
 
 

1 

Quantitative uniqueness of human brain evolution revealed through phylogenetic 1 

comparative analysis 2 

 3 

Ian F. Millera,b,*, Robert A. Bartonc, Charles L. Nunnb,d 4 

 5 

a Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, 6 

NJ 08544-2016, USA 7 

b Department of Evolutionary Anthropology, Duke University, 108 Biological Sciences 8 

Building, Campus Box 90383, Durham, NC 27708-9976, USA 9 

c Evolutionary Anthropology Research Group, Department of Anthropology, University 10 

of Durham, South Road, Durham DH1 3LE, UK 11 

d Duke Global Health Institute, Duke University, 310 Trent Drive, Durham, NC 27710, 12 

USA 13 

 14 

*Corresponding author. 15 

E-mail address: ifmiller@princeton.edu 16 



 
 

2 

Abstract 17 

While the human brain is clearly large relative to body size, less is known about the 18 

timing of brain and brain component expansion within primates and the relative 19 

magnitude of volumetric increases. Using Bayesian phylogenetic comparative methods 20 

and data for both extant and fossil species, we identified that a distinct shift in brain-body 21 

scaling occurred as hominins diverged from other primates, and again as humans and 22 

Neanderthals diverged from other hominins. Within hominins, we detected a pattern of 23 

directional and accelerating evolution towards larger brains, consistent with a positive 24 

feedback process in the evolution of the human brain. Contrary to widespread 25 

assumptions, we found that the human neocortex is not exceptionally large relative to 26 

other brain structures. Instead, our analyses revealed a single increase in relative 27 

neocortex volume at the origin of haplorrhines, and an increase in relative cerebellar 28 

volume in apes. 29 

 30 
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Introduction 33 

Primates vary almost a thousand-fold in endocranial volume  – a measure which closely 34 

approximates brain size  –  ranging from 1.63 mL in mouse lemurs [1] to 1478 mL in 35 

humans [2]. Body size is perhaps the most important statistical predictor of brain size 36 

across primates, with larger bodied species having larger brains, but substantial variation 37 

remains after accounting for the effects of body size [1].  While numerous comparative 38 

studies have sought to identify ecological, behavioral, and cognitive correlates of this 39 

variability [3–7], much less is known about the evolutionary patterns and processes that 40 

generated extant variation in brain size within the primate clade, how these differ for 41 

different components of the brain, or the degree to which the brain phenotypes of 42 

particular species, such as humans, are the result of exceptional patterns of  evolutionary 43 

change.  44 

A common approach to investigating human uniqueness is to test whether humans 45 

fall “significantly” far from a regression line, for example by regressing brain size on 46 

body mass [8–10]. One surprising recent result reported from such an analysis is that the 47 

mass of the human brain is only 10% greater than expected for a primate of human body 48 

mass [8]. However, such non-phylogenetic methods may give misleading results because 49 

they fail to incorporate trait co-variation among species that results from shared 50 

evolutionary history. Valid analysis requires methods that account for phylogeny both 51 

when estimating scaling parameters and when evaluating deviations from such scaling 52 

exhibited by individual species [11–13]. An additional source of error arises if the species 53 

being investigated is included in the regression model [e.g. 8], particularly when, as for 54 

humans, the phenotypic trait lies at the extreme of the distribution for the other species in 55 
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the analysis.  This procedure would reduce the magnitude of deviations from expected 56 

trait values for lineages that have undergone exceptional change, and in the case of 57 

humans, would bias the results toward failing to detect uniqueness.   58 

Comparative methods make it possible to incorporate phylogeny into analyses and 59 

to model phenotypic evolution in ways that uncover hitherto hidden patterns. Such 60 

methods are now being applied to a wide variety of traits [e.g. 13–15], including brain 61 

size. Pagel [14] estimated phylogenetic scaling parameters to characterize the 62 

evolutionary trajectory of endocranial volume (ECV) in fossil hominins. His analyses 63 

revealed that ECV evolution accelerated towards the present. As this analysis did not 64 

account for body size, it is not clear to what extent this pattern reflects changes in brain 65 

size independent of body size. Montgomery et al. [16] used ancestral state reconstruction 66 

with fossil data to demonstrate a directional trend in primate brain size evolution and to 67 

identify branches in the primate phylogeny along which exceptional evolutionary change 68 

occurred. They found that while the absolute change in the mass of the human brain was 69 

exceptional, the rate of change relative to body size was not. Phylogenetic methods have 70 

also been used to examine how specific brain components evolved and the extent to 71 

which the branch leading to humans exhibited unusual amounts or rates of change in the 72 

size of these components [17,18]. Recently, Lewitus [19] suggested that comparative 73 

analyses of neuroanatomical data can be improved by incorporating and comparing 74 

results from different evolutionary models.  75 

 Here, we use phylogenetic methods to model the evolution of brain size and to 76 

identify exceptional evolutionary change along phylogenetic branches.  We employ three 77 

methods: The first method models trait evolution both as a multi-optima Ornstein-78 
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Uhlenbeck (OU) process (which incorporates stabilizing selection and drift) and as a 79 

Brownian motion process [20], and then compares the fit of the two models.  In cases 80 

where the OU model is favored, exceptional patterns of trait evolution are indicated by 81 

recent shifts in adaptive optima in humans’ (or other species’) evolutionary lineage. In 82 

cases where the Brownian model is favored, we apply our second method, which is a 83 

phylogenetic outlier test that uses phylogenetic generalized least squares (PGLS) to 84 

predict a phenotype for a species and then compares observed and predicted values. With 85 

this method, we can assess whether humans are a phylogenetic “outlier” relative to 86 

expectations based on their phylogenetic position and trait covariation in other primate 87 

species. Our last method tests for directional and accelerating evolution by fitting 88 

phylogenetic scaling parameters to data on deviation from trait expectations and 89 

evolutionary time, building on previous efforts with these approaches [14]. 90 

 Using the first two methods, we investigate the evolution of absolute brain size 91 

and brain size relative to body mass within primates. Absolute brain volume has been 92 

shown to predict cognitive ability in primates better than other metrics that account for 93 

body mass [4,21]. However, brain size is highly correlated with body size [1], and as 94 

such it is difficult to interpret the significance of brain size alone. Additionally, 95 

accounting for body mass gives more insights into the significance of brain size in life 96 

history processes, as relative brain size better approximates relative investment in 97 

cognitive ability. Accounting for body mass is also important as the relationship between 98 

this trait and brain size is associated with scaling effects that reflect conservation of 99 

neural function, such as preservation of somatosensory acuity across large surface areas 100 

[22] and compensation for increased neural conduction distances in larger animals 101 
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through (i) larger neuron and axon sizes, increased myelination, and increased white 102 

matter volume, all of which result in reduced neuron density [23–25] and (ii) increased 103 

neural resources devoted to prediction-based sensorimotor control that result from 104 

escalating neural conduction delays as body size increases [26]. Other measures of 105 

relative brain size such as encephalization quotients, ratios, and residuals have been used 106 

in the past, but all make theoretical assumptions about the underlying relationship 107 

between brain and body size evolution that may not hold. Using relative measures can 108 

bias parameter estimates and is not recommended as a good statistical practice [27]. 109 

Instead, an empirical approach is preferred in which the covariation of brain size with 110 

body size is accounted for within a statistical model that also accounts for phylogenetic 111 

history (such as PGLS). 112 

We also apply the first two phylogenetic comparative methods to investigate the 113 

evolution of major brain structures involving the neocortex, cerebellum, and medulla. It 114 

is widely assumed that the neocortex expanded disproportionately relative to other brain 115 

structures during the evolution of anthropoid primates and most particularly in human 116 

evolution [28–30]. Surprisingly however, direct tests of this hypothesis are lacking, 117 

despite the focus of much evolutionary and developmental neuroscience on the neocortex 118 

as the site of interest for understanding human uniqueness and its developmental 119 

mechanisms [31]. Recent evidence suggests that the cerebellum may have contributed 120 

more to human brain evolution than previously appreciated: it underwent rapid 121 

evolutionary expansion in the great ape clade including hominins [18,32] and has been 122 

implicated in shape changes of the brain in hominin fossil endocasts [33,34]. Molecular 123 

evidence now corroborates the proposal that selection on cerebellar function was an 124 
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important feature of hominoid and hominin brain evolution [35], with changes in protein-125 

coding genes implicated in cerebellar development more likely to have evolved 126 

adaptively in apes than those implicated in neocortical development [36]. It therefore 127 

appears that the neocortex and cerebellum have had different evolutionary trajectories in 128 

primate evolutionary history. More research is needed to document and understand these 129 

patterns.  130 

We examined volumetric change in the neocortex and cerebellum relative to both 131 

body mass and the volume of the rest of the brain. As a check to establish whether 132 

changes in evolutionary patterns for relative neocortex and cerebellum size are primarily 133 

attributable to changes in those structures or to changes in the rest of the brain, we 134 

investigated the evolution of the rest of the brain relative to body mass. We also 135 

conducted analyses of the volume of the medulla relative to body mass and the volume of 136 

the rest of the brain. The relative volume of the medulla does not vary significantly across 137 

clades [37] and as such it has not been attributed a major role in brain expansion.  For the 138 

analyses of fossil species, brain component volumes are not available; thus, analyses of 139 

these lineages are restricted to overall brain size (ECV). 140 

Although our main focus is on broad patterns across primate phylogeny and on 141 

the extent to which human brain evolution fits or departs from these patterns, we also 142 

examined brain evolution in other species that are considered to be unusually large-143 

brained, such as the aye-aye (Daubentonia) and capuchins (Cebinae) [1,38].  Our 144 

analyses also help to identify other primate species that have experienced exceptional 145 

expansion or reduction of the brain or its components, generating new hypotheses for 146 

future research on exceptional brain evolution in primates. 147 
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We used our third method to characterize patterns of brain evolution in humans 148 

and extinct hominins. Pagel [14] conducted similar analyses of raw ECV. Our analyses 149 

advance his findings in two ways.  First, we incorporate body mass as a predictor. 150 

Second, we focus on the deviation from brain size expectations, based on the PGLS 151 

methods used to assess outlier status.  Our findings therefore provide insights to the 152 

evolutionary trajectory of exceptional hominin ECV relative to primate-wide brain-body 153 

mass scaling relationships.  154 

 155 

Methods 156 

Comparative data 157 

 We compiled ECV and female body mass data on non-human primates [1] as well 158 

as humans and fossil hominins [2, Tables 1 and 2]. Given that sex specific body mass 159 

estimates are available for ancient humans and extinct hominins [2], we used female 160 

values for body mass because female values are more tightly linked to ecological and 161 

life-history factors [39] and sexual selection can drive increases in male body mass 162 

unlinked to ecology, obscuring brain-body scaling relationships [40]. We also compiled 163 

data on neocortex, cerebellum, and medulla volume [18,41,42]. Values used to compute 164 

predictor variables (described below) for analyses of brain sub-structures were taken 165 

from [1]. We used several phylogenies in our analyses.  For analyses of hominin ECV, 166 

we constructed a “hominin phylogeny” by combining the hominin consensus tree from 167 

[13] and the non-human primate consensus tree from 10kTrees version 3 [43]. To ensure 168 

that our results in this set of analyses were not dependent upon the topology of the 169 

hominin phylogeny, we repeated them using an “alternate hominin phylogeny,” 170 
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constructed in a similar manner using another hominin tree from [13]. Details of the tree 171 

construction process are given in Appendix 1. In all other analyses we used either the 172 

consensus primate phylogeny or a block of 100 primate phylogenies from 10kTrees, 173 

version 3. 174 

 To determine whether patterns of exceptional evolution represent absolute or 175 

relative changes in scaling, we included several predictor variables in our analyses. To 176 

investigate whether the volumes of structures changed relative to body size, we used 177 

body mass as a predictor variable, while we used a “rest-of-brain” metric as a predictor 178 

variable to investigate whether the volumes of structures changed relative to other brain 179 

structures. For the analyses of all structures other than the medulla, the “rest-of-brain” 180 

was computed as whole brain volume – (neocortex volume + cerebellum volume). In 181 

analyses of the medulla, we calculated “rest-of-brain” volume as brain volume - medulla 182 

volume. We also analyzed the volume of the “rest-of-brain” [whole brain volume – 183 

(neocortex volume + cerebellum volume)] relative to body mass. The data sets used in all 184 

analyses, along with more detailed descriptions, are given in Appendix 1.  185 

  186 

Table 1: Hominin ECV and body mass data details. All values are from [2]. 187 

Species ECV 
(mL) 

Sample 
size 

Female 
Body Mass 

(kg) 

Sample size 

Australopithecus africanus 464.00 8 30 7 
Homo erectus 969.00 40 57 4 
Homo habilis 609.00 6 32 2 

Homo rudolfensis 726.00 3 51 2 
Homo sapiens neanderthalensis 1426.00 23 65 7 

Homo sapiens 1478.00 66 57 36 
Paranthropus boisei 481.00 10 34 1 

Paranthropus robustus 563.00 2 32 2 
Australopithecus afarensis 458.00 6 30 4 
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 Table 2: Human brain data 188 
 189 

Brain Trait Source Notes Dataset 

ECV 1478.00 mL [2] 

Composite of 
values from 66 

fossil 
specimens from 
locations across 

Eurasia and 
Africa 

1 

Brain volume 1267.65 mL [71, calculated 
from 32, 72-75]  

Average of 
measurements 

of modern 
human brains 

2 

Brain volume 1251.85 mL Stephan et al. 
[32] 

Measurement 
of modern 

human brain 
3 

 190 

Characterizing patterns of phenotypic evolution 191 

We  compared the fit of multi-optima Ornstein-Uhlenbeck (OU) models of evolution and 192 

Brownian models of evolution using a developmental version of the R package bayou 193 

(https://github.com/uyedaj/bayou/tree/537e373b6c15faf6a03f21d3d642d14e567ad4d8) 194 

[44,45]. OU models of evolution incorporate stabilizing selection and drift, while 195 

Brownian models only include drift. Bayou fits multi-optima OU models to a phylogeny 196 

using a Markov-Chain Monte Carlo (MCMC) approach. A shift in selection regime refers 197 

to a change in the parameters that determine the optimum trait value (towards which 198 

species evolve) at a specific location on a phylogeny.  Thus, inferred changes in selective 199 

regime provide insights to how lineages differ. Shifts in selection regime along terminal 200 

branches of a tree would provide particularly strong evidence for a species’ uniqueness. 201 

Grabowski et al. [46] proposed the following OU model to describe the evolution 202 

of a trait, y, as a function of a predictor variable, x: 203 

 204 

https://github.com/uyedaj/bayou/tree/537e373b6c15faf6a03f21d3d642d14e567ad4d8
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 Eqn. 1: 𝑑𝑦 =  − 𝛼 (𝑦 − 𝑦0) 𝑑𝑡 +  𝜎2 𝑑𝐵 205 

 206 

Eqn. 2: y0 =  𝜃 + 𝑥 𝛽 207 

 208 

In these equations, dy is the change in the trait value, α is the magnitude of the 209 

selective “pull” towards the optimum trait value, y0, and σ2 is the variance of the white 210 

noise process dB. The variables 𝜃 and 𝛽 can be interpreted as the intercept and slope of 211 

the optimum regression line specified in Eqn. 2. The optimum regression line represents 212 

the state that a species is evolving towards rather than the actual evolutionary trajectory.  213 

This model has limited utility when data for x are only available for the tips of the 214 

phylogeny because the values of x must be known along the branches of the phylogeny to 215 

infer the expected value of y for a lineage. We utilize two similar models implemented in 216 

the developmental version of bayou – the unweighted predictor model and the weighted 217 

predictor model (corresponding to “immediate” and “alphaweighted” options for 218 

“slopechange” in bayou) – as these circumvent the issue of unknown phenotypes in 219 

ancestral lineages while incorporating a predictor variable into the OU model. The 220 

weighted predictor model considers the evolutionary history of the predictor variable 221 

while fitting models, and the unweighted predictor model only considers the values of the 222 

predictor variables at the tips of the phylogeny while fitting models. The details of these 223 

two models are provided in Appendix 2.  224 

 Bayou uses a MCMC to parameterize the models to fit the data by inferring the 225 

location and magnitude of concurrent shifts 𝜃 and 𝛽 on a phylogeny and by inferring the 226 

values of 𝛼 and 𝜎2, which remain constant across the phylogeny. The parameters 𝛼 and 227 
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𝜎2 are used in the calculation of the variance-covariance matrices used in evaluating 228 

model fit to the phylogeny. The phylogenetic half-life, the time needed for a trait to 229 

evolve halfway to the optimum, is computed as ln(2) / α. We present phylogenetic half-230 

life in units of tree height. A phylogenetic half-life less than tree height indicates that the 231 

evolutionary processes can “pull” parameter values to the optimum within the timescale 232 

in question, while a phylogenetic half-life that exceeds tree height or constitutes a large 233 

percentage of tree height indicates that evolutionary processes have a weak “pull” and 234 

trait values are not expected to closely approach the optimum during the timescale in 235 

question. The expected variance in trait values evolving to the same optima at 236 

equilibrium (stationary variance) can be computed as 𝜎
2

2𝛼
. 237 

  For each analysis, we ran the weighted and unweighted predictor models. We also 238 

ran a Brownian motion model in which the strength of stabilizing selection (α) was fixed 239 

at 10-6 (resulting in a phylogenetic half-life ~9500x greater than tree height; bayou cannot 240 

compute model likelihoods when α is 0), and no shifts away from the root regime were 241 

allowed. The predictor variable is still incorporated in the Brownian motion model, but 242 

no changes in its coefficient occur on the phylogeny. We used the hominin tree for the 243 

analysis of ECV and the consensus tree of extant primates for all other analyses. All 244 

MCMCs were run for 5,005,000 time steps, sampling every 10 time steps. The priors 245 

used are given in Table 3. For each analysis, two chains were run and checked for 246 

convergence in terms of likelihood, D, and V2 (see Appendix 3 for discussion of chain 247 

non-convergence issues in analyses of ECV). We also checked for correlation in branch-248 

wise posterior shift probability between chains. Diagnostic plots pertaining to chain 249 

convergence are given in Source data 1. The two chains were combined, with the first 250 
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30% of samples being discarded as burn in. We then obtained the likelihood of each 251 

model and calculated Bayes factors for each model pairing [47,48] using the 252 

steppingstone algorithm in bayou, which implements the method of Fan et al. [49]. We 253 

imposed a posterior probability cutoff of 0.3 for shift detection.  254 

 255 

Model 
Parameter Prior Distribution 

D Half-cauchy with scale factor 1. Fixed at 0 in Brownian model. 

V2 Half-cauchy with scale factor 0.1 

E Normal distribution with standard deviation=0.5, mean=slope of 
linear model of trait and predictor data 

T Normal distribution with standard deviation=1, mean=intercept of 
linear model of trait and predictor data 

Number of shifts 
per branch Fixed at one 

Branch-wise 
shift probability Uniform 

Number of shifts 
Conditional Poisson distribution1 with mean =0.1*number of edges 
on phylogeny and maximum=number of edges on phylogeny. Fixed 

at 0 in Brownian model. 
Location of shift 

along branch Uniform 

 256 

Table 3: Priors for bayou MCMC analyses 257 
1Calculated using “cdpois” option in bayou. 258 
 259 
 260 

When the multi-optima OU model was selected over the Brownian motion model, 261 

we used the location and magnitude of shifts in adaptive optima to assess changes in 262 

patterns of evolution. The inference of a shift on a terminal branch would indicate an 263 

exceptional pattern of evolution for a given species.  264 

 Ho and Ané [50] identified several potential problems with OU models, including 265 

un-identifiability of parameters and over-fitting, but acknowledged that such models may 266 
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be necessary, and recommended that Bayesian models, specifically bayou, be used to 267 

overcome these problems. Several other phylogenetic OU models have been developed 268 

(most notably Hansen et al. [51]), but none utilized Bayesian parameter estimation. 269 

Cooper et al. [52] echoed the concerns of Ho and Ané [50] and again recommended using 270 

Bayesian approaches. Additionally, they recommended weighing the fit of an OU model 271 

of evolution against that of a Brownian model, which do through our model selection 272 

process.  273 

 274 

Outlier Detection using PGLS 275 

When bayou indicated that the Brownian model of trait evolution was favored over the 276 

multi-optima OU model, we conducted a phylogenetic outlier test. This was 277 

accomplished using BayesModelS, an R script that generates distributions of predicted 278 

trait values for a species or several species based on phylogenetically controlled analyses 279 

of trait covariation with predictor variables [53]. BayesModelS uses a Markov-Chain 280 

Monte Carlo (MCMC) to fit parameters of a PGLS model and assumes a Brownian 281 

motion model of evolutionary change. The PGLS models are used to generate trait value 282 

predictions for the species of interest. Uncertainty in phylogenetic structure can be 283 

accounted for by sampling from a set of trees [14].  284 

BayesModelS accounts for phylogenetic non-independence of residual trait values 285 

by incorporating branch scaling factors when fitting PGLS models. The MCMC samples 286 

between two branch length scaling factors, λ and κ, to improve the fit of the models. The 287 

parameter λ scales the internal branches of the phylogeny and measures phylogenetic 288 

signal [54]. Values for λ were constrained to be in the interval [0, 1]. In the κ model 289 
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phylogenetic tree branch lengths are raised to the power κ. The value of κ has previously 290 

been used to assess support for a “speciational” mode of evolution (see Pagel [14]). 291 

When predicting the value of a trait for a species (or a group of species), its data 292 

were excluded from the BayesModelS analysis to avoid biasing the predictions. 293 

BayesModelS was then used to generate a posterior probability distribution of predicted 294 

values for that species, based on the predictor variable, estimated phylogenetic signal, 295 

and estimated trait co-variation with the other species in the analysis. Species were 296 

identified as outliers when their trait value was more extreme than 97.5% of the predicted 297 

trait values (i.e. when trait values fell outside 95% credible interval). A species was 298 

identified as a positive outlier when its true value fell above the majority of predictions, 299 

and a negative outlier when the opposite was true.   300 

The analyses conducted using BayesModelS proceeded as follows. First, we 301 

investigated whether hominins follow primate brain size to body mass scaling rules by 302 

using BayesModelS to predict ECV based on body mass and phylogeny. We tested each 303 

hominin species for outlier status while excluding data on all hominins when generating 304 

predictions. When computing mean estimates for hominin ECV, we corrected for back 305 

transformation bias using the quasi-maximum likelihood estimator method described in 306 

[55].  We used the hominin phylogeny or the alternate hominin phylogeny in these 307 

analysis, and the data spanned 225 extant primate species (including humans) and 10 308 

extinct hominin species.  309 

Next, we identified individual primate species that are evolutionary outliers for 310 

ECV and other brain structures (neocortex, cerebellum, medulla, rest-of-brain). In these 311 

analyses, we accounted for phylogenetic uncertainty by using the block of 100 trees, 312 
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which included H. sapiens and H. neanderthalensis but no other hominins. We iteratively 313 

tested each species in the data set for outlier status. Our analysis for ECV included data 314 

from 145 species, and our analyses for other brain structures structures included data 315 

from between 39 and 53 species.  316 

MCMC chains were run for 1,000,000 time steps, and the first 200,000 time steps 317 

were discarded as burn in. Flat priors were used for all variables being predicted. To 318 

assess whether the post-burn in results were drawn from a stable distribution, we used the 319 

“heidel.diag” function in the R package coda [56]. When post-burn-in results were not 320 

drawn from a stable distribution, we discarded an additional portion of the chain (as 321 

indicated by “heidel-diag”) so that only results drawn from a stable distribution remained. 322 

We ensured that the effective sample sizes for the PGLS model parameters (slope, 323 

intercept, most frequently selected phylogenetic scaling parameter) were greater than 324 

1000 using the “effectiveSize” function in coda [56]. Details of the MCMC diagnostics 325 

are given in supplementary materials S6, along with detailed results concerning the 326 

posterior predicted distribution and phylogenetic scaling parameters for each species in 327 

each analysis.    328 

 329 

Characterizing the Tempo of ECV Evolution in Hominins 330 

We investigated the evolutionary trajectory of brain-body scaling in hominins relative to 331 

other primates. We calculated the difference between observed ECV and the mean 332 

BayesModelS prediction for brain size (generated in the first described BayesModelS 333 

analysis in which data for all hominin species was excluded while generating predictions) 334 

for each of the hominin species. This difference, which we call “brain size deviation” 335 
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represents the magnitude and direction of the deviation in brain size from what would be 336 

expected under primate brain-body scaling rules. We fit four PGLS model to hominin 337 

brain size deviation to examine how brain size deviation covaried with the phylogenetic 338 

distance from the hominin-Pan split:  First, we fit a “Brownian” model of brain size 339 

deviation with no predictor. We fixed λ at 1 in this and all subsequent models. Next, we 340 

fit a “directional” model of brain size deviation predicted by phylogenetic distance from 341 

the hominin-Pan split, expecting to find a positive relationship between these variables if 342 

brain volume relative to body size has increased since the split of hominins and Pan. To 343 

determine whether evolutionary rates in brain size deviation have accelerated over time, 344 

we fit an “acceleration” model that included the phylogenetic scaling parameter G  345 

[14,57].  Values of  G greater than 1 are consistent with accelerating evolution, but not 346 

necessarily directional evolution. Finally, we fit a “directional acceleration” model in 347 

which we fit the parameter G and used phylogenetic distance from the hominin-Pan split 348 

as a predictor of brain size deviation. In this model, a positive relationship between brain 349 

size deviation and phylogenetic distance, along with a value of G greater than 1, would 350 

indicate that brain volume relative to body size has increased at an accelerating rate since 351 

the divergence of hominins from Pan.  We compared these models using AICc. Analyses 352 

were conducted in the R package caper [58]. 353 

 354 

Results 355 

Endocranial volume (ECV) 356 

In the bayou analysis of ECV predicted by body mass using the hominin 357 

phylogeny, the Brownian model was favored over the weighted and unweighted predictor 358 
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OU models with Bayes factors greater than 22. When we repeated this analysis using the 359 

alternate hominin phylogeny, we found that the un-weighted predictor OU model was 360 

favored over the weighted predictor OU model and the Brownian model with Bayes 361 

factors greater than 42, despite displaying poor convergence in terms of D and V2. 362 

However, both chains inferred a similar set of shifts, indicating that this is likely an issue 363 

related to parameter identifiability rather than to shift identifiability. In this model, 364 

progressive shifts towards larger ECV relative to body mass were detected within the 365 

hominin clade along the human lineage (figure 1A,B). Shifts towards larger relative brain 366 

size were also detected on the terminal branch leading to D. madagascariensis and the 367 

internal branches leading to the Lemuridae and Cebinae, clades, and shifts towards 368 

smaller relative brain size were detected on the branch leading to the Alouatta clade, the 369 

branch leading to the clade containing the Aotidae and Callitrichidae families, and the 370 

branch leading to the Colobinae sub-family (figure 1-figure supplement 1). The rejected 371 

weighted predictor OU model, as well as both OU models that were rejected in the bayou 372 

analysis using the hominin phylogeny, detected a very similar set of shifts that included 373 

shifts towards progressively larger ECV relative to body mass along the human lineage 374 

(Source data 1). Because the Brownian model was favored in the bayou analysis using 375 

the hominin phylogeny, we proceeded with BayesModels analyses using both the 376 
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hominin and alternate hominin phylogenies. 377 

 378 

Figure 1: OU Model of ECV Evolution in Primates 379 
Panel A shows the location of the selection regimes identified in an OU model of ECV predicted 380 
by body mass. Panel B shows the corresponding optimum regression lines representing the 381 
various selection regimes, along with body mass and ECV data. Data are colored by their 382 
corresponding selection regimes. All results are from the un-weighted predictor OU model in the 383 
bayou analysis using the alternate hominin phylogeny. Only the great ape clade is shown; 384 
selection regimes across the entire primate phylogeny are show in figures S1A,B. 385 

 386 

In the BayesModelS analysis predicting ECV based on body mass while 387 

excluding all hominin data, the observed values for  H. sapiens and H. neanderthalensis  388 

exceeded the mean values predicted by BayesModelS by 7.63 and 6.96 standard 389 

deviations respectively (figure 2C). All hominin species were strongly supported positive 390 

outliers, with more than 99.9% of predictions falling below the observed values for ECV. 391 

The mean ECV prediction for a primate with the body mass of H. sapiens was 438 mL. 392 

Remarkably, the observed value for humans is 1478 mL, which is 238% greater than the 393 

mean of the predicted posterior distribution. A similar result was found for H. 394 
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neanderthalensis; the observed ECV for this species exceeded the mean predicted value 395 

for a primate of their body mass by 952mL, or 201%. Humans exceeded their predicted 396 

ECV by the greatest percentage, but all hominins exceeded predictions by at least 51% 397 

(figure 2C, Table 4). We obtained similar results using the alternate hominin phylogeny 398 

(figure 2-figure supplement 1, Table 5). 399 

When we iteratively predicted ECV based on body mass and phylogeny for each 400 

species in the data set (no hominins besides H. sapiens and H. neanderthalensis were 401 

included in this analysis) and while using all data to generate predictions. We again found 402 

that humans were strongly supported positive outliers (figure 4A). H. neanderthalensis 403 

was not identified as an outlier, perhaps because these analyses included all species 404 

except for the one being predicted, and thus inclusion of H. sapiens resulted in a wide 405 

posterior distribution when predicting ECV in H. neanderthalensis. Indeed, when we 406 

excluded H. sapiens in this analysis we found that H. neanderthalensis was identified as a 407 

strongly supported positive outlier (Source data 1). We also identified several other 408 

primate species as outliers (see Table 6 and Source data 1).  409 
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  410 

Figure 2: BayesModelS predictions of ECV in hominins 411 

Panel A shows a scatter plot of primate ECV and body mass data. Panel B shows the topology of 412 
the great ape portion of the hominin phylogeny used in the BayesModelS analyses of hominin 413 
ECV. Panel C shows the posterior distributions of predicted ECV values generated by 414 
BayesModelS for hominin species with body mass used as the predictor variable. Vertical lines 415 
indicated observed values. 416 
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Table 4: Predicted Hominin ECV values 417 

 
true value 

(ml) 
corrected 

prediction (ml) 
difference 

(ml) 
% 

difference 
Australopithecus 

africanus 464.00 294.73 169.27 57.43 

Homo erectus 969.00 438.24 530.76 121.11 
Homo habilis 609.00 306.83 302.17 98.48 

Homo rudolfensis 726.00 409.63 316.37 77.23 
Homo sapiens 1478.00 437.76 1040.24 237.63 
Homo sapiens 

neanderthalensis 1426.00 474.46 951.54 200.55 

Paranthropus boisei 481.00 319.00 162.00 50.78 
Paranthropus robustus 563.00 307.60 255.40 83.03 

Australopithecus 
afarensis 458.00 288.52 169.48 58.74 

 418 

Table 5: Predicted Hominin ECV values from BayesModelS analysis using the alternate 419 
hominin phylogeny. 420 
 421 

 
true value 

(ml) 
corrected 

prediction (ml) 
difference 

(ml) 
% 

difference 
Australopithecus 

africanus 464.00 288.18 175.82 61.00 

Homo erectus 969.00 431.04 537.96 124.81 
Homo habilis 609.00 300.16 308.84 102.89 

Homo rudolfensis 726.00 401.94 324.06 80.62 
Homo sapiens 1478.00 431.20 1046.80 242.76 
Homo sapiens 

neanderthalensis 1426.00 468.41 957.59 204.44 

Paranthropus boisei 481.00 311.41 169.59 54.46 
Paranthropus robustus 563.00 299.74 263.26 87.83 

Australopithecus 
afarensis 458.00 281.59 176.41 62.65 

 422 
 423 

 424 

 425 



 
 

23 

Table 6: Summary of evidence for exceptional brain evolution among non-human 426 

primates 427 

a Only one Gorilla species was included in this analysis, i.e. with outlier analyses 428 

conducted separately for each Gorilla species. 429 

 430 

Species/Clade Exceptional Trait Evidence 

Alouatta  Reduced ECV relative to body mass Shift in OU model 

Aotidae and Callitrichidae Reduced ECV relative to body mass Shift in OU model 

Cacajao calvus Increased ECV relative to body mass Outlier Detection 

Cebinae Increased ECV relative to body mass Shift in OU model 

Cebus albifrons Increased cerebellum relative to body mass Outlier detection 

Chiropotes satanas Reduced ECV relative to body mass Outlier Detection 

Colobinae Reduced ECV relative to body mass Shift in OU model 

Daubentonia madagascariensis Increased ECV relative to body mass Shift in OU model 

Gorilla beringeia Reduced ECV relative to body mass  Outlier Detection 

Gorilla gorillaa Reduced neocortex relative to body mass Outlier Detection 

Lemuridae Increased ECV relative to body mass Shift in OU model 

Loris tardigradus  Reduced medulla relative to the rest of brain Outlier Detection 

Microcebus murinus Reduced medulla relative to the rest of brain Outlier Detection 

Nasalis larvatus Reduced neocortex relative to the rest of the brain Shift in OU model 

Otolemur crassicaudatus 
Reduced neocortex, cerebellum relative to body 

mass 
Outlier Detection 

Pan troglodytes schweinfurthii Increased ECV relative to body mass Outlier Detection 

Pan troglodytes troglodytes Reduced ECV relative to body mass  Outlier Detection 
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In the bayou analysis of ECV with no predictor variable using the hominin 431 

phylogeny, the Brownian model was selected over the un-weighted predictor OU models 432 

(in which the influence of the predictor was set to 0) with a Bayes factor > 10. No 433 

weighted predictor model was run, as it would have been equivalent to the unweighted 434 

model given that no predictor variable was incorporated. An equivalent result was found 435 

when we repeated the analysis using the alternate hominin phylogeny. We then 436 

proceeded with the BayesModelS analysis, iteratively testing the outlier status of each 437 

species in the data set. We used the tree block for this analysis, and as such H. sapiens 438 

and neanderthalensis were the only hominins included. We found that neither humans 439 

nor Neanderthals were detected as an outlier (figure 4-figure supplement 1, Source data 440 

1), indicating that without correcting for body mass, the variance in ECV across primates 441 

is great enough to prevent humans’ brains from being detected as exceptionally large.  442 

 443 

Evolutionary trajectory of ECV in Hominins 444 

 We conducted PGLS analyses of brain size deviation conducted to characterize 445 

the evolution of exceptional brain size in hominins (data shown in figure 3). The analyses 446 

revealed evidence for both accelerated evolution of brain size deviation and directional 447 

evolution towards larger brain size deviations, as indicated by the directional acceleration 448 

model (AICc = -23.38) being favored over the acceleration (AICc = -21.93), directional 449 

(AICc = -17.56), and Brownian (AICc = -14.58) evolution models.  In this best model, 450 

there was evidence of directional evolution towards larger brain size relative to body size 451 

(slope = 0.04) over time, and of accelerating evolution (G=8.36). These results suggest 452 

that the exceptionality of the human brain evolved recently. We found similar results 453 
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when we repeated this analysis using the alternate hominin phylogeny (figure 3-figure 454 

supplement 1). These analyses therefore support a model of accelerating evolution 455 

towards larger brain volume relative to body mass in Homo sapiens. 456 

  457 

Figure 3: Accelerating Evolution of Brain Size Deviation in Hominins.  458 

A: Brain size deviation was calculated as the difference between the mean BayesModelS 459 

prediction (made while excluding all hominin data from analysis and using the hominin 460 

phylogeny) and the observed value. Phylogenetic distance was measured as time since 461 

the shared ancestor of hominins and Pan at 7.43 mya. B: Hominin clade in the hominin 462 

phylogeny after G transformation, with G=8.36 following the directional acceleration 463 

model.  464 
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  465 

Figure 4: Human Outlier Status for Brain Traits 466 
Predicted distributions of trait values generated by BayesModelS are show as histograms. 467 
Vertical bars represent the observed values. 468 
 469 

Neocortex 470 

In the bayou analysis of neocortex volume as predicted by body mass, the Brownian 471 

motion model was strongly favored over the weighted and unweighted predictor OU 472 

models, with Bayes factors > 18. Humans were detected as strongly supported positive 473 

outliers for neocortex volume by BayesModelS when body mass was used as the 474 

predictor variable (figure 4B).  475 

In the bayou analysis of neocortex volume with “rest-of-brain” as the predictor 476 

variable, the weighted predictor model was selected over the unweighted predictor and 477 
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Brownian motion models with Bayes Factors > 9.2. In the weighted predictor model, 478 

different scaling patterns were detected for strepsirrhines and haplorhines, with the 479 

optimum regression line for haplorhines falling above that of strepsirrhines. The only 480 

other detected transition in scaling occurred on the terminal branch leading to Nasalis 481 

larvatus, indicating a shift towards lower relative neocortex size (figure 5A,B).   482 

 483 

Cerebellum 484 

In the bayou analysis of cerebellar volume predicted by body mass, the Brownian motion 485 

model was favored over the weighted predictor and unweighted predictor OU models, 486 

with Bayes factors of 11.96 and 22.79, respectively. BayesModelS identified humans as 487 

strongly supported positive outliers for cerebellum volume when body mass was used as 488 

the predictor variable (figure 4C).  489 

In the bayou analysis of cerebellum volume relative to the rest-of-brain, the 490 

comparison between the unweighted predictor model and the Brownian motion model 491 

gave a Bayes factor of 10.65, while the comparison between the unweighted and 492 

weighted predictor models gave a Bayes factor of 0.20. This indicates that the OU models 493 

clearly outperform the Brownian model, but that neither OU model performs significantly 494 

better than the other. Both OU models detected a shift on the branch leading to apes 495 

associated with an increase in optimum cerebellar volume relative to the “rest-of-brain” 496 

volume (figure 5C,D).  497 

  498 
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Medulla 499 

In the bayou analysis of medulla volume predicted by body mass, the Brownian motion 500 

model was selected over the two OU models with Bayes factors > 7.4. BayesModelS 501 

identified humans as strongly supported positive outliers for medulla volume (figure 4D). 502 

No other species were identified as exceptional in this analysis. When medulla was 503 

predicted by the “rest-of-brain” volume, the Brownian motion model was again selected 504 

over the OU models, with Bayes factors > 3.8.  Humans were identified as strongly 505 

supported negative outliers (figure 4E).  506 

  507 

Rest-of-brain 508 

In the bayou analyses of the rest-of-brain relative to body mass, the OU models were 509 

selected over the Brownian motion model, with Bayes factors >13. However, the 510 

comparison between the two OU models gave a Bayes factor of 0.20, indicating that 511 

neither model is supported relative to the other. No shifts were detected in either model 512 

(figure 5E,F).  513 

 514 
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 515 

Figure 5: OU Models of Brain Structure Evolution in Primates 516 
A and B correspond to the OU weighted predictor model of neocortex volume predicted by the 517 
rest-of-brain. C and D correspond to the OU unweighted predictor model of cerebellum volume 518 
predicted by the rest-of-brain. E and F correspond to the OU weighted predictor model of the 519 
rest-of-brain volume predicted by body mass. A,C, and E show the location of selection regimes 520 
on the primate phylogeny. B,D, and F show the optimum regression lines associated with the 521 
selection regimes. Points show primate trait and predictor data; colors correspond to the selection 522 
regimes. Colors in A,C, and E match those in B, D, and F.  523 
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Discussion 524 

Our phylogenetic analyses revealed that the human brain is 238% larger than the size 525 

expected for a primate of similar body mass and phylogenetic position. The exceptional 526 

size of the human brain was achieved through progressive scaling shifts towards larger 527 

size over several million years of hominin evolution, and the evolution towards increased 528 

brain size relative to expectations based on primate scaling patterns accelerated over 529 

time. These findings add an important dimension to previous observations of gradual 530 

phyletic increases in hominin brain size. Du et al. [59] fit six evolutionary models to 531 

within- and between-lineage change in hominin brain sizes (random walk, gradualism, 532 

stasis, punctuated equilibrium, stasis-random walk and stasis-gradualism), obtaining the 533 

best fit for a gradualism model. However, their non-phylogenetic analysis did not test 534 

explicitly for accelerating directional increase. Our findings extend the results obtained 535 

by Pagel (2002) on absolute cranial volume, as the pattern of accelerating evolution is 536 

found even after accounting for body size.  The pattern of accelerating brain size increase 537 

documented here is consistent with hypotheses that postulate a co-evolutionary positive 538 

feedback process driving human brain evolution, such as feedback between brain size and 539 

culture or language [60,61] or between the brain sizes of conspecifics engaged in a socio-540 

cognitive evolutionary arms race [62,63].  541 

 While humans clearly have the largest relative brain size among extant primates, 542 

anatomically modern humans were closely matched by H. neanderthalensis. However, 543 

even when accounting for the close phylogenetic relationship between humans and H. 544 

neanderthalensis and the exceptionally large brain of the latter, the human brain is still 545 

much larger than expected:  humans were identified as strongly supported outliers when 546 
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their ECV (relative to body mass) was predicted by phenotypic data from all primates, 547 

including H. neanderthalensis. This pattern was not reciprocal, however; H. 548 

neanderthalensis was not significantly different from other primates when H. sapiens was 549 

included in the model. 550 

 Significant variation exists between estimates of ECV and body mass made from 551 

different fossil specimens of the same hominin species [2]. Thus, using single specimens 552 

to represent a species would not be a good statistical practice. We used a dataset in which 553 

almost all mean species values were calculated from multiple fossil specimens (Table 1). 554 

Unfortunately, we could not explicitly account for intraspecific variation in our analyses, 555 

as the multi-optima OU model fitting approach and the outlier test are unable to account 556 

for variation in both a trait and predictor variable. It would therefore be worthwhile to 557 

revisit our analyses as new phylogenetic comparative methods that can account for 558 

intraspecific variation become available. Additionally, data quality will likely improve 559 

over time. More hominin fossils will be discovered, increasing sample sizes for estimated 560 

ECV and body mass.  561 

The hominin phylogeny will also likely become better resolved and more 562 

complete. We accounted for some phylogenetic uncertainty by repeating our analyses 563 

with an alternate phylogeny. The use of different phylogenies influenced outcomes of 564 

some statistical tests, as the Brownian model favored when we used the hominin 565 

phylogeny and OU model was favored when we used the alternate hominin phylogeny.  566 

However, we found that all of the OU models we fit inferred the same pattern of 567 

evolution towards larger ECV along the human lineage. The results of our outlier tests 568 

and PGLS model fitting – which assume a Brownian mode of evolution –  also detected 569 
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this pattern on different phylogenies. Collectively, these results indicate that our findings 570 

are likely to be robust to variations in assumed evolutionary relationships, and potentially 571 

to assumptions about the mode of evolution.  572 

It is widely assumed that primate brain size evolution in general, and the large 573 

size of the human brain in particular, reflects expansion of the neocortex relative to other 574 

brain structures [28,64]. Our results contradict this assumption: human neocortical 575 

volume was exceptionally large relative to body mass, but not exceptional relative the 576 

volume of the rest of the brain. We documented only one shift in neocortex size relative 577 

to the rest of the brain during primate evolution: an increase at the origin of all 578 

haplorrhines. This shift may be related to the visual specializations of haplorrhines for 579 

high-acuity photic vision, mediated by extensive cortical visual areas that make up over 580 

50% of the cortex in these species [65–67]. On branches postdating the split between 581 

haplorrhines and strepsirrhines, neocortex size is largely predictable from its scaling 582 

relationship to the rest of the brain, in line with the proposed importance of cortical-583 

subcortical connectivity in primate brain evolution [68].  584 

In contrast, we found that the cerebellum increased in size relative to the rest of 585 

the brain on the branch leading to apes. This finding is consistent with the results of 586 

recent studies implicating the cerebellum, and especially the lateral cerebellum, in brain 587 

expansion in apes and some other mammalian lineages [18,32,69].  Our findings also 588 

reinforce the argument that subcortical structures should be given greater consideration in 589 

studies of mammalian brain evolution and cognition [23,70]. Cerebellar specialization in 590 

apes may have been initiated by the demands on motor control and route-planning 591 

imposed by arboreal below-branch locomotion and/or by complex extractive foraging 592 
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[18,23]. The fact that shifts in the relative size of neocortex and cerebellum occurred on 593 

different parts of the tree supports the theory of mosaic brain evolution [71] and suggests 594 

that no single adaptive hypothesis is likely to be capable of accounting for primate brain 595 

evolution; rather, different selection pressures, on different information-processing 596 

capacities, likely operated at different times on different lineages. 597 

Consistent with previous studies, we found that the medulla expanded in humans 598 

(positive outlier status for medulla volume relative to body mass), but to a lesser degree 599 

than other structures (negative outlier status for medulla volume relative to the rest of the 600 

brain). Relative to body mass, medulla volume has been shown to be much less variable 601 

across taxa than other brain structures, particularly compared to the neocortex and 602 

cerebellum. For example, unlike neocortex and cerebellum, medulla volume does not 603 

differ significantly between insectivores, strepsirrhines and haplorrhines [37]. 604 

Accordingly, we found that after controlling for either body mass or brain size, the 605 

evolution of the medulla was not modulated by selection towards a stationary optimum in 606 

the primate clade. These results further support mosaic brain evolution [71], and also 607 

suggest that scaling constraints related to connectivity with other brain regions [72] was 608 

less critical for the medulla than for the neocortex and cerebellum.  609 

Several non-human primate species exhibited exceptional brain evolution in one 610 

trait or another, but only humans showed exceptional brain evolution for multiple brain 611 

components. As predicted, we detected shifts towards larger brain size on the terminal 612 

branches leading to D. madagascariensis, and on the branch leading to the Cebinae clade. 613 

Large brain size in Daubentonia and Cebinae has been attributed to extractive foraging 614 

and tool use [73–75]. Although not one of our a priori expectations, we also documented 615 



 
 

34 

shifts towards smaller brain size on branches leading to several clades, including 616 

Alouatta. We also found that two Gorilla species exhibit a smaller brain or neocortex size 617 

relative to body mass than expected. Given the extremely large body mass of Gorilla 618 

species, these unique traits may be the byproduct of a body mass increase rather than a 619 

reduction in brain size. Also unexpectedly, two Pan troglodytes sub-species were found 620 

to have exceptionally large and small ECV relative to body mass respectively. However, 621 

because more closely related species are weighed more heavily when BayesModelS 622 

generates distributions of predicted trait values, sister taxa deviating from expectations in 623 

opposite directions could result in both taxa being identified as outliers, even if they both 624 

conform to patterns of brain-body scaling for other primates. If the trait distributions for 625 

each species overlap significantly, then accounting for intraspecific variation in future 626 

analyses could remedy this problem. 627 

The unexpected patterns that we observed amongst non-human primates raise 628 

several questions for further research. Given the well-established positive correlation 629 

between overall brain size and extended life history [76–78], what are the life history 630 

implications of mosaic shifts in the sizes of different structures, and do these support any 631 

specific interpretations of the correlation between brain size and life histories? One 632 

hypothesis, the developmental costs hypothesis, is that large brains simply take longer to 633 

grow and mature, leading to extended periods of maternal investment and slower 634 

maturation, with other life history correlates of brain size being byproducts of 635 

developmental prolongation. Support for this hypothesis is provided by the finding that, 636 

amongst mammals, the durations of gestation and lactation have independent effects on 637 

pre- and postnatal brain growth, and once these effects are accounted for, other life 638 
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history correlates are non-significant [79]. Despite their generally correlated evolution 639 

[68], we found shifts in the relative size of neocortex and cerebellum on different parts of 640 

the phylogenetic tree. Because these two structures have different developmental 641 

trajectories, the developmental costs hypothesis predicts different life history correlates; 642 

this prediction has now received support [80]. Further work is needed to establish exactly 643 

what developmental changes allowed for the neocortex and cerebellum to rest-of-brain 644 

scaling rules to change at the origin of haplorrhines and hominoids, respectively. 645 

Another area of interest concerns the cases we found of brain or brain component 646 

size reduction. Montgomery et al. [16] found that brain size reductions were rare during 647 

primate evolution, and that there was a general trend for brain size to increase across 648 

multiple branches of the phylogeny. This raises questions for future work concerning the 649 

causes, developmental mechanisms and functional implications of specific types of size 650 

reduction, such as those that we uncovered in brain size relative to body size in Alouatta 651 

and other clades, and in neocortex size relative to the rest of the brain in N. larvatus.  652 

Finally, a key question that has attracted considerable attention concerns the 653 

ecological and social drivers of brain size and structure across large-scale evolutionary 654 

radiations. It has become increasingly apparent that correlations between overall brain 655 

size and behavioral ecology needed to be treated with caution [6,81,82]. However, as 656 

suggested by the hypothesis of mosaic brain evolution, correlations between ecology and 657 

individual, less functionally heterogenous brain components may be more reliable and 658 

robust [18,23,66,67,71,83]. Our analyses focused on gross subdivisions within the brain, 659 

and we suggest that further insights could be obtained by applying the phylogenetic 660 

methods used in this paper to more fine-grained neuro-anatomical data, using this 661 
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approach to tease apart the contributions of correlated and mosaic change among brain 662 

components [72] and by incorporating ecological, behavioral, and developmental 663 

predictor variables that may account for additional variation in the traits of interest. 664 

In conclusion, we provided robust evidence for directional and accelerating 665 

selection towards larger brain size over the course of human evolution, resulting in the 666 

human brain being exceptionally large for a primate of similar body mass. We also found 667 

that the sizes of human brain components – including the neocortex, cerebellum, and the 668 

rest of the brain – are not larger or smaller than expected relative to the size of the rest of 669 

the brain, but all are larger than expected for a primate of similar body mass. These 670 

results suggest that relative neocortical expansion is not a hallmark of our species. The 671 

diversity of evolutionary patterns for various brain components that we observed within 672 

primates suggests that no single factor fully explains primate brain evolution; instead, 673 

comparative research should investigate how different selection pressures influenced the 674 

evolution of different neuroanatomical components at different times on different parts of 675 

the phylogenetic tree. Additionally, future work should seek to analyze the evolution of 676 

other brain traits, including neuronal composition, using similar phylogenetic 677 

comparative methods that account for the non-independence of data from related species.  678 
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Supplementary figure legends 909 

 910 
Figure 1-figure supplement 1: OU Model of ECV Evolution in Primates 911 

Results are shown for the un-weighted predictor OU model of ECV predicted by body 912 

mass. Figure 1 displays the same results, but only for great apes. Panel A shows the 913 

location of the selection regimes. Panel B shows the optimum regression lines 914 

representing the various selection regimes, along with body mass and ECV data. Data in 915 

panel B are colored according to the corresponding regimes shown in panel A.  916 

 917 

Figure 2-figure supplement 1: BayesModelS predictions of ECV in hominins 918 

Panel A shows a scatter plot of primate ECV and body mass data. Panel B shows the 919 

topology of the great ape portion of the alternate hominin phylogeny used in the 920 

BayesModelS analyses of hominin ECV. Panel C shows the posterior distributions of 921 

predicted ECV values generated by BayesModelS for hominin species with body mass 922 

used as the predictor variable. Vertical lines indicated observed values. The observed 923 

value for H. sapiens s exceeded the mean value predicted by BayesModelS by more than 924 

seven standard deviations. All hominin species were strongly supported positive 925 

outliers, with >99.9% of predictions falling below the observed values for ECV.  926 

 927 

Figure 3-figure suppelement 1: Accelerating Evolution of Brain Size Deviation in 928 

Hominins (alternate hominin phylogeny).  929 

A: Brain size deviation was calculated as the difference between the mean BayesModelS 930 

prediction (made while excluding all hominin data from analysis and using the alternate 931 

hominin phylogeny) and the observed value. Phylogenetic distance was measured as time 932 
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since the shared ancestor of hominins and Pan at 9.28 mya. B: Hominin portion of the 933 

alternate hominin phylogeny after G transformation, with G=3.745 following the 934 

directional acceleration model. Among the PGLS models fit to this data, the directional 935 

acceleration model (AICc = -23.88) was favored, as it outperformed the the Brownian 936 

(AICc = -15.71), directional (AICc = -22.12), and accelerating (AICc = -22.38) evolution 937 

models. This model gave evidence for both evolution towards larger brain volume 938 

relative to body mass (slope = 0.06) and for accelerating evolution (G=3.745). 939 

 940 

Figure 4-figure supplement 1: Human outlier status for ECV 941 

In the BayesModelS analysis of ECV with no predictor variable, humans were not 942 

detected as outliers. Results for other species are given in Source data 1. Because 943 

BayesModelS requires a predictor variable, we assigned each species a random number 944 

for the predictor trait. This resulted in the predictor variable not being included in the 945 

PGLS model in ~98% of post burn-in MCMC samples. We discarded the remaining 946 

samples that included the predictor in the PGLS model before generating predictions. 947 

  948 
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Appendix 1: Data Compilation 950 

All data and trees used in our analyses are included in the Source data 2 file. We 951 

compiled three data sets for our analyses. The first was used for the analyses of 952 

endocranial volume (ECV), the second was used for the analyses of the neocortex and 953 

cerebellum, and the third was used for the analyses of the medulla. 954 

 In the first data set (“data set 1.csv”), we compiled ECV and female body mass 955 

values for non-human primates from [1], who compiled their data set in part from Araújo 956 

[84], Gordon [39], Smith and Jungers [85], and Thalmann and Geissmann [86]. This 957 

dataset was supplemented with fossil data for ancient humans and extinct hominins from 958 

Robson and Wood [2]. These authors provided two taxonomies: one that recognized 959 

more species of hominins (the “splitting taxonomy”), and another that lumped hominin 960 

lineages into fewer taxonomic categories (the “lumping taxonomy”). We extracted values 961 

from the splitting taxonomy, except those for Australopithecus africanus, which were 962 

only available from the lumping taxonomy. We also chose to use values for Homo 963 

erectus (sensu lato) from the lumping taxonomy, as these values was calculated from 964 

fossils attributed to both H. erectus and H. ergaster, two species that are not 965 

differentiated in our phylogeny. We did not include H. heidelbergensis in our analyses 966 

because its phylogenetic position is unresolved [87]. Sample sizes are given in Table 1. 967 

Museum numbers for the specimens used in calculating species mean values are given in 968 

Appendix I of [2].  969 

In the second data set (“data set 2.csv”), body mass, neocortical volume, and 970 

cerebellar volume for humans and extant non-human primates were compiled from the 971 

data set of Barton and Venditti [88]. We also complied brain volumes to use in the 972 
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calculation of the “rest-of-brain” predictor trait in the analyses of these brain structures. 973 

These values were calculated as an average of the values given in [41,89–92]. The second 974 

data set was limited to extant primates and included values for 55 species, including 975 

humans.  976 

The third data set (“data set 3.csv”) included body mass, brain volumes, and 977 

medulla volumes from Stephan et al. [41]. This data set spanned 41 species.  978 

A summary of all human ECV and body mass estimates and the analyses in which 979 

they were used is given in Tables 1 and 2.   980 

All trait and predictor values were log10 transformed prior to analyses. When 981 

differences between component volumes were used in analyses, we calculated the 982 

logarithms after subtraction.  983 

We used several different phylogenetic trees and tree blocks in our analyses. We 984 

constructed a “hominin phylogeny” (“hominin.phylogeny.txt”) that included humans, 985 

extinct hominins, and extant primates for use in the analyses of hominin ECV (including 986 

the analyses of directional and accelerating evolution); this phylogeny was produced by 987 

grafting the “combined dataset consensus time tree” of hominin evolution from Organ et 988 

al. [13] onto the time-scaled consensus tree of extant primates from version 3 of 10kTrees 989 

[43]. We grafted the clade (including the root branch) containing Pan and all fossil 990 

hominins onto the node at which Gorilla diverged from the Pan lineage, and then re-991 

scaled this pasted clade so that the human tip lined up with those of extant primates. We 992 

also constructed an “alternative hominin phylogeny” (“alt.hominin.phylogney.txt” using 993 

the “morphology and molecular graft time tree” from Organ et al. [13]. To construct this 994 

tree, we again grafted the clade (including the root branch) containing Pan and all fossil 995 
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hominins onto the node at which Gorilla diverged from the Pan lineage, and then 996 

shortened the root branch so that the human tip lined up with those of extant primates. 997 

We were not able to use this method for constructing the hominin phylogeny because it 998 

would have resulted in the branch leading to the clade containing Pan and hominins 999 

having a negative length. Both hominin phylogenies we constructed include humans, 300 1000 

other extant primates, and 13 extinct hominin species. In other analyses, we used a 1001 

consensus tree (“consensus.tree.txt”) of extant primates (for OU model fitting) or a block 1002 

of 100 primate trees (“tree.block.txt”) downloaded from version 3 of 10kTrees [43, for 1003 

phylogenetic prediction].   1004 

 1005 

Appendix 2: Details of Bayou models 1006 

The un-weighted predictor model is described by the following equation: 1007 

 1008 

Eqn. 1 E[y] = W  𝜃𝑀 +  𝑥 𝛽𝑛  1009 

 1010 

E[y] is the expected value of a species trait. W and 𝜃𝑀  represent the evolutionary weight 1011 

matrix and 𝜃 matrix described in [93]. W is a 1 x n matrix whose entries are the weights 1012 

given to each of the n selection regimes through which the species of interest evolved. 1013 

The weight of each regime is dependent upon the phylogeny and the value of D. More 1014 

recent regimes have greater weights, especially when D is high. 𝜃𝑀   is an n x 1 matrix of 1015 

the T values of the regimes through which the species of interest evolved. The product of 1016 

W and 𝜃𝑀 gives the effective T value for a species that evolved towards the various 1017 

optimum 𝜃 values specified in 𝜃𝑀.  𝛽𝑛 is the 𝛽 value of the parameter regime at the tip of 1018 
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the phylogeny. Therefore, in this model, the expected phenotype for a species is a 1019 

function of the evolutionarily weighted effective T value, the coefficient of the predictor 1020 

variable of the current selection regime, and the value of the predictor at the tip of the 1021 

phylogeny.  1022 

 1023 

The weighted predictor model is described by a similar equation:  1024 

 1025 

 Eqn. 2 E[y] = W 𝜃𝑀 +  𝑥 𝑊𝛽𝑀  1026 

 1027 

𝛽𝑀 is an n x 1 matrix of the optimum 𝛽 values of the n regimes through which the species 1028 

evolved, and is analogous to 𝜃𝑀.  Thus, in this model the expected trait value of each 1029 

species is a function of the species evolutionarily weighted effective 𝜃 and 𝛽 values, and 1030 

the value of the predictor variable x at the tip of the phylogeny.  1031 

 1032 

Appendix 3: Problems with MCMC convergence in bayou 1033 

Bayou returned several MCMC chains during the analyses of ECV that did not converge 1034 

in terms of likelihood, D, and V2. To address this issue, we generated up to six MCMC 1035 

chains in each analysis for both for the un-weighted predictor, weighted predictor, and 1036 

Brownian models. Several chains with exceptionally high mean likelihood had V2 values 1037 

approaching zero and very high D values that appeared to be bounded by a maximum 1038 

value. We infer from these patterns that the chains were settling on an unrealistic pattern 1039 

of evolution with the stationary variance approaching zero. These chains also inferred 1040 

shifts erratically; they predicted shifts with posterior probability greater than 0.1 on many 1041 
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branches, but no shifts had a posterior probability greater than 0.3. We discarded these 1042 

chains, and then selected the two chains with the highest mean likelihood for each 1043 

analysis for subsequent use. 1044 

 1045 

  1046 
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Additional files 1047 

Source code 1. Representative Code.  1048 

Representative R code files for the bayou analyses (“representative bayou code.R”), 1049 

BayesModelS analyses (“representative BayesModels code.R”), and pgls model fitting 1050 

(“pgls models.R”), are contained in the this file, along with the BayesModelS code 1051 

(“mult.spec.BayesModelS_v24.R”) and other necessary data files. 1052 

 1053 

Source data 1. Bayou and BayesModelS Results Details.  1054 

Bayou Results details: Diagnostic plots giving details of chain convergence are provided 1055 

in the “bayou results summary.html” file along with detailed information on all OU and 1056 

Brownain motion models for each trait and predictor pair.  1057 

BayesModelS Results Details: Details of the BayesModelS results and diagnostic 1058 

parameters of MCMC chains are given in the “BayesModelS.results.csv” and 1059 

“BayesModelS.results.hominins.removed.csv” files. 1060 

 1061 

Source data 2. All data and trees used in our analyses.  1062 

Contains the following files:  1063 

1. data set 1.csv 1064 

2. data set 2.csv 1065 

3. data set 3.csv 1066 

4. consensus.tree.txt 1067 

5. tree.block.txt 1068 

6. grafted.tree.txt 1069 
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