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ABSTRACT
We address the issue of numerical convergence in cosmological smoothed particle hydro-
dynamics simulations using a suite of runs drawn from the EAGLE project. Our simulations
adopt subgrid models that produce realistic galaxy populations at a fiducial mass and force
resolution, but systematically vary the latter in order to study their impact on galaxy properties.
We provide several analytic criteria that help guide the selection of gravitational softening
for hydrodynamical simulations, and present results from runs that both adhere to and
deviate from them. Unlike dark matter-only simulations, hydrodynamical simulations exhibit
a strong sensitivity to gravitational softening, and care must be taken when selecting numerical
parameters. Our results – which focus mainly on star formation histories, galaxy stellar mass
functions and sizes – illuminate three main considerations. First, softening imposes a minimum
resolved escape speed, vε , due to the binding energy between gas particles. Runs that adopt such
small softening lengths that vε � 10 km s−1 (the sound speed in ionized ∼104 K gas) suffer
from reduced effects of photoheating. Secondly, feedback from stars or active galactic nuclei
may suffer from numerical overcooling if the gravitational softening length is chosen below
a critical value, εeFB. Thirdly, we note that small softening lengths exacerbate the segregation
of stars and dark matter particles in halo centres, often leading to the counterintuitive result
that galaxy sizes increase as softening is reduced. The structure of dark matter haloes in
hydrodynamical runs respond to softening in a way that reflects the sensitivity of their galaxy
populations to numerical parameters.
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1 IN T RO D U C T I O N

Collisionless N-body simulations offer a stable platform for mod-
elling the non-linear structure of dark matter-dominated systems.
Once a cosmological model has been specified and initial conditions
chosen, only a small number of numerical parameters govern
the system’s evolution. This has enabled numerical studies to
elucidate the impact that these parameters have on the outcome
of simulations (e.g. Power et al. 2003; Springel et al. 2008; Stadel
et al. 2009; Navarro et al. 2010; Vera-Ciro et al. 2011; Hopkins
et al. 2018; van den Bosch & Ogiya 2018), leading to well-
established ‘convergence criteria’ that help unravel numerically
robust results from those more susceptible to the details of the
underlying numerical framework.

� E-mail: aaron.ludlow@icrar.org

As a result of these efforts there is now concurrence on a number
issues. For example, the detailed inner structure of dark matter (DM)
haloes can be trusted down to radii of the order of 5 per cent of their
virial radius provided they contain several thousand particles (e.g.
Ludlow, Schaye & Bower 2019, hereafter Paper I), while mass
functions converge to better than ≈5 or 10 per cent (depending on
how mass is defined) for haloes composed of �100 particles (see
e.g. Efstathiou et al. 1988; Jenkins et al. 2001; Tinker et al. 2008;
Ludlow et al. 2019b). Such convergence is important: it suggests that
cosmological simulations simultaneously resolve halo formation on
a variety of scales and across a range of redshifts. This is essential
for modelling galaxy formation, particularly in cold dark matter
(CDM) models where haloes and galaxies assemble hierarchically
through mergers of their (poorly resolved) ascendants.

Yet the Universe is not all dark, and any convincing model
of structure formation must also robustly predict the evolution
of its visible constituents. Hydrodynamical simulations co-evolve
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collision-less dark matter with the baryonic component necessary
for the formation of luminous galaxies. Current efforts in this
area mainly follow one of three numerical approaches: Lagrangian
smoothed particle hydrodynamics (SPH; Gingold & Monaghan
1977; Monaghan 1992; Katz, Weinberg & Hernquist 1996; Price &
Monaghan 2007), Eulerian adaptive mesh refinement methods
(AMR; e.g. Kravtsov 1999; Knebe, Green & Binney 2001; Teyssier
2002; Bryan et al. 2014) or, more recently, Lagrangian ‘moving
mesh’ (e.g. Springel 2010; Vandenbroucke & De Rijcke 2016) or
Godunov-type methods (e.g. Gaburov & Nitadori 2011; Hopkins
2015). Each of these have their own virtues and weaknesses, and
often yield conflicting solutions even when applied to simple test
problems (O’Shea et al. 2005; Agertz et al. 2007; Tasker et al. 2008;
Hubber, Falle & Goodwin 2013).

Inconsistency between numerical methods, however, is likely
overwhelmed by uncertainties in the physical processes responsi-
ble for galaxy formation (e.g. Scannapieco et al. 2012; Schaller
et al. 2015a; Sembolini et al. 2016). Star formation, feedback
from supernovae (SNe), and active galactic nuclei (AGNs), metal
enrichment and viscosity, for example, all occur on physical
scales not resolved by simulations. Instead, they must be modelled
using ‘subgrid’ techniques – parametrizations of the unresolved
processes employed within each resolution element or smoothing
kernel (see e.g. Schaye et al. 2015; Somerville & Davé 2015,
for recent discussions). To make matters worse, the physical
processes that these models attempt to emulate are often poorly
constrained by observation and models must be calibrated so
that simulations sensibly reproduce some desired set of galaxy
observations.

This necessarily imparts large ambiguities on galaxy formation
models since different groups employ not only different numerical
methods but also different implementations of subgrid processes
and the parameters that govern them. As a result, even simulations
starting from the same initial conditions, but carried out using dif-
ferent hydrodynamical codes, do not converge to similar solutions.
This was pointed out by Scannapieco et al. (2012), who used nine
different hydrodynamical codes to simulate the formation of a Milky
Way-mass galaxy (∼1012 M�) from two sets of initial conditions
that differed only in numerical resolution. Despite sharing initial
conditions, galaxies simulated with different codes possessed a
wide variety of visual morphologies, from star-forming discs to
red-and-dead ellipticals, had final stellar masses that varied by
almost an order of magnitude, and instantaneous star formation rates
(SFRs) that differed by a factor of ∼103; some ‘observables’ even
spanned the extremes of available observational data. Although the
majority of the galaxy-to-galaxy variation was driven by different
implementations of feedback, even the same code did not produce
consistent galaxy properties when run at different mass resolution.
Systematic tests such as these highlight the uncertainties inherent
to galaxy formation simulations.

Nevertheless, improvements are being made, both to numerical
algorithms and to subgrid models, and studies continue to illu-
minate their complex interdependence and impact on simulation
results. For example, Hopkins et al. (2018) recently carried out a
systematic study of the impact of subgrid physics and numerical
parameters (primarily mass and force resolution) on the outcome
of ‘zoomed’ simulations of individual galaxies, concluding that
convergence is more easily achieved in some galaxy properties than
in others. For example, stellar mass and baryonic mass profiles
are more robust to changes in resolution than metal abundance
and visual morphology, whereas gaseous winds and properties
of the circumgalactic medium (CGM) are more sensitive. They

conclude that high-resolution simulations of galaxy formation yield
numerically robust results provided they: resolve (1) Toomre masses
and (2) individual SNe, and (3) ensure (energy, mass, momentum)
conservation during feedback coupling.

One may assume, naively, that improving our understanding of
galaxy formation through simulation merely requires improvements
to hydrodynamic algorithms and a better understanding and
treatment of the complex (subgrid) physical processes involved.
Yet it was recently pointed out that minute and apparently superficial
changes to a simulation’s set-up cultivate rather large, stochastic
differences in the properties of individual galaxies at some later
stage. Keller et al. (2019), for example, showed that floating-point
round-off errors and random number generators can give rise to
large differences in the star formation histories (SFHs), properties
of the CGM, and stellar masses of individual galaxies, particularly
when mergers are involved. Building on this, Genel et al. (2019)
quantified the ‘butterfly effect’ by comparing the outcome of pairs
of cosmological simulations that differed from one another by small,
random perturbations to initial particle positions, but were identical
in all other respects. Although the statistical properties of the galax-
ies remained unchanged, properties of individual galaxies diverged
from one another stochastically. They conclude that chaotic galaxy-
to-galaxy variations can account for up to 50 per cent of the variance
in simulated galaxy scaling relations, such as the star formation-
mass and Tully–Fisher relations. Both studies emphasized that,
while seemingly deterministic, galaxy formation simulations are by
no means immune chaos and stochasticity (see also e.g. Thiébaut
et al. 2008; Sellwood & Debattista 2009; El-Zant, Everitt & Kassem
2019), and that care must be taken when interpreting the impact that
different physical models have on galaxy properties, particularly
for studies relying on ‘zoomed’ simulations of a small number of
objects.

These studies should inspire future efforts to better understand the
role that numerical techniques, subgrid models and their associated
parameters have on galaxy formation simulations. The task will not
be simple, but will be worthwhile. Motivated by this, we report
here initial results from a new suite of hydrodynamical simulations
designed to illuminate the impact of numerical parameters (pri-
marily mass and force resolution) on simulation results. We focus
our analysis on the statistical properties of galaxies and their dark
matter haloes, considering separately their internal structure and
total abundance.

We stress that the results of our study mainly target SPH
simulations whose subgrid physics models resemble those adopted
for the EAGLE programme. It will become clear in later sections that
numerical and subgrid parameters are strongly coupled, implying
that simulation results affected by numerical resolution may be
compensated by modifying one or more parameters controlling the
subgrid physics. Our intent for this paper is not to provide a road
map to navigate these changes, but rather to emphasize the often
detrimental effects that numerical parameters, if improperly chosen,
can have on well-calibrated subgrid models. For that reason, the
majority of our runs will employ the ‘Reference’ or ‘Recalibrated’
subgrid models adopted for the EAGLE project (see Crain et al.
2015; Schaye et al. 2015, for details), and test how sensitive
the predictions of these models are to changing the numerical
resolution. Unlike Hopkins et al. (2018), our simulations target
(small) cosmological volumes (12.5 cubic Mpc) as opposed to
individual objects, allowing us to assess convergence across a
broad range of scales, and in haloes resolved with a few hundred
to many thousands of particles. We consider this an essential
exercise given the hierarchical nature of galaxy formation in the
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standard CDM model, where poorly resolved low-mass galaxies
may influence the later formation and evolution of more massive
systems.

We organize our paper as follows. In Section 2 we introduce
our simulation suite, providing details of the relevant numerical
parameters and subgrid models, and pertinent aspects of their post-
processing. In Section 3 we provide the analytic background that
will help guide the interpretation of our results, which we present
in Section 4. We end with a discussion of our findings and outlook
for future work in Section 5.

2 SI M U L AT I O N S A N D A NA LY S I S

2.1 Simulation set-up

All simulations were carried out with a modified version of the N-
body SPH code GADGET3, which includes substantial improvements
to the hydrodynamics scheme, time-stepping criteria, and subgrid
physics models (Springel 2005; Schaye et al. 2015). Our suite
includes a number of runs that follow only collision-less DM and
adiabatic hydrodynamics, as well as others that invoke the full
subgrid physics of the EAGLE code. Our entire suite of simulations
was carried out in the same L = 12.5 (cubic comoving) Mpc volume
described in Paper I; we reiterate the most important aspects of the
simulation here, for completeness.

Cosmological parameters are taken from the Planck I data release
(Planck Collaboration XVI 2014); their values are as follows: (1)
the dimensionless Hubble constant is h ≡ H0/(100 km s−1 Mpc) =
0.6777; (2) the z = 0 linear rms density fluctuation in 8 h−1 Mpc
spheres, σ 8 = 0.8288; (3) the power-law index of primordial
adiabatic perturbations, ns = 0.9661; (4) the primordial abundance
of helium, Y = 0.248; (5) finally, the cosmic density parameters,
�M = 1 − �� = 0.307 and �bar = �M − �DM = 0.04825, give the
total energy density of species i in units of the redshift-dependent
closure density, ρcrit(z) ≡ 3H2(z)/8πG (for convenience, we define
the present-day critical density as ρ0 ≡ ρcrit[z = 0]).

Two sets of initial conditions were generated by perturbing a glass
of DM particles using second-order Lagrangian perturbation theory
consistent with a starting redshift of z = 127; the Lagrangian particle
loads were sampled with N3

p = 1883 and 3763 particles of DM using
the same amplitudes and phases for mutually resolved modes (note
that Np refers to the number of baryonic or DM particles along a side
of the simulation box). Gas particles were created by duplicating
those of DM, whose masses were reduced by a factor 1 − �bar/�M.
The resulting DM particle masses are mDM = 1.21 × 106 M� and
9.70 × 106 M� for the high- and low-resolution runs, respectively;
the primordial gas particle masses1 are mg = 2.26 × 105 M� and
1.81 × 106 M�, respectively, and are equivalent to those used for
the ‘high-’ and ‘intermediate-resolution’ runs of the original EAGLE

project. In the nomenclature of Schaye et al. (2015), these runs
are labelled L0012N0188 and L0012N00376, but we will often
distinguish them simply by quoting the number of particles per
species, N3

p .
Our simulations have uniform mass resolution and adopt equal

gravitational softening lengths for all particles types (DM, gas, and

1Because of star formation and stellar mass-loss, gas and star particle masses
do not, in general, remain constant throughout the simulation. To keep
matters simple, we will, when necessary, compare the masses of baryonic
structures to the equivalent mass of primordial gas particles, which we
denote mg.

stars), thus fixing the ratio of softening to the mean interparticle
spacing, ε/(L/Np). As in Paper I, Plummer-equivalent softening
lengths adopted for the original EAGLE programme will be referred
to as εfid, the ‘fiducial softening’. For EAGLE, ε/(L/Np) ≈ 0.011
in proper coordinates at z ≤ 2.8, corresponding to εfid = 700
and 350 pc for our N3

p = 1883 and 3763 runs, respectively. For z

> zphys = 2.8, ε was fixed in comoving coordinates to a value
of εfid/(L/Np) = 0.04; or 2660 and 1330 pc, respectively. When
necessary, we will quote softening lengths at specific redshifts,
which will be specified explicitly, but will often distinguish runs by
simply quoting the present-day physical softening length, hereafter
denoted ε0 ≡ ε(z = 0).

We report results for a series of runs that vary ε0 by sequent factors
of 2 above and below EAGLE’s fiducial values; a limited number of
these – used mainly for illustration – also vary zphys. In all cases,
the SPH kernel support size is restricted to values lmin

hsml ≥ 0.1 × εsp,
where

εsp ≡ 2.8 × ε (1)

is the spline softening length.
The majority of our runs adopt the same time-step criteria for

gravity (ErrTolIntAcc= 0.025) and hydrodynamics (a Courant
factor of 0.05), but we have verified that our results are insensitive
to this choice (Fig. 1 and Appendix A2). Table 1 provides a detailed
summary of all numerical parameters relevant to our runs.

All of the results presented in the following sections are specific to
runs that adopt equal numbers of DM and (primordial) gas particles,
and the same softening lengths for all particle types. Simulations
that employ different or adaptive softening lengths for baryon or DM
particles, or different numbers of each particle species, may yield
different results (see Ludlow et al. 2019a, for an example of the
latter). We defer a thorough investigation of numerical convergence
in these regimes to future work.

2.2 Summary of subgrid physics

Cosmological simulations of large volumes lack the mass and
spatial resolution to directly capture the main physical processes
responsible for galaxy formation and evolution; these processes
must be implemented using subgrid models. For completeness, we
summarize below the subgrid physics adopted for the EAGLE project
that is most relevant to our work.

Radiative heating and cooling rates are modelled on a per-particle
basis assuming gas is optically thin and in ionization equilibrium
(Wiersma, Schaye & Smith 2009b). The rates are interpolated from
tables generated using CLOUDY (Ferland et al. 1998) and depend
on the temperature and density of a gas particle, its elemental
abundance, and on redshift. We implement hydrogen reionization
by invoking a spatially constant, time-dependent photoionizing
background (Haardt & Madau 2001) at z = 11.5 and injecting
2 eV per Hydrogen atom instantaneously (note that reionization
is neglected in all non-radiative simulations, as well as in several
full-physics runs).

Because our simulations do not resolve the cold phase of the
interstellar medium (ISM; T 	 104 K), we impose a temperature
floor corresponding to a (γ eos = 4/3) polytrope with Teos = 8000 K
at nH = 0.1 cm−3. Star formation occurs stochastically in dense gas
at a rate given by the pressure law of Schaye & Dalla Vecchia (2008),
which is based on the Kennicutt–Schmidt (KS) star formation law
(Kennicutt 1989), i.e. 
̇� ∝ 
n

gas, where 
gas and 
̇� are the gas and
star formation rate surface densities, respectively. The slope of the
KS-law is set to n = 1.4 for densities nH ≤ nSB = 103 cm−3 and (to
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Numerical convergence of simulated galaxies 2929

Figure 1. Halo baryon fractions as a function of virial mass for adiabatic (i.e. non-radiative) runs. We show results for N3
p = 1883 with softening lengths

that vary from ε/(L/Np) ≈ 0.67 to ≈0.0013 in units of the mean interparticle spacing (for all runs zphys = 0, which enforces fixed co-moving softening at all
times). The dashed curves show results for haloes at z = 10 and solid curves at z = 0. The blue curves distinguish values of ε that fall within the range 0.02
� ε/(L/Np) � 0.5 derived in Section 3.1: these runs are expected to be unaffected by force biasing (ε200 � r200(z); equation 4) and stochastic heating due to
particle collisions (ε/(L/Np) � 0.02; equation 7). The red curves are for runs that lie above or below these limits. For comparison, grey lines, repeated in each
panel, show results for ε/(L/Np) = 0.084, for which baryon fractions typically reach a maximum at all masses. The horizontal line indicates the cosmic mean
baryon fraction, and beige shaded regions highlight M200 � 100 × mp. Thin lines in the panel for which ε/(L/Np) = 0.011 show results from a run where the
number of time-steps was increased by a factor ≈3. Finally, downward pointing arrows mark the virial masses at which the characteristic velocity perturbation
due to 2-body encounters is δvg = V200, with open and solid symbols corresponding to z = 10 and 0, respectively.

approximate the star-burst phase) to n = 2.0 at higher densities. We
adopt the Schaye (2004) metallicity-dependent threshold for star
formation, n�

H, in order to emulate the more efficient transition from
a warm to a cold, molecular phase in the metal-enriched ISM. Star
formation is also limited to gas particles whose overdensity exceeds
57.7 times the cosmic mean.

Each star particle is assumed to host a simple stellar population
whose initial mass function is consistent with the proposal of
Chabrier (2003); stellar evolution and mass-loss are as described
by Wiersma et al. (2009a). Stars reaching the ends of their lives
inject energy into their surroundings stochastically in line with the
thermal feedback model of Dalla Vecchia & Schaye (2012). The
model circumvents numerical radiative losses of feedback energy
by imposing temperature increments, �TSF, upon fluid resolution
elements affected by SNe rather than by injecting energy directly.
In the latter approach, the SNe energy is spread across a far larger
mass (the mass of at least one gas particle) than in reality (of the
order of a few M�), resulting in a smaller temperature increase and
a shorter cooling time. This weakens – or in some cases, suppresses
entirely – the pressure gradients that give rise to feedback-driven
outflows. All of our runs adopt �TSF = 107.5 K.

Our simulations also include a subgrid prescription for the
formation and growth of black holes (BHs) and their associated
feedback. The former is based on the approach of Springel, Di
Matteo & Hernquist (2005) but includes modifications advocated
by Booth & Schaye (2009) and by Rosas-Guevara et al. (2015).
BHs are seeded in friends-of-friends (FOF) haloes (identified on-
the-fly using a linking length b = 0.2) the first time they exceed
a mass threshold of 1010 h−1 M�. This is done by converting
the highest density gas particle into a (collision-less) BH, which
is assigned an initial seed mass of 105 h−1 M�. BHs grow by
(stochastically) accreting nearby gas particles and those with mass

≤ 102 mgas are regularly steered towards the centres of their host
haloes. Feedback energy associated with gas accretion and BH
growth couples to the ISM using a method based on Booth &
Schaye (2009). In Appendix A1 we compare results from two
Recal models that include or ignore BH formation and feedback
from AGN.

As discussed extensively in Schaye et al. (2015) (see also Crain
et al. 2015), subgrid parameters that govern these processes must
be calibrated so that simulations match certain fundamental aspects
of the observed galaxy population. The EAGLE programme owes
part of its success to the calibration of AGN and stellar feedback
model parameters which ensures that simulated galaxies match the
observed mass−size relation, galaxy stellar mass function (GSMF),
and the relation between the masses of galaxies and their BHs at z =
0. Subgrid parameters were optimized independently at different
mass resolutions, though variations between them were small. In
Schaye et al. (2015), these are referred to as the ‘Reference’ (or
Ref, for N3

p = 1883) and ‘Recalibrated’ subgrid models (Recal, for
N3

p = 3763). We note that, at the mass scales accessible to our
simulations and for the fiducial numerical parameters adopted for
EAGLE, the Ref and Recal models yield similar results for the GSMF
and galaxy mass–size relation.

Motivated by this, we adopt the ‘Recalibrated’ subgrid param-
eters for our N3

p = 3763 runs, and ‘Reference’ parameters for
N3

p = 1883, but have verified that none of the results or conclusions
presented in the following sections are effected by this choice.2

2All of our N3
p = 1883 simulations were carried out using both sets of

parameters – Reference and Recalibrated – but we have chosen to present
results only for Ref. The similarities between Ref and Recal models at fixed
mass resolution is briefly discuss in Appendix A1.
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2930 A. D. Ludlow et al.

Table 1. Numerical parameters used in our simulations. The first column provides a label for each run; LXXNXXX encodes the comoving box
side-length L and number of particles (gas or DM) Np on a side. This is followed by an identifier for the run type: Recal and Ref are, respectively,
the ‘recalibrated’ and ‘Reference’ EAGLE subgrid models; NR refers to runs carried out with non-radiative hydrodynamics. The dark matter,
mDM, and gas particle masses, mg, are also provided. Softening lengths εCM, initially kept fixed in co-moving coordinates, reach a maximum
physical value εphys at redshift zphys, after which they remain constant in proper coordinates. ErrTolIntAcc and the Courant Factor control
the time-step size for orbit integration for gravity and hydrodynamics. The rows corresponding to our fiducial models have been highlighted
using grey shading.

Name Model Np mDM mg εphys εCM zphys ErrTolIntAcc Courant
(105 M�) (105 M�) (pc) (pc) factor

L12N376 Recal 376 12.1 2.26 2800.0 10640.0 2.8 0.025 0.15
L12N376 Recal 376 12.1 2.26 1400.0 5320.0 2.8 0.025 0.15
L12N376 Recal 376 12.1 2.26 700.0 2660.0 2.8 0.025 0.15
L12N376 Recal 376 12.1 2.26 700.0 1660.0 1.3 0.025 0.15
L12N376 Recal 376 12.1 2.26 350.0 1330.0 2.8 0.025 0.15
L12N376 Recal 376 12.1 2.26 175.0 665.0 2.8 0.025 0.15
L12N376 Recal 376 12.1 2.26 87.5 332.5 2.8 0.025 0.15
L12N376 Recal 376 12.1 2.26 43.75 166.25 2.8 0.025 0.15
L12N376 Recal 376 12.1 2.26 21.88 83.13 2.8 0.025 0.15
L12N376 Recal 376 12.1 2.26 700.0 10 500.0 14 0.025 0.15
L12N376 Recal 376 12.1 2.26 43.75 656.25 14 0.025 0.15
L12N376 Recal 376 12.1 2.26 21.88 328.1 14 0.025 0.15
L12N188 Ref 188 97.0 18.1 2800.0 10 640.0 2.8 0.025 0.15
L12N188 Ref 188 97.0 18.1 1400.0 5320.0 2.8 0.025 0.15
L12N188 Ref 188 97.0 18.1 1400.0 3420.0 1.3 0.025 0.15
L12N188 Ref 188 97.0 18.1 700.0 2660.0 2.8 0.025 0.15
L12N188 Ref 188 97.0 18.1 350.0 1330.0 2.8 0.025 0.15
L12N188 Ref 188 97.0 18.1 175.0 665.0 2.8 0.025 0.15
L12N188 Ref 188 97.0 18.1 87.5 332.5 2.8 0.025 0.15
L12N188 Ref 188 97.0 18.1 43.75 166.25 2.8 0.025 0.15
L12N188 Ref 188 97.0 18.1 21.88 83.13 2.8 0.025 0.15
L12N188 NR 188 97.0 18.1 4.48 × 104 4.48 × 104 0 0.025 0.15
L12N188 NR 188 97.0 18.1 2.24 × 104 2.24 × 104 0 0.025 0.15
L12N188 NR 188 97.0 18.1 1.12 × 104 1.12 × 104 0 0.025 0.15
L12N188 NR 188 97.0 18.1 5600.0 5600.0 0 0.025 0.15
L12N188 NR 188 97.0 18.1 2800.0 2800.0 0 0.025 0.15
L12N188 NR 188 97.0 18.1 1400.0 1400.0 0 0.025 0.15
L12N188 NR 188 97.0 18.1 700.0 700.0 0 0.025 0.15
L12N188 NR 188 97.0 18.1 700.0 700.0 0 0.0025 0.05
L12N188 NR 188 97.0 18.1 350.0 350.0 0 0.025 0.15
L12N188 NR 188 97.0 18.1 175.0 175.0 0 0.025 0.15
L12N188 NR 188 97.0 18.1 87.5 87.5 0 0.025 0.15

For a given particle mass and fixed set of subgrid parameters, we
repeat the same simulation changing only the gravitational softening
length. This permits strong convergence3 tests of the properties
of galaxies and their haloes, allowing us to directly assess the
robustness of well-calibrated galaxy formation models to changes
in mass and force resolution. Simulations should be insensitive
to these parameters, within reason, if they are to enjoy predictive
power.

2.3 Halo identification

Haloes were identified in all simulation outputs using SUBFIND

(Springel et al. 2001; Dolag et al. 2009), which initially links dark

3Strong convergence in galaxy formation simulations is obtained when
results are robust to arbitrary changes in numerical parameters, such as
mass or force resolution. Weak convergence requires recalibrating subgrid
parameters to offset differences brought about by modified numerics, such
as increased mass resolution (see Schaye et al. 2015, for discussion of strong
versus weak convergence).

matter particles into FOF groups before separating them into self-
bound ‘subhaloes’ by removing unbound material. If present, star
and gas particles are associated with the FOF halo of their nearest
DM particle. Note that FOF haloes are defined entirely by the DM
density field, whereas the gravitational unbinding of substructure
within them uses all particle types.

FOF groups contain a dominant subhalo (referred to as the ‘main’
halo) that contains the majority of its mass, and a collection of lower
mass substructures, many of which host ‘satellite’ galaxies. The
galaxy that inhabits the main halo will be referred to as the ‘central’
galaxy.

SUBFIND records a number of attributes of each FOF halo and its
entire hierarchy of subhaloes and satellite galaxies. These include –
but are not limited to – their position xp (defined as the coordinate of
the DM particle with the minimum potential energy), the radius and
magnitude of the peak circular speed, rmax and Vmax (which include
contributions from all particle types), as well as the self-bound mass
of each particle type.

For FOF haloes, SUBFIND also records a variety of common
mass definitions, notably M200, the total mass contained within a
sphere centred on xp and enclosing an average density of 200×
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ρcrit(z). When necessary we will use M200 as our default halo
mass, but acknowledge that other mass definitions may differ by
up to 20 per cent (Paper I). The virial mass implicitly defines
the virial radius, r200 = (3 M200/800 π ρcrit)1/3, and corresponding
virial velocity, V200 = √

G M200/r200.

2.4 Analysis

Our analysis focuses on the statistical properties of main haloes
and the galaxies that occupy them, including their circular velocity
profiles, baryon fractions, SFRs, stellar masses, and sizes. Baryon
fractions are defined as the ratio of the baryonic (stars + gas) to total
mass that SUBFIND deems bound to each halo. SFRs measure the
total instantaneous rate of star formation for the same gas particles.
Both are taken directly from SUBFIND outputs. Following Schaye
et al. (2015), stellar masses, M�, are calculated by summing the mass
of star particles bound to each galaxy that also lie within a spherical
aperture extending 30 (physical) kpc from its centre. The projected
radius enclosing half of M� defines the effective ‘half-mass’ radius,
which we denote R50.

For a few of our runs we have used the SUBFIND halo catalogues
to construct merger trees following the procedure outlined in Jiang
et al. (2014). The algorithm locates descendants of each subhalo
by tracking their self-bound particles forward through simulations
outputs, starting when they first appear and continuing either until
z = 0 or until they have fully merged with a more massive system.

3 A NA LY TIC EXPECTATIONS

We showed in Paper I that simulations of collision-less dark matter
are largely insensitive to gravitational force softening, provided it
is smaller than the minimum resolved radius dictated by 2-body
relaxation. This enables a robust assessment of convergence in the
properties of dark matter haloes, particularly in aspects pertaining
to their abundance and internal structure – mass profiles, structural
scaling relations, and mass functions, to name a few. Hydrodynamic
simulations that mix baryonic fluids with collision-less stellar and
DM particles of unequal mass do not necessarily adhere to the
intuition built upon DM-only simulations (see Ludlow et al. 2019a,
for one important example). Motivated by this, we here provide
some simple analytic estimates of how ε-dependent effects may
manifest in cosmological, hydrodynamical SPH simulations.

Throughout this section we assume a cubic simulation box of
comoving side-length L that is sampled with N3

p particles of both
gas and dark matter. Gas and DM particles have masses mg =
ρ0 �bar (L/Np)3 and mDM = (�M − �bar)/�bar × mg, respectively;
we also define mp = mDM + mg. We further assume a flat universe
and define E2(z) ≡ (H (z)/H0)2 = �M(1 + z)3 + ��. The virial
radius of a halo, denoted r�, encloses a mean density equal to
� × ρcrit(z); the corresponding virial mass and circular velocity are
M� and V� ≡ √

G M�/r�. Using the above definitions, M� and r�

can be conveniently expressed as

M� = N� ρ0 �M

(
L

Np

)3

, (2)

where N� = M�/mp is the typical number of (gas or DM) particles
within r�, and

r�(z) =
(

3 �M

4 π E2(z) �

)1/3

N
1/3
�

(
L

Np

)
. (3)

All numerical values quoted below assume cosmological param-
eters given in Section 2.1.

3.1 Constraints from adiabatic hydrodynamics

As discussed in Paper I, the softening length can be chosen so
that it does not hamper the formation of the lowest mass structures
resolved by a simulation. A plausible upper limit requires that ε

remain small relative to the virial radius of the lowest-mass haloes,
implying a maximum physical softening length of

εmax
� (z) 	 r�(z)

≈ C × E−2/3(z)

(
N�

100

)1/3(
L

Np

)
, (4)

where the constant C = (75 �M/4 π �)1/3 depends on � and �M:
for our chosen cosmology, C ≈ 0.332 for � = 200 and ≈0.512
for � = 18 π2�M. Note that in the matter-dominated epoch, z

� 1, εmax
� ∝ (1 + z)−1, and this corresponds to a fixed comoving

softening length. For a minimum resolved halo mass corresponding
to N� = 100, equation (4) implies a conservative upper limit to the
comoving softening length of much less than one-half of the mean
interparticle separation (l ≡ L/Np = 66.5 kpc and 33.3 kpc for our
N3

p = 1883 and 3763 runs, respectively).
Close encounters with dark matter particles can deflect gas

particles to velocities of the order of δvg ≈ 2 G mDM/(b v), where
v = √

G mDM/b is their relative velocity at separation b (e.g.
Binney & Tremaine 1987). In the absence of radiative cooling,
the kinetic energy associated with such perturbations will dissipate
to heat either adiabatically, or through a combination of shocks
and artificial viscosity. Assuming an impact parameter b = ε/

√
2

that maximizes the force perpendicular to the particle’s direction of
motion (see Paper I for details), the square velocity change due to
such encounters is

δv2
g ≈ 4

√
2G

ε

�DM

�bar
mg. (5)

Such collisions should be unimportant provided the associated
kinetic energy remains small compared to the specific binding
energy of the lowest mass haloes resolved by the simulation, which
is of the order of

V 2
� = G M�

r�

= G
�M

�bar

N�

r�

mg . (6)

Requiring δv2
g 	 V 2

� imposes a lower limit on the physical gravi-
tational softening of

εmin
2body(z) �

(
3
√

8

625 π E2(z) �

)1/3
�DM

�
2/3
M

(
N�

100

)−2/3(
L

Np

)

≈ C ′ × E−2/3(z)

(
N�

100

)−2/3(
L

Np

)
, (7)

where in our case C
′ ≈ 0.016 for � = 200 and ≈0.024 for � =

18 π2�M. Note that, like equation (4), this corresponds to a fixed
comoving scale at high redshift.

These results suggest that strict sanctions should be imposed
on the force softening used for adiabatic simulations in order to
simultaneously eliminate strongly biased forces and to suppress
spurious collisional heating of gas particles in poorly resolved
systems: the maximum dynamic range in ε is only of the or-
der of εmax

200 /εmin
2body ≈ 20, and should be considerably smaller to

ensure N� ≈ 100 haloes are unaffected. For our N3
p = 1883 and

N3
p = 3763 runs, equation (7) suggests that, in the absence of

radiative cooling, gravitational heating of gas particles should be
apparent in low-mass haloes (i.e. N200 ≈ 100) for softening lengths
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2932 A. D. Ludlow et al.

below ≈ 1100 and ≈ 550 pc, respectively. We will test these limits
explicitly in Section 4.1.

3.2 The minimum resolved escape velocity

We expect the above results to be applicable to adiabatic hydro-
dynamics, where gas heating occurs only through gravitational
interactions and radiative cooling is neglected. In more realistic
galaxy formation scenarios the thermal energy associated with
interparticle collisions can be rapidly radiated away due to the short
cooling times of dense fluid elements. This enables gas particles to
reach higher densities and increases their specific binding energies
to the order of v2

ε = v2
esc = 2 G mg/ε. Given a particle mass, mg,

and a desired minimum resolved velocity, vε , we can express this as
a constraint on the physical softening length. Choosing convenient
units:

εv > 8.6 pc

(
mg

105 M�

)(
vε

10 km s−1

)−2

≈ 5.2 × 105 pc

(
L/Np

Mpc

)3(
vε

10 km s−1

)−2

. (8)

Note that we have deliberately expressed vε in units of 10 km s−1 to
highlight two important feedback effects occurring at comparable
energies: photoelectric heating of gas associated with cosmic reion-
ization and H II regions, which corresponds to typical temperatures
of ∼104 K and sound speeds of cs ≈ 10 km s−1. For a given mass
resolution, softening lengths smaller than εv may conceal these
important physical processes and have adverse effects on galaxy
formation models, particularly when applied to low-mass, high-
redshift haloes. For example, reionization may be suppressed if ε �
εv . For our runs, this corresponds to physical softening lengths of
εv ≈ 156 pc for N3

p = 1883, and to εv ≈ 19 pc for N3
p = 3763, both

smaller (by factors ≈1.4 and 5.5, respectively) than εfid at zreion =
11.5.

3.3 Ensuring efficient feedback

Our simulations enforce a softening-dependent minimum SPH
smoothing length of lmin

hsml = f × εsp, where f = 0.1 is a constant for
all of our runs4 (included explicitly in what follows). The maximum
gas densities resolved in our runs are therefore of the order of

nmax
H = Nngb

mg X

mH

(
1

lmin
hsml

)3

= Nngb
mg

mH

X

f 3

1

ε3
sp

, (9)

where X = 1 − Y = 0.752 is the primordial hydrogen abundance, εsp

the spline softening length, and Nngb is the number of SPH neigh-
bours used to weight hydrodynamical variables. For cosmological
simulations we can use the relations above to cast this into a more
convenient form:

nmax
H ≈ 180 cm−3

(
Nngb

58

)(
X

0.75

)(
f

0.1

)−3

×
(

mg

105 M�

)(
ε

350 pc

)−3

, (10)

where ε now refers to the Plummer-equivalent softening length. In
practice, densities much higher than nmax

H can occur but correspond

4In Appendix A3 we study how varying lmin
hsml affects the results of our

simulations. We find that lmin
hsml = 0.1 × εsp, i.e. f = 0.1, gives robust results

for the full range of softening parameters considered in our paper.

to length-scales smaller than lmin
hsml; in that regime hydrodynamic

forces are not properly modelled.
As discussed in Dalla Vecchia & Schaye (2012), thermal feedback

will be inefficient if a heated resolution element radiates its energy
before it can expand and do work on surrounding gas (this occurs
when the cooling time is shorter than the sound crossing time
across the resolution element). Similarly, kinetic feedback (with
coupled hydrodynamic forces) will not properly capture the energy-
conserving phase of a feedback event if the post-shock temperature
renders the cooling time too short. Real supernova remnants reach
maximum temperatures that are sufficient to ensure an energy-
driven phase, but in cosmological simulations subject to numerical
radiative losses this is not necessarily the case. Indeed, some
simulations resort to suppressing cooling entirely (e.g. Thacker &
Couchman 2001; Stinson et al. 2006; Brook et al. 2012a) in SNe-
heated resolution elements, or to injecting momentum into those
particles, which are then temporarily decoupled from hydrodynamic
forces (e.g. Springel & Hernquist 2003; Pillepich et al. 2018; Davé
et al. 2019)

Dalla Vecchia & Schaye (2012) derived an estimate of the critical
density, nH, tc, below which the gas cooling time exceeds the sound
crossing time. For a given gas particle mass and post-heating
temperature, T, nH, tc can be expressed

nH,tc = 26 cm−3

(
T

107.5 K

)3/2(
mg

105 M�

)−1/2

, (11)

where T ∼ 107.5 K is the resulting temperature when all of the
energy available from core-collapse SNe is injected into a gas mass
similar to that of the simple stellar population from which the SNe
are drawn. Equation (10) suggests that, as ε is decreased at fixed
mg, significant numbers of gas particles may reach densities that
exceed nH, tc, weakening the effects of stellar feedback from nearby
stellar particles. This undesirable complication can be avoided by
demanding nH,tc � nmax

H , which can be written as a constraint on
(the Plummer-equivalent) ε:

εeFB ≈ 350 pc

(
Nngb

58

)1/3 (
X

0.75

)1/3(
f

0.1

)−1

×
(

T

107.5 K

)−1/2(
mg

105 M�

)1/2

(12)

= 8.6 × 104 pc

(
Nngb

58

)1/3 (
X

0.75

)1/3(
f

0.1

)−1

×
(

T

107.5 K

)−1/2(
L/Np

Mpc

)3/2

. (13)

We have used the subscript ‘eFB’ to denote its relation to the
efficiency of stellar feedback.

The lower limits on the proper softening length implied by
equation (13) (for f = 0.1) are εeFB ≈ 1.5 kpc and 0.5 kpc for
N3

p = 1883 and 3763, respectively, which are larger than our fiducial
(maximum physical) softening lengths at z = 0 by factors of ≈2
and 1.4. While equation (13) may also apply to simulations adopting
kinetic feedback, we acknowledge that it may not be an important
constraint for runs invoking momentum injection.

4 R ESULTS

4.1 Verification of analytic constraints

The analytic results of the previous section indicate that, for a
given gas particle mass or mean interparticle spacing, insidious
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numerical effects may plague simulations if softening lengths are
chosen below certain thresholds. In the next three subsections we
validate these analytic expectations. For clarity, the results below are
presented mainly for our high-resolution runs, but we have verified
their validity at both available resolutions.

4.1.1 Collisional heating of adiabatic gas

Collisional heating, when significant, may suppress the clustering
of gas within DM haloes. As ε decreases collisions become more
pronounced and will affect haloes of increasing mass. Fig. 1 shows
the baryon fractions of haloes as a function of their virial mass
for a suite of non-radiative (N3

p = 1883) simulations. Each panel
corresponds to a different value of ε (decreasing from top-left to
bottom-right), which varies from ε/(L/Np) ≈ 0.67 (exceeding the
upper limit of equation 4 for N200 = 100) to ε/(L/Np) ≈ 1.3 × 10−3

(below the lower limit implied by equation 7). We use blue lines
to indicate runs for which ε falls within the limits derived in
Section 3.1 (i.e. for εmin

2body � ε � εmax
� ); the red curves show runs

outside this range. Results are shown for haloes identified at z =
10 (dashed lines) and z = 0 (solid lines). For comparison, we have
plotted the results for ε/(L/Np) ≈ 0.084 in each panel using grey lines
(this run resulted in the maximum baryon fractions for any value of
ε we tested).

When ε/(L/Np) � 0.5 baryon fractions are suppressed slightly
in haloes resolved with �100 particles (the beige shaded region in
each panel indicates the 100-particle limit). This is expected: large
values of ε lead to biased forces on these scales, preventing gas
from reaching high densities in halo centres. However, the effect is
weak since we have not investigated cases for which ε � εmax

� .
As ε decreases baryon fractions increase, and are approximately

converged provided 0.34 � ε/(L/Np) � 0.042. For smaller ε the
effects of collisional heating are readily apparent: baryon fractions
decrease, first only in low-mass haloes, but when small enough, the
effect extends to all resolved mass scales. The value of ε below
which collisional heating is first apparent agrees well with our
previous analytic estimate of ε/(L/Np) ≈ 0.024 (equation 7). Note, as
well, that our results are not unduly influenced by the time-step size.
Thin lines in the panel for which ε/(L/Np) = 0.011 show results from
a run which used ErrT olIntAcc = 0.0025 and a Courant factor
of 0.05 (these parameters control the gravity and hydrodynamic
time-steps, and correspond to one-tenth and one-third of our default
values, respectively).

Finally, note that the mass scale below which baryon fractions
are numerically suppressed exceeds that at which particle collisions
are expected to efficiently unbind gas from haloes. The downward
pointing arrows in each panel of Fig. 1 mark the virial masses at
which δvg = V200 (open and filled arrow correspond to z = 10
and 0, respectively). This is presumably because, as ε decreases,
the hierarchical assembly of haloes becomes increasingly biased to
gas-poor mergers, resulting in descendants that have fbar 	 �bar/�tot

at scales V200 � δvg.

4.1.2 Baryon fractions and the minimum resolved escape velocity

Radiative cooling can overcome the collisional heating of gas that
may occur in non-radiative simulations. This is particularly true if
velocity perturbations from 2-body collisions heat fluid elements
to temperatures T � 104 K (which occurs when ε � εv with
vε = 10 km s−1; equation 8) where cooling rates are considerably
higher than those normally encountered in halo centres. Softening,

if too small, can therefore have other unwanted effects by elevating
the minimum resolved escape velocity of gas particles, and may
render impotent the photoheating associated with reionization or
H II regions.

We test this by comparing the baryon fractions of haloes in
runs carried out using a variety of softening lengths, both with
and without photoheating from reionization. The results are shown
in Fig. 2, where we plot fbar for haloes identified at z = 10 (the first
available snapshot after reionization) in our suite of N3

p = 3763 runs.
Different panels show results for different z = 0 softening lengths,
ε0 (note that we quote physical values of ε at zreion = 11.5 in each
panel in addition to ε0). Before reionization all haloes, regardless of
ε, have similar baryon fractions, close to the universal value fbar =
�bar/�tot (to avoid clutter, we do not show this explicitly in Fig. 2).
After reionization, however, systematic differences are evident. The
upper panels, for which ε(zreion) � 50 pc, show a sharp reduction
in the baryon fractions of haloes whose circular velocities at r200

are less than about 20 km s−1 (middle vertical arrow), reaching
an average fbar/(�bar/�tot) ≈ 0.05 for V200 ≈ 10 km s−1 (left-most
vertical arrow). The evaporation of gas from low-mass haloes is a
well-known consequence of photoheating due to reionization. As
ε is further reduced, fbar increases systematically and approaches
the cosmic mean for all ε � 26.6 pc, at which point the baryon
fractions at all resolved mass scales lie within 60–70 per cent
of the cosmic mean, even among haloes with circular velocities
as low as 10–20 km s−1. This threshold (ε0 ≈ 26.6 pc) agrees
well with our simple analytic estimate of εv ≈ 19 pc. Softening
lengths � εv clearly suppress the effects of reionization, as
anticipated in Section 3.2. The solid lines in Fig. 2 emphasize
this point. These curves show the median baryon fractions after
repeating the same runs without photoheating due to reionization
(shaded regions indicate the 20th and 80th percentiles of the
scatter).

The excess baryons bound to low-mass haloes in these runs
encourages star formation in systems that would otherwise remain
‘dark’. This spurious SF, and the associated feedback and chemical
enrichment, may in turn affect the evolution of the halo’s descen-
dants.

4.1.3 Constraints from feedback efficiency: physical conditions at
stellar birth

The EAGLE code records the density of the fluid element from
which each star particle is born. Comparing this density to the
maximum value nH, tc (equation 11) for efficient feedback (equa-
tion 13) provides a useful diagnostic of the prevalence of numerical
overcooling.

Fig. 3 shows the mass distribution of fluid densities at the moment
of stellar birth for the same N3

p = 3763 runs plotted in Fig. 2
(but limited to those including photoheating from reionization).
In all cases, densities have been normalized to nH, tc. The (coloured)
shaded regions and solid lines indicate, respectively, stars formed
prior to zreion = 11.5 and the entire population. For the ε0 = 700 pc,
43.8 pc, and 21.8 pc panels we use dashed lines to show the
impact of increasing zphys from 2.8 to 14. Note that birth densities
taper off quickly above some maximum density: the downward
pointing arrows show nmax

H estimated from equation (10) for each
value of ε (filled and open arrows correspond to z = 0 and 11.5,
respectively).

Numerical radiative losses become an increasing threat as ε

is reduced below εeFB (recall that εeFB ≈ 500 pc for N3
p = 3763).
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2934 A. D. Ludlow et al.

Figure 2. Halo baryon fractions as a function of virial mass for N3
p = 3763 runs at z = 10. Different panels show results for different softening lengths; the

physical values are quoted at both z = 0 (ε0) and at zreion = 11.5 in each panel. Points show results for individual galaxies in our full-physics runs; solid lines
show, for comparison, the median trends from the same runs but without photoheating from reionization (the shaded regions surrounding these curves indicate
the 20th and 80th percentiles). The horizontal grey lines show the cosmic mean baryon fraction; upward pointing arrows correspond to the virial masses of
haloes with V200 = 10, 20, and 30 km s−1. Note the high baryon fractions for haloes with V200 � 20 km s−1 in runs for which ε � εv (≈19 pc in these runs;
see Section 3.2 for details).

Figure 3. Differential mass distribution of fluid element densities at the moment they were converted into star particles. Results are shown for our N3
p = 3763

runs, with softening decreasing from top-left to bottom-right (softening lengths at z = 0 and zreion = 11.5 are quoted in each panel). Densities are normalized
to nH, tc, the maximum density for numerically efficient feedback (equation 11). In all panels, shaded regions correspond to stars born prior to z = 11.5; lines
to the entire stellar population. Outsized circles mark the median birth density of each (sub-)sample. All runs adopted a fixed physical softening below zphys =
2.8 and a fixed comoving for higher z, apart from those shown as dashed lines; these used zphys = 14 but have the same z = 0 softening length (median birth
densities are indicated by squares in these cases). Downward pointing arrows mark the maximum density nmax

H estimated from equation (10) at z = 0 (filled)
and z = 11.5 (open). The grey shaded region shows the SF density threshold for gas with a metallicity of 0.5–2 times the solar value. Apart from ε and zphys,
all other numerical and subgrid parameters are identical for all runs.

Consider, for example, stars formed at z � 11.5, when softening
lengths were roughly a factor of 3 smaller than at z = 0. Above
this redshift, the fraction of stars forming at densities � nH, tc

increases steadily from ≈27 per cent for ε = 700 pc to ≈97 per cent
for ε = 21.9 pc. For ε � εeFB, the energy injected by this initial
burst of star formation is insufficient to halt immediate numerical
losses, and the distribution of birth densities develops a strong peak
at nH ∼ nmax

H � nH,tc. This is particularly problematic in the runs

with the two smallest softening lengths, where between ≈32 and
54 per cent of all stars form at densities that stifle the effects of
feedback. For ε = 700 pc � εeFB (larger than the lower limit for
efficient feedback, equation 13), on the other hand, only ≈9 per cent
of all stars form at n � nH, tc.

For the most heavily affected runs, increasing zphys from 2.8 (our
fiducial value) to 14 palliates star formation in high density gas
at early times, but is not a cure: a strong second peak inevitably
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Numerical convergence of simulated galaxies 2935

Figure 4. Cosmic star formation histories (SFH) for runs with different z = 0 softening lengths. Thin (faint) lines distinguish our N3
p = 1883 Reference runs

from the higher resolution ones (heavy lines). Downward pointing arrows mark the reionization redshift, zreion = 11.5. All runs use zphys = 2.8 apart from
three: connected circles show three specific (N3

p = 3763) cases for which zphys = 14, which leads to larger softening lengths for all z > 2.8. The physical
softening lengths at z = 0 and z = 11.5 are quoted in each panel. The dashed lines (which terminate at z = 4) show results from runs in which photoheating
due to reionization was turned off. Note that as ε is reduced, the cosmic SFH becomes increasingly biased towards high-redshift SF, and eventually develops a
strong ‘peak’ roughly coincident with zreion. For comparison, we show the empirical relation of Madau & Dickinson (2014) as a thick grey line in each panel.

develops at nH ∼ nmax at later times, resulting in stellar populations
whose feedback, for numerical reasons, is prone to radiative losses.
It is easy to understand why. For a given ε0, increasing zphys relative
to our fiducial value implies larger physical softening lengths at
z > 2.8, but not at lower z. For particular values of ε0 and zphys,
ε(zreion) may exceed the lower limit (εv with 10 km s−1; equation 8)
required for efficient photoheating from reionization, but still fall
short of the more conservative lower limit required for efficient
stellar feedback, εeFB (equation 13). If this is the case, reionization
will effectively remove baryons from low-mass haloes and quell
SF at high-redshift, but stars will nevertheless form from high-
density (nH � nH, tc) gas at later times in their more massive
descendants, and their associated feedback will be largely radiated
away.

This is indeed the case for the runs with ε0 = 21.8 and 43.8 pc.
When zphys = 14, the physical softening length at zreion in these
runs is equal to ε0 � εv = 19 pc, and star formation is suppressed
at z ≥ zreion (these effects will also be apparent in the SFHs, shown
later in Fig. 4), but, because ε0 < εeFB, still occurs at densities
� nH, tc. Although the number of stars formed at z > 11.5 drops
substantially when zphys = 14, SF from high density (nH > nH, tc) gas
remains widespread. Preventing this requires a physical softening
length of the order of εeFB � 500 pc (equation 13 with N3

p = 376)
at essentially all redshifts. This is only the case for one run, plotted
in the upper left-hand panel of Fig. 3.

Finally, we note that softening is expected to influence star
formation in other ways. If ε is large, nmax

H may fall short of the
density threshold for star formation, n� (shown as a grey shaded
band in Fig. 3 for metallicities spanning 0.5 ≤ Z/Z� ≤ 2), although
most of our runs are not in this regime. One possible exception
is our N3

p = 3763 run with ε = 2800 pc where, at low redshift,
nmax

H is comparable to n� in metal-poor gas (Z ≈ 0.05 − 0.01 Z�).
Simulations that adopt higher SF density thresholds (e.g. Brook et al.
2012b; Wang et al. 2015) may suffer these effects for comparatively
smaller softening lengths.

4.2 Impact on galaxy formation models

As mentioned in Section 2.1, the subgrid feedback modules in
EAGLE were calibrated at fixed resolution so that simulations
reproduced the observed present-day size–mass relation of galaxies,
and their GSMF. This may be problematic, as good agreement is
no longer guaranteed if numerical parameters are modified. For
example, the softening length can affect the range of gas densities
over which star formation occurs: if too small it may push gas
particles into the regime of inefficient feedback, and if too large
may prohibit a meaningful application of the subgrid model (if,
for example, the physically motivated SF density threshold is not
resolved). Clearly the results of simulations cannot converge for
arbitrary numerical parameters when the subgrid model is held
fixed. It is nevertheless useful to establish the range of parameters –
particularly those governing mass and force resolution – over which
the results can be considered reliably modelled.

What impact does changing ε at fixed mg have on our calibration
diagnostics? We turn our attention to this question in the following
sections.

4.2.1 The cosmic star formation history

The cosmic SFHs for our full simulation suite are plotted in
Fig. 4. As above, different panels show results for runs with
different softening lengths; thick and thin solid lines distinguish our
N3

p = 3763 and 1883 runs, respectively. All runs used zphys = 2.8,
with three exceptions: connected circles in panels corresponding to
ε0 = 700 , 43.8 , and 21.8 pc instead used zphys = 14, but the same
ε0 (these runs are limited to N3

p = 3763).
The SFHs are reasonably well-converged for the two different

mass resolutions, but only for a narrow range of ε, 350 pc � ε0 �
700 pc or so (equivalently, ε(zreion) ≈ 106–213 pc). This is perhaps
not surprising: the EAGLE subgrid models were calibrated using
comparable values (ε0 = 700 pc for N3

p = 1883 and ε0 = 350 pc for
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2936 A. D. Ludlow et al.

N3
p = 3763). At fixed mass resolution, SFHs are reasonably robust

to changes in ε provided it remains within about 1/2 to 4 times the
value adopted for calibration. For larger or smaller values resolution
effects are evident.

For both mass resolutions, increasing ε by more than a factor of
≈4 relative to the fiducial values results in an overall suppression
of SF at essentially all z. This is seen most clearly in the N3

p =
3763 run carried out with ε = 2800 pc (eight times the fiducial
softening length for this mass resolution), for which the SFR is
suppressed at virtually all redshifts. The maximum resolved density
(equations 9 and 10) in this run is only of order nmax

H ≈ 0.31 cm−3,
which is comparable to the SF density threshold in metal-poor gas
(n� ≈ 0.21–0.13 cm−3 for Z = 0.05–0.1 Z�). Although many gas
particles will reach densities that surpass nmax

H , increasing ε clearly
places limits on the dynamic range of gas densities that are eligible
to form stars (Fig. 3), and the global SFR drops as a consequence.
Such large softening lengths are therefore inappropriate for the
physical model employed. Note, for example, that the SF density
threshold, n�, is physically motivated (see Schaye 2004), and not
determined by calibration. Softening lengths sufficiently large to
prevent gas densities from reaching n� should therefore be avoided.

Conversely, for the same ε0 our low-mass resolution run reaches
maximum densities nmax

H ≈ 2.5 cm−3, which is roughly an order of
magnitude larger than n�. As a result, the SFH is less affected in
this case. It is important to note, however, that simply resolving n�

does not in itself guarantee good convergence in SFHs. According
to the KS law, the SFR per-particle depends on n: the global SFR is
therefore also modulated by the maximum resolved density, a result
that was already apparent in Fig. 3. We acknowledge, however, that,
provided ε is sufficiently small so that nmax

H � n� but sufficiently
large so that vε 	 10 km s−1 (i.e. ε � εv for vε = 10 km s−1),
careful calibration may compensate for the softening dependence
of the SFHs seen in Fig. 4.

Decreasing ε results in a systematic increase in the SFR at
early times, eventually leading to a ‘peak’ in the cosmic SFH at
z ≈ zreion = 11.5 (marked by a downward pointing arrow). This
initial burst of star formation – clearly numerical in origin – is
first noticeable in the low mass resolution runs, and occurs when
ε falls below ≈ 53.3 pc. At high mass resolution, early SFHs grow
slowly until ε ≈ 13.3 pc, but develop a similar peak for smaller
values (also apparent in the distribution stellar birth densities for
these runs; Fig. 3). It is tempting to relate the early peak in SF to
the suppression of reionization in runs for which ε � εv (Fig. 2),
which enhances SF in low-mass haloes at high redshift. Indeed,
the two effects occur for similar softening lengths. This possibility,
however, is easily ruled out. The thin dashed lines plotted in each
panel of Fig. 4 show the SFHs for an additional set of N3

p = 3763

runs (stopped at z = 4) in which reionization was not implemented.
The global SFHs are only slightly affected by the presence of a
photoionizing background, despite having a considerable impact
on the baryon fractions of low-mass systems (Fig. 2). The excess
baryons in these low-mass haloes – and the associated excess star
formation – contributes negligibly to the ‘peak’ in the global SFR,
which is dominated by the most-massive haloes in the volume.5 The
fact that the SFR peaks at z ≈ zreion is thus a coincidence.

5Additional tests (not presented here) suggest that the magnitude and redshift
of the peak SFR at early times is sensitive to not only softening, but also
to subgrid parameters that control star formation and stellar feedback.
This is not surprising, but emphasizes the difficulty of disentangling the
impact of numerical and subgrid parameters on the results of cosmological
hydrodynamical simulations.

Nevertheless, the crest in star formation at early times can be
quelled by increasing zphys, which decreases the maximum resolved
density at early times and suppresses rampant star formation in
high-density gas (recall Fig. 3). The connected circles shown in
panels for which ε0 = 700 , 43.8 , and 21.8 pc show the SFHs
in three N3

p = 3763 runs that use the same z = 0 softening, but
zphys = 14.

Note that the softening dependence of the cosmic SFHs presented
in Fig. 4 is not driven by its explicit connection to the minimum
SPH smoothing length, lmin

hsml, a point that we demonstrate explicitly
in Appendix A3.

4.2.2 The galaxy stellar mass function

The global SFHs presented in Fig. 4 suggest that changing to
numerical parameters without recalibrating may impact the prop-
erties of galaxies that form in simulations. We investigate one
such possibility in Fig. 5, which shows the z = 0 cumulative
GSMFs for our simulation suite (note that this the total number
of galaxies that exceeds a given stellar mass, and differs from the
more conventional differential GSMF). Different panels correspond
to different maximum physical softening lengths, as indicated. In
each panel, solid lines and connected points are used for runs carried
out with N3

p = 1883 and 3763 particles, respectively; dashed lines,
where present, correspond to N3

p = 3763 runs that used zphys = 14,
the rest used zphys = 2.8.

Reflecting similarities in the SFHs, the cumulative GSMFs con-
verge reasonably well over a narrow range of softening, 350 pc �
ε � 1400 pc, and can be approximated by a single power law,
N ∝ M−0.45 for 107 � M�/M� � 1010 (shown as a thick grey line
in each panel). For higher and lower values of softening departures
from this shape are evident. For large values, the abundance of low-
mass galaxies is noticeably suppressed. This is clearly seen in the
upper left-hand panel (ε0 = 2800 pc) where GSMFs flatten below
M� ≈ 108 M�. A similar effect occurs in runs with ε0 = 1400 and
700 pc, but in these cases it is shifted to lower masses. We will show
in Section 4.3.1 that this is a consequence of oversoftening the inner
regions of DM haloes, which lowers the typical densities that can be
resolved in their central regions. Galaxy formation is suppressed in
haloes for which the softening length is comparable to the physical
scale over which galaxies typically form (which is of the order of
0.1 − 0.15 r200).

At low masses the abundance of galaxies in our N3
p = 3763 run

increases systematically with decreasing ε for all ε0 � 43.3 pc. The
same is true of our N3

p = 1883 runs provided ε0 � 350 pc. The
systematic dependence on ε suggests that poor convergence in the
abundance of low-mass galaxies is not a result of the stochastic
nature of our SF prescription, but of numerical effects. For N3

p =
3763, for example, the number of galaxies resolved with fewer than
10 stellar particles (i.e. M� � 10 × mg) increases by a factor of
≈57 between runs with the smallest and largest softening lengths.
Their increased abundance is a direct consequence of the systematic
increase in early SF that accompanies smaller ε; and it gives rise to
a steepening of the GSMFs at low M�.

The high-mass end of the cumulative GSMF also depends on ε,
but non-monotonically: for M � 108 M�, it is steeper than M−0.45

at both the highest and lowest values of ε we study (note that,
for intermediate values of ε, the GSMF drops for M � 1010 M�
due to the finite box-size of our simulations). Comparing Figs 4
and 5 provides some clues to the origin of the effect. At high
mass, GSMFs are steeper in essentially all runs that exhibit a
reduced SFR at late times (relative to the fiducial run). For our high
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Numerical convergence of simulated galaxies 2937

Figure 5. Comparison of the cumulative z = 0 galaxy stellar mass functions for all models. Different panels correspond to runs carried out with different
maximum physical softening lengths, colour coded as in previous figures. The solid lines show runs with N3

p = 1883 particles and connected circles with

N3
p = 3763, both use zphys = 2.8; the dashed lines show results for a subset of the high mass resolution runs that adopted zphys = 14 (but the same z = 0

softening lengths). The vertical lines in each panel mark mass scales corresponding to 100 primordial gas particles at each resolution. In all cases, M� is defined
as the total bound stellar mass enclosed by a 30 (physical) kpc aperture coincident with the galaxy position. For comparison, we plot a power-law N ∝ M−0.45

in each panel.

mass-resolution runs this occurs only for the largest and smallest
softening lengths tested, but is evident for all ε ≤ 87.5 pc at low-
mass resolution.

It is unlikely that the numerical processes suppressing SFRs at
late times are the same at large and small ε, but the exact cause
is not clear. We speculate that, when large, softening suppresses
SF not only in low-mass haloes, but also in the central regions of
massive ones, giving rise to an overall reduction in SF across all
halo masses (we will return to this point in Section 4.3). When ε

is small, gas particles typically reach high densities before forming
stars, which increases both their SFR and the burstiness of SF.
Strong star bursts may overcome inefficient feedback and gradually
expel gas from massive haloes, reducing the global SFR. Other
possibilities include: differences in gas consumption time-scales;
an earlier onset of BH formation and associated differences in AGN
feedback (but see Appendix A1 for examples of runs without AGN
feedback); or spurious energy transfer between DM and baryonic
particles that gradually reduce gas densities (Ludlow et al. 2019a).
These possibilities require further investigation.

In the upper panels of Fig. 6 we plot the cumulative GSMFs
in our N3

p = 3763 runs at different redshifts, ranging from z = 0
(upper-left) to z = 2 (upper-right). The shaded regions in each panel
indicates M� ≤ 100 × mgas, and the vertical dashed line corresponds
to 10 × mgas. The GSMFs agree well at each z provided ε does
not veer too far from the fiducial value. Runs carried out with
εfid/8 � ε � 2 × εfid, for example, yield similar GSMFs at all
redshifts considered. Differences greater than a few per cent are
only noticeable at low masses, where galaxies are resolved with
�10 stellar particles. This is consistent with the similarity in the
SFHs of these runs (see Fig. 4), though convergence is better for
the GSMFs than for the SFHs. For softening lengths either larger or
smaller than these values, however, differences in the GSMFs are
evident at all three redshifts. When ε is larger, the number of low-
mass galaxies is suppressed relative to our fiducial run, an effect
that (for fixed ε) occurs at roughly the same stellar mass at each z

considered. The systematic increase in SF that accompanies smaller
ε is dominated by low-mass haloes at high-redshift. This results in
GSMFs that, at each z, become noticeably steeper at low mass than
in our fiducial run when ε < εfid/4.

The lower panels of Fig. 6 plot, for the same runs and redshifts,
the total stellar mass contained in all galaxies in a given logarithmic
interval of stellar mass. Above M� ≈ 100 × mg, these curves
converge reasonably well for all ε and z, and their shape suggests
that at any z the vast majority of stars are found in the most
massive galaxies in the simulation (but recall that the volume is
only (12.5 Mpc)3). For example, we find that roughly 50 per cent of
the total stellar mass formed by z = 0 is contained in the 3 to 5 most
massive galaxies, depending on ε. Convergence at masses �100 ×
mgas is poor; at z = 0, for example, the total mass in such galaxies
varies by as much as a factor of 7 between runs with the largest and
smallest softening.

4.2.3 Galaxy sizes

Crain et al. (2015) showed that simulations with subgrid physics
calibrated to match observations of the GSMF may fail to reproduce
other observations of the galaxy population. In particular, they noted
that models with feedback prescriptions allowing significant star
formation to occur in high-density (n � nH, tc) gas, despite having
plausible stellar masses, tend to result in unrealistically compact
massive galaxies whose sizes do not match those observed. The
birth conditions of stars highlighted in Section 4.1.3 suggest that
reducing the gravitational softening, like modifying the feedback
implementation, may have a similar effect.

We quantify galaxy sizes using R50, the projected ‘half-stellar
mass’ radius enclosing 50 per cent of the galaxy’s total stellar
mass. R50 is estimated directly from the (randomly projected)
surface mass–density profiles of galaxies, rather than by fitting a
parametrized model, such as a Sérsic profile.
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2938 A. D. Ludlow et al.

Figure 6. Upper panels: Cumulative galaxy stellar mass functions at z = 0 (left-hand panel), z = 1 (middle), and z = 2 (right-hand panel) for our N3
p = 3763

runs carried out with different softening lengths, ε. The total number of galaxies resolved by these simulations increases systematically with decreasing ε, and
differs by as much as an order of magnitude between the smallest (ε = 21.8 pc) and largest (ε = 2800 pc) values. Lower panels: Total stellar mass of galaxies
in fixed logarithmic intervals of M�. At lowest masses plotted – corresponding to galaxies composed of a single stellar particle – the total stellar mass differs
by as much as a factor of 100 between the lowest and smallest softening lengths. In all panels, the grey shaded region marks a stellar mass corresponding to
100 primordial gas particles, which is clearly a minimum requirement for convergence in stellar mass functions.

Fig. 7 compares the R50 − M� relations obtained from our runs.
Different panels are used for different softening lengths, and results
are shown at z = 0 (solid lines) and z = 2 (dashed lines). Thick lines
show the median trends for N3

p = 3763, thin lines for N3
p = 1883.

Only mass bins including ≥10 objects are plotted as medians; for
other bins individual galaxies in our N3

p = 3763 runs are shown
using filled circles (for z = 0) or squares (for z = 2). For comparison,
a fit to the Shen et al. (2003) size–mass relation for early-type
galaxies in SDSS is shown using a thick black line.

Ludlow et al. (2019a) showed that galaxy sizes in hydrodynamical
simulations that use unequal-mass baryonic and DM particles, as
is the case here, are affected by energy equipartition. Galaxies of
a given stellar mass grow in size as a result of spurious energy
transfer from DM to stars, but the effect can be suppressed by
adopting stellar and DM particles of approximately equal mass. A
similar effect has also been reported in the central regions of haloes
formed in simulations that adopt two collision-less particle species
of unequal mass (Binney & Knebe 2002; Ludlow et al. 2019a).
In the upper middle right-hand panel of Fig. 7 (corresponding to
ε0 = 700 pc) we plot for comparison the z = 0 and z = 2 size–
mass relations obtained from a simulation carried out with μ ≡
mDM/mgas ≈ 0.77; these are shown using grey lines. This simulation
was carried out in a periodic box with L = 25 (comoving) Mpc and
used Ngas = 3763 particles of gas, but seven times as many DM
particles. The baryonic mass resolution is identical to that of our
N3

p = 1883 runs, whereas the DM mass resolution is seven times
higher. The run used a softening length of ε0 = 700 pc, zphys = 2.8
and subgrid parameters consistent with the Reference model (see
Ludlow et al. 2019a for details).

Fig. 7 is worth a few comments. Notice first that galaxy sizes
converge between different mass resolutions, but only for the two
largest values of ε, � 1400 pc or so. The effects of mass segregation
driven by energy-equipartition are also minimized in these runs:
the size–mass relations in both are approximately independent of

redshift provided ε � 1400 pc, which is also the case for ε = 700 pc
in our high mass-resolution run. (The redshift independence of the
size–mass relation is a salient feature of the μ ≈ 1 run.) Despite
this, galaxy sizes are not converged with respect to softening. Note,
for example, that half-mass radii become systematically smaller
(by ≈40−50 per cent) at essentially all stellar masses when ε is
reduced from 2800 pc to 1400 pc; on average, sizes are reduced
even further when ε = 700 pc (by an additional ≈20 per cent), but
only for N3

p = 3763 run. For M� � 100 mgas, the median z = 0
half-mass radii in our N3

p = 3763 runs are quite stable provided 175
� ε/[pc] � 1400, although there is evidence of increased scatter
amongst the highest mass galaxies.

It is interesting to note, however, that reducing ε does not
necessarily result in more compact galaxies, at least not at the
mass scales resolved by our simulations. Despite the fact that
small softening promotes inefficient feedback (Fig. 3) and centrally
concentrated star formation in high-density gas, the median sizes
of galaxies increase systematically as ε decreases, an effect that
is particularly evident at low stellar mass (but may reverse at the
highest values of M�). In fact, the most diffuse galaxies in any run are
found in the one carried out with the smallest softening parameter.
Note also that when ε0 drops below 1400 pc (or < 700 pc for our
N3

p = 3763 run), the size–mass relations in our N3
p = 1883 runs

develop a redshift dependence that is not observed for larger ε0.
This redshift-dependence is evidence of mass segregation driven
by energy equipartition, which is suppressed when ε is large, and
exacerbated when ε is small. Indeed, the effect is absent from our
μ ≈ 1 run, despite having identical subgrid physics, baryonic mass
resolution, and gravitational softening.

The segregation of stars and DM particles in our simulations is a
consequence of 2-body scattering, and can therefore be suppressed
by either increasing the number of collision-less (stellar and DM)
particles, or adopting μ ≈ 1. By comparing otherwise identical runs
with μ ≈ 1 and μ ≈ 5.3, Ludlow et al. (2019a) concluded that N�
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Numerical convergence of simulated galaxies 2939

Figure 7. Projected (physical) half stellar-mass radii as a function of galaxy stellar mass at z = 0 (solid lines) and z = 2 (dashed lines) for our N3
p = 3763

(thick lines) and N3
p = 1883 runs (thin lines). The shaded coloured regions indicate the 20th and 80th percentiles of the size distribution, but, for clarity, are

only shown for the z = 0 outputs of the high-resolution runs. As in previous figures, different panels show results for different softening lengths (indicated
using arrows on the right-hand side of each panel). The solid black line shows a fit to the half-light radii for early-type galaxies observed in SDSS (Shen et al.
2003). The vertical dashed lines indicate the mass scale of 100 primordial gas particles in our low- and high-resolution runs. The faint grey lines in the upper
middle right-hand panel show sizes obtained from a simulation that used the same baryonic particle mass and subgrid physics as our N3

p = 1883 runs, but had
higher resolution in DM particles, so that μ ≡ mDM/mgas ≈ 0.77 (instead of ≈5.3). This run minimizes the spurious transfer of energy from DM to gas particles
that artificially inflates galaxy sizes (see Ludlow et al. 2019a, for details).

≈ 2000 stellar particles per galaxy are required in order to mitigate
the effects of mass segregation at galaxy half-mass radii. For larger
N�, the effect will remain, but will be pushed to smaller scales.

The net result is that, if too large, softening will ‘puff up’
galaxies, leading to larger sizes, but if too small it will escalate
energy equipartition, driving spurious growth in size. The best
compromise between these two regimes appears to favour softening
lengths roughly a factor of two larger than EAGLE’s fiducial value,
but we stress that further tests are required to fully disentangle
the impact of softening and mass segregation on galaxy sizes. For
example, simple analytic estimates suggest that the effects of 2-
body scattering – and thus mass segregation – should exhibit a
weak (logarithmic) dependence on ε; our results appear to favour a
stronger dependence.

4.3 Impact on the internal structure of DM haloes

Cosmological hydrodynamical simulations are not only useful for
elucidating the complex physics of galaxy formation, but also
for clarifying the impact that baryons have on the underlying
distribution of dark matter.

Galaxy formation occurs deep in the central regions of haloes,
where high gas densities enable efficient cooling and initiate SF. The
build-up of baryonic gas and its conversion to stars in the central
regions of haloes can influence the distribution of DM there (e.g.
Duffy et al. 2010; Macciò et al. 2012; Bryan et al. 2013; Teyssier
et al. 2013; Ogiya & Mori 2014), but exactly how is still debated.
For example, in the absence of feedback-driven outflows, the slow
growth of a central galaxy may deepen the gravitational potential
adiabatically, resulting in a contraction of DM in the innermost
regions of a halo (Blumenthal et al. 1986). Violent, episodic SF, on
the other hand, can drive gaseous outflows and give rise to strong
fluctuations in the total gravitational potential (Navarro, Eke &

Frenk 1996). If star formation occurs in sufficiently dense gas – and
outflows are sufficiently violent – galaxy formation may reduce DM
densities in halo centres, giving rise to cores in the DM distribution
(Governato et al. 2010; Pontzen & Governato 2012), although
the outcome of such simulations is model-dependent (Benı́tez-
Llambay et al. 2019; Dutton et al. 2019). Given these uncertainties,
and the numerically driven results above, is it possible to make
robust predictions for the DM distribution using hydrodynamical
simulations?

In Paper I, we determined the conditions under which DM-only
simulations can make reliable and reproducible predictions for the
innermost structure of DM haloes in the absence of baryons. Briefly,
circular velocity profiles converge to better than ≈10 per cent
at radii that exceed a comoving convergence radius that can be
approximated by rconv ≈ 0.055 (L/Np); this corresponds to ≈1.8
and ≈ 3.7 (comoving) kpc in our high- and low-mass resolution
runs. All runs for which ε0 > εfid therefore have softening lengths
that exceed rconv for z ≥ 2.8, which may compromise the innermost
structure of high-redshift haloes in these runs. The maximum
physical softening lengths, however, are �rconv in all runs except
the one with N3

p = 3763 and ε0 = 2800 pc. We will return to this
discussion in Section 5.2.

4.3.1 Dark matter halo concentrations

In Fig. 3 we showed that the typical density of star-forming gas
increases systematically with decreasing ε, reaching maximum
values that scale approximately as nmax

H ∝ ε−3 (equation 9), often
exceeding the critical threshold for efficient feedback (equation 13).
We may therefore expect the DM distribution in our simulations
to respond differently to galaxy formation in our runs, given the
widely different gas densities and feedback efficiencies attained for
different ε.
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2940 A. D. Ludlow et al.

Figure 8. Maximum circular velocity, Vmax/V200, versus virial mass, M200, for central galaxies and DM haloes in our N3
p = 3763 runs. The dots show results

for main haloes that contain no stellar component; circles show haloes that contain at least one star particle. The solid lines of corresponding colour show
median trends from a series of DM-only simulations carried out using the same softening lengths (see Ludlow et al. 2019b, for details); dashed lines show
predictions from the analytic model of Ludlow et al. (2016), which is based on DM-only simulations. As ε decreases, haloes become more concentrated; the
effect, which is most pronounced at low virial mass, is not limited to systems that contain an embedded stellar component.

Figure 9. As in Fig. 8, but for Rmax/r200, a proxy for halo concentration. The shaded region highlight r ≤ ε0; diagonal lines mark r = εsp, the spline softening
length above which interparticle forces become exactly Newtonian. Note that larger ε implies lower concentration, and that, provided ε0 � 87.5 pc, star
formation is inhibited in haloes for which, on average, Rmax � εsp. As ε is reduced, DM haloes become increasingly compact regardless of M200, particularly
those hosting central galaxies.

We explore the impact of galaxy formation on the internal
structure of DM haloes in Figs 8 and 9, where we plot the ratios
Vmax/V200 and Rmax/r200 (proxies for halo concentration) versus M200

for all main haloes in our simulations. Dots distinguish those that do
not host a stellar component from those that do, which are plotted
using outsized circles. The thick solid line shows the median trend
for main haloes in the corresponding DM-only simulation (see
Paper I for details); the dashed line shows the prediction of the
analytic model of Ludlow et al. (2016), which is based on DM-only
simulations.

From Fig. 8 it is clear that for large values of ε (� 700 pc) the
Vmax/V200 − M200 relations in our full hydrodynamical runs trace
reasonably well the median relations in the DMO ones; but both
yield haloes that, at low mass, are systematically less concentrated
than anticipated by the simple DM-only analytic model (Fig. 9
suggests that this is a result of oversoftening the central regions of
haloes). The agreement between our hydrodynamical and DM-only
runs is perhaps not surprising given that, at this resolution, only the
more massive haloes host a central galaxy capable of modifying
the DM distribution. For smaller softening lengths, however, clear
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Numerical convergence of simulated galaxies 2941

Figure 10. Top panels: Average (z = 0) circular velocity profiles for DM haloes and galaxies in three separate bins of virial mass: M200 = 109 M� (left-hand
panel), 1010 M� (middle), and 1011 M� (right-hand panel). Results are shown for N3

p = 3763. The solid curves show the mean DM Vc(r) profiles for all haloes
regardless of their stellar content; dashed curves for stars; dotted lines (where present) for DM haloes that contain no baryonic component. Lines are colour
coded by softening length, the values of ε0 are indicated by downward arrows. The black arrows mark the convergence radius, rconv = 0.055 (L/Np) ≈ 1.8 kpc
(Ludlow et al. 2019b), expected from DM-only simulations. The light and dark shaded regions correspond to the Keplerian Vc(r) profiles of a single DM or
(primordial) gas particle, respectively. Bottom panels: Residuals of the DM circular velocity profiles relative to the fiducial model.

differences emerge. SF becomes increasingly prevalent in low-mass
haloes, leading to a systematic increase in their concentration.
For ε = 175 pc, for example, Vmax exceeds V200 by as much as
a factor of 3 in the lowest mass haloes hosting galaxies; for
ε = 43.8 (21.8) pc haloes become even more concentrated, reaching
Vmax/V200 ≈ 8 (10) at the lowest masses. Intermediate- and high-
mass haloes are also affected, but less so. Only the most massive
haloes found in the simulations have peak circular speeds that
remain relatively insensitive to softening.

Fig. 9 reveals other interesting trends. Similar to Fig. 8, the
Rmax/r200 − M200 relation paints a picture in which low-mass haloes
become increasingly compact and amenable to star formation as ε

decreases. Notice as well that, regardless of ε, the least massive
haloes capable of hosting a central galaxy typically have Rmax �
εsp (recall that εsp is the spline softening length beyond which
interparticle forces become exactly Newtonian), although not all
haloes that satisfy this criterion host galaxies. A closer inspection
reveals that SF is heavily suppressed in haloes for which Rmax �
2 × εsp = 5.6 × ε (except in extreme cases: when ε0 � 43.8 pc stars
readily form in haloes with Rmax � ε). Nevertheless, as ε decreases,
so does the limiting halo mass below which SF can occur. This, in
turn, affects the shape of the GSMF (see Fig. 5).

For example, an NFW profile with concentration ≈8−12 (typical
values for the mass scales resolved by our simulation) has Rmax ≈
0.18−0.27 × r200, which is comparable to, or larger than, the spatial
scale within which galaxy formation occurs.6 Because densities
are suppressed on scales smaller than the softening length, galaxy
formation is pacified in haloes for which Rmax � εsp. This explains

6In fact, galaxies are often identified in simulations by first locating their
DM haloes, and then assigning stellar and gas particles to the central galaxy
provided they fall within a radius of ≈(0.1 − 0.15) × r200, which typically
contains most of its baryonic mass (see Stevens et al. 2014, for an in-depth
discussion).

the suppression of the GSMF at low M� seen in Fig. 5. For ε0 =
2800 pc (or equivalently, εsp = 7840 pc), we find that Rmax � 2 ×
εsp for haloes with virial mass M200 � 5.5 × 1010 M� and stellar
masses � 108 M�, which agrees well with the flattening of the
cumulative GSMFs plotted in the upper left-hand panel of Fig. 5.

It is perhaps not surprising that centrally concentrated SF – when
occurring in dense gas prone to numerical overcooling – gives rise
to increasingly compact halo mass profiles. But the results presented
above, and in Fig. 7, raise additional questions. First, why do DM
haloes become increasingly compact when ε is reduced (Fig. 9)
and yet galaxies more diffuse (Fig. 7)? A closer inspection of Fig. 9
also reveals a substantial population of ‘dark’ haloes that contain no
stellar component, and yet have exceptionally high concentrations
that exhibit a strong softening-dependence; this seems at odds with
convergence tests based on DM-only simulations (see Paper I for
details). We turn our attention to these issues next.

4.3.2 Circular velocity profiles

Fig. 10 plots the mean circular velocity profiles, Vc(r) =√
GM(r)/r , of main DM haloes (solid lines; these curves do not

include the contribution of baryons) and their central galaxies
(dashed lines) in three bins of virial mass centred on M200 ≈
109 M�, 1010 M�, and 1011 M�. Results are shown for N3

p = 3763

and different colours discriminate runs carried out with different
softening lengths (downward arrows mark the Plummer-equivalent
lengths).

The central mass profiles of haloes in all three mass bins exhibit
a strong softening-dependence, becoming increasingly concen-
trated as ε is reduced. As r decreases, the Vc(r) profiles diverge
from one another at radii that approach or exceed the nominal
convergence radius of their DM halo (the black arrows mark
rconv ≈ 0.055 (L/Np) ≈ 1.8 kpc; see Paper I for details), suggesting
that convergence in the central structure of DM haloes – even well-
resolved ones – is more difficult to achieve in hydrodynamical
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Figure 11. Circular velocity profiles (upper panels) and mass accretion histories (MAHs; lower panels) for dark matter main haloes that contain no baryons
at z = 0. Haloes are selected to lie in a narrow mass bin centred on M200 = 5 × 108 M� of width �log M200 = 0.4. Results are shown for N3

p = 3763 and for
two softening lengths: ε0 = 350 pc (our fiducial value; left-hand panels) and 43.8 pc (right-hand panels). We use the MAHs to divide the full halo sample into
two sub-samples: blue curves correspond to those whose baryon fractions never exceeded 0.01 at any redshift; orange curves to those that did. Ndark is the total
number of dark haloes that lie in this mass bin, which make up a fraction f of the total. For both values of ε0, haloes that have once contained baryons form
earlier than average, and have higher concentrations.

simulations than in DM-only runs (see also Schaller et al. 2015b).
However, not all runs are deviant. For a range of softening lengths,
175 � ε0/[pc] � 700, the Vc(r) profiles do, in fact, converge
to better than ≈10 per cent at radii � rconv. Those that do not
correspond to runs with ε0 � rconv ≈ 1.8 kpc (dark blue curve), or to
those with ε0 � 43.8 pc (or equivalently, ε(zreion) � 13.3 pc ≈ εv),
in which inefficient photoheating during reionization stimulates star
formation at high redshift in low-mass haloes. Agreement between
these profiles at r � rconv does not, however, imply convergence;
that can only be established by comparing runs of different mass
resolution. We will return to this point in Section 5.2.

Interestingly, the increase in DM concentration that attends
smaller softening lengths is not, in general, a consequence of a
compact central stellar component. Stars comprise only a small
fraction of the total mass in the central regions of haloes. Consider
as an example the middle panel of Fig. 10, where M200 = 1010 M�
and Rmax ≈ 8 kpc (note that this is the value of Rmax predicted by the
analytic model of Ludlow et al. 2016). Considering only haloes that
host a central galaxy, we find that the average stellar mass fraction
within � Rmax = 8 kpc is typically between fbar(<Rmax) ≈ 0.001 to
0.011 for runs carried out with the smallest and largest softening

lengths, respectively; for our fiducial softening, fbar(<Rmax) ≈
0.002. Note too, as expected from Fig. 7, the concentration of
the stellar mass profile depends non-monotonically on ε, being
least concentrated at the highest and lowest values of ε and most
concentrated at intermediate values.

Neither are the DM cusps a consequence of a dense, central
concentration of non-SF gas. The dotted curves in the left-most
panel of Fig. 10 show the circular velocity profiles of DM haloes
that, at z = 0, contain no gas or stellar particles within their
virial radius. The circular velocity profiles of haloes that do not
host central galaxies are remarkably similar to those that do.
These puzzling results suggest that a stellar or gaseous baryonic
component capable of modifying the DM distribution may have
once dominated the central regions of these haloes, but has since
been lost or diluted due to numerical relaxation between the DM
and baryonic particles, potentially accelerated by small softening
(Ludlow et al. 2019a).

We explore this possibility further in Fig. 11, where we plot the
Vc(r) profiles (upper panels) and main progenitor mass accretion
histories (MAHs; lower panels) for a sub-sample of ‘dark’ DM
haloes in a narrow range of (z = 0) mass spanning 8.5 �
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log M200/[M�] � 8.9. These haloes contain no baryonic particles
within their virial radii at z = 0. Results are shown for N3

p = 3763

and for two values of softening: ε = 350 pc (our fiducial value;
left-hand panels) and ε = 43.8 pc (right-hand panels). In all cases,
profiles extend down to the radius enclosing 5 DM particles. The
total number of dark haloes, Ndark, in each sample is provided in the
lower panels; these make up 57 per cent (ε = 350 pc) and 70 per cent
(ε = 43.8 pc) of all (dark plus luminous) haloes of the same mass.
For comparison, an NFW profile with a concentration c = 15 (the
value anticipated by the model of Ludlow et al. 2016 for similar
mass haloes) is shown using a thick black line; the corresponding
NFW MAH is shown in the lower panel (see Ludlow et al. 2014,
for details).

The circular velocity profiles exhibit considerable scatter, partic-
ularly for ε = 43.8 pc. In that case, two distinct sets of curves can
be distinguished: one dominated by haloes with lower than average
concentrations, and another by much more concentrated systems,
whose mass profiles are not well described by an NFW profile. This
dichotomy in profile shapes was already evident in the bimodal
distribution of Rmax seen in Fig. 9.

How can baryon-free haloes exhibit mass profiles that deviate
so strongly from one another? The colour coding provides some
clues. With values decreasing from red to blue, curves are coloured
according to the maximum baryon fraction, f max

bar , that the halo’s
main progenitor ever reached during its lifetime. Clearly a large
fraction of these haloes have not always been dark. Star particles
forming in these haloes do so at higher densities as ε is decreased,
giving rise a compact baryonic core capable of drawing in dark
matter, increasing its central concentration; the effect is more
striking for small softening. For ε = 350 pc, for example, we
find that ≈87 per cent of these dark haloes have never hosted a
substantial baryonic component (defined here as f max

bar ≥ 0.01), but
those that have form systematically earlier and have slightly higher
concentrations than those that have not. For ε = 43.8 pc, a larger
fraction of haloes have once been baryon rich. About 39 per cent
have f max

bar ≥ 0.01, half of which reached baryon fractions as high
as 0.05. Median curves for these subsamples are shown explicitly in
Fig. 11: blue corresponds to those with f max

bar < 0.01 and red to those
with f max

bar ≥ 0.01; the total number of haloes in each subsample is
provided in the lower panels. Although difficult to confirm with
the available simulations, we speculate that the loss of baryons
from low-mass systems is a symptom of mass segregation driven
by energy equipartition between baryonic and dark matter particles.
This occurs naturally in simulations such as ours that model DM and
baryons with unequal mass particles, and will be more problematic
in runs that adopt small softening lengths.

The ‘mass segregation’ of DM and baryonic particles will also
cause the former to accumulate in halo centres, possibly explaining
the steeply rising central DM cusps in haloes that were once baryon
rich, but this is difficult to establish conclusively. For example,
the increasing densities of star formation that accompanies smaller
softening lengths may also contribute to the high central DM
densities in these runs due to the contraction of the DM halo
driven by the temporary presence of a compact baryonic component.
The latter interpretation seems most likely given the softening-
dependence of both the DM mass profiles and SF rates.

Although the haloes plotted in Fig. 11 are poorly resolved, they
are nevertheless an important step on the hierarchical ladder of
structure formation and should not be ignored in convergence
studies such as ours. As the progenitors of later generations of
haloes, poor convergence in the structure, and SFHs of low-mass
systems may seep through their merger trees and have undesirable

consequences for more massive systems at later times. Importantly,
these numerical artefacts are not limited to low-mass systems, but
are also expected to be present in the centres of massive, well-
resolved galaxies. In this case, mass segregation results in an
expansion of the stellar component of a galaxy, and a contraction
of its DM halo. Clearly these issues require careful consideration if
hydrodynamical simulations are to provide a meaningful assessment
of the distribution of DM on small scales.

5 D ISCUSSION

We carried out a suite of cosmological SPH simulations in order to
clarify the impact of numerical parameters on the baryon content of
dark matter haloes and the properties of the galaxies that form within
them. Our work complements previous studies that mainly focused
on subgrid parameters (particularly those pertaining to stellar and
AGN feedback efficiency) and how they influence the statistics of
the galaxy population (e.g. Yepes et al. 1997; Springel 2000; Stinson
et al. 2006; Scannapieco et al. 2008; Agertz et al. 2013; Haas et al.
2013a,b). Instead, we employ a well-tested code and adopt subgrid
parameters that have been calibrated to ensure a realistic galaxy
population at some ‘fiducial’ mass and force resolution and test
the sensitivity of the model predictions to changes in numerical
parameters.

Our runs were carried out in (comoving) L = 12.5 Mpc boxes
at two separate mass resolutions, one corresponding to the
‘intermediate-’ (N3

p = 1883) and another to the ‘high-resolution’
(Np = 3763) simulations of the EAGLE project (see Schaye et al.
2015, for details). Each run used the same softening length for
DM and baryonic particles, which we varied from run to run by
factors of two above and below the ‘fiducial’ values adopted for
EAGLE (700 and 350 pc for our low- and high mass-resolution runs,
respectively). Some runs used only adiabatic hydrodynamics for the
gas, whereas others adopted the full-physics implementation of the
EAGLE subgrid model. Relevant numerical aspects of our runs are
summarized in Table 1.

Using these simulations we tested plausible constraints on gravi-
tational softening that were estimated analytically in Section 3. For
adiabatic (non-radiative) simulations these restrictions – imposed to
ensure that the lowest-mass haloes resolved by the simulation are not
unduly influenced by softening – confine the dynamic range of the
gravitational softening length, ε, to roughly a factor of 20. The upper
limit ensures ε remains smaller than the virial radius of the lowest-
mass haloes resolved by the simulation, and the lower limit ensures
that ε is large enough to impede collisional heating of gas particles in
those haloes. Satisfying both constraints limits ε to a rather narrow
window, roughly 0.024 � ε/(L/N) � 0.52 (see equations 4 and
7). Imposing a minimum resolved escape velocity of ≈ 10 km s−1

(required for effective photoheating during reionization or in H II

regions; equation 8) or a requirement for numerically efficient
feedback (equation 13) yield even more conservative lower limits.
Simulations that do not comply with these restrictions are subject
to numerical artefact.

Although our study reveals several important numerical effects in
hydrodynamical simulations, it leaves a number of important issues
unsettled. In the remainder of this section we provide a summary of
our findings before highlighting several avenues for future progress.

5.1 Summary

(i) Gas particles in non-radiative hydrodynamical simulations
fall victim to significant 2-body scattering for ε less than the critical
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value, εmin
2body (equation 7). Smaller values incite collisional heating,

which reduces halo baryon fractions in low-mass systems, at least
in the absence of radiative cooling (Fig. 1). The further ε veers
below εmin

2body, the more noticeable the heating effects. Our analytic
estimate suggests that the critical value below which the baryon
fractions of N200 ≈ 100 haloes will be affected is of the order of ε �
0.024 (L/Np), which agrees remarkably well with our numerical
results.

(ii) Collisional heating is therefore a potentially important but
commonly neglected source of ‘numerical feedback’, but may
be suppressed if gas is allowed to cool radiatively. In this case,
however, softening imposes a minimum resolved escape velocity,
vε ∝ (mg/εv)1/2 (equation 8), due to the self-binding energy of gas
particles. Physical processes that occur on scales smaller than vε

may be suppressed in runs that adopt ε � εv . This result has impor-
tant implications for accurately modelling H II regions and photo-
heating due to reionization: for example, if ε is chosen such that vε �
10 km s−1 (approximately the sound speed in ionized gas at temper-
ature ∼104 K), the effects reionization are suppressed. We showed
this in Fig. 2, where we compared the baryon fractions of haloes
identified at z = 10 in a suite of simulations, some of which had ε 	
εv while others had ε � εv . Those with ε � εv exhibit clear symp-
toms: immediately following reionization, low-mass (�108 M�,
or V200 � 20 km s−1) haloes are replete with baryons despite the
photoheating effects; this provides fuel for star formation (SF) in a
population of haloes that would otherwise have remained dark.

(iii) The softening length places an upper bound on the density
of gas particles eligible to form stars, with maximum values scaling
as nmax

H ∝ ε−3 (equation 10; Fig. 3). This may be problematic if
significant numbers of stars form from gas particles whose densities
exceed the critical value, nH, tc, required for numerically efficient
feedback (equation 11), which occurs for softening lengths smaller
than εeFB (equation 13). Previous work has shown that galaxies
whose stars form under such conditions are unrealistically compact
(Crain et al. 2015), even when their stellar masses are sensible. Fig. 3
shows that, as ε decreases, a growing number of stars form above
this critical threshold, rising from about 9 per cent for ε/εeFB ≈ 1.4
(εeFB ≈ 500 pc in our N3

p = 3763 run) to �54 per cent for ε/εeFB ≈
0.044 (equivalent to a present-day softening length ε0 = 21.9 pc).
Suppressing SF above nH, tc requires ε to be chosen in accordance
with equation (13). Imposing a sufficiently steep equation of state,
or pressure floor, to impede such high gas densities is a possible
alternative to avoiding inefficient feedback.

(iv) These results suggest that galaxies may inherit fatal char-
acteristics if ε falls below certain thresholds. At fixed particle
mass, for example, the low-mass end of the GSMF becomes
systematically steeper if ε is decreased by more than a factor of
≈4 below our fiducial value. This is driven by two main effects.
First, SF is systematically enhanced in low-mass haloes at early
times, increasing the number of low-mass galaxies. For example,
the number of (z = 0) galaxies in our N3

p = 3763 runs with masses
�10 × mg increases from 40 to a maximum of 2288 when ε

decreases from 2800 pc to 21.8 pc; there are 663 in our fiducial
run (Fig. 5). Secondly, SF in all haloes is suppressed at later times,
which decreases the total stellar mass of galaxies residing in the
most massive DM haloes (Fig. 4). Combined, these effects steepen
the GSMF.
Increasing ε relative to our fiducial value also affects GSMFs. This
occurs because higher values of ε reduce densities in halo centres,
suppressing SFRs globally across all halo masses. But softening
also affects galaxy formation models by imposing a lower limit on
the halo mass within which galaxy formation is able to proceed,

which roughly corresponds to the halo mass scale below which the
spline softening length εsp is of the order of the galaxy’s physical
size, or roughly Rmax/2. The main effect is to curb the GSMF below
a softening-dependent limiting mass (see Figs 5 and 9).

(v) At fixed particle mass, galaxy sizes are also vulnerable to
changes in softening length, in part due to energy equipartition, i.e.
the transfer of energy from massive DM particles to lower mass stars
via 2-body scattering. The effect can be minimized by decreasing
the ratio μ = mDM/mgas (see Ludlow et al. 2019a), or by increasing
the softening length. Our suite of simulations indicate that mass
segregation is present in our fiducial runs (which adopt μ ≈ 5.3),
but is noticeably diminished for ε � 2 εfid. In fact, the size–mass
relations obtained from runs that used ε = 2 εfid agree best with
observational constraints. Larger values tend to ‘puff-up’ galaxies,
regardless of their stellar mass, and runs with ε � εfid show signs
of mass segregation: galaxies of a given M� become increasingly
diffuse as ε is decreased, and have sizes that increase systematically
with decreasing redshift, at least for z � 2. The redshift dependence
is erased in runs that use μ ≈ 1, or ε � 2 εfid. These results are
summarized in Fig. 7.

(vi) The structure of DM haloes identified in collision-less
DM-only simulations is robust to changes in softening length at
essentially all r � ε. Convergence in halo mass profiles between
different mass resolutions is achieved at radii that exceed the well-
known ‘convergence radius’ (e.g. Power et al. 2003; Navarro et al.
2010; Ludlow et al. 2019b). This is not the case, in general, for
cosmological hydrodynamical simulations, in which the innermost
structure of DM haloes responds to differences in galaxy formation
physics driven by changing ε (Figs 8 and 9). Smaller ε implies
higher densities of SF gas in halo centres, and potentially less
efficient feedback due to the corresponding increase in radiative
energy losses. If sufficiently small, the high gas densities in halo
centres draws in DM, which gives rise to a central DM density
cusp that is steeper than the ρ ∝ r−1 expected from DM-only
simulations (Fig. 10). Surprisingly, at late times this cusp is not
baryon dominated: for example, it is a noticeable feature of many
poorly resolved haloes that are today baryon free, but that were
not in the past (Fig. 11). We suspect that this result is related
to the segregation of baryonic and DM particles in the inner
regions of haloes: haloes dominated by a central stellar/gaseous
component can lose it through 2-body scattering between DM and
baryonic particles, and retain their high central concentrations of
DM. Nevertheless, the situation is not all dire. For a range of
softening lengths, 1/2 � εfid � 2, circular velocity profiles are
independent of ε at radii r � rconv.

The analytic constraints on softening discussed above and in
Section 3 are applicable to SPH simulations (and ε � εeFB to
those employing the stochastic feedback scheme of Dalla Vecchia &
Schaye 2012). Magneticum (Dolag, Komatsu & Sunyaev 2016),
NIHAO (Wang et al. 2015; Buck et al. 2019), CLUES (Libeskind
et al. 2010), APOSTLE (Sawala et al. 2016), Hydrangea (Bahé et al.
2017), and the galaxy clusters of the Three Hundred Project (Cui
et al. 2018) – recent examples of large-scale SPH simulations – all
adopt z = 0 physical softening lengths that exceed εmin

2body (for haloes
resolved with �200 particles) and εv (for vε = 10 km s−1). For
results independent of softening, however, these restrictions must
be satisfied at all redshifts and the time-dependence of ε should be
chosen with this in mind. The resolution study Hopkins et al. (2018)
carried out for the FIRE-2 project focused on a single Milky Way-
mass halo and achieved a maximum (baryonic) mass resolution of
≈7000 M� and minimum (baryonic) force softening of ≈0.4 pc.
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According to equation (8), this is sufficient to resolve photoheating
in haloes with Vmax � 12 km s−1. Similar conclusions apply to the
Latte simulations presented in Wetzel et al. (2016).

5.2 Recommendation for cosmological hydrodynamical
simulations

It is worth emphasizing that the values of ε at which the issues
mentioned above first manifest are not only of academic interest,
and are close to those adopted for many existing state-of-the-art
simulations. EAGLE, for example, adopted a maximum physical soft-
ening length (at z ≤ 2.8) of ≈ 0.011 × L/Np = 700 pc (ε = 0.04 ×
L/Np for z > 2.8) for the intermediate-resolution (L = 100 Mpc)
simulation, only a factor of ≈4.5 (1.4) larger than the minimum
value, εv , required to resolve a escape velocity of 10 km s−1 at
z = 0 (zreion = 11.5). Softening lengths used in the high-resolution
simulation of the EAGLE project (L = 25 Mpc and N3

p = 7523) were
a factor of two smaller (in physical units; equivalent in units of the
mean interparticle spacing). In that case, ε0/εv ≈ 18 and ε(zreion)/εv

≈ 5.5. These softening lengths are just large enough to ensure that
the effects of photoionization heating associated with reionization
are not artificially suppressed.

The more conservative constraint on softening, however – and
the one that has affected the outcome of our simulations the most
– stems from the requirement for efficient thermal feedback, ε

≥ εeFB (equation 13). Both the intermediate- and high-resolution
EAGLE simulations fall short of this value, by factors of ≈2 and
≈1.4, respectively (the values quoted here refer to z = 0). This
suggests that there may be some forgiveness when overstepping
this bound, as neither simulation appears to have been severely
affected by inefficient feedback. Nevertheless, there is room for
improvement: we find that 28 per cent of stars formed in EAGLE’s
intermediate-resolution L = 100 Mpc simulation (18 per cent in
the high-resolution L = 25 Mpc run) do so at densities greater
than nH, tc, and therefore suffer from numerical overcooling. To
ensure efficient thermal feedback at all resolved densities, softening
lengths should be chosen so that ε � εeFB, or feedback models
should be designed to be efficient at a desired ε and maximum
resolved density. Alternatively, an equation of state that prohibits
gas particles from reaching densities �nH, tc could be imposed.

Convergence requirements for DM-only simulations suggest that
ε should not exceed the comoving convergence radius, rconv, of DM
haloes that is dictated by 2-body scattering. In Paper I we showed
that rconv ≈ 0.055 × (L/Np) (where L is the comoving simulation box
size), regardless of halo mass or redshift. Because of this, softening
lengths for hydrodynamical simulations that ensure efficient thermal
feedback but do not jeopardize the innermost structure of DM haloes
may require compromise: it will not be possible to simultaneously
satisfy ε > εeFB (a condition on the physical softening length) and ε

< rconv (which restricts the comoving softening) at all redshifts and
for arbitrary mass resolutions.

Simulations such as ours that employ baryon and DM particles
of unequal mass also suffer from energy equipartition that affects
galaxy sizes (Ludlow et al. 2019). The size–mass relations presented
in Fig. 7 suggest that the strength of this effect increases as
ε is reduced. Minimizing the spurious growth of galaxy sizes
requires softening lengths that are sufficiently large to suppress
2-body scattering as much as possible, but sufficiently small so that
gravitational forces are unbiased on the relevant spatial scales, in
our case R50. At present we lack a detailed analytic framework that
can guide our choices, but the results shown in Fig. 7 suggest
that softening lengths roughly a factor of two larger than our

fiducial lengths (or ≈ 1400 and 700 pc for our intermediate- and
high-resolution runs, or ≈0.022 × L/Np) provide a reasonable
compromise for our fiducial mass resolution.

Our recommended ‘optimal’ softening for future large-scale
hydrodynamical SPH simulations is therefore to adopt a comoving
softening length of εCM

opt ≈ 0.05 × (L/Np) � rconv at early times,

and a maximum physical softening length of ε
phys
opt ≈ 0.022 ×

(L/Np) at late times. The transition redshift between the two regimes
takes place at zphys = εCM

opt /ε
phys
opt − 1 ≈ 1.27. These criteria ensure

that feedback will be maximally efficient without compromising the
innermost structure of DM haloes (since ε � rconv at all times) while
also minimizing the ε-dependent gravitational heating and force-
biasing that affects galaxy sizes (Fig. 7). These recommendations
are for simulations that adopt equal numbers of baryonic and DM
particles, and the same softening lengths for all particle species.
Variations on this theme require additional testing.

Fig. 12 compares the results of two high- (solid lines) and
intermediate-resolution (dashed lines) simulations carried out with
our fiducial softening length (blue curves) and with εopt (orange).
Top panels show the cosmic SFHs (left-hand panel), GSMFs
(middle), and size–mass relations (right-hand panel) at z = 0
and 2 (thick and thin lines, respectively). SFHs and GSMFs are
reasonably well-converged with mass resolution (provided galaxies
are resolved with at least 20 stellar particles for the latter; upward
arrows) regardless of ε. The sizes of the most massive galaxies are
also well-converged, but low-mass objects are smaller for the high-
resolution runs and for our optimal softening length (note that both
of these changes – higher mass resolution and larger softening –
will, at fixed stellar mass, increase collisional relaxation times, and
therefore suppress 2-body scattering).

The lower panels of Fig. 12 plot the median circular velocity
profiles of DM haloes in three bins of halo mass (from left to right,
109, 1010, and 1011 M�, respectively). Each profile is plotted down
to rconv = 0.055 × L/Np using thick lines, and extended to ε/2 with
thin lines. Residuals in the bottom panels confirm that, regardless
of mass, the median circular velocity profiles of DM haloes are
converged to better than ≈10 per cent at radii that exceed rconv.

5.3 Outlook for future work

Although our results shed light on the complex issue of ‘strong
convergence’ in hydrodynamical simulations, there is clearly work
to be done. First, our analysis focused exclusively on a limited
number of galaxy properties (sizes, stellar mass, SFH) and how
they are affected by force softening and relatively modest changes
to particle mass. But what impact would these changes have on other
galaxy properties, such as their internal dynamics, their central black
hole mass, on fundamental relations such as the Tully–Fisher and
Faber–Jackson relations, or on the SFR–stellar mass relation? The
impact of gravitational softening on the cosmic SFH, and galaxy
masses and sizes is not subtle, and we therefore find it unlikely that
other relations will be fully absolved of its influence.

In addition, softening and particle mass are only two of a
number of important numerical parameters that may impact the
outcome of hydrodynamical simulations. Others include – but
are not limited to – the number of SPH neighbours, Nngb, used
for smoothing hydrodynamic variables, the minimum smoothing
length, lmin

hsml (fixed to 0.1 × εsp = 0.28 × ε in all of our runs; but
see Appendix A3), or the use of adaptive instead of fixed softening
lengths, or softening lengths that differ for different particle types.
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Figure 12. A summary of results from intermediate-(N3
p = 1883) and high-resolution (N3

p = 3763) runs that used our fiducial softening length, εfid (blue
curves), or the ‘optimal’ softening length, εopt (orange curves), described in Section 5.2. Top panels, from left to right, show the cosmic SFH, the galaxy stellar
mass function, and the galaxy size–mass relations at z = 0 (thick lines) and z = 2 (thin lines). SFHs are reasonably well-converged with mass resolution at
all z, as are GSMFs for masses that exceed that of ≈20 primordial gas particles (vertical arrows in the middle panel). At both mass resolutions, the sizes of
low-mass galaxies at z = 0 are systematically smaller for εopt than for εfid > εopt, due to the suppression of 2-body scattering. Lower panels plot the circular
velocity profiles of DM haloes in separate bins of (DM) halo mass: 109 M� (left-hand panel), 1010 M� (middle), and 1011 M� (right-hand panel). Residuals
are shown in the lower panels. In each case, thick lines extend down to the convergence radius expected for DM-only simulations (see Ludlow et al. 2019b, for
detail); thin lines extend to ε/2. The Vc(r) profiles converge to better than ≈10 per cent at all radii � rconv.

Our tests are also limited in dynamic range: all were carried
out in the same L = 12.5 Mpc (comoving) cubic box and, as a
result, contain only a handful of galaxies with masses exceeding ∼
1012 M�, and are therefore unlikely to test convergence in the regime
where AGN are expected to strongly impact galaxy formation and
evolution.

Nevertheless, some of our results are likely applicable to more
massive systems, particularly those only mildly affected by AGN.
The cosmic SFHs shown in Fig. 4, for example, are dominated by
a handful of the most massive galaxies present in the runs, whose
individual SFHs also exhibit softening-dependent ‘peaks’ at early
times. The peaks arise because gas particles are able to collapse to
higher densities as ε is decreased, resulting in enhanced SF.7 At
such high redshift AGN feedback is likely unimportant in all but
the rarest of collapsed structures, so the SFHs of z = 0 galaxies
much more massive than those probed by our simulations are likely
to exhibit unphysical softening-dependent peaks as well.

The DM response to galaxy formation in halo centres (Figs 8
to 11) is another issue of convergence that we expect extrapolates

7Enhanced SF is eventually quelled by the corresponding enhancement of
stellar feedback, which, when softening is sufficiently small, results in a
turnover in the SFHs and the appearance of a ‘peak’.

to more massive galaxies and haloes. Galaxy sizes, however, are
affected by 2-body scattering, which has diminishing importance
with increasing numbers of (DM and stellar) particles. The majority
of our galaxies are affected by 2-body scattering at their half-mass
radii (Fig. 7). Substantially more massive systems will not be. It is
difficult to anticipate the impact of numerical parameters on galaxy
size in that regime.

Resolving these issues will require a systematic study of
‘zoomed’ simulations (such as those recently carried out by Hopkins
et al. 2018, though without AGN) targeting massive haloes, or,
preferably, to adopt an approach similar to ours but using much
larger cosmological volumes. The latter, while desirable, will be
computationally costly, perhaps prohibitively.

For hydrodynamical simulations, strong convergence for arbi-
trary choices of numerical parameters is unlikely to be achieved,
and is perhaps undesirable. For example, subgrid models often
include physically motivated parameters that are constrained by
observation or by theory and do not take part in calibration (for
EAGLE, the SF density threshold and supernova time delay are
two examples). Numerical parameters that preclude a realistic
application of the subgrid model should therefore be avoided:
no amount of calibration will compensate for poorly chosen
numerical parameters. Ideally, simulations should self-consistently
model physical processes above some resolved length scale (or
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below a maximum-resolved density) and emulate smaller scale
physics using subgrid models, thereby establishing the equations
that must be solved. Numerical parameters should then be cho-
sen such that those equations are solved accurately, but with
minimal computational cost. This division of scales is not easy
to achieve but this paper makes a great stride in that direction.
Changing the resolution (for example, by modifying numerical
parameters such as particle mass or force softening) introduces
new physical scales which may demand revisions to the subgrid
model.

Finally, we note that our convergence tests reveal a strong
junction between numerical parameters and those governing sub-
grid models for star formation and stellar feedback. Co-varying
these parameters may disclose other important convergence cri-
teria, similar to the ones presented in Section 3, or may reveal
ways by which careful recalibration can compensate for changes
brought about by different choices of numerical parameters. We
hope that our work inspires future efforts to address these issues
and to establish robust convergence criteria for hydrodynamical
simulations analogous to those frequently used for collision-less
dynamics.
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APP ENDIX A : SENSITIVITY TO OTHER
N U M E R I C A L A N D S U B G R I D PA R A M E T E R S

A number of results of our work remain puzzling. We noted in
Section 4.2.1 that the early spike in SF common to runs with ε � εv

at zreion is often accompanied by a sharp decline in SF at late times.
Fig. 4 suggest that this is true regardless of mass resolution. This
result is particularly surprising given that the same runs form the
majority of their stars at densities nH > nH, tc (Fig. 3) and should,
as a result, succumb to inefficient stellar feedback. This should
encourage star formation, not disable it.

Figs 10 and 11 indicate that the central structure of dark
matter haloes in hydrodynamical simulations depend sensitively

on gravitational softening, a result that is at odds with the out-
come of numerical convergence studies based on dark matter-only
simulations.

What gives rise to these results? In the following sections we rule
out some obvious possibilities using the simulations in described in
Table A1.

A1 Subgrid parameters and AGN feedback

In Fig. A1 we plot the cosmic SFHs in three runs carried out with
different subgrid models: one Reference (orange lines) and two
Recalibrated models that either include (solid blue lines) or ignore
AGN feedback (dashed light blue lines). All runs used N3

p = 1883

particles (of both gas and DM) and a z = 0 maximum physical
softening length of ε0 = 43.75 pc; the physical softening lengths at
zreion = 11.5 (ε(zreion) = 13.3) are therefore smaller than εv ≈ 156 pc
by roughly a factor of ≈12. The same initial burst in SF at z ≈ zreion

is clear in all runs, and is followed by a sharp decline in SF for z �
2, regardless of the precise details of the feedback implementation.
The same is true of the galaxy mass function and the size–mass
relation. While the results of these runs are in clear conflict with
those of our fiducial model (the curves in Fig. A1 can be compared to
those in Figs 4, 5, and 7), they are at least robust to small variations
in subgrid parameters at fixed mass resolution, as well as to the
presence or absence of AGN feedback.

A2 Timestepping and integration accuracy

In Paper I (see also Power et al. 2003; Hopkins et al. 2018) we
showed that the central structure of dark matter haloes in N-body
simulations is prone to numerical artefact unless sufficient numbers
of time-steps are taken. This is particularly true when softening
lengths are small, as interparticle accelerations scale as aε ∝ mDM/ε2

– large accelerations require short time-steps to ensure particle orbits
are integrated accurately. It is therefore plausible that analogous
numerical effects may arise in hydrodynamical simulations which
may impact SFHs, galaxy masses or sizes, or the structure of their
DM haloes in non-trivial ways. Indeed, Figs 8 to 10 indicate that
the central structure of DM haloes is particularly sensitivity to
gravitational softening, especially when small values are used. Fig. 4
suggests that cosmic SFHs are also sensitive to ε, when sufficiently
small.

The upper left-hand panel of Fig. A2 verifies that cosmic SFHs
are unaffected by using a smaller integration time-step. The three
curves show results for Recal models that vary the time-stepping
integration parameters. All runs used N3

p = 3763 particles of gas
and DM and ε0 = 43.75 pc (note that we adopt a small softening
length for these tests in order to evaluate the robustness of runs that
are poorly converged with respect to our fiducial model and that are
most likely to suffer from inaccurate time integration due to large
particle-on-particle accelerations). The solid blue lines correspond
to our default choices: ErrTolIntAcc = 0.025 and a Courant
Factor of 0.15; green and orange lines show, respectively, the impact
of reducing ErrTolIntAcc by a factor of 10 (to 0.0025) or the
Courant factor by 3 (to 0.05) while keeping the default values for the
other parameter (Fig. 1 showed that the baryon fractions of haloes
in our adiabatic N3

p = 1883 runs are robust to equal changes in
integration accuracy). All three runs exhibit similar SFHs, GSMF
(top right-hand panel), and size–mass relations (lower left-hand
panel), implying that the statistical properties of galaxies in our suite
of convergence test-runs are robust to changes in integration time-
step. More importantly, the same is true of the innermost structure
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Table A1. As Table 1, but summarizing runs used in Figs A1 to A3. The additional parameters, not in Table 1, are the physical and
comoving minimum smoothing lengths (lphys

min and lCM
min , respectively) used for Fig. A3.

Model Np mDM mg εphys εCM l
phys
min lCM

min zphys ErrTolIntAcc Courant
(105 M�) (105 M�) (pc) (pc) (pc) (pc) Factor

Recal 376 12.1 2.26 43.75 166.25 12.3 46.5 2.8 0.025 0.15
Recal 376 12.1 2.26 43.75 166.25 12.3 46.5 2.8 0.025 0.05
Recal 376 12.1 2.26 43.75 166.25 12.3 46.5 2.8 0.0025 0.15
Ref 188 97.0 18.1 43.75 166.25 12.3 46.5 2.8 0.025 0.15
Recal 188 97.0 18.1 43.75 166.25 12.3 46.5 2.8 0.025 0.15
No AGN 188 97.0 18.1 43.75 166.25 12.3 46.5 2.8 0.025 0.15
Ref 188 97.0 18.1 1400.0 5320.0 1512.0 3433.0 1.3 0.025 0.15
Ref 188 97.0 18.1 1400.0 5320.0 784.0 1781.0 1.3 0.025 0.15
Ref 188 97.0 18.1 1400.0 5320.0 392.0 890.0 1.3 0.025 0.15
Ref 188 97.0 18.1 1400.0 5320.0 196.0 445.0 1.3 0.025 0.15
Ref 188 97.0 18.1 1400.0 5320.0 98.0 223.0 1.3 0.025 0.15
Ref 188 97.0 18.1 1400.0 5320.0 49.0 111.0 1.3 0.025 0.15
Ref 188 97.0 18.1 700.0 2660.0 1512.0 3433.0 2.8 0.025 0.15
Ref 188 97.0 18.1 700.0 2660.0 784.0 1781.0 2.8 0.025 0.15
Ref 188 97.0 18.1 700.0 2660.0 392.0 890.0 2.8 0.025 0.15
Ref 188 97.0 18.1 700.0 2660.0 196.0 445.0 2.8 0.025 0.15
Ref 188 97.0 18.1 700.0 2660.0 98.0 223.0 2.8 0.025 0.15
Ref 188 97.0 18.1 700.0 2660.0 49.0 111.0 2.8 0.025 0.15
Ref 188 97.0 18.1 87.5 332.5 784.0 1781.0 2.8 0.025 0.15
Ref 188 97.0 18.1 87.5 332.5 392.0 890.0 2.8 0.025 0.15
Ref 188 97.0 18.1 87.5 332.5 196.0 445.0 2.8 0.025 0.15
Ref 188 97.0 18.1 87.5 332.5 98.0 223.0 2.8 0.025 0.15
Ref 188 97.0 18.1 87.5 332.5 49.0 111.0 2.8 0.025 0.15

Figure A1. Cosmic star formation histories (left-hand panel), cumulative galaxy stellar mass functions (middle) and galaxy size–mass relations (right-hand
panel) for three N3

p = 1883 runs carried out with different subgrid physics. All runs used the same gravitational softening length, ε = εfid/16 = 43.75 pc. The
ange lines are used for a run carried out with Ref parameters (these parameter values were chosen by calibrating runs that used the same mass resolution as
those shown); the dark and light (dashed) blue lines adopted the Recal model both with and without feedback from AGN (parameters of the Recal model were
selected by calibrating simulations that have eight times better mass resolution than those shown above, corresponding to our N3

p = 3763 runs). The results of
our simulations are robust to changes in subgrid parameters, and to the presence (or absence) or AGN feedback.

of their DM haloes (lower right-hand panel). Although there are
small differences in the central structure of haloes between the
runs with ErrTolIntAcc = 0.025 and 0.0025 (the latter being
more centrally concentrated than the former), they clearly cannot
explain the softening dependence of halo structure depicted in
Fig. 10.

A3 The minimum SPH smoothing length

As discussed in Section 3.3, all runs presented in the main body
of this paper used a minimum SPH smoothing length that co-
evolves with the spline gravitational softening length: lmin

hsml(z) =

0.1 × εsp(z). The most appropriate choice for lmin
hsml, however, is

not obvious: it dictates the minimum length scale on which hy-
drodynamic forces can be considered resolved, whereas ε governs
the minimum resolved scale of gravitational forces. The former
is more closely related to the maximum resolved gas density (see
equation 9) and therefore to the fraction of fluid elements that satisfy
our star formation criteria, or suffer from inefficient feedback due to
numerical overcooling. Indeed, equation (13) implies that in order
to achieve the highest possible hydrodynamic spatial resolution
while simultaneously ensuring efficient feedback, our runs should
target minimum smoothing lengths of order leFB

min ≈ 390 pc for
the intermediate-resolution, and ≈140 pc for high-resolution (i.e.
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Figure A2. From top- to bottom-left, clockwise, different panels show the cosmic SFH, the cumulative galaxy stellar mass function, the stellar and total
circular velocity profiles (for haloes in a narrow mass bin −0.2 ≤ log M200/[1010 M�] ≤ 0.2), and the projected galaxy size–mass relation (note that the
latter three panels present results at z = 0.5). All runs adopted subgrid parameters of the Recal model, and used a softening length of ε = εfid/8 = 43.75 pc
(note that this is the maximum physical softening length used for z ≤ 2.8). Different colour lines correspond to runs that vary our default choice of GADGET’s
numerical integration parameters: the blue curves used a Courant factor of 0.15 and gravitational time-step parameter ErrT olIntAcc = 0.025 (our default
values); the two remaining runs vary one of these parameters while keeping the other fixed: the orange curves used a Courant factor of 0.05; the green used
ErrT olIntAcc = 0.0025.

0.28 × εeFB, where εeFB is the Plummer-equivalent length of
equation 13).

Fig. A3 investigates the impact of varying lmin
hsml on the outcome

of our simulations, focusing on the cosmic SFH (top row), the
GSMF (middle), and the median size–mass relation (bottom).
Different columns correspond to different (Plummer-equivalent)
softening lengths: ε0 = 1400 pc (left-hand panel), 700 pc (middle),
and 87.5 pc (right-hand panel). Different colour lines are used
for different minimum smoothing lengths. Note that both ε and
lmin
hsml were fixed in physical units for z ≤ 2.8, and in comoving

units at higher redshift; the values quoted in Fig. A3 are those
at z = 0.

The SFHs and GSMFs are largely independent of lmin
hsml provided

is �392 pc, but exhibit a softening dependence already apparent

in Figs 4 and 5. Notably, the GSMF is slightly suppressed at mass
scales �10 × mgas (downward pointing arrows) when ε0 = 1400 pc.
As discussed in Section 4.3.1, this is a result of oversoftening
gravitational forces in the central regions of low-mass haloes, which
inhibits centrally concentrated SF. When ε0 = 87.5 pc, the SFH
develops a strong peak at early times regardless of lmin

hsml, although it
is suppressed somewhat for lmin

hsml � 392 pc.
Galaxy sizes are remarkably robust to changes in lmin

hsml, but exhibit
a strong sensitivity to gravitational softening, as already noted
in Fig. 7. Galaxy projected half-mass radii grow systematically
as ε decreases, a result we have attributed to enhanced mass
segregation driven by the slow diffusion of energy from the more
massive DM particles to the lower mass stellar particles (Ludlow
et al. 2019a).
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Figure A3. The impact of minimum SPH smoothing length on the cosmic star formation history (SFH; top row), the cumulative galaxy stellar mass function
(GSMF; middle row), and the galaxy size–mass relation (bottom row). Different columns correspond to different gravitational softening lengths: the left-hand
panels used ε0 = 1400 pc, the middle panels our fiducial softening length, ε0 = 700 pc, and the right-hand panels ε0 = 87.5 pc. All runs were carried out with
N3

p = 1883 baryonic and DM particles. Different coloured lines are used for different minimum smoothing lengths, with values quoted in the legend. Note that
all runs adopt softening and smoothing lengths that are fixed in co-moving coordinates at z > 2.8, and fixed in physical coordinates thereafter. The values of
ε0 and lmin quoted above refer to the present-day values. For each value of ε0, cosmic SFHs and GSMFs are largely independent of lmin provided it remains
�140 pc (with only minor deviations noticeable for lmin � 280 pc), which is roughly a factor of 2 larger than our fiducial value of lmin = 70 pc for this mass
resolution. Galaxy sizes are independent of lmin for all values tests, but exhibit a strong softening-dependence, as noted in Fig. 7.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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