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Abstract Meteorological data collected during the post-9/11 flight grounding in the United States
suggested that the removal of contrails increased diurnal temperature range (DTR), but subsequent
research has contested this result. The 2010 Eyjafjallajokull eruption resulted in a 97% flight cancelation rate
across the UK, offering another rare opportunity to compare DTR under contrail-free skies against those with
contrails. Temperature data from 199 UK meteorological stations indicate that a +3.4 °C DTR anomaly
occurred during the grounding interval across the region previously affected by the highest flight densities,
substantially larger than the +1.1 °C anomaly previously observed but smaller than other DTR anomalies (up
to ~ +6 °C) that were independent of the grounding. Although the observed DTR anomalies are largely
attributable to weather system migration, a contribution of up to +1 °C from contrail absence appears
reconcilable with both the observed time evolution in DTR during the Eyjafjallajokull grounding period and
previous results.

Plain Language Summary Due to permanent and near-constant aviation activity, directly
comparing atmospheric conditions underneath skies with and without contrails under equivalent ambient
conditions is difficult. Previous research used the post-9/11 flight groundings in 2001 to detect a contrail
effect on diurnal temperature range across the United States. The removal of contrails was found to have
increased daytime high temperatures and decreased nighttime low temperatures. However, subsequent
research challenged this result and the overall effect of contrails on weather remains unclear. Here we use a
very high density network of meteorological stations across the United Kingdom to assess the importance of
contrails on diurnal temperature range during a more recent flight grounding following the Eyjafjallajokull
volcanic eruption of 2010. We find that subtle, but substantial, temperature shifts related to contrails may
have been overprinted by larger shifts in weather systems passing over the United Kingdom.

1. Introduction

Aviation represents a small (e.g., ~3.5% of total anthropogenic forcing in 2005; Lee et al., 2009), yet potentially
significant climate forcing whose non-CO, effects remain imperfectly quantified (Lee et al., 2009, 2010;
Penner et al.,, 1999). Air traffic is predicted to grow up to 5% per year globally over the next 40 years
(Minnis et al,, 2003, 2004; Ponater et al., 2005; Rap et al,, 2010), but how exactly aviation may affect local-
to regional-scale surface temperatures into the future remains unclear (Minnis et al., 2004; Sassen, 1997;
Travis et al.,, 1997). Aircraft-related condensation trails, or contrails, are formed in the upper troposphere
and can develop into cirrus-like clouds, potentially reflecting both incoming solar radiation and outgoing ter-
restrial infrared radiation (Myhre & Stordal, 2001) and leading to cooler days and warmer nights (Travis et al.,
2002, 2004). Climate model simulations have shown that these contrail cirrus clouds may well be the most
important contribution to the radiative forcing associated with aviation (Bock & Burkhardt, 2016; Burkhardt
& Karcher, 2011; Karcher, 2018; Schumann et al.,, 2015). Typically, studies measure the percentage of contrail
cirrus sky coverage by using satellite imagery; however, challenges presented in algorithm tuning complicate
contrail detection by this method (Duda et al., 2013; Minnis et al., 2013). Comparing time intervals with con-
trails to intervals without contrails over any discrete geographical area circumvents some of these issues,
although because contrail formation requires specific meteorological conditions (e.g., sufficiently cold and
moist air; Jensen et al., 1998; Kastner et al., 1999), replication of this type of result is difficult (Dai et al.,
1999). Only a few studies have been based on a direct comparison of meteorological observations of
contrail-free versus contrail-rich skies (e.g., Hong et al., 2008; Travis et al., 2002). Travis et al. (2002) argued that
an anomalous increase in mean diurnal temperature range (DTR) occurred across the United States following
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Figure 1. Distribution of UK meteorological stations used in this study (red
filled circles). Overlain is the zone allocation according to flight path loca-
tion (zone 1 = high, zone 2 = moderate and zone 3 = low), identified using
information on the locations of high-altitude flight routes over the United
Kingdom from the UK’s aeronautics information data unit (AIDU, 2012). This
information was then broadly confirmed using the contrail flight map tool
found at: http://contrailscience.com/map/. The blue lines represent the flight
paths of aircraft over the United Kingdom on the oldest available date (30
September 2012) on the contrail flight map, but these flight paths should not
differ significantly from those characteristic of April 2010. Only flight paths
over 30,000 feet are shown, the altitude at which temperatures are most
conducive to the formation of contrails, although some minor variability in
threshold altitude based on aircraft propulsion efficiency, amount of sun-
light, and humidity is possible (Sausen et al., 1998). These contrail maps are
only used to confirm the contrail density of the three zones identified using
the Aeronautics Information Data Unit data. The base map is adapted from
output generated by the contrail flight map tool.

the flight grounding of 11-14 September 2001. The 3 days of the event
and the 3 days before and after were compared to the same calendar
dates in previous years, demonstrating that a 1.1 °C DTR increase from
the 1971-2000 mean over the same calendar days existed during the
grounding period, whereas adjacent periods had almost no deviation from
the mean. Additionally, the grounding period had a 1.8 °C larger range
than the adjacent 3-day intervals, and Travis et al. (2002) concluded that
mean DTR across the United States increased during the grounding period
due to the absence of contrails. A more recent study using meteorological
sites with similar characteristics but differing contrail coverage also sug-
gested that contrails reduce DTR (Bernhardt & Carleton, 2015), supporting
the earlier results (Travis et al., 2002).

However, other research has challenged this view (Hong et al.,, 2008),
arguing that the DTR increase observed across the United States over
the 2001 flight grounding interval was controlled by low-altitude clouds,
winds, and humidity. Hong et al. (2008) suggested that some contrail influ-
ence may have existed but was essentially overprinted by weather on key
days (Kalkstein & Balling, 2004). Furthermore, simulations using the
ECHAM4 model with a contrail parameterization found no DTR response
to contrails and concluded that low-level clouds were mainly responsible
for the observed DTR shifts (Dietmdiller et al., 2008), consistent with the
results of Hong et al. (2008). Similarly, van Wijngaarden (2012) used
meteorological data to argue that the DTR shifts observed by Travis et al.
(2002) actually reflected the migration of weather systems across North
America rather than the removal of contrails. Regardless, it has been
argued that an observed 1.8 °C increase in DTR compared to the mean
shift during the adjacent 3-day periods is extremely rare in the meteorolo-
gical record and that the temporary lack of contrails was responsible
(Travis et al., 2002, 2004).

The role of contrails on regional- to local-scale temperature is therefore
controversial and not well quantified. It is clear that more data are required

to resolve the question of whether or not contrails decrease DTR over restricted areas. Because air traffic in
many regions never ceases completely, it is very difficult to determine the extent to which contrails may
decrease DTR using direct observations. Here we use a more recent flight grounding following the
2010 AD eruption of the Icelandic volcano Eyjafjallajokull, to investigate the effects on DTR across the
United Kingdom and consequently to provide information for model simulations (e.g., Huszar et al.,, 2013;
Marquart et al., 2003; Wild, 2009) focusing on predicting future climate change that will incorporate
aviation-associated radiative forcing.

2. Methods

We utilized the Met Office Integrated Data Archive System (United Kingdom Met Office, 2012) archives to
retrieve daily maximum and minimum temperatures (T,,,x and T,;,) at meteorological stations across the
United Kingdom. At the time of acquisition for this study, the data set comprised approximately 5 million data
records with broad coverage across the entire United Kingdom. For the purposes of this study, only sites that
recorded temperatures from 1991 to 2010 were used. In total, 199 sites remained, still offering excellent spa-
tial coverage of the United Kingdom overall, although the coverage is somewhat lower in Cornwall, sections
of northern England, and sections of northern Scotland (Figure 1). Although the geographic area of our study
is far smaller than that of Travis et al. (2002), the site density is 65% higher; consequently, our results provide a
higher-resolution snapshot into any climate repercussions of contrails.

To isolate any contrail effect during the 5-day grounding (16-20 April 2010), the study covers calendar dates
during the grounding and those bracketing the flight grounding interval (11-15 April) and (21-25 April). This
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parameterizes any local climatic effects before the grounding and covers any long-standing effects that may
have persisted after the grounding.

Each of the 199 meteorological stations that had unbroken records from 1991 to 2010 was assigned to one of
three flight density zones (1 = High, 2 = Medium, 3 = Low) based on air transport density estimated by using
the locations of high-altitude flight routes over the United Kingdom derived from data from the United
Kingdom'’s Aeronautics Information Data Unit (AIDU, 2012; Figure 1). Anomalies for any given calendar date
were calculated as the difference between that date in 2010 and the mean for the same date across 1991-
2009; these station- and date-specific anomalies were then averaged across zones or intervals of time as
required. Concerns that the ash cloud associated with the 2010 Eyjafjallajokull eruption might affect aircraft
prompted flight cancelations across northern Europe, and in the United Kingdom the interval 16-20 April was
characterized by a 97% flight cancelation rate. We focus on this interval to attempt to corroborate the results
of Travis et al. (2002).

3. Results and Discussion

The distance between Eyjafjallajokull and UK air space is approximately 1,000 km. The volcanic ash cloud had
no documented effect on UK temperature, as expected for a low sulfur eruption plume (Walker et al., 2012)
that only rarely breached the tropopause (Flemming & Inness, 2013; Petersen, 2010). During the flight disrup-
tion interval from 16 to 20 April 2010, the mean DTR anomalies were as follows: Zone 1 = +3.4 °C, Zone
2 =+43.9 °C, and Zone 3 = +1.5 °C (Figure 2). The pronounced DTR increase in the two zones most affected
by regular air traffic is consistent with the removal of a contrail effect, although of a much larger magnitude
than expected. However, in Zone 1 the large DTR anomaly was driven by particularly large DTR values of +5 °C
and +6.5 °Con 17 and 18 April, followed by a substantial decrease to +1.7 and +2.6 °C on 19 and 20 April. The
elevated values occurring on 17 and 18 April are greater than 2 standard deviations above the 1991-2009
mean, but values during the rest of the grounding interval are less anomalous (Figure 2). Averaged over
the entire grounding interval, DTR shifts in both Zones 1 and 2 are well within natural variability observed
over the 1991-2009 baseline and are lower than the mean values for the 5 days immediately following the
grounding interval (Figure 2). Over the period from 1 April to 31 May, DTR excursions more than 2 standard
deviations above the mean also occurred after the grounding interval on 24 April and again on 23-24 May.

United Kingdom Met Office records demonstrate that a high-pressure system moved over the United
Kingdom between 16-19 April 2010, coincident with both the steadily increasing DTR and the flight
grounding. This high-DTR interval ended in Zone 1 following the arrival of a low-pressure system on 20
April. These records are consistent with Moderate Resolution Imaging Spectroradiometer imagery that con-
firms that regions experiencing the highest DTR anomalies had the least cloud cover (Figure 3). This is par-
ticularly notable on 17 and 18 April, when Zone 1 (southern England) was largely cloud-free (Figure 3), and
the DTR anomalies on those days were +5.0 and +6.5 °C, respectively. These observations strongly suggest
that cloud effects associated with synoptic-scale weather systems are at least partially controlling DTR.
Although the DTR does increase during the grounding interval, the fact that larger deviations exist not
associated with any flight grounding suggests that other phenomena overprinted any contrail effects pre-
sent. The simplest explanation for the elevated DTR during the grounding interval is, therefore, that it was
predominantly caused by the movement of weather systems, consistent with previous results (e.g., van
Wijngaarden, 2012).

However, this explanation does not exclude the possibility that the removal of contrails contributed a smaller
amount to the observed large DTR shifts. Considering geographical heterogeneities in DTR across the United
Kingdom during the 2010 grounding interval provides additional insights (Figure 4.). For example, on 16 April
the highest DTR values were found in Zone 3, and (because of the typically low contrail density over northern
Scotland) were almost certainly due to the high-pressure system beginning to affect the area rather than to
the removal of contrails. As the system moved to the south, DTR values became progressively higher in the
southerly Zone 1 (and progressively lower in the northerly Zone 3), culminating in particularly high values on
18 April. The DTR anomaly over Zone 1 subsequently dropped to +1.7 °C on 19 April (from +6.5 °C on 18 April)
coincident with an increase in cloud cover over Zone 1 (Figure 3). Interestingly, the DTR anomaly in Zone 1 on
the first day of the flight grounding (16 April before the region was affected by the main high-pressure sys-
tem) was +1.1 °C, the same value as that derived by Travis et al. (2002). Therefore, although the maximum DTR
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Figure 2. Mean diurnal temperature range (DTR) anomalies from 1 April to 31 May 2010 for the three zones of flight density
discussed here (a-c). Values are normalized by subtracting value for that station and day from mean values across 1991-
2009 for that same station and day, and then averaging all stations within each zone. The gray-shaded region represents
two standard deviations from the mean 1991-2009 value for each station and day (averaged across each zone). The
light green insets illustrate the mean DTR values across 5-day windows preceding (11-15 April), during (16-20 April), and
after (21-25 April) the flight grounding interval (red bars) in 2010 compared with the mean DTR values from 1991 to 2009
(black circles). Two standard deviations from this value are also shown (black vertical lines).

anomaly of +6.5 °C on 18 April and the mean DTR anomaly of +3.4 °C across the entire grounding interval (16—
20 April) observed in Zone 1 were almost certainly due predominantly to variable weather, this large DTR
anomaly could include a component linked to the removal of contrails. Our results differ from those of
Travis et al. (2002) in that, whereas these authors found that the intervals before and after were
characterized by negative anomalies, the DTR values for Zone 1 were slightly above the 1991-2009 mean
(+0.6 °C) during the 5-day interval prior to the flight grounding and were 4.6 °C higher in the 5-day
interval following the grounding. It is clear that the frequent (almost daily) movement of weather systems
across large portions of the United Kingdom complicates isolating any shifts caused by the sudden absence
of contrails during the grounding interval, but available data are not inconsistent with the removal of a
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Figure 3. Daily Aqua Moderate Resolution Imaging Spectroradiometer corrected reflectance imagery for the United Kingdom
from 15 to 20 April 2010, including the flight disruption interval (b-f) and the preceding day (a). Images courtesy of the
National Aeronautics and Space Administration Earth Observing System Data and Information System Land Processes
Distributed Active Archive Center, United States Geological Survey/Earth Resources Observation and Science center.

contrail effect during the grounding interval of approximately the same magnitude as that reported in Travis
et al. (2002).

Examining Trax and Tmin trends clarifies the structure of the observed DTR variability throughout the study
period (Figure 5). During the grounding period, in Zones 1 and 2 clear but not unique T, reductions
(—1.5 °C) and Tpay increases (+3.5 °C) are apparent and combine to produce a +5.0 °C net DTR shift. This
observation is consistent with the removal of contrails, which should produce smaller T,,;, decreases com-
pared to much larger Tp,ax increases due to (i) contrails only contributing a small amount to longwave surface
warming during the night compared to larger amounts of shortwave surface cooling during the day
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Figure 4. Diurnal temperature range daily values for each of the 199 meteorological stations from across the United
Kingdom (shaded contours) and the Eyjafjallajokull ash cloud coverage (light gray overlay) (panels a-e). White regions
are areas unaffected by the ash cloud. Ash cloud limits are based on the United Kingdom Met Office’s London Volcanic Ash
Advisory Centre for flight level 200 (20,000 feet).

(Schumann & Mayer, 2017) and (ii) the nature of the daily aviation cycle (Stuber et al., 2006). This same pattern
of somewhat lower T, and substantially higher T,,., is not apparent in Zone 3 where the normal flight
density was already low (Figure 5). However, other intervals with a similar pattern also exist that were not
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Figure 5. T\ ax and Tpyi, from 7 April to 6 May 2010, averaged over zones of differing flight density (a-c). Panel d illustrates
the 5-day moving correlation between Ty, and Tpin, Where negative values indicate that the values are anticorrelated
(diurnal temperature range increases caused by the divergence of Trhax and Tin) and positive values indicate that the
values are correlated. Zones 1 and 2 (high to intermediate flight density) flight grounding interval show an anticorrelation,
indicating that Trhax and Tin are diverging in those zones, whereas this same pattern is not apparent in zone 3. The
bottom panel (e) shows the flight cancelation rates through the interval.

associated with a flight grounding. For example, the intervals from 30 May to 1 June and from 28-30 June are
both characterized by negative correlations between T, and T, in Zones 1 and 2, but a positive
correlation in Zone 3. The relative frequency of similar statistical trends suggests that if temperature
during the flight grounding interval was affected by the absence of contrails, this effect was small
compared with other effects or that no effect was present, and the slight statistical anomaly was simply
the result of weather patterns. It is clear that synoptic-scale weather systems exerted considerably more
control on the DTR than contrails. The relatively large geographic extent of these systems over the
United Kingdom during the grounding period may explain why the contrail effect was more subtle than
the effect observed in the United States in the 2001 flight groundings (Travis et al., 2002, 2004). The
United States’s area (excluding Alaska and Hawaii) is approximately 30 times the United Kingdom'’s area,
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and consequently, a large weather system over the United Kingdom will dominate the weather of the
entire country compared with the United States, which is large enough to typically average out individual
weather systems.

4, Conclusions

This study reveals that DTR increased substantially during and after the 2010 AD Eyjafjallajokull eruption-
related flight disruption across the United Kingdom (16-20 April). The DTR increases were far larger (a mean
DTR anomaly of +3.4 °C across Zone 1 during the entire grounding interval) than those observed by Travis
et al. (2002) during the 2001 US flight groundings (+1.1 °C). We conclude that in the United Kingdom during
the 2010 flight disruption the movement of synoptic-scale weather systems caused the majority of the DTR
shifts. However, some component of these DTR shifts may also have been due to the removal of a contrail
effect. Notably, the first day of the grounding interval (16 April) was characterized by a 1.1 °C DTR increase
across the region with the highest air traffic, a value identical to that found by Travis et al. (2002) averaged
across the United States during the 2001 flight grounding interval. Additionally, the DTR shifts during the
2010 flight grounding were characterized by T,,,i, decreases and T, increases, consistent with the removal
of daytime incoming ultraviolet and nighttime longwave scattering by contrail cirrus clouds, though not
necessarily conclusive because similar oscillations were also observed during other intervals not associated
with any flight grounding. Our results are therefore broadly consistent with a contrail effect on DTR of up
to —1°Cin zones of high air traffic. The United Kingdom’s smaller land area meant that a single large weather
system could affect nearly the entire country, whereas in the United States even synoptic-scale weather sys-
tems are typically averaged out. Our conclusions also confirm the results of Hong et al. (2008), who predicted
that weather patterns might overprint the contrail effect but that a small effect might still exist. We also note
that a smaller DTR reducing effect of contrails, of about —0.02 °C as Rap et al. (2010) suggest for
spring/summer conditions, would not be inconsistent with our results, given the large DTR day-to-day varia-
tions (Figure 2). Our conclusions are qualitative, and clear-cut statistical significance is difficult to obtain
based on short 3-day or 5-day aviation-free periods (Dietmdiller et al., 2008).

This study utilizes a remarkably high density of meteorological stations (65% higher density than Travis et al.,
2002) to attempt to isolate a contrail effect on DTR during the 2010 Eyjafjallajokull eruption-related flight dis-
ruption. As only the second large-scale flight grounding of modern times (to our knowledge), this interval
provides an excellent, and rare, opportunity to test the results of Travis et al. (2002) using observational data.
We conclude that although UK temperature trends during the Eyjafjallajokull eruption-related flight disrup-
tion were consistent with the expected DTR shifts, these were nonunique and that the simplest interpretation
is that DTR was mostly controlled by normal synoptic-scale weather systems moving across the United
Kingdom. However, detailed analysis of our data is broadly consistent with the results of Travis et al.
(2002), and we tentatively identify an approximately —1 °C contrail effect in the region with the highest con-
trail density. These results suggest that previous difficulties in identifying the effects of contrails on DTR may
have resulted from the masking of a relatively small contrail forcing by much more substantial weather-
related effects. Future empirical studies should consider that large spatial-scale studies, if permitted by data
set length, are more likely to successfully capture a contrail effect through averaging of weather effects.
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