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Abstract While the human brain is clearly large relative to body size, less is known about the

timing of brain and brain component expansion within primates and the relative magnitude of

volumetric increases. Using Bayesian phylogenetic comparative methods and data for both extant

and fossil species, we identified that a distinct shift in brain-body scaling occurred as hominins

diverged from other primates, and again as humans and Neanderthals diverged from other

hominins. Within hominins, we detected a pattern of directional and accelerating evolution towards

larger brains, consistent with a positive feedback process in the evolution of the human brain.

Contrary to widespread assumptions, we found that the human neocortex is not exceptionally large

relative to other brain structures. Instead, our analyses revealed a single increase in relative

neocortex volume at the origin of haplorrhines, and an increase in relative cerebellar volume in

apes.

DOI: https://doi.org/10.7554/eLife.41250.001

Introduction
Primates vary almost a thousand-fold in endocranial volume – a measure which closely approximates

brain size – ranging from 1.63 mL in mouse lemurs (Isler et al., 2008) to 1478 mL in humans

(Robson and Wood, 2008). Body size is perhaps the most important statistical predictor of brain

size across primates, with larger bodied species having larger brains, but substantial variation

remains after accounting for the effects of body size (Isler et al., 2008). While numerous compara-

tive studies have sought to identify ecological, behavioral, and cognitive correlates of this variability

(Barton, 1999; MacLean et al., 2014; DeCasien et al., 2017; Powell et al., 2017; Noonan et al.,

2018), much less is known about the evolutionary patterns and processes that generated extant vari-

ation in brain size within the primate clade, how these differ for different components of the brain,

or the degree to which the brain phenotypes of particular species, such as humans, are the result of

exceptional patterns of evolutionary change.

A common approach to investigating human uniqueness is to test whether humans fall ‘signifi-

cantly’ far from a regression line, for example by regressing brain size on body mass

(Azevedo et al., 2009; de Sousa et al., 2010; Herculano-Houzel and Kaas, 2011). One surprising

recent result reported from such an analysis is that the mass of the human brain is only 10% greater

than expected for a primate of human body mass (Azevedo et al., 2009). However, such non-phylo-

genetic methods may give misleading results because they fail to incorporate trait co-variation

among species that results from shared evolutionary history. Valid analysis requires methods that

account for phylogeny both when estimating scaling parameters and when evaluating deviations
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from scaling patterns exhibited by individual species (Garland and Ives, 2000; Ross et al., 2004;

Organ et al., 2011). An additional source of error arises if the species being investigated is included

in the regression model (e.g. Azevedo et al., 2009), particularly when, as for humans, the pheno-

typic trait lies at the extreme of the distribution for the other species in the analysis. This procedure

would reduce the magnitude of deviations from expected trait values for lineages that have under-

gone exceptional change, and in the case of humans, would bias the results toward failing to detect

uniqueness.

Comparative methods make it possible to incorporate phylogeny into analyses and to model phe-

notypic evolution in ways that uncover hitherto hidden patterns. Such methods are now being

applied to a wide variety of traits (e.g. Vining and Nunn, 2016; Pagel, 1999; Orme, 2013), includ-

ing brain size. Pagel (2002) estimated phylogenetic scaling parameters to characterize the evolu-

tionary trajectory of endocranial volume (ECV) in fossil hominins. His analyses revealed that ECV

evolution accelerated towards the present. As this analysis did not account for body size, it is not

clear to what extent this pattern reflects changes in brain size independent of body size.

Montgomery et al. (2010) used ancestral state reconstruction with fossil data to demonstrate a

directional trend in primate brain size evolution and to identify branches in the primate phylogeny

along which exceptional evolutionary change occurred. They found that while the absolute change

in the mass of the human brain was exceptional, the rate of change relative to body size was not.

Phylogenetic methods have also been used to examine how specific brain components evolved and

the extent to which the branch leading to humans exhibited unusual amounts or rates of change in

the size of these components (Barton and Venditti, 2013; Barton and Venditti, 2014). Recently,

Lewitus (2018) suggested that comparative analyses of neuroanatomical data can be improved by

incorporating and comparing results from different evolutionary models.

Here, we use phylogenetic methods to model the evolution of brain size and to identify excep-

tional evolutionary change along phylogenetic branches. We employ three methods: The first

method models trait evolution both as a multi-optima Ornstein-Uhlenbeck (OU) process (which

incorporates stabilizing selection and drift) and as a Brownian motion process (Felsenstein, 1985),

and then compares the fit of the two models. In cases where the OU model is favored, exceptional

patterns of trait evolution are indicated by recent shifts in adaptive optima in humans’ (or other

eLife digest Humans have much larger brains than other primates, but it is not clear exactly

when and how this difference emerged during evolution. Some scientists believe that the expansion

of a part of the brain called the neocortex – which handles sight, hearing, conscious decision-making

and language – drove the increase in the size of the human brain. Newer studies have challenged

that idea.

One way to learn more about how humans evolved bigger brains is to compare the size of the

brain, and specific parts of the brain, between humans and our closest relatives: non-human

primates. To make accurate comparisons, scientists must account for many factors. Closely related

primates may have more similar traits because they more recently shared a common ancestor. This

means the evolutionary relationships between species need to be considered. Larger animals also

tend to have larger brains so it is important to consider body size, too.

Now, Miller at al. show that the human brain is much larger than expected even after accounting

for these factors, and that increases in brain size accelerated over the course of early human

evolution. In the analyses, the brain and skull sizes of different living primate species, like

chimpanzees and gorillas, and fossils of extinct primates, including Neanderthals, were compared

using mathematical models.

These findings suggest that larger brains provided fitness advantages that led to large brain sizes

in modern humans and Neanderthals. These increases in brain size were not driven by

disproportionate growth in the neocortex alone, but rather by increases in the size of many parts of

the brain. Increases in the relative size of the cerebellum, which is essential for balance and

movement, were also important.

DOI: https://doi.org/10.7554/eLife.41250.002
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species’) evolutionary lineage. In cases where the Brownian model is favored, we apply our second

method, which is a phylogenetic outlier test that uses phylogenetic generalized least squares (PGLS)

to predict a phenotype for a species and then compares observed and predicted values. With this

method, we can assess whether humans are a phylogenetic ‘outlier’ relative to expectations based

on their phylogenetic position and trait covariation in other primate species. Our last method tests

for directional and accelerating evolution by fitting phylogenetic scaling parameters to data on devi-

ation from trait expectations and evolutionary time, building on previous efforts with these

approaches (Pagel, 2002).

Using the first two methods, we investigate the evolution of absolute brain size and brain size rel-

ative to body mass within primates. Absolute brain volume has been shown to predict cognitive abil-

ity in primates better than other metrics that account for body mass (MacLean et al., 2014;

Deaner et al., 2007). However, brain size is highly correlated with body size (Isler et al., 2008), and

as such it is difficult to interpret the significance of brain size alone. Additionally, accounting for

body mass gives more insights into the significance of brain size in life history processes, as relative

brain size better approximates relative investment in cognitive ability. Accounting for body mass is

also important as the relationship between this trait and brain size is associated with scaling effects

that reflect conservation of neural function, such as preservation of somatosensory acuity across

large surface areas (St Wecker and Farel, 1994) and compensation for increased neural conduction

distances in larger animals through (i) larger neuron and axon sizes, increased myelination, and

increased white matter volume, all of which result in reduced neuron density (Barton, 2012;

Wang et al., 2008; Collins et al., 2013) and (ii) increased neural resources devoted to prediction-

based sensorimotor control that result from escalating neural conduction delays as body size

increases (More et al., 2010). Other measures of relative brain size such as encephalization quo-

tients, ratios, and residuals have been used in the past, but all make theoretical assumptions about

the underlying relationship between brain and body size evolution that may not hold. Using relative

measures can bias parameter estimates and is not recommended as a good statistical practice

(Freckleton, 2002). Instead, an empirical approach is preferred in which the covariation of brain size

with body size is accounted for within a statistical model that also accounts for phylogenetic history

(such as PGLS).

We also apply the first two phylogenetic comparative methods to investigate the evolution of

major brain structures involving the neocortex, cerebellum, and medulla. It is widely assumed that

the neocortex expanded disproportionately relative to other brain structures during the evolution of

anthropoid primates and most particularly in human evolution (Kriegstein et al., 2006;

Geschwind and Rakic, 2013; Florio and Huttner, 2014). Surprisingly however, direct tests of this

hypothesis are lacking, despite the focus of much evolutionary and developmental neuroscience on

the neocortex as the site of interest for understanding human uniqueness and its developmental

mechanisms (Mitchell and Silver, 2017). Recent evidence suggests that the cerebellum may have

contributed more to human brain evolution than previously appreciated: it underwent rapid evolu-

tionary expansion in the great ape clade including hominins (Barton and Venditti, 2014;

Smaers et al., 2018) and has been implicated in shape changes of the brain in hominin fossil endo-

casts (Kochiyama et al., 2018; Neubauer et al., 2018). Molecular evidence now corroborates the

proposal that selection on cerebellar function was an important feature of hominoid and hominin

brain evolution (Sousa et al., 2017), with changes in protein-coding genes implicated in cerebellar

development more likely to have evolved adaptively in apes than those implicated in neocortical

development (Harrison and Montgomery, 2017). It therefore appears that the neocortex and cere-

bellum have had different evolutionary trajectories in primate evolutionary history. More research is

needed to document and understand these patterns.

We examined volumetric change in the neocortex and cerebellum relative to both body mass and

the volume of the rest of the brain. As a check to establish whether changes in evolutionary patterns

for relative neocortex and cerebellum size are primarily attributable to changes in those structures

or to changes in the rest of the brain, we investigated the evolution of the rest of the brain relative

to body mass. We also conducted analyses of the volume of the medulla relative to body mass and

the volume of the rest of the brain. The relative volume of the medulla does not vary significantly

across clades (Barton, 2000) and as such it has not been attributed a major role in brain expansion.

For the analyses of fossil species, brain component volumes are not available; thus, analyses of these

lineages are restricted to overall brain size (ECV).
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Although our main focus is on broad patterns across primate phylogeny and on the extent to

which human brain evolution fits or departs from these patterns, we also examined brain evolution

in other species that are considered to be unusually large-brained, such as the aye-aye (Daubento-

nia) and capuchins (Cebinae) (Isler et al., 2008; Pagel and Harvey, 1989). Our analyses also help to

identify other primate species that have experienced exceptional expansion or reduction of the brain

or its components, generating new questions for future research on exceptional brain evolution in

primates.

We used our third method to characterize patterns of brain evolution in humans and extinct homi-

nins. Pagel (2002) conducted similar analyses of raw ECV. Our analyses advance his findings in two

ways. First, we incorporate body mass as a predictor. Second, we focus on the deviation from brain

size expectations, based on the PGLS methods used to assess outlier status. Our findings therefore

provide insights to the evolutionary trajectory of exceptional hominin ECV relative to primate-wide

brain-body mass scaling relationships.

Materials and methods

Comparative data
We compiled ECV and female body mass data on non-human primates (Isler et al., 2008) as well as

humans and fossil hominins (Robson and Wood, 2008, Tables 1 and 2). Given that sex specific

body mass estimates are available for ancient humans and extinct hominins (Robson and Wood,

2008), we used female values for body mass because female values are more tightly linked to eco-

logical and life-history factors (Gordon, 2006) and sexual selection can drive increases in male body

mass unlinked to ecology, obscuring brain-body scaling relationships (Fitzpatrick et al., 2012). We

also compiled data on neocortex, cerebellum, and medulla volume (Barton and Venditti, 2014;

Stephan et al., 1981; Bush and Allman, 2004). Values used to compute predictor variables

(described below) for analyses of brain sub-structures were taken from Isler et al. (2008). We used

several phylogenies in our analyses. For analyses of hominin ECV, we constructed a ‘hominin phylog-

eny’ by combining the hominin consensus tree from Organ et al. (2011) and the non-human primate

consensus tree from 10kTrees version 3 (Arnold et al., 2010). To ensure that our results in this set of

analyses were not dependent upon the topology of the hominin phylogeny, we repeated them using

an ‘alternate hominin phylogeny,’ constructed in a similar manner using another hominin tree from

Organ et al. (2011). Details of the tree construction process are given in Appendix 1. In all other

analyses we used either the consensus primate phylogeny or a block of 100 primate phylogenies

from 10kTrees, version 3.

To determine whether patterns of exceptional evolution represent absolute or relative changes in

scaling, we included several predictor variables in our analyses. To investigate whether the volumes

of structures changed relative to body size, we used body mass as a predictor variable, while we

used a ‘rest-of-brain’ metric as a predictor variable to investigate whether the volumes of structures

Table 1. Hominin ECV and body mass data details.

All values are from Robson and Wood (2008).

Species ECV (mL) Sample size Female body mass (kg) Sample size

Australopithecus africanus 464.00 8 30 7

Homo erectus 969.00 40 57 4

Homo habilis 609.00 6 32 2

Homo rudolfensis 726.00 3 51 2

Homo sapiens neanderthalensis 1426.00 23 65 7

Homo sapiens 1478.00 66 57 36

Paranthropus boisei 481.00 10 34 1

Paranthropus robustus 563.00 2 32 2

Australopithecus afarensis 458.00 6 30 4

DOI: https://doi.org/10.7554/eLife.41250.003
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changed relative to other brain structures. For the analyses of all structures other than the medulla,

the ‘rest-of-brain’ was computed as whole brain volume – (neocortex volume +cerebellum vol). In

analyses of the medulla, we calculated ‘rest-of-brain’ volume as brain volume - medulla volume. We

also analyzed the volume of the ‘rest-of-brain’ [whole brain volume – (neocortex

volume +cerebellum vol)] relative to body mass. The data sets used in all analyses, along with more

detailed descriptions, are given in Appendix 1.

Characterizing patterns of phenotypic evolution
We compared the fit of multi-optima Ornstein-Uhlenbeck (OU) models of evolution and Brownian

models of evolution using a developmental version of the R package bayou (Uyeda and Harmon,

2014; Uyeda, 2017). OU models of evolution incorporate stabilizing selection and drift, while Brow-

nian models only include drift. Bayou fits multi-optima OU models to a phylogeny using a Markov-

Chain Monte Carlo (MCMC) approach. A shift in selection regime refers to a change in the parame-

ters that determine the optimum trait value (towards which species evolve) at a specific location on a

phylogeny. Thus, inferred changes in selective regime provide insights to how lineages differ. Shifts

in selection regime along terminal branches of a tree would provide particularly strong evidence for

a species’ uniqueness.

Grabowski et al. (2016) proposed the following OU model to describe the evolution of a trait, y,

as a function of a predictor variable, x:

Equation 1:

dy¼ � a y� y0ð Þ dtþ s2 dB

Equation 2:

y0 ¼ �þ xb

In these equations, dy is the change in the trait value, a is the magnitude of the selective ’pull’

towards the optimum trait value, y0, and s2 is the variance of the white noise process dB. The varia-

bles � and b can be interpreted as the intercept and slope of the optimum regression line specified

in Equation 2. The optimum regression line represents the state that a species is evolving towards

rather than the actual evolutionary trajectory.

This model has limited utility when data for x are only available for the tips of the phylogeny

because the values of x must be known along the branches of the phylogeny to infer the expected

value of y for a lineage. We utilize two similar models implemented in the developmental version of

bayou – the unweighted predictor model and the weighted predictor model (corresponding to

‘immediate’ and ‘alphaweighted’ options for ‘slopechange’ in bayou) – as these circumvent the issue

of unknown phenotypes in ancestral lineages while incorporating a predictor variable into the OU

model. The weighted predictor model considers the evolutionary history of the predictor variable

while fitting models, and the unweighted predictor model only considers the values of the predictor

variables at the tips of the phylogeny while fitting models. The details of these two models are pro-

vided in Appendix 2.

Bayou uses a MCMC to parameterize the models to fit the data by inferring the location and

magnitude of concurrent shifts � and b on a phylogeny and by inferring the values of a and s2, which

remain constant across the phylogeny. The parameters a and s2 are used in the calculation of the

variance-covariance matrices used in evaluating model fit to the phylogeny. The phylogenetic half-

life, the time needed for a trait to evolve halfway to the optimum, is computed as ln(2) / a. We pres-

ent phylogenetic half-life in units of tree height. A phylogenetic half-life less than tree height

Table 2. Human brain data.

Brain trait Value Source Notes Dataset

ECV 1478.00 mL (Robson and Wood, 2008) Composite of values from 66 fossil specimens from locations across Eurasia and africa 1

Brain volume 1267.65 mL (Barton and Harvey, 2000) Average of measurements of modern human brains 2

Brain volume 1251.85 mL (Stephan et al., 1981) Measurement of modern human brain 3

DOI: https://doi.org/10.7554/eLife.41250.004
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indicates that the evolutionary processes can ’pull’ parameter values to the optimum within the time-

scale in question, while a phylogenetic half-life that exceeds tree height or constitutes a large per-

centage of tree height indicates that evolutionary processes have a weak ’pull’ and trait values are

not expected to closely approach the optimum during the timescale in question. The expected vari-

ance in trait values evolving to the same optima at equilibrium (stationary variance) can be computed

as s2

2a
.

For each analysis, we ran the weighted and unweighted predictor models. We also ran a Brow-

nian motion model in which the strength of stabilizing selection (a) was fixed at 10�6 (resulting in a

phylogenetic half-life ~9500 times greater than tree height; bayou cannot compute model likeli-

hoods when a is 0), and no shifts away from the root regime were allowed. The predictor variable is

still incorporated in the Brownian motion model, but no changes in its coefficient occur on the phy-

logeny. We used the hominin tree for the analysis of ECV and the consensus tree of extant primates

for all other analyses. All MCMCs were run for 5,005,000 time steps, sampling every 10 time steps.

The priors used are given in Table 3. For each analysis, two chains were run and checked for conver-

gence in terms of likelihood, a, and s2 (see Appendix 3 for discussion of chain non-convergence

issues in analyses of ECV). We also checked for correlation in branch-wise posterior shift probability

between chains. Diagnostic plots pertaining to chain convergence are given in Source data 1. The

two chains were combined, with the first 30% of samples being discarded as burn in. We then

obtained the likelihood of each model and calculated Bayes factors for each model pairing

(Kass and Raftery, 1995; Jeffreys, 1998) using the steppingstone algorithm in bayou, which imple-

ments the method of Fan et al. (2011). We imposed a posterior probability cutoff of 0.3 for shift

detection.

When the multi-optima OU model was selected over the Brownian motion model, we used the

location and magnitude of shifts in adaptive optima to assess changes in patterns of evolution. The

inference of a shift on a terminal branch would indicate an exceptional pattern of evolution for a

given species.

Ho and Ané (2013) identified several potential problems with OU models, including un-identifi-

ability of parameters and over-fitting, but acknowledged that such models may be necessary, and

recommended that Bayesian models, specifically bayou, be used to overcome these problems. Sev-

eral other phylogenetic OU models have been developed (most notably Hansen, 1997), but none

utilized Bayesian parameter estimation. Cooper et al. (2016) echoed the concerns of Ho and Ané

(2013) and again recommended using Bayesian approaches. Additionally, they recommended

weighing the fit of an OU model of evolution against that of a Brownian model, which do through

our model selection process.

Table 3. Priors for bayou MCMC analyses.

Model parameter Prior distribution

a Half-cauchy with scale factor 1. Fixed at 0 in Brownian model.

s2 Half-cauchy with scale factor 0.1

b Normal distribution with standard deviation = 0.5, mean = slope of linear model of trait and predictor data

q Normal distribution with standard deviation = 1, mean = intercept of linear model of trait and predictor data

Number of shifts per
branch

Fixed at one

Branch-wise shift
probability

Uniform

Number of shifts Conditional Poisson distribution* with mean = 0.1*number of edges on phylogeny and maximum = number of edges on
phylogeny. Fixed at 0 in Brownian model.

Location of shift along
branch

Uniform

*Calculated using ‘cdpois’ option in bayou.

DOI: https://doi.org/10.7554/eLife.41250.005
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Outlier detection using PGLS
When bayou indicated that the Brownian model of trait evolution was favored over the multi-optima

OU model, we conducted a phylogenetic outlier test. This was accomplished using BayesModelS, an

R script that generates distributions of predicted trait values for a species or several species based

on phylogenetically controlled analyses of trait covariation with predictor variables (Nunn and Zhu,

2014). BayesModelS uses a Markov-Chain Monte Carlo (MCMC) to fit parameters of a PGLS model

and assumes a Brownian motion model of evolutionary change. The PGLS models are used to gener-

ate trait value predictions for the species of interest. Uncertainty in phylogenetic structure can be

accounted for by sampling from a set of trees (Pagel, 2002).

BayesModelS accounts for phylogenetic non-independence of residual trait values by incorporat-

ing branch scaling factors when fitting PGLS models. The MCMC samples between two branch

length scaling factors, l and k, to improve the fit of the models. The parameter l scales the internal

branches of the phylogeny and measures phylogenetic signal (Nunn, 2011). Values for l were con-

strained to be in the interval [0, 1]. In the k model phylogenetic tree branch lengths are raised to the

power k. The value of k has previously been used to assess support for a ‘speciational’ mode of evo-

lution (see Pagel, 2002).

When predicting the value of a trait for a species (or a group of species), its data were excluded

from the BayesModelS analysis to avoid biasing the predictions. BayesModelS was then used to gen-

erate a posterior probability distribution of predicted values for that species, based on the predictor

variable, estimated phylogenetic signal, and estimated trait co-variation with the other species in the

analysis. Species were identified as outliers when their trait value was more extreme than 97.5% of

the predicted trait values (i.e. when trait values fell outside 95% credible interval). A species was

identified as a positive outlier when its true value fell above the majority of predictions, and a nega-

tive outlier when the opposite was true.

The analyses conducted using BayesModelS proceeded as follows. First, we investigated whether

hominins follow primate brain size to body mass scaling rules by using BayesModelS to predict ECV

based on body mass and phylogeny. We tested each hominin species for outlier status while exclud-

ing data on all hominins when generating predictions. When computing mean estimates for hominin

ECV, we corrected for back transformation bias using the quasi-maximum likelihood estimator

method described in Smith (1993). We used the hominin phylogeny or the alternate hominin phy-

logeny in these analysis, and the data spanned 225 extant primate species (including humans) and

10 extinct hominin species.

Next, we identified individual primate species that are evolutionary outliers for ECV and other

brain structures (neocortex, cerebellum, medulla, rest-of-brain). In these analyses, we accounted for

phylogenetic uncertainty by using the block of 100 trees, which included H. sapiens and H. neander-

thalensis but no other hominins. We iteratively tested each species in the data set for outlier status.

Our analysis for ECV included data from 145 species, and our analyses for other brain structures

structures included data from between 39 and 53 species.

MCMC chains were run for 1,000,000 time steps, and the first 200,000 time steps were discarded

as burn in. Flat priors were used for all variables being predicted. To assess whether the post-burn in

results were drawn from a stable distribution, we used the ‘heidel.diag’ function in the R package

coda (Plummer et al., 2006). When post-burn-in results were not drawn from a stable distribution,

we discarded an additional portion of the chain (as indicated by ‘heidel-diag’) so that only results

drawn from a stable distribution remained. We ensured that the effective sample sizes for the PGLS

model parameters (slope, intercept, most frequently selected phylogenetic scaling parameter) were

greater than 1000 using the ‘effectiveSize’ function in coda (Plummer et al., 2006). Details of the

MCMC diagnostics are given in supplementary materials S6, along with detailed results concerning

the posterior predicted distribution and phylogenetic scaling parameters for each species in each

analysis.

Characterizing the tempo of ECV evolution in hominins
We investigated the evolutionary trajectory of brain-body scaling in hominins relative to other pri-

mates. We calculated the difference between observed ECV and the mean BayesModelS prediction

for brain size (generated in the first described BayesModelS analysis in which data for all hominin

species was excluded while generating predictions) for each of the hominin species. This difference,
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which we call ‘brain size deviation’ represents the magnitude and direction of the deviation in brain

size from what would be expected under primate brain-body scaling rules. We fit four PGLS model

to hominin brain size deviation to examine how brain size deviation covaried with the phylogenetic

distance from the hominin-Pan split: First, we fit a ‘Brownian’ model of brain size deviation with no

predictor. We fixed l at one in this and all subsequent models. Next, we fit a ‘directional’ model of

brain size deviation predicted by phylogenetic distance from the hominin-Pan split, expecting to find

a positive relationship between these variables if brain volume relative to body size has increased

since the split of hominins and Pan. To determine whether evolutionary rates in brain size deviation

have accelerated over time, we fit an ‘acceleration’ model that included the phylogenetic scaling

parameter d (Pagel, 2002; Pagel, 1999). Values of d greater than one are consistent with accelerat-

ing evolution, but not necessarily directional evolution. Finally, we fit a ‘directional acceleration’

model in which we fit the parameter d and used phylogenetic distance from the hominin-Pan split as

a predictor of brain size deviation. In this model, a positive relationship between brain size deviation

and phylogenetic distance, along with a value of d greater than 1, would indicate that brain volume

relative to body size has increased at an accelerating rate since the divergence of hominins from

Pan. We compared these models using AICc. Analyses were conducted in the R package caper

(Orme, 2013).

Results

Endocranial volume (ECV)
In the bayou analysis of ECV predicted by body mass using the hominin phylogeny, the Brownian

model was favored over the weighted and unweighted predictor OU models with Bayes factors

greater than 22. When we repeated this analysis using the alternate hominin phylogeny, we found

that the un-weighted predictor OU model was favored over the weighted predictor OU model and

the Brownian model with Bayes factors greater than 42, despite displaying poor convergence in

terms of a and s2. However, both chains inferred a similar set of shifts, indicating that this is likely an

issue related to parameter identifiability rather than to shift identifiability. In this model, progressive

shifts towards larger ECV relative to body mass were detected within the hominin clade along the

human lineage (Figure 1A,B). Shifts towards larger relative brain size were also detected on the ter-

minal branch leading to D. madagascariensis and the internal branches leading to the Lemuridae

and Cebinae, clades, and shifts towards smaller relative brain size were detected on the branch lead-

ing to the Alouatta clade, the branch leading to the clade containing the Aotidae and Callitrichidae

families, and the branch leading to the Colobinae sub-family (Figure 1—figure supplement 1). The

rejected weighted predictor OU model, as well as both OU models that were rejected in the bayou

analysis using the hominin phylogeny, detected a very similar set of shifts that included shifts

towards progressively larger ECV relative to body mass along the human lineage (Source data 1).

Because the Brownian model was favored in the bayou analysis using the hominin phylogeny, we

proceeded with BayesModels analyses using both the hominin and alternate hominin phylogenies.

In the BayesModelS analysis predicting ECV based on body mass while excluding all hominin

data, the observed values for H. sapiens and H. neanderthalensis exceeded the mean values pre-

dicted by BayesModelS by 7.63 and 6.96 standard deviations respectively (Figure 2C). All hominin

species were strongly supported positive outliers, with more than 99.9% of predictions falling below

the observed values for ECV. The mean ECV prediction for a primate with the body mass of H. sapi-

ens was 438 mL. Remarkably, the observed value for humans is 1478 mL, which is 238% greater than

the mean of the predicted posterior distribution. A similar result was found for H. neanderthalensis;

the observed ECV for this species exceeded the mean predicted value for a primate of their body

mass by 952 mL, or 201%. Humans exceeded their predicted ECV by the greatest percentage, but

all hominins exceeded predictions by at least 51% (Figure 2C, Table 4). We obtained similar results

using the alternate hominin phylogeny (Figure 2—figure supplement 1, Table 5).

When we iteratively predicted ECV based on body mass and phylogeny for each species in the

data set (no hominins besides H. sapiens and H. neanderthalensis were included in this analysis) and

while using all data to generate predictions. We again found that humans were strongly supported

positive outliers (Figure 4A). H. neanderthalensis was not identified as an outlier, perhaps because

these analyses included all species except for the one being predicted, and thus inclusion of H.
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sapiens resulted in a wide posterior distribution when predicting ECV in H. neanderthalensis. Indeed,

when we excluded H. sapiens in this analysis we found that H. neanderthalensis was identified as a

strongly supported positive outlier (Source data 1). We also identified several other primate species

as outliers (see Table 6 and Source data 1).

In the bayou analysis of ECV with no predictor variable using the hominin phylogeny, the Brow-

nian model was selected over the un-weighted predictor OU models (in which the influence of the

predictor was set to 0) with a Bayes factor >10. No weighted predictor model was run, as it would

have been equivalent to the unweighted model given that no predictor variable was incorporated.

An equivalent result was found when we repeated the analysis using the alternate hominin phylog-

eny. We then proceeded with the BayesModelS analysis, iteratively testing the outlier status of each

species in the data set. We used the tree block for this analysis, and as such H. sapiens and neander-

thalensis were the only hominins included. We found that neither humans nor Neanderthals were

detected as an outlier (figure 4—figure supplement 1; Source data 1), indicating that without cor-

recting for body mass, the variance in ECV across primates is great enough to prevent humans’

brains from being detected as exceptionally large.

Evolutionary trajectory of ECV in hominins
We conducted PGLS analyses of brain size deviation conducted to characterize the evolution of

exceptional brain size in hominins (data shown in Figure 3). The analyses revealed evidence for both

accelerated evolution of brain size deviation and directional evolution towards larger brain size devi-

ations, as indicated by the directional acceleration model (AICc = �23.38) being favored over the

acceleration (AICc = �21.93), directional (AICc = �17.56), and Brownian (AICc = �14.58) evolution

models. In this best model, there was evidence of directional evolution towards larger brain size rela-

tive to body size (slope = 0.04) over time, and of accelerating evolution (d = 8.36). These results sug-

gest that the exceptionality of the human brain evolved recently. We found similar results when we

repeated this analysis using the alternate hominin phylogeny (Figure 3—figure supplement 1).

These analyses therefore support a model of accelerating evolution towards larger brain volume rel-

ative to body mass in Homo sapiens.

Figure 1. OU Model of ECV Evolution in Primates Panel. A shows the location of the selection regimes identified

in an OU model of ECV predicted by body mass. Panel B shows the corresponding optimum regression lines

representing the various selection regimes, along with body mass and ECV data. Data are colored by their

corresponding selection regimes. All results are from the un-weighted predictor OU model in the bayou analysis

using the alternate hominin phylogeny. Only the great ape clade is shown; selection regimes across the entire

primate phylogeny are show in Figure 1—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.41250.006

The following figure supplement is available for figure 1:

Figure supplement 1. OU Model of ECV Evolution in Primates Results are shown for the un-weighted predictor

OU model of ECV predicted by body mass.

DOI: https://doi.org/10.7554/eLife.41250.007
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Neocortex
In the bayou analysis of neocortex volume as predicted by body mass, the Brownian motion model

was strongly favored over the weighted and unweighted predictor OU models, with Bayes

Figure 2. BayesModelS predictions of ECV in hominins. Panel (A) shows a scatter plot of primate ECV and body mass data. Panel (B) shows the

topology of the great ape portion of the hominin phylogeny used in the BayesModelS analyses of hominin ECV. Panel (C) shows the posterior

distributions of predicted ECV values generated by BayesModelS for hominin species with body mass used as the predictor variable. Vertical lines

indicated observed values.

DOI: https://doi.org/10.7554/eLife.41250.008

The following figure supplement is available for figure 2:

Figure supplement 1. BayesModelS predictions of ECV in hominins.

DOI: https://doi.org/10.7554/eLife.41250.009
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factors > 18. Humans were detected as strongly supported positive outliers for neocortex volume by

BayesModelS when body mass was used as the predictor variable (Figure 4B).

In the bayou analysis of neocortex volume with ‘rest-of-brain’ as the predictor variable, the

weighted predictor model was selected over the unweighted predictor and Brownian motion models

with Bayes Factors > 9.2. In the weighted predictor model, different scaling patterns were detected

for strepsirrhines and haplorhines, with the optimum regression line for haplorhines falling above

that of strepsirrhines. The only other detected transition in scaling occurred on the terminal branch

leading to Nasalis larvatus, indicating a shift towards lower relative neocortex size (Figure 5A,B).

Cerebellum
In the bayou analysis of cerebellar volume predicted by body mass, the Brownian motion model was

favored over the weighted predictor and unweighted predictor OU models, with Bayes factors of

11.96 and 22.79, respectively. BayesModelS identified humans as strongly supported positive out-

liers for cerebellum volume when body mass was used as the predictor variable (Figure 4C).

In the bayou analysis of cerebellum volume relative to the rest-of-brain, the comparison between

the unweighted predictor model and the Brownian motion model gave a Bayes factor of 10.65, while

the comparison between the unweighted and weighted predictor models gave a Bayes factor of

0.20. This indicates that the OU models clearly outperform the Brownian model, but that neither OU

model performs significantly better than the other. Both OU models detected a shift on the branch

leading to apes associated with an increase in optimum cerebellar volume relative to the ‘rest-of-

brain’ volume (Figure 5C,D).

Table 4. Predicted Hominin ECV values from BayesModelS analysis using the hominin phylogeny.

True value (ml) Corrected prediction (ml) Difference (ml) % difference

Australopithecus africanus 464.00 294.73 169.27 57.43

Homo erectus 969.00 438.24 530.76 121.11

Homo habilis 609.00 306.83 302.17 98.48

Homo rudolfensis 726.00 409.63 316.37 77.23

Homo sapiens 1478.00 437.76 1040.24 237.63

Homo sapiens neanderthalensis 1426.00 474.46 951.54 200.55

Paranthropus boisei 481.00 319.00 162.00 50.78

Paranthropus robustus 563.00 307.60 255.40 83.03

Australopithecus afarensis 458.00 288.52 169.48 58.74

DOI: https://doi.org/10.7554/eLife.41250.010

Table 5. Predicted Hominin ECV values from BayesModelS analysis using the alternate hominin phylogeny.

True value (ml) Corrected prediction (ml) Difference (ml) % difference

Australopithecus africanus 464.00 288.18 175.82 61.00

Homo erectus 969.00 431.04 537.96 124.81

Homo habilis 609.00 300.16 308.84 102.89

Homo rudolfensis 726.00 401.94 324.06 80.62

Homo sapiens 1478.00 431.20 1046.80 242.76

Homo sapiens neanderthalensis 1426.00 468.41 957.59 204.44

Paranthropus boisei 481.00 311.41 169.59 54.46

Paranthropus robustus 563.00 299.74 263.26 87.83

Australopithecus afarensis 458.00 281.59 176.41 62.65

DOI: https://doi.org/10.7554/eLife.41250.011
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Medulla
In the bayou analysis of medulla volume predicted by body mass, the Brownian motion model was

selected over the two OU models with Bayes factors > 7.4. BayesModelS identified humans as

Table 6. Summary of evidence for exceptional brain evolution among non-human primates.

Species/Clade Exceptional trait Evidence

Alouatta Reduced ECV relative to body mass Shift in OU model

Aotidae and Callitrichidae Reduced ECV relative to body mass Shift in OU model

Cacajao calvus Increased ECV relative to body mass Outlier Detection

Cebinae Increased ECV relative to body mass Shift in OU model

Cebus albifrons Increased cerebellum relative to body mass Outlier detection

Chiropotes satanas Reduced ECV relative to body mass Outlier Detection

Colobinae Reduced ECV relative to body mass Shift in OU model

Daubentonia madagascariensis Increased ECV relative to body mass Shift in OU model

Gorilla beringei* Reduced ECV relative to body mass Outlier Detection

Gorilla gorilla* Reduced neocortex relative to body mass Outlier Detection

Lemuridae Increased ECV relative to body mass Shift in OU model

Loris tardigradus Reduced medulla relative to the rest of brain Outlier Detection

Microcebus murinus Reduced medulla relative to the rest of brain Outlier Detection

Nasalis larvatus Reduced neocortex relative to the rest of the brain Shift in OU model

Otolemur crassicaudatus Reduced neocortex, cerebellum relative to body mass Outlier Detection

Pan troglodytes schweinfurthii Increased ECV relative to body mass Outlier Detection

Pan troglodytes troglodytes Reduced ECV relative to body mass Outlier Detection

*The dataset for this analysis did not contain any other gorilla species.

DOI: https://doi.org/10.7554/eLife.41250.012

Figure 3. Accelerating Evolution of Brain Size Deviation in Hominins. (A) Brain size deviation was calculated as the

difference between the mean BayesModelS prediction (made while excluding all hominin data from analysis and

using the hominin phylogeny) and the observed value. Phylogenetic distance was measured as time since the

shared ancestor of hominins and Pan at 7.43 mya. (B) Hominin clade in the hominin phylogeny after d

transformation, with d = 8.36 following the directional acceleration model.

DOI: https://doi.org/10.7554/eLife.41250.013

The following figure supplement is available for figure 3:

Figure supplement 1. Accelerating Evolution of Brain Size Deviation in Hominins (alternate hominin phylogeny).

DOI: https://doi.org/10.7554/eLife.41250.014
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strongly supported positive outliers for medulla volume (Figure 4D). No other species were identi-

fied as exceptional in this analysis. When medulla was predicted by the ‘rest-of-brain’ volume, the

Brownian motion model was again selected over the OU models, with Bayes factors > 3.8. Humans

were identified as strongly supported negative outliers (Figure 4E).

Rest-of-brain
In the bayou analyses of the rest-of-brain relative to body mass, the OU models were selected over

the Brownian motion model, with Bayes factors > 13. However, the comparison between the two

OU models gave a Bayes factor of 0.20, indicating that neither model is supported relative to the

other. No shifts were detected in either model (Figure 5E,F).

Discussion
Our phylogenetic analyses revealed that the human brain is 238% larger than the size expected for a

primate of similar body mass and phylogenetic position. The exceptional size of the human brain

was achieved through progressive scaling shifts towards larger size over several million years of hom-

inin evolution, and the evolution towards increased brain size relative to expectations based on pri-

mate scaling patterns accelerated over time. These findings add an important dimension to previous

Figure 4. Human Outlier Status for Brain Traits Predicted distributions of trait values generated by BayesModelS are show as histograms. Vertical bars

represent the observed values.

DOI: https://doi.org/10.7554/eLife.41250.015

The following figure supplement is available for figure 4:

Figure supplement 1. Human outlier status for ECV In the BayesModelS analysis of ECV with no predictor variable, humans were not detected as

outliers.

DOI: https://doi.org/10.7554/eLife.41250.016
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Figure 5. OU Models of Brain Structure Evolution in Primates. (A and B) correspond to the OU weighted predictor model of neocortex volume

predicted by the rest-of-brain. (C and D) correspond to the OU unweighted predictor model of cerebellum volume predicted by the rest-of-brain. (E

and F) correspond to the OU weighted predictor model of the rest-of-brain volume predicted by body mass. (A, C) and (E) show the location of

Figure 5 continued on next page
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observations of gradual phyletic increases in hominin brain size. Du et al. (2018) fit six evolutionary

models to within- and between-lineage change in hominin brain sizes (random walk, gradualism, sta-

sis, punctuated equilibrium, stasis-random walk and stasis-gradualism), obtaining the best fit for a

gradualism model. However, their non-phylogenetic analysis did not test explicitly for accelerating

directional increase. Our findings extend the results obtained by Pagel (2002) on absolute cranial

volume, as the pattern of accelerating evolution is found even after accounting for body size. The

pattern of accelerating brain size increase documented here is consistent with hypotheses that pos-

tulate a co-evolutionary positive feedback process driving human brain evolution, such as feedback

between brain size and culture or language (Wills, 1993; Deacon, 1998) or between the brain sizes

of conspecifics engaged in a socio-cognitive evolutionary arms race (Dunbar, 1998; Miller, 2011).

While humans clearly have the largest relative brain size among extant primates, anatomically

modern humans were closely matched by H. neanderthalensis. However, even when accounting for

the close phylogenetic relationship between humans and H. neanderthalensis and the exceptionally

large brain of the latter, the human brain is still much larger than expected: humans were identified

as strongly supported outliers when their ECV (relative to body mass) was predicted by phenotypic

data from all primates, including H. neanderthalensis. This pattern was not reciprocal, however; H.

neanderthalensis was not significantly different from other primates when H. sapiens was included in

the model.

Significant variation exists between estimates of ECV and body mass made from different fossil

specimens of the same hominin species (Robson and Wood, 2008). Thus, using single specimens to

represent a species would not be a good statistical practice. We used a dataset in which almost all

mean species values were calculated from multiple fossil specimens (Table 1). Unfortunately, we

could not explicitly account for intraspecific variation in our analyses, as the multi-optima OU model

fitting approach and the outlier test are unable to account for variation in both a trait and predictor

variable. It would therefore be worthwhile to revisit our analyses as new phylogenetic comparative

methods that can account for intraspecific variation become available. Additionally, data quality will

likely improve over time. More hominin fossils will be discovered, increasing sample sizes for esti-

mated ECV and body mass.

The hominin phylogeny will also likely become better resolved and more complete. We

accounted for some phylogenetic uncertainty by repeating our analyses with an alternate phylogeny.

The use of different phylogenies influenced outcomes of some statistical tests, as the Brownian

model favored when we used the hominin phylogeny and OU model was favored when we used the

alternate hominin phylogeny. However, we found that all of the OU models we fit inferred the same

pattern of evolution towards larger ECV along the human lineage. The results of our outlier tests

and PGLS model fitting – which assume a Brownian mode of evolution – also detected this pattern

on different phylogenies. Collectively, these results indicate that our findings are likely to be robust

to variations in assumed evolutionary relationships, and potentially to assumptions about the mode

of evolution.

It is widely assumed that primate brain size evolution in general, and the large size of the human

brain in particular, reflects expansion of the neocortex relative to other brain structures

(Kriegstein et al., 2006; Rakic, 2009). Our results contradict this assumption: human neocortical

volume was exceptionally large relative to body mass, but not exceptional relative the volume of the

rest of the brain. We documented only one shift in neocortex size relative to the rest of the brain

during primate evolution: an increase at the origin of all haplorrhines. This shift may be related to

the visual specializations of haplorrhines for high-acuity photic vision, mediated by extensive cortical

visual areas that make up over 50% of the cortex in these species (Drury et al., 1996; Barton, 1998;

Barton, 2007). On branches postdating the split between haplorrhines and strepsirrhines, neocortex

size is largely predictable from its scaling relationship to the rest of the brain, in line with the

Figure 5 continued

selection regimes on the primate phylogeny. (B, D) and (F) show the optimum regression lines associated with the selection regimes. Points show

primate trait and predictor data; colors correspond to the selection regimes. Colors in (A, C) and (E) match those in (B, D) and (F).

DOI: https://doi.org/10.7554/eLife.41250.017
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proposed importance of cortical-subcortical connectivity in primate brain evolution (Whiting and

Barton, 2003).

In contrast, we found that the cerebellum increased in size relative to the rest of the brain on the

branch leading to apes. This finding is consistent with the results of recent studies implicating the

cerebellum, and especially the lateral cerebellum, in brain expansion in apes and some other mam-

malian lineages (Barton and Venditti, 2014; Smaers et al., 2018; MacLeod et al., 2003). Our find-

ings also reinforce the argument that subcortical structures should be given greater consideration in

studies of mammalian brain evolution and cognition (Barton, 2012; Miller and Clark, 2018). Cere-

bellar specialization in apes may have been initiated by the demands on motor control and route-

planning imposed by arboreal below-branch locomotion and/or by complex extractive foraging

(Barton and Venditti, 2014; Barton, 2012). The fact that shifts in the relative size of neocortex and

cerebellum occurred on different parts of the tree supports the theory of mosaic brain evolution

(Barton and Harvey, 2000) and suggests that no single adaptive hypothesis is likely to be capable

of accounting for primate brain evolution; rather, different selection pressures, on different informa-

tion-processing capacities, likely operated at different times on different lineages.

Consistent with previous studies, we found that the medulla expanded in humans (positive outlier

status for medulla volume relative to body mass), but to a lesser degree than other structures (nega-

tive outlier status for medulla volume relative to the rest of the brain). Relative to body mass,

medulla volume has been shown to be much less variable across taxa than other brain structures,

particularly compared to the neocortex and cerebellum. For example, unlike neocortex and cerebel-

lum, medulla volume does not differ significantly between insectivores, strepsirrhines and haplor-

rhines (Barton, 2000). Accordingly, we found that after controlling for either body mass or brain

size, the evolution of the medulla was not modulated by selection towards a stationary optimum in

the primate clade. These results further support mosaic brain evolution (Barton and Harvey, 2000),

and also suggest that scaling constraints related to connectivity with other brain regions

(Montgomery et al., 2016) was less critical for the medulla than for the neocortex and cerebellum.

Several non-human primate species exhibited exceptional brain evolution in one trait or another,

but only humans showed exceptional brain evolution for multiple brain components. As predicted,

we detected shifts towards larger brain size on the terminal branches leading to D. madagascarien-

sis, and on the branch leading to the Cebinae clade. Large brain size in Daubentonia and Cebinae

has been attributed to extractive foraging and tool use (Kaufman, 2005; Melin et al., 2014;

Parker, 2015). Although not one of our a priori expectations, we also documented shifts towards

smaller brain size on branches leading to several clades, including Alouatta. We also found that two

Gorilla species exhibit a smaller brain or neocortex size relative to body mass than expected. Given

the extremely large body mass of Gorilla species, these unique traits may be the byproduct of a

body mass increase rather than a reduction in brain size. Also unexpectedly, two Pan troglodytes

sub-species were found to have exceptionally large and small ECV relative to body mass respec-

tively. However, because more closely related species are weighed more heavily when BayesModelS

generates distributions of predicted trait values, sister taxa deviating from expectations in opposite

directions could result in both taxa being identified as outliers, even if they both conform to patterns

of brain-body scaling for other primates. If the trait distributions for each species overlap signifi-

cantly, then accounting for intraspecific variation in future analyses could remedy this problem.

The unexpected patterns that we observed amongst non-human primates raise several questions

for further research. Given the well-established positive correlation between overall brain size and

extended life history (Isler and van Schaik, 2009; Sol, 2009; González-Lagos et al., 2010), what

are the life history implications of mosaic shifts in the sizes of different structures, and do these sup-

port any specific interpretations of the correlation between brain size and life histories? One hypoth-

esis, the developmental costs hypothesis, is that large brains simply take longer to grow and

mature, leading to extended periods of maternal investment and slower maturation, with other life

history correlates of brain size being byproducts of developmental prolongation. Support for this

hypothesis is provided by the finding that, amongst mammals, the durations of gestation and lacta-

tion have independent effects on pre- and postnatal brain growth, and once these effects are

accounted for, other life history correlates are non-significant (Barton and Capellini, 2011). Despite

their generally correlated evolution (MacLeod et al., 2003), we found shifts in the relative size of

neocortex and cerebellum on different parts of the phylogenetic tree. Because these two structures

have different developmental trajectories, the developmental costs hypothesis predicts different life
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history correlates; this prediction has now received support (Powell et al., 2019). Further work is

needed to establish exactly what developmental changes allowed for the neocortex and cerebellum

to rest-of-brain scaling rules to change at the origin of haplorrhines and hominoids, respectively.

Another area of interest concerns the cases we found of brain or brain component size reduction.

Montgomery et al. (2010) found that brain size reductions were rare during primate evolution, and

that there was a general trend for brain size to increase across multiple branches of the phylogeny.

This raises questions for future work concerning the causes, developmental mechanisms and func-

tional implications of specific types of size reduction, such as those that we uncovered in brain size

relative to body size in Alouatta and other clades, and in neocortex size relative to the rest of the

brain in N. larvatus.

Finally, a key question that has attracted considerable attention concerns the ecological and

social drivers of brain size and structure across large-scale evolutionary radiations. It has become

increasingly apparent that correlations between overall brain size and behavioral ecology needed to

be treated with caution (Powell et al., 2017; Healy and Rowe, 2007; Wartel et al., 2018). How-

ever, as suggested by the hypothesis of mosaic brain evolution, correlations between ecology and

individual, less functionally heterogenous brain components may be more reliable and robust

(Barton and Venditti, 2014; Barton, 2012; Barton, 2007; Whiting and Barton, 2003;

Montgomery et al., 2016; Barton et al., 1995). Our analyses focused on gross subdivisions within

the brain, and we suggest that further insights could be obtained by applying the phylogenetic

methods used in this paper to more fine-grained neuro-anatomical data, using this approach to

tease apart the contributions of correlated and mosaic change among brain components

(Melin et al., 2014) and by incorporating ecological, behavioral, and developmental predictor varia-

bles that may account for additional variation in the traits of interest.

In conclusion, we provided robust evidence for directional and accelerating selection towards

larger brain size over the course of human evolution, resulting in the human brain being exception-

ally large for a primate of similar body mass. We also found that the sizes of human brain compo-

nents – including the neocortex, cerebellum, and the rest of the brain – are not larger or smaller

than expected relative to the size of the rest of the brain, but all are larger than expected for a pri-

mate of similar body mass. These results suggest that relative neocortical expansion is not a hallmark

of our species. The diversity of evolutionary patterns for various brain components that we observed

within primates suggests that no single factor fully explains primate brain evolution; instead, compar-

ative research should investigate how different selection pressures influenced the evolution of differ-

ent neuroanatomical components at different times on different parts of the phylogenetic tree.

Additionally, future work should seek to analyze the evolution of other brain traits, including neuro-

nal composition, using similar phylogenetic comparative methods that account for the non-indepen-

dence of data from related species.
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Data Compilation
All data and trees used in our analyses are included in the Source data 2 file. We compiled

three data sets for our analyses. The first was used for the analyses of endocranial volume

(ECV), the second was used for the analyses of the neocortex and cerebellum, and the third

was used for the analyses of the medulla.

In the first data set (‘data set 1.csv’), we compiled ECV and female body mass values for

non-human primates from Isler et al. (2008), who compiled their data set in part from

Araújo et al. (2000), Gordon, 2006, Smith and Jungers (1997), and Thalmann and

Geissmann (2000). This dataset was supplemented with fossil data for ancient humans and

extinct hominins from Robson and Wood (2008). These authors provided two taxonomies:

one that recognized more species of hominins (the ‘splitting taxonomy’), and another that

lumped hominin lineages into fewer taxonomic categories (the ‘lumping taxonomy’). We

extracted values from the splitting taxonomy, except those for Australopithecus africanus,

which were only available from the lumping taxonomy. We also chose to use values for Homo

erectus (sensu lato) from the lumping taxonomy, as these values was calculated from fossils

attributed to both H. erectus and H. ergaster, two species that are not differentiated in our

phylogeny. We did not include H. heidelbergensis in our analyses because its phylogenetic

position is unresolved (Mounier and Caparros, 2015). Sample sizes are given in Table 1.

Museum numbers for the specimens used in calculating species mean values are given in

Appendix I of Robson and Wood (2008).

In the second data set (‘data set 2.csv’), body mass, neocortical volume, and cerebellar

volume for humans and extant non-human primates were compiled from the data set of

Barton and Venditti (Barton and Venditti, 2014). We also complied brain volumes to use in

the calculation of the ‘rest-of-brain’ predictor trait in the analyses of these brain structures.

These values were calculated as an average of the values given in Stephan et al.

(1981), MacLeod et al. (2003), Bush and Allman (2003), Rilling and Insel (1998), and

Rilling and Insel (1999). The second data set was limited to extant primates and included

values for 55 species, including humans.

The third data set (‘data set 3.csv’) included body mass, brain volumes, and medulla

volumes from Stephan et al. (1981). This data set spanned 41 species.

A summary of all human ECV and body mass estimates and the analyses in which they were

used is given in Tables 1 and 2.

All trait and predictor values were log10 transformed prior to analyses. When differences

between component volumes were used in analyses, we calculated the logarithms after

subtraction.

We used several different phylogenetic trees and tree blocks in our analyses. We

constructed a ‘hominin phylogeny’ (‘hominin.phylogeny.txt’) that included humans, extinct

hominins, and extant primates for use in the analyses of hominin ECV (including the analyses

of directional and accelerating evolution); this phylogeny was produced by grafting the

‘combined dataset consensus time tree’ of hominin evolution from Organ et al. (2011) onto

the time-scaled consensus tree of extant primates from version 3 of 10kTrees (Arnold et al.,

2010). We grafted the clade (including the root branch) containing Pan and all fossil hominins

onto the node at which Gorilla diverged from the Pan lineage, and then re-scaled this pasted

clade so that the human tip lined up with those of extant primates. We also constructed an

‘alternative hominin phylogeny’ (‘alt.hominin.phylogney.txt’ using the ‘morphology and

molecular graft time tree’ from Organ et al. (2011). To construct this tree, we again grafted

the clade (including the root branch) containing Pan and all fossil hominins onto the node at

which Gorilla diverged from the Pan lineage, and then shortened the root branch so that the

human tip lined up with those of extant primates. We were not able to use this method for

constructing the hominin phylogeny because it would have resulted in the branch leading to
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the clade containing Pan and hominins having a negative length. Both hominin phylogenies we

constructed include humans, 300 other extant primates, and 13 extinct hominin species. In

other analyses, we used a consensus tree (‘consensus.tree.txt’) of extant primates (for OU

model fitting) or a block of 100 primate trees (‘tree.block.txt’) downloaded from version 3 of

10kTrees (Arnold et al., 2010 for phylogenetic prediction).
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Appendix 2
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Details of Bayou models
The un-weighted predictor model is described by the following equation:

Equation 1

E½y� ¼W�M þ x bn

E[y] is the expected value of a species trait. W and �M represent the evolutionary weight

matrix and � matrix described in Butler and King (2004). W is a 1 x n matrix whose entries are

the weights given to each of the n selection regimes through which the species of interest

evolved. The weight of each regime is dependent upon the phylogeny and the value of a.

More recent regimes have greater weights, especially when a is high. �M is an n x 1 matrix of

the q values of the regimes through which the species of interest evolved. The product of W

and �M gives the effective � value for a species that evolved towards the various optimum

� values specified in �M . bn is the b value of the parameter regime at the tip of the phylogeny.

Therefore, in this model, the expected phenotype for a species is a function of the

evolutionarily weighted effective � value, the coefficient of the predictor variable of the current

selection regime, and the value of the predictor at the tip of the phylogeny.

The weighted predictor model is described by a similar equation:

Equation 2

E½y� ¼W�M þ x WbM

bM is an n x 1 matrix of the optimum b values �M . of the n regimes through which the

species evolved, and is analogous to � Thus, in this model the expected trait value of each

species is a function of the species evolutionarily weighted effective b and b values, and the

value of the predictor variable x at the tip of the phylogeny.
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Problems with MCMC convergence in bayou
Bayou returned several MCMC chains during the analyses of ECV that did not converge in

terms of likelihood, a, and s2. To address this issue, we generated up to six MCMC chains in

each analysis for both for the un-weighted predictor, weighted predictor, and Brownian

models. Several chains with exceptionally high mean likelihood had s2 values approaching

zero and very high a values that appeared to be bounded by a maximum value. We infer from

these patterns that the chains were settling on an unrealistic pattern of evolution with the

stationary variance approaching zero. These chains also inferred shifts erratically; they

predicted shifts with posterior probability greater than 0.1 on many branches, but no shifts

had a posterior probability greater than 0.3. We discarded these chains, and then selected the

two chains with the highest mean likelihood for each analysis for subsequent use.
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