3, v1, y] is a 2P1 + P3. If j = 3 then G[x, x′, v1, y, v2] or G[v3, x, x

′, y, v2]
is a 2P1 + P3 if x′ is adjacent or nonadjacent to y, respectively. If j = 4 then
G[y, v5, v6, v1, x] is a C5. This is a contradiction. The claim follows by symmetry.

Claim 14. We may assume that Vi,i+1 is empty for all i ∈ {1, . . . , 6}.
Let G′ be the graph induced by the sets of the form Vi,i+1. We will show how to
disconnect G′ from the rest of G and then show that G′ has bounded clique-width.

We may assume that at least one set of the form Vi,i+1 is nonempty (in which
case it must be large by Claim 1), otherwise we are done. By Fact 3, for each i ∈
{1, . . . , 6} we may apply a bipartite complementation between Vi,i+1 and {vi, vi+1}.
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By Claim 13, for i, j ∈ {1, . . . , 6} there are no edges between Vi,i+1 and Vj,j+1,j+2.
By Claim 11, V1,3,5 and V2,4,6 are empty. By Claim 3, all sets of the form Vi,i+1

are cliques. By Claim 9, if VT is large with |T | ≥ 4 then VT is an independent set.
Therefore, by Claim 10, for all i ∈ {1, . . . , 6} and all T ⊆ {1, . . . , 6} with |T | ≥ 4,
Vi,i+1 is either complete or anticomplete to VT . If Vi,i+1 is complete to VT then
by Fact 3 we may apply a bipartite complementation between these two sets. This
removes all edges from vertices in G′ to vertices outside G′.

It remains to show that G′ has bounded clique-width. By Claim 12, V1,2 or V4,5
is empty, V2,3 or V5,6 is empty, and V3,4 or V1,6 is empty. This means that at most
three sets of the form Vi,i+1 can be large. By Claim 3, every set of the form Vi,i+1

induces a clique in G (and therefore in G′). By Lemma 10, it follows that G′ has
bounded clique-width.

We conclude that we can remove all sets of the form Vi,i+1 from G, that is, we
may assume that these sets are empty. This completes the proof of the claim.

Claim 15. For i ∈ {1, 2} and j ∈ {i+1, i+3, i+5}, Vi,i+2,i+4 is complete to Vj,j+1,j+2.
If x ∈ V1,3,5 is nonadjacent to y ∈ V2,3,4 then G[x, v6, v2, y, v4] is a 2P1 + P3, a
contradiction. The claim follows by symmetry.

Claim 16. For i ∈ {1, 2} and j ∈ {i, i+2, i+4}, Vi,i+2,i+4 is anticomplete to Vj,j+1,j+2.
If x ∈ V1,3,5 is adjacent to y ∈ V1,2,3 then G[v4, v6, v2, y, x] is a 2P1 + P3, a contradic-
tion. The claim follows by symmetry.

Claim 17. For i ∈ {1, . . . , 6} either Vi,i+1,i+2 or Vi+1,i+2,i+3 is empty.
Suppose that V1,2,3 and V2,3,4 are both nonempty. Then by Claim 1 they must both
be large and by Claim 4, they must both be cliques. If x ∈ V1,2,3 is adjacent to
y ∈ V2,3,4 then G[x, v2, y, v1, v3] is a 2P1 + P3, a contradiction. Therefore V1,2,3 is
anticomplete to V2,3,4. If x ∈ V1,2,3 and y, y′ ∈ V2,3,4 then G[v2, v3, y, x, y

′] is a
2P1 + P3, a contradiction. The claim follows by symmetry.

Claim 18. We may assume that Vi,i+1,i+2 is empty for all i ∈ {1, . . . , 6}.
Let G′ be the graph induced by the sets of the form Vi,i+1,i+2. We will show how to
disconnect G′ from the rest of G and then show that G′ has bounded clique-width.

We may assume that at least one set of the form Vi,i+1,i+2 is nonempty (in
which case it must be large by Claim 1), otherwise we are done. By Fact 3, for
each i ∈ {1, . . . , 6} we may apply a bipartite complementation between Vi,i+1,i+2 and
{vi, vi+1, vi+2}. By Claims 15 and 16 for i ∈ {1, . . . , 6} and j ∈ {1, 2}, Vi,i+1,i+2 is
either complete or anticomplete to Vj,j+2,j+4; if it is complete then by Fact 3, we may
apply a bipartite complementation between these two sets. By Claim 4, all sets of
the form Vi,i+1,i+2 are cliques. By Claim 9, if VT is large with |T | ≥ 4 then VT is an
independent set. Therefore, for all i ∈ {1, . . . , 6} and all T ⊆ {1, . . . , 6} with |T | ≥ 4,
Vi,i+1,i+2 is either complete or anticomplete to VT . If Vi,i+1,i+2 is complete to VT
then by Fact 3 we may apply a bipartite complementation between these two sets.
This removes all edges from vertices in G′ to vertices outside G′.

It remains to show that G′ has bounded clique-width. By Claim 17, V1,2,3 or V2,3,4
is empty, V3,4,5 or V4,5,6 is empty, and V1,5,6 or V1,2,6 is empty. This means that at
most three sets of the form Vi,i+1,i+2 can be large. By Claim 4, every set of the
form Vi,i+1,i+2 induces a clique in G (and therefore in G′). By Lemma 10, it follows
that G′ has bounded clique-width.

We conclude that we can remove all sets of the form Vi,i+1,i+2 from G, that is,
we may assume that these sets are empty. This completes the proof of the claim.
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Claim 19. Suppose S, T ⊆ {1, . . . , 6} are distinct with |S| ≥ 4 and |T | ≥ 5. Then VS
or VT is empty.
Suppose the claim is false for some S and T . By Claim 1, we may assume VS and VT
are large. Without loss of generality, we may assume that |T | ≥ |S|. Without loss of
generality, we may assume that {1, 2, 4, 5} ⊆ S. The vertices of VT are nonadjacent
to at most one vertex of the original cycle C, so without loss of generality, we may
assume that {1, 2, 4} ⊆ S ∩ T . If x, x′ ∈ VS ∪ VT are adjacent then G[x, x′, v1, v4, v2]
is a 2P1 + P3, so VS ∪ VT is an independent set. Suppose x, x ∈ VT , y, y′ ∈ VS , and
i ∈ T \S (which exists since |T | ≥ |S| and S 6= T ). Then G[y, y′, x, vi, x

′] is a 2P1+P3,
a contradiction. The claim follows by symmetry.

Claim 19 implies that, in addition to the sets V1,3,5 and V2,4,6, which may be
large, exactly one of the following must hold:

• Exactly one, two, or three sets VS with |S| = 4 are large and all sets VT with
|T | ∈ {5, 6} are empty.

• Exactly one set VS with |S| = 5 is large and all sets VT with |T | ∈ {4, 6} are
empty.

• V1,2,3,4,5,6 is large and all sets VT with |T | ∈ {4, 5} are empty.
• All sets VT with |T | ≥ 4 are empty.

Claim 20. Let i ∈ {1, 2} and T ⊆ {1, . . . , 6} with |T | ≥ 4 such that there is a
j ∈ {1, . . . , 6} with j /∈ {i, i + 2, i + 4}, j /∈ T . If Vi,i+2,i+4 and VT are large
then Vi,i+2,i+4 is an independent set that is complete to VT .
By symmetry, we need only prove the claim in the case where i = 1 and T ∈
{{1, 2, 4, 5}, {1, 2, 3, 4, 5}}, in which case j = 6. Suppose x ∈ V1,3,5 is nonadjacent
to y ∈ VT . Then G[x, v6, v2, y, v4] is a 2P1 + P3, a contradiction. Therefore V1,3,5 is
complete to VT . If x, x′ ∈ V1,3,5 with x adjacent to x′ and y ∈ VT then G[v1, y, x, v2, x

′]
is a 2P1 + P3, a contradiction. Therefore V1,3,5 is an independent set. The claim fol-
lows by symmetry.

Claim 21. For i ∈ {1, 2} and T ⊆ {1, . . . , 6} with |T | ≥ 4 and {i, i + 2, i + 4} ∪ T =
{1, . . . , 6}. If Vi,i+2,i+4 and VT are large then we may assume Vi,i+2,i+4 is the disjoint
union of a (possibly empty) clique and a (possibly empty) independent set.
Suppose i = 1 and T ∈ {{1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 6}}. Suppose V1,3,5 and VT are
large. If x ∈ VT and y, y′ ∈ V1,3,5 with x, y, y′ pairwise nonadjacent then
G[y, y′, v2, x, v4] is a 2P1 + P3, a contradiction. Therefore every vertex of VT is com-
plete to all but at most one component of G[V1,3,5]. If x ∈ VT and y, y′ ∈ V1,3,5 with
x, y, y′ pairwise adjacent then G[x, v1, y, v2, y

′] is a 2P1 + P3, a contradiction. There-
fore every vertex of VT has at most one neighbor in each component of G[V1,3,5]. It
follows that G[V1,3,5] has at most one nontrivial component. The claim follows by
symmetry.

Claim 22. For i ∈ {1, 2, 3}, we may assume that Vi,i+1,i+3,i+4 is empty.
Suppose that Vi,i+1,i+3,i+4 is not empty for some i ∈ {1, 2, 3}. Then by Claim 1,
this set must be large. By Claim 19, in this case only the following sets can be
large: V1,3,5, V2,4,6, V1,2,4,5, V2,3,5,6, and V3,4,6,1. By Claim 20, V1,3,5 and V2,4,6
are complete to V1,2,4,5, V2,3,5,6, and V3,4,6,1. By Fact 3, we may apply a bipartite
complementation between V1,3,5 ∪ V2,4,6 and V1,2,4,5 ∪ V2,3,5,6 ∪ V3,4,6,1. By Fact 3,
we can also apply bipartite complementations between {v1, v2, v4, v5} and V1,2,4,5,
between {v2, v3, v5, v6} and V2,3,5,6 and between {v3, v4, v6, v1} and V3,4,6,1. This
disconnects G′ = G[V1,2,4,5 ∪ V2,3,5,6 ∪ V3,4,6,1] from the rest of the graph.
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It remains to show that G′ has bounded clique-width. By Claim 9, V1,2,4,5, V2,3,5,6,
and V3,4,6,1 are independent sets. By Lemma 10, it follows that G′ has bounded clique-
width. We may therefore assume that V1,2,4,5∪V2,3,5,6∪V3,4,6,1 = ∅. The claim follows.

Claim 23. For T ⊆ {1, . . . , 6} with |T | ≥ 5 we may assume that VT is empty.
Suppose there is a T ⊆ {1, . . . , 6} with |T | ≥ 5 such that VT is large. By Claim 19,
only the following sets can be large: V1,3,5, V2,4,6, and VT . By Claims 20 and 21,
each of V1,3,5 and V2,4,6 is the union of a (possibly empty) clique and a (possibly
empty) independent set. By Claim 9, VT is an independent set. By Fact 1, we may
delete the vertices of the original cycle C. We obtain a graph whose vertex set can
be partitioned into at most two cliques and at most three independent sets, so G has
bounded clique-width by Lemma 10. The claim follows.

Only two sets VS remain that may be nonempty, namely, V1,3,5 and V2,4,6. If
one of these sets is empty, then by Fact 1 we may delete the vertices of the original
cycle C. Claim 7 implies that the resulting graph is a disjoint union of cliques, and
so has clique-width at most 2. We may therefore assume that both V1,3,5 and V2,4,6
are nonempty, in which case they are both large by Claim 1.

Suppose x ∈ V1,3,5 and y, y′ ∈ V2,4,6 and these three vertices are pairwise nonad-
jacent. Then G[y, y′, v1, x, v3] is a 2P1 + P3, a contradiction. Therefore each vertex
of V1,3,5 is complete to all but at most one component of G[V2,4,6]. Similarly, each
vertex of V2,4,6 is complete to all but at most one component of G[V1,3,5].

First consider the case where G[V2,4,6] contains at least three nontrivial compo-
nents. Every vertex in V1,3,5 must be complete to at least two of these components.
If x, x′ ∈ V1,3,5 are adjacent then they must both be complete to a common nontrivial
component C ′ of G[V2,4,6]. Let y, y′ ∈ V (C ′). Then G[x, x′, y, v1, y

′] is a 2P1 + P3, a
contradiction. It follows that V1,3,5 is an independent set. Note that this implies that
every vertex of V2,4,6 has at most one nonneighbor in V1,3,5. By Fact 3, we may apply
a bipartite complementation between V1,3,5 and V2,4,6. Let G′ be the resulting graph.
In G′, every vertex in V1,3,5 has neighbors in at most one component of G[V2,4,6] and
each vertex of V2,4,6 has at most one neighbor in V1,3,5. This means that every com-
ponent of G[V2,4,6] lies in a different component of G′. It suffices to show that the
components of G′ have bounded clique-width. Let C ′′ be such a component of G′.
By Fact 2, we may apply a complementation to V2,4,6 ∩ V (C ′′). We obtain a disjoint
union of stars (some of which may be isolated vertices). Since stars have clique-width
at most 2, we have shown that in this case G has bounded clique-width.

We may therefore assume that V2,4,6 contains at most two nontrivial components.
By symmetry, we may also assume that V1,3,5 contains at most two nontrivial compo-
nents. This means that each of these sets consists of the disjoint union of at most two
cliques and at most one independent set. Let K1 and K2 be the two cliques and I1 be
the independent set in V1,3,5. Let K3 and K4 be the two cliques and I2 be the indepen-
dent set in V2,4,6. (We allow the case where some of the sets Ki or Ij are empty.) Also
note that in G, K1 is anticomplete to K2 and K3 is anticomplete to K4. By Fact 1
and Lemma 9, we may assume that each clique Ki is either complete or anticomplete
to each independent set Ij . If a clique Ki is complete to Ij then by Fact 3 we may ap-
ply a bipartite complementation between these sets. This removes all edges between
K1 ∪K2 ∪K3 ∪K4 and I1 ∪ I2. Now by Fact 1 and Lemma 8 we may assume that
the edges between each pair of K1, K2, K3, and K4 and the edges between I1 and I2

either form a matching or a comatching. If the edges between two such sets form a
comatching, by Fact 3 we may apply a bipartite complementation between these sets.
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Finally, by Fact 2, we may complement each clique Ki. Let G′′ be the resulting graph
and note that in this graph it is still the case that K1∪K2∪K3∪K4 is anticomplete
to I1 ∪ I2. In G′′ the edges between I1 and I2 form a matching, so G′′[I1 ∪ I2] has
maximum degree at most 1 and thus clique-width at most 2. In G′′ the sets K1, K2,
K3, and K4 are independent and the edges between each pair of these sets forms a
matching. In fact, K1 is anticomplete to K2 and K3 is anticomplete to K4. Therefore
G′′[K1 ∪K2 ∪K3 ∪K4] has maximum degree at most 2, and therefore clique-width
at most 4 by Lemma 3. It follows that G′′ has bounded clique-width and therefore G
also has bounded clique-width. This completes the proof of the lemma.

Lemma 13. Every prime (2P1 +P3, 2P1 + P3, C6, C6)-free graph is either K7-free
or K7-free.

Proof. Let G be a prime (2P1 + P3, 2P1 + P3, C6, C6)-free graph. Suppose, for
contradiction, that G contains an induced K7 and an induced K7. We will show that
in this case the graph G is not prime. Note that any induced K7 and induced K7

in G can share at most one vertex. We may therefore assume that G contains a
clique C on at least six vertices and a vertex-disjoint independent set I on at least six
vertices. Furthermore, we may assume that C is a maximum clique in G \ I and I is
a maximum independent set in G \C (if not, then replace C or I with a bigger clique
or independent set, respectively).

By Lemma 9, there exist sets R1 ⊂ C and R2 ⊂ I each of size at most 3 such
that C ′ = C \ R1 is either complete or anticomplete to I ′ = I \ R2. Without loss
of generality, we may assume that R1 and R2 are minimal, in the sense that the
above property does not hold if we remove any vertex from R1 or R2. Note that
the class of prime (2P1 + P3, 2P1 + P3, C6, C6)-free graphs containing an induced K7

and an induced K7 is closed under complementation. Therefore, complementing G if
necessary (in which case the sets I and C will be swapped, and the sets R1 and R2

will be swapped), we may assume that C ′ is anticomplete to I ′.

Claim 1. |R1| ≤ 1 and |R2| ≤ 1.
By construction, R1 and R2 each contain at most three vertices and I ′ and C ′ each
contain at least three vertices. Since R1 (resp., R2) is minimal, every vertex of R1

(resp., R2) has at least one neighbor in I ′ (resp., C ′).
Choose i1, i2 ∈ I ′ arbitrarily and suppose, for contradiction, that y ∈ R2 is not

complete to C ′. Then y must have a neighbor c1 ∈ C ′ and a nonneighbor c2 ∈ C ′,
so G[i1, i2, y, c1, c2] is a 2P1 + P3, a contradiction. Therefore R2 is complete to C ′.
If y, y′ ∈ R2 then for arbitrary c1 ∈ C ′, the graph G[i1, i2, y, c1, y

′] is a 2P1 + P3, a
contradiction. It follows that |R2| ≤ 1.

Choose c1, c2 ∈ C ′ arbitrarily. Suppose, for contradiction, that x ∈ R1 has
two nonneighbors i1, i2 ∈ I ′. Recall that x must have a neighbor i3 ∈ I ′, so
G[i1, i2, i3, x, c1] is a 2P1 + P3, a contradiction. Therefore every vertex of R1 has
at most one nonneighbor in I ′. Suppose, for contradiction, that x, x′ ∈ R1. Since I ′

contains at least three vertices, there must be a vertex i1 ∈ I ′ that is a common
neighbor of x and x′. Now G[x, x′, c1, i1, c2] is a 2P1 + P3, a contradiction. It follows
that |R1| ≤ 1. This completes the proof of Claim 1.

Note that Claim 1 implies that |C ′| ≥ 5 and |I ′| ≥ 5. Let A be the set of vertices
in V \ (C ∪ I) that are complete to C ′. If x ∈ A is adjacent to y ∈ R1 then by Claim 1
C∪{x} is a bigger clique than C, contradicting the maximality of C. It follows that A
is anticomplete to R1. If x, y ∈ A are adjacent then by Claim 1, (C ∪ {x, y}) \ R1

is a bigger clique than C, contradicting the maximality of C. It follows that A is an
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independent set. Furthermore, by the maximality of I and the definition of A, every
vertex in V \ (C ∪ I ∪A) has a neighbor in I and nonneighbor in C ′.

Claim 2. Let x be a vertex in V \ (C ∪ I ∪ A). Then either x is complete to I ′, or x
has exactly one neighbor in I.
Suppose, for contradiction, that x has a nonneighbor z in I ′, and two neighbors
y, y′ ∈ I. Now x cannot have another nonneighbor z′ ∈ I\{z}, otherwiseG[z, z′, y, x, y′]
would be a 2P1 + P3. Therefore x must be complete to I \ {z}. In particular, since
|I ′| ≥ 5, this means that x has two neighbors in I ′, say y1 and y2 (not necessarily
distinct from y and y′). Recall that x must have a nonneighbor c1 ∈ C ′. Now
G[c1, z, y1, x, y2] is a 2P1 + P3. This contradiction completes the proof of Claim 2.

By Claim 2 we can partition the vertex set V \ (C ∪I ∪A) into subsets VI′ and Vx
for every x ∈ I, where VI′ is the set of vertices that are complete to I ′, and Vx is the
set of vertices whose unique neighbor in I is x. Let Ux = Vx ∪ {x}.

Claim 3. For all x ∈ I ′, Ux is anticomplete to C ′.
Suppose x ∈ I ′. Clearly x is anticomplete to C ′. Suppose, for contradiction, that
y ∈ Ux\{x} = Vx has a neighbor z ∈ C ′ and choose u, v ∈ I ′\{x}. Then G[u, v, x, y, z]
is a 2P1 + P3. This contradiction completes the proof of Claim 3.

Claim 4. For every x ∈ I, the set Ux is a clique.
Note that x ∈ I is adjacent to all other vertices of Ux, by definition. If y, z ∈ Vx are
nonadjacent then (I \ {x}) ∪ {y, z} would be a bigger independent set than I. This
contradiction completes the proof of Claim 4.

Claim 5. If x, y ∈ I are distinct, then Ux is anticomplete to Uy.
Clearly x is anticomplete to Uy and y is anticomplete to Ux. Suppose, for contradic-
tion, that x′ ∈ Ux \ {x} is adjacent to y′ ∈ Uy \ {y}. Choose u, v ∈ I \ {x, y}. Then
G[u, v, x, x′, y′] is a 2P1 + P3. This contradiction completes the proof of Claim 5.

Claim 6. For every x ∈ I ′, the set Ux is complete to VI′ .
Clearly x is complete to VI′ , by definition. Suppose, for contradiction that x′ ∈
Ux \{x} is nonadjacent to y ∈ VI′ . Since y /∈ A, the vertex y must have a nonneighbor
c1 ∈ C ′ and note that x′ is nonadjacent to c1 by Claim 3. Choose u, v ∈ I ′\{x}. Then
G[c1, x

′, u, y, v] is a 2P1 + P3. This contradiction completes the proof of Claim 6.

Suppose x ∈ I ′. Claim 4 implies that Ux is a clique, Claim 3 implies that Ux is
anti-complete to C ′ and Claim 6 implies that Ux is complete to VI′ . Furthermore for
all y ∈ I \ {x}, Claim 5 implies that Ux is anti-complete to Uy. We conclude that
given any two vertices x, y ∈ I ′, no vertex in V \ (A ∪ R1 ∪ Ux ∪ Uy) can distinguish
the set Ux ∪Uy. In the remainder of the proof, we will show that there exist x, y ∈ I ′
such that no vertex of A ∪R1 distinguishes the set Ux ∪Uy, meaning that Ux ∪Uy is
a nontrivial module, contradicting the assumption that G is prime.

Claim 7. If u ∈ A ∪R1 then either u is anticomplete to Ux for all x ∈ I ′ or else u is
complete to Ux for all but at most one x ∈ I ′.
Suppose, for contradiction, that the claim does not hold for a vertex u ∈ A ∪ R1.
Then u must have a neighbor x′ ∈ Ux for some x ∈ I ′ and must have nonneighbors
y′ ∈ Uy and z′ ∈ Uz for some y, z ∈ I ′ with y 6= z. Since |I ′| ≥ 5, we may also assume
that x /∈ {y, z}. Choose c1 ∈ C ′ arbitrarily. By Claim 3, c1 is nonadjacent to x′, y′,
and z′. It follows that G[y′, z′, c1, u, x

′] is a 2P1 + P3. This contradiction completes
the proof of Claim 7.
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Let A∗ denote the set of vertices in A ∪ R1 that have a neighbor in Ux for some
x ∈ I ′.

Claim 8. The set A∗ is complete to all, except possibly two, sets Ux, x ∈ I ′.
Suppose, for contradiction, that there are three different vertices x, y, z ∈ I ′ such
that A∗ is complete to none of the sets Ux, Uy, and Uz. By Claim 7 and the definition
of A∗, every vertex in A∗ is complete to at least two of the sets Ux, Uy, Uz. Therefore
there exist three vertices u, v, w ∈ A∗ such that

• u is not adjacent to some vertex x′ ∈ Ux, but is complete to Uy and Uz;
• v is not adjacent to some vertex y′ ∈ Uy, but is complete to Ux and Uz;
• w is not adjacent to some vertex z′ ∈ Uz, but is complete to Ux and Uy.

Therefore G[u, y′, w, x′, v, z′] is a C6. This contradiction completes the proof of
Claim 8.

Now, since |I ′| ≥ 5, Claims 7 and 8 imply that there exist two distinct vertices
x, y ∈ I ′ such that every vertex of A∪R1 is either complete or anticomplete to Ux∪Uy.
It follows that Ux ∪ Uy is a nontrivial module in G, contradicting the fact that G is
prime. This completes the proof.

Let G be a graph. The chromatic number χ(G) of G is the minimum positive
integer k such that G is k-colorable. The clique number ω(G) of G is the size of a
largest clique in G. A hereditary class C of graphs is χ-bounded if there is a function f
such that χ(G) ≤ f(ω(G)) for all G ∈ C.

Lemma 14 ([34]). For every natural number k the class of Pk-free graphs is
χ-bounded.

Lemma 15. For every fixed k ≥ 1, the class of (Kk, 2P1+P3, 2P1 + P3)-free graphs
has bounded clique-width.

Proof. Fix a constant k ≥ 1 and let G be a (Kk, 2P1 + P3, 2P1 + P3)-free graph.
By Lemma 12, we may assume that G is C6-free. Since G is (2P1 + P3)-free, it is
P7-free, so by Lemma 14 it has chromatic number at most ` for some constant `.
This means that we can partition the vertices of G into ` independent sets V1, . . . , V`
(some of which may be empty). Since G is (2P1 + P3, 2P1 + P3)-free, by Lemma 8,
deleting finitely many vertices (which we may do by Fact 1), we may assume that
for all distinct i, j ∈ {1, . . . , `}, the edges between Vi and Vj form a matching or a
comatching. Since G is C6-free, if the vertices between Vi and Vj form a comatching,
this comatching can contain at most two nonedges. Therefore, by deleting finitely
many vertices (which we may do by Fact 1), we may assume that the edges between Vi
and Vj form a matching or Vi and Vj are complete to each other. By deleting finitely
many vertices (which we may do by Fact 1), we may assume that each set Vi is either
empty or contains at least five vertices.

Suppose the edges from Vi to Vj and the edges from Vi to Vh form a matching
and that there is a vertex x ∈ Vi that has a neighbor y ∈ Vj and a neighbor z ∈ Vh.
Then y must be adjacent to z, otherwise for x′, x′′ ∈ Vi\{x} the graph G[x′, x′′, y, x, z]
would be a 2P1 + P3, a contradiction. If Vj is complete to Vh then for y′, y′′ ∈ Vj ,
z′ ∈ Vh and x′, x′′ ∈ Vi \ (N(y′) ∪ N(y′′) ∪ N(z′)) (such vertices exist since each of
y′, y′′, and z′ have at most one neighbor in Vi and Vi contains at least five vertices) we
have G[x′, x′′, y′, z′, y′′] is a 2P1 +P3, a contradiction. Therefore the edges between Vj
and Vh form a matching.

Now for each i, j ∈ {1, . . . , `} with i < j, if Vi is complete to Vj , we apply a
bipartite complementation between Vi and Vj (which we may do by Fact 3). Let G′
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be the resulting graph. The previous paragraph implies that if x has two neighbors y
and z in G′ then y is adjacent to z in G, so G′ is P3-free. Therefore G′ is a disjoint
union of cliques, so it has clique-width at most 2.

We are now ready to prove that (2P1 + P3, 2P1 + P3)-free graphs have bounded
clique-width.

Theorem 4. The class of (2P1 + P3, 2P1 + P3)-free graphs has bounded clique-
width.

Proof. Let G be a (2P1 +P3, 2P1 + P3)-free graph. By Lemma 6, we may assume
that G is prime. If G contains an induced C6 then we are done by Lemma 12. If G
contains an induced C6 then we are done by Lemma 12 and Fact 2. We may therefore
assume that G is also (C6, C6)-free. By Lemma 13, we may assume that G is either
K7-free or K7-free. By Fact 2, we may assume that G is K7-free. Lemma 15 completes
the proof.

Theorem 2 follows from the summary of [18] for the clique-width of bigenic graph
classes (see also [21]) after updating it with our new result for (2P1 + P3, 2P1 + P3)-
free graphs (Theorem 4), the result of Dabrowski, Lozin, and Paulusma [22] that
(P1 + P3, P2 + P4)-free graphs have bounded clique-width and the recent result of
Bonamy et al. [4], who proved that the class of (P1 + P4, P1 + 2P2)-free graphs has
unbounded clique-width. We first present the updated summary and then explain
how Theorem 2 follows from it.

Theorem 5. Let G be a class of graphs defined by two forbidden induced sub-
graphs. Then

1. G has bounded clique-width if it is equivalent3 to a class of (H1, H2)-free
graphs such that one of the following holds:

(i) H1 or H2 ⊆i P4;

(ii) H1 = sP1 and H2 = Kt for some s, t;

(iii) H1 ⊆i P1 +P3 and H2 ⊆i K1,3 +3P1, K1,3 +P2, P1 +P2 +P3, P1 +P5,
P1 + S1,1,2, P2 + P4, P6, S1,1,3, or S1,2,2;

(iv) H1 ⊆i 2P1 + P2 and H2 ⊆i P1 + 2P2, 3P1 + P2, or P2 + P3;

(v) H1 ⊆i P1 + P4 and H2 ⊆i P1 + P4 or P5;

(vi) H1, H2 ⊆i K1,3;

(vii) H1, H2 ⊆i 2P1 + P3.
2. G has unbounded clique-width if it is equivalent to a class of (H1, H2)-free

graphs such that one of the following holds:
(i) H1 6∈ S and H2 6∈ S;

(ii) H1 /∈ S and H2 6∈ S;

(iii) H1 ⊇i K1,3 or 2P2 and H2 ⊇i 4P1 or 2P2;

(iv) H1 ⊇i 2P1 + P2 and H2 ⊇i K1,3, 5P1, P2 + P4, or P6;

(v) H1 ⊇i 3P1 and H2 ⊇i 2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2, or 2P3;

(vi) H1 ⊇i 4P1 and H2 ⊇i P1 + P4 or 3P1 + P2;

(vii) H1 ⊇i P1 + P4 and H2 ⊇i P1 + 2P2.

3Given four graphs H1, H2, H3, H4, the class of (H1, H2)-free graphs and the class of (H3, H4)-
free graphs are equivalent if the unordered pair H3, H4 can be obtained from the unordered pair
H1, H2 by some combination of the operations (i) complementing both graphs in the pair and (ii)
if one of the graphs in the pair is K3, replacing it with P1 + P3 or vice versa. If two classes are
equivalent, then one of them has bounded clique-width if and only if the other one does (see [25]).
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Fig. 6. Walls of height 2, 3, and 4, respectively.

K1,3 4P1 2P2 C4 2P1 + P2 K4 C5 3P1 + P2

Fig. 7. Forbidden induced subgraphs from Theorems 6, 7, and 8.

Theorem 2 (restated). For a graph H, the class of (H,H)-free graphs has
bounded clique-width if and only if H or H is an induced subgraph of K1,3, P1 + P4,
2P1 + P3, or sP1 for some s ≥ 1.

Proof. Let H be a graph. It can be readily checked from Theorem 5 that if H
or H is an induced subgraph of K1,3, P1 + P4, 2P1 + P3, or sP1 for some s ≥ 1
then the class of (H,H)-free graphs has bounded clique-width. Suppose this is not
the case. If H /∈ S and H /∈ S, then the class of (H,H)-free graphs has unbounded
clique-width by Theorem 5. By Fact 2, we may therefore assume that H ∈ S. By
Lemma 2, H contains K1,3 + P1, 2P2, 3P1 + P2, or S1,1,2 as an induced subgraph.
This means that the class of (H,H)-free graphs contains the class (K1,3, 4P1)-free,
(2P2, 2P2)-free, (4P1, 3P1 + P2)-free, or (2P1 + P2,K1,3)-free graphs, respectively. In
each of these cases we apply Theorem 5.

5. Three new classes of unbounded clique-width and the proof of The-
orem 3. In this section we first identify three new graph classes of unbounded clique-
width. To do so, we will need the notion of a wall. We do not formally define this
notion, but instead refer to Figure 6, in which three examples of walls of different
height are depicted (see, e.g., [14] for a formal definition). The class of walls is well
known to have unbounded clique-width; see for example [37]. A k-subdivided wall is
the graph obtained from a wall after subdividing each edge exactly k times for some
constant k ≥ 0, and the following lemma is well known.

Lemma 16 ([40]). For any constant k ≥ 0, the class of k-subdivided walls has
unbounded clique-width.

In [19], Dabrowski, Golovach, and Paulusma showed that (4P1, 3P1 + P2)-free
graphs have unbounded clique-width. However, their construction was not C5-free.
We give an alternative construction that neither contains an induced C5 nor an in-
duced copy of any larger self-complementary graph (see also Figure 7).

Theorem 6. Let F be the set of all self-complementary graphs on at least five
vertices that are not equal to the bull. The class of ({4P1, 3P1 + P2} ∪ F)-free graphs
has unbounded clique-width.

Proof. Consider a wall H (see also Figure 6). Let H ′ be the graph obtained
from H by subdividing every edge once, that is, H ′ is a 1-subdivided wall. By
Lemma 16, such graphs have unbounded clique-width. Let V1 be the set of ver-
tices in H ′ that are also present in H. Let V2 be the set of vertices obtained from
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subdividing vertical edges in H, and let V3 be the set of vertices obtained from subdi-
viding horizontal edges. Note that V1, V2, and V3 are independent sets. Furthermore,
every vertex in V1 has at most one neighbor in V2 and at most two neighbors in V3,
while every vertex in V2∪V3 has at most two neighbors, each of which is in V1. Let H ′′

be the graph obtained from H ′ by applying complementations on V1, V2, and V3. By
Fact 2, such graphs have unbounded clique-width.

It remains to show that H ′′ is ({4P1, 3P1 + P2} ∪ F)-free. Since the vertex set
of H ′′ is the disjoint union of the three cliques V1, V2, V3, we find that H ′′ is 4P1-free.
We now show that H ′′ is 3P1 + P2-free. Suppose, for contradiction, that H ′′ contains
an induced 3P1 + P2 with vertex set S. Note that 3P1 + P2 is the graph obtained
from a K5 after deleting an edge. Since V1, V2, and V3 are cliques in H ′′, this means
that S must have vertices in at least two of these sets. As V2 is anticomplete to V3,
we find that S contains at least one vertex of V1. Suppose S has only vertices in V1
and Vi for some i ∈ {2, 3}. Then, since |S| = 5 and S contains vertices of both V1
and Vi, it follows that one of V1, Vi contains either three or four vertices. As each
vertex of V1 has at most two neighbors in Vi and vice versa, this means that in both
cases H ′′[S] is missing at least two edges, which is not possible. Hence S must have
at least one vertex in each of V1, V2, V3. As V2 is anticomplete to V3 and H ′′[S] is
missing only one edge, S must have exactly one vertex in each of V2 and V3, and the
remaining three vertices of S must be in V1. We recall that every vertex in V2 has at
most two neighbors in V1 and no neighbors in V3. Hence, the vertex of S that is in V2
has degree at most 2 in H ′′[S]. This is a contradiction, as 3P1 + P2 has minimum
degree 3. We conclude that H ′′ is 3P1 + P2-free.

Next, we show that H ′′ is X-free for any self-complementary graph X on at least
five vertices that is not equal to the bull. First suppose that X has at most seven
vertices. Then X must be the C5. Since the vertex set of H ′′ is the disjoint union of
the three cliques V1, V2, V3, and V2 is anticomplete to V3, we find that H ′′ is C5-free.

It remains to show that if X is a self-complementary graph on at least eight
vertices, then H ′′ is X-free. Suppose, for contradiction, that H ′′ contains such an
induced subgraph X. Since H ′′ is 4P1-free, X must be 4P1-free and therefore K4-
free. Let Ui = Vi ∩V (F ) for i = 1, 2, 3. Since each set Vi is a clique and X is K4-free,
each set Ui must be a clique on at most three vertices. Since X contains at least eight
vertices, two sets of {U1, U2, U3} consist of three vertices and the other set consists
of either two or three vertices. This means that at least one of U2, U3 contains three
vertices (while the other set may contain two vertices). Now U2 is anticomplete to U3,
so X contains an induced K3 + P2. Since X is self-complementary, X must contain
an induced K2,3. Consider an induced K1,3 in H ′′. The three degree-1 vertices of
the K1,3 must be in different sets Vi. As V2 is anticomplete to V3, the central vertex
of the K1,3 must be in V1. Since two nonadjacent vertices in a K2,3 are the centers
of an induced K1,3, it follows that both these vertices must be contained in H ′′[V1].
This is a contradiction, since V1 is a clique. This completes the proof.

Brandstädt et al. [9] proved that (C4,K1,3,K4, 2P1 + P2)-free graphs have un-
bounded clique-width. In fact, their construction is also C5-free (see also Figure 7).
Note that by Lemma 7, any self-complementary graph on at least five vertices that
is not equal to the bull contains an induced subgraph isomorphic to C4, C5, or K4,
so such graphs are automatically excluded from the class specified in the following
theorem.

Theorem 7. The class of (C4, C5,K1,3,K4, 2P1 + P2)-free graphs has unbounded
clique-width.
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Proof. Consider a wall H (see also Figure 6). Let H ′ be the graph obtained
from H by subdividing every edge once. Let V1 be the set of vertices in H ′ that
are also present in H and let V2 be the set of vertices obtained by subdividing edges
of H. Note that in H ′, the neighborhood of every vertex in V1 is an independent
set. For every vertex in V1, we add edges between its neighbors; this will cause its
neighborhood to induce a P2 or a triangle. Finally, we delete the vertices in V1 and
let H ′′ be the resulting graph. As the smallest induced cycle in H has length 6,
the smallest induced cycle in H ′ has length 12. Hence, making vertices that are of
distance 2 from each other in H ′ adjacent to each other in H ′′ does not create any
induced C5, and we find that H ′′ is C5-free. Brandstädt et al. proved that such graphs
are (C4,K1,3,K4, 2P1 + P2)-free and have unbounded clique-width [9]; the latter fact
also follows from [25, Theorem 3]. This completes the proof.

Before proving our third unboundedness result, we will first need to introduce
some more terminology and two lemmas. Given natural numbers k, `, let Rb(k, `)
denote the smallest number such that if every edge of a KRb(k,`),Rb(k,`) is colored red
or blue then it will contain a monochromatic Kk,`. Beineke and Schwenk [1] showed
that Rb(k, `) always exists and proved the following result.

Lemma 17 ([1]). Rb(2, 2) = 5.

The next lemma was independently proved by Ringel and Sachs.

Lemma 18 ([45, 46]). Let G be a self-complementary graph on an odd number
of vertices and let f : V (G)→ V (G) be an isomorphism from G to G. Then there is
a unique vertex v ∈ V (G) such that f(v) = v.

Recall that the clique number ω(G) of G is the size of a largest clique in G. The
next lemma was proved by Sridharan and Balaji.

Lemma 19 ([47]). Let G be a self-complementary split graph on n vertices. If n
is even then ω(G) = n

2 .

Let G = (V,E) be a split graph. The independence number α(G) of G is the
size of a largest independent set in G. By definition, G has a split partition, that
is, a partition of V into two (possibly empty) sets C and I, where C is a clique
and I is an independent set. A split graph G may have multiple split partitions. For
self-complementary split graphs we can show the following.

Lemma 20. Let G be a self-complementary split graph on n vertices.
(i) If n is even, then G has a unique split partition and in this partition the clique

and independent set are of equal size.
(ii) If n is odd, then there exists a vertex v such that G \ v is also a self-

complementary split graph.

Proof. First consider the case where n is even and let (C, I) be a split partition
of G. Then ω(G) ≥ |C| and α(G) ≥ |I|. Since G is self-complementary, it follows that
ω(G) = α(G) and, by Lemma 19, ω(G) = n

2 . Therefore n = |C|+|I| ≤ ω(G)+α(G) ≤
n and so |I| = |C| = ω(G) = α(G) = n

2 . Suppose, for contradiction, that there is
another split partition (C ′, I ′) with |C ′| = |I ′|. Now I \ I ′ ⊆ C ′ ∩ I, so |I \ I ′| = 1.
Similarly |I ′\I| = 1. This implies that I \I ′ = C ′\C = {u} and I ′\I = C \C ′ = {w}.
Note that both u and w are complete to C ∩ C ′ and anticomplete to I ∩ I ′. Hence
if u,w are adjacent, then {u,w} ∪ (C ∩ C ′) is a clique of size n

2 + 1, and if u,w are
nonadjacent, then {u,w} ∪ (I ∩ I ′) is an independent set of size n

2 + 1. In both cases
we get a contradiction with the fact that ω(G) = α(G) = n

2 . This completes the case
where n is even.
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Now suppose that n is odd and let f be an isomorphism from G to G. By
Lemma 18, there is a vertex v ∈ V (G) such that f maps v to v and maps the vertices
of G \ {v} to the vertices of G \ {v}. Therefore G \ {v} is self-complementary.

Theorem 8. Let F be the set of all self-complementary graphs on at least five
vertices that are not equal to the bull. The class of ({C4, 2P2} ∪ F)-free graphs has
unbounded clique-width.

Proof. First note that the only self-complementary graph on five vertices apart
from the bull is the C5. Since C5 ∈ F , the class of ({C4, 2P2} ∪ F)-free graphs is a
subclass of the class of split graphs by Lemma 1. Hence we may remove all graphs
that are not split graphs from F , apart from C5; in particular, this means that we
remove X4, . . . , X10 from F (see also Figure 3). By Lemma 20, if G ∈ F has an odd
number of vertices, but is not equal to C5, then G \ v ∈ F for some vertex v ∈ V (G).
Let F ′ be the set of self-complementary split graphs on at least eight vertices that
have an even number of vertices. It follows that the class of F ′-free split graphs is
equal to the class of ({C4, 2P2} ∪ F)-free graphs.

Consider a 2-subdivided wall H and note that it is (C4, C8)-free; recall that
2-subdivided walls have unbounded clique-width by Lemma 16. Note that H is a
bipartite graph, and fix a bipartition (A,B) of H. Let H ′ be the graph obtained
from H by applying a complementation to A and note that H ′ is a split graph with
split partition (A,B).

Note that in H ′, every vertex in B has a nonneighbor in A and every vertex in A
has a neighbor in B. We claim that (A,B) is the unique split partition of H ′. Indeed,
suppose (A′, B′) is a split partition of H ′; we will show that A′ = A and B′ = B. First
suppose, for contradiction, that B′ contains a vertex a ∈ A. There exists a vertex
b ∈ B that is adjacent to a and therefore b /∈ B′. Similarly, every vertex of (A \ {a})
is adjacent to a, so (A \ {a}) ∩ B′ = ∅. Therefore every vertex of (A \ {a}) ∪ {b}
must lie in A′, which is a clique. It follows that b is complete to A, a contradiction.
Therefore B′ cannot contain a vertex of A. Similarly, A′ cannot contain a vertex of B.
We conclude that (A′, B′) = (A,B), so the split partition of H ′ is indeed unique.

Now, by Fact 2, the class of graphs H ′ produced in the above way also has
unbounded clique-width. It remains to show that H ′ is F ′-free.

First note that X1 (see also Figure 3) is the graph obtained from the bipartite
graph C8 by complementing one of the independent sets in the bipartition. Since H
is C8-free and X1 has a unique split partition (by Lemma 20), it follows that H ′ is
X1-free.

Note that H is C4-free and so H ′ does not contain two vertices x, x′ in the
clique A and two vertices y, y′ in the independent set B such that {x, x′} is complete
to {y, y′}. Now suppose G ∈ F ′ \ {X1}. Recall that by Lemma 20, G has a unique
split partition (C, I), and this partition has the property that |C| = |I|. Therefore,
if we can show that G contains two vertices x, x′ ∈ C and two vertices y, y′ ∈ I with
{x, x′} complete to {y, y′} then H ′ must be G-free and the proof is complete. It
is easy to verify that this is the case if G ∈ {X2, X3} (see also Figure 3 and recall
that X4, . . . , X10 /∈ F ′). Otherwise, G has at least ten vertices so |C|, |I| ≥ 5. By
Lemma 17, there must be two vertices x, x′ ∈ C and two vertices y, y′ ∈ I with
{x, x′} either complete or anticomplete to {y, y′}. In the first case we are done. In
the second case we note that complementing G will swap the sets C and I and make
{x, x′} complete to {y, y′}, returning us to the previous case.

We conclude that H ′ is indeed F ′-free. This completes the proof.
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We are now ready to prove Theorem 3. Note that this theorem holds even if F is
infinite.

Theorem 3 (restated). Let F be a set of self-complementary graphs on at least
five vertices not equal to the bull. For a graph H, the class of ({H,H} ∪ F)-free
graphs has bounded clique-width if and only if H or H is an induced subgraph of K1,3,
P1 + P4, 2P1 + P3, or sP1 for some s ≥ 1.

Proof. Let H be a graph. By Theorem 2, if H or H is an induced subgraph of
K1,3, P1 + P4, 2P1 + P3, or sP1 for some s ≥ 1, then the class of ({H,H} ∪ F)-free
graphs has bounded clique-width.

Consider a graph F ∈ F . Since F contains at least five vertices and is not isomor-
phic to the bull, Lemma 7 implies that F contains an induced subgraph isomorphic to
C4, C5, or K4, and so F /∈ S. Therefore, the class of ({H,H}∪F)-free graphs contains
the class of (H,H,C4, C5,K4)-free graphs. If H /∈ S and H /∈ S, then the class of
(H,H,C4, C5,K4)-free graphs has unbounded clique-width by Lemma 5. By Fact 2,
we may therefore assume that H ∈ S. By Lemma 2, we may assume H contains
K1,3 +P1, 2P2, 3P1 +P2, or S1,1,2 as an induced subgraph, otherwise we are done. In
this case, the class of ({H,H}∪F)-free graphs contains the class of (K1,3,K4, C4, C5)-
free, ({2P2, C4}∪F)-free, ({4P1, 3P1 + P2}∪F)-free, or (K1,3, 2P1 + P2, C4, C5,K4)-
free graphs, respectively. These classes have unbounded clique-width by Theorems 7,
8, 6, and 7, respectively. This completes the proof.

6. Conclusions. We classified the boundedness of clique-width for the class of
H-free graphs for every set H of self-complementary graphs (Theorem 1). Afterwards,
we did the same for the class of (H,H)-free graphs for every graph H (Theorem 2). In
particular, we proved that the class of (2P1 + P3, 2P1 + P3)-free graphs has bounded
clique-width (Theorem 4). We then proved that for a set F of self-complementary
graphs on at least five vertices, the classification of the boundedness of clique-width
for ({H,H} ∪ F)-free graphs coincides with the one for the |H| = 2 case if and only
if F does not include the bull. As future work, we aim to continue our study of bound-
edness of clique-width for graph classes closed under complementation (Theorem 3).
In particular, to complete the classification for H-free graphs when |H| = 3, we still
need to determine those graphs H for which (H,H, bull)-free graphs have bounded
clique-width, and several such cases remain open. Our results also have a number of
algorithmic and structural consequences, which we discuss below.

As explained in section 1, the (un)boundedness of clique-width for bigenic graph
classes was determined in a sequence of other papers for all but six cases. As we have
proved that the class of (2P1 + P3, 2P1 + P3)-free graphs has bounded clique-width,
five cases remain to be solved in order to complete the classification in Theorem 5.

Open Problem 1. Does the class of (H1, H2)-free graphs have bounded or un-
bounded clique-width when

(i) H1 = 3P1 and H2 ∈ {P1 + S1,1,3, S1,2,3};
(ii) H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + P5};
(iii) H1 = P1 + P4 and H2 = P2 + P3.

The Coloring problem takes as input a graph G = (V,E) and an integer k ≥ 1
and asks whether there exists a mapping (coloring) c : V → {1, 2, . . . , k} such that
c(u) 6= c(v) whenever uv ∈ E. By combining a result of Kobler and Rotics [38]
with a result of Oum and Seymour [42], the Coloring problem is polynomial-time
solvable for any graph class of bounded clique-width. Hence, our result that the class
of (2P1 +P3, 2P1 + P3)-free graphs has bounded clique-width implies that Coloring
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is polynomial-time solvable for this graph class. This result was used by Blanché et
al. to prove the following theorem.

Theorem 9 ([2]). Let H,H /∈ {(s + 1)P1 + P3, sP1 + P4 | s ≥ 2}. Then
Coloring is polynomial-time solvable for (H,H)-free graphs if H or H is an induced
subgraph of K1,3, P1 + P4, 2P1 + P3, P2 + P3, P5, or sP1 + P2 for some s ≥ 0 and it
is NP-complete otherwise.

Comparing Theorems 2 and 9 shows that there are graph classes of unbounded
clique-width that are closed under complementation, but for which Coloring is still
polynomial-time solvable. Nevertheless, on many graph classes, polynomial-time solv-
ability of NP-hard problems stems from the underlying property of having bounded
clique-width. The present paper illustrates this for the Coloring problem, since The-
orem 4 implies that Coloring is solvable in polynomial time on (2P1+P3, 2P1 + P3)-
free graphs. In particular, by updating the summary of [18] (see also [31]) with the
results of [4] and this paper, we identify the following ten classes of (H1, H2)-free
graphs, for which Coloring could still potentially be solved in polynomial time by
showing that their clique-width is bounded.

Open Problem 2. Is Coloring polynomial-time solvable for (H1, H2)-free
graphs when

(i) H1 ∈ {3P1, P1 + P3} and H2 ∈ {P1 + S1,1,3, S1,2,3};
(ii) H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + P5};
(iii) H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + P5};
(iv) H1 = P1 + P4 and H2 = P2 + P3;

(v) H1 = P1 + P4 and H2 = P2 + P3.

Finally, we note that it may also be worthwhile to consider the consequences of
our research for the boundedness of variants of clique-width, such as linear clique-
width [35] and power-bounded clique-width [5].
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[11] A. Brandstädt, H.-O. Le, and R. Mosca, Gem- and co-gem-free graphs have bounded clique-
width, Internat. J. Found. Comput. Sci., 15 (2004), pp. 163–185, https://doi.org/10.1142/
S0129054104002364.
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