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Abstract. We prove long-time existence for mean curvature flow of a smooth

n-dimensional spacelike submanifold of an n+m dimensional manifold whose
metric satisfies the timelike curvature condition. In case the ambient space

is the indefinite warped product of compact Riemannian manifolds, we verify

that the timelike curvature condition and thereby long time existence for the
evolution by mean curvature.
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In this paper we establish the following result on long-time existence for the
evolution by mean curvature flow of compact spacelike submanifolds of indefinite
manifolds:

Theorem 1. Let Σ0 be a smooth compact n-dimensional spacelike submanifold of
an n+m dimensional manifold M with indefinite metric G satisfying the timelike
curvature condition (2.1).

Then there exists a unique family fs : Σ→M for 0 ≤ s < s0 of smooth compact
n-dimensional spacelike submanifolds satisfying the initial value problem

df

ds
= H,

with initial condition

f0(Σ) = Σ0,

where H is the mean curvature vector associated to the immersion fs in (M,G),
and Σ0 is a given initial compact n-dimensional spacelike immersed submanifold.

Moreover, if fs(Σ) remains in a smooth compact region of M for 0 ≤ s < s0,
then fs may be extended beyond s0.
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The critical ingredient of the proof is a gradient estimate - Proposition 7 in this
paper - and originally proven in the stationary case by Robert Bartnik in his thesis,
see [4].

Mean curvature flow of spacelike hypersurfaces in indefinite spaces has been stud-
ied previously, for example [6] [7] [20], as has higher codimension mean curvature
flow in definite spaces [2] [5] [14] [18] [21].

Here, our method is to extend the work in [7] to higher codimension. We are
generally interested in open manifolds, as there are well-known topological obstruc-
tions to the existence of indefinite metrics on compact manifolds, for example see
[15]. It is worth noting that longtime existence in the case of codimension 1 has
more recently been established without the timelike convergence condition [9].

Mean curvature flow has found many applications, for example, probing the
existence of special Lagrangian submanifolds in Calabi-Yau manifolds [19] and of
holomorphic curves in Einstein 4-manifolds [5]. These applications arise since such
submanifolds minimize area in their homology classes and therefore deforming by
mean curvature flow is a natural method for finding minimizers [17].

The flow has also been used to find “nice” maps between two Riemannian n-
manifolds, by flowing graphs in the product n+ n-manifold. This has been consid-
ered both for definite and indefinite products, for example see [13] [14].

Flowing submanifolds of indefinite (rather than Riemannian) spaces can be bet-
ter behaved for flowing by mean curvature. This has been seen to be the case in
the case of spacelike hypersurfaces [7], and now, by virtue of Theorem 1, in higher
co-dimension.

The motivating context of the current work is that of invariant metrics on spaces
of oriented geodesics, which are often of indefinite signature [1] [8] [11]. Inter-
estingly, special Lagrangian submanifolds in indefinite geodesic spaces have been
considered from a stationary point of view recently [3].

The result is stated as generally as possible, the specific long-time behaviour of
the flow being dependent upon the particular context. The conditions introduced
are mild enough to hold, for example, for indefinite product spaces, as well as
warped products with a compact factor.

The additional ingredient required for convergence would be the construction of
barriers, which would depend upon more detailed information about the ambient
manifold.

In the next section we discuss a number of examples where spacelike higher
co-dimension mean curvature arises. The following three sections introduce the
background material, while Section 5 contains the proof of the gradient estimate.
The final section contains the proof of Theorems 1.

1. Flows in indefinite manifolds

Example 1 (Spaces of Oriented Geodesics). Spaces of oriented geodesics of sym-
metric spaces often admit canonical indefinite metrics [1]. Consider the collection
L(R3) of oriented geodesics of Euclidean 3-space, which may be identified with the
total space of the tangent bundle to the 2-sphere.

This non-compact 4-manifold admits a canonical metric G2,2 of signature (2, 2),
which, up to a spherical summand, is unique [16]. The metric is Kähler, with
compatible complex and symplectic structures, and is scalar flat, although it is not
Einstein [11].
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An oriented smooth surface in R3 gives rise, through its oriented normal lines,
to a smooth surface in L(R3). This surface is Lagrangian and the induced metric is
either Lorentz or degenerate, where the degeneracy occurs precisely at the umbilic
points of the surface.

Theorem 1 arose in the context of co-dimension 2 mean curvature flow in L(R3)
as one element of the proof of the Carathéodory Conjecture on the number of
umbilic points on a closed convex sphere. This involves flowing a spacelike disc
with boundary lying on a Lagrangian surface and therefore requires additional
boundary estimates[12].

Spacelike surfaces in L(R3) may also be characterized as foliations of the under-
lying space [10] and mean curvature flow would be a natural way of deforming such
geodesic foliations. Theorem 1 gives interior estimates for such deformations.

Example 2 (Product Manifolds). Given the indefinite product metric G = g1−g2

on a product M = M1 ⊕M2 of n- and m-dimensional Riemannian manifolds, one
can consider the mean curvature flow of an n-dimensional spacelike sub-manifold.

This was carried out in [14], where long-time existence and convergence is es-
tablished for products in which the sectional curvatures satisfy K2 ≤ K1. For
n = m = 2 this is equivalent to the timelike curvature condition.

Example 3 (A Geometric Quasi-linear Navier-Stokes Flow). Consider the total
space of the tangent bundle TRn of Euclidean n-space, together with its natural
projection π : TRn → Rn. This 2n-manifold admits a flat metric of signature (n, n)
defined as follows. By definition

TRn = {(p, V ) | p ∈ Rn V ∈ TpRn}.

Let (x1, x2, ..., xn) be flat coordinates on Rn and for any V ∈ TpRn define conjugate
coordinates (ẋ1, ẋ2, ..., ẋn) by

V =

n∑
i=1

ẋi
∂

∂xi
.

Define the neutral metric G(n,n) in terms of the coordinates (x1, x2, ..., xn, ẋ1, ẋ2, ..., ẋn)

on TR3 by

ds2 =

n∑
i=1

dxidẋi.

A vector field on Euclidean 3-space is a section of the bundle π : TR3 → R3,
that is, a map V : R3 → R3 such that π ◦ V = Id. Denote by G̃ the metric induced
on V by the canonical metric G(3,3) on TR3.

We are interested in flowing 3-dimensional spacelike submanifolds. Examples of
such can be found by considering the vector field given on R3 − (0, 0, 0) by

V = H(R)
∂

∂R
,

where R is the distance to the origin (the source). Such a vector field gives rise to

a metric G̃ that has the following signature:
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H ′ < 0 H ′ = 0 H ′ > 0
H < 0 -3 (0, 2) (1, 2)
H = 0 (0, 1) 0 (1, 0)
H > 0 (2, 1) (2, 0) +3.

Thus, we get spacelike submanifolds when H > 0 and H ′ > 0.
The mean curvature vector of the embedded 3-manifold is easily computed to be

H̃ = −RHH
′′ + 2RH ′2 − 2HH ′√

22RH(H ′)2

(
∂

∂R
−H ′ ∂

∂Ṙ

)
.

Co-dimension 3 mean curvature flow of these vector fields is determined by the
single equation

∂H

∂t
=
RHH ′′ + 2RH ′2 − 2HH ′

2RHH ′
.

This is a quasi-linear Navier-Stokes equation for the vector field: a second order
reaction-diffusion equation with convection and a pressure source given by the gra-
dient of the Gauss map.

Moreover, the timelike curvature condition holds and we can apply Theorem 1
in this setting for interior estimates.

2. Immersed spacelike submanifolds

Let M be an n+m−dimensional manifold endowed with a metric G of signature
(n,m). Throughout we use the summation convention on repeated indices, except
for the quantity ψα, defined below. In some instances we include summation signs
for clarity. Note that raising and lowering normal indices (Greek indices) changes
the sign of the component, while raising and lowering tangent indices (Latin indices)
does not change the sign. For convenience we will use < ·, · > interchangeably with
G(·, ·).

We will use throughout a multi-time function t : M→ Rm of maximal rank with
components tα for α = 1, ...,m such that

G(∇tα,∇tα) < 0 ∀α = 1, ...,m,

and {∇tα}m1 form a mutually orthogonal basis for a timelike plane, where all geo-
metric quantities associated with G will be denoted with a bar. This may only be
locally defined, but can be patched over compact sets.

In particular, given a manifold with metric of signature (n,m), we can choose
local coordinates (xi, yα) such that ∂

∂xi are spacelike and ∂
∂yα are timelike. Then

the local functions tα : p 7→ yα(p) are multi-time functions.

Definition 1. The manifold (M,G) is said to satisfy the timelike curvature condi-
tion if, for any spacelike n-plane P at a point in M, the Riemann curvature tensor
satisfies

(2.1)

n∑
i=1

G(R(X, τi)X, τi) ≥ k G(X,X),

for some positive constant k, where {τi}ni=1 form an orthonormal basis for P and
X is any timelike vector orthogonal to P . Here we use the following definition of
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the Riemann tensor

R(X,Y )Z = −∇X∇Y Z +∇Y∇XZ +∇[X,Y ]Z,

for vector fields X,Y, Z.

Note 1. This generalizes the codimension one timelike convergence condition of
General Relativity, employed for example in [7]:

Ric(X,X) ≥ 0.

Fix an orthonormal frame on (M,G):

{ei, Tα}n,mi,α=1 s.t. G(ei, ej) = δij G(Tα, Tβ) = −δαβ G(ei, Tα) = 0,

with
Tα = −ψα∇tα ψ−2

α = −G(∇tα,∇tα).

Definition 2. Given a contravariant tensor B on M we define its norm by

‖B‖2 =

n∑
i1,...,il=1

[B(ei1 , ei2 , ..., eil)]
2 +

m∑
β1,...,βl=1

[B(Tβ1
, Tβ2

, ..., Tβl)]
2.

Similarly, for a covariant tensor B we dualize with the metric G and define its
norm as above. Note that this is not the usual Hilbert-Schmidt inner product for
multi-linear functions, as it depends on the choice of an orthonormal frame.

Higher derivative norms are also defined:

‖B‖2k =

k∑
j=0

‖∇jB‖2.

For a mixed tensor, we occasionally use the induced metric on the spacelike
components to define a norm on the timelike components. That is, if Bαβijk is a
tensor of the indicated type, then we define

|Bαβ |2 =

n∑
i=1

[Bαβ(ei, ei, ei)]
2.

Let f : Σ → M be a spacelike immersion of an n-dimensional manifold Σ, and
let g be the metric induced on Σ by G.

Definition 3. A second orthonormal basis {τi, να} for (M,G) along Σ is adapted
to the submanifold if:

{τi, να}n,mi,α=1 s.t. G(τi, τj) = δij G(να, νβ) = −δαβ G(τi, να) = 0,

where {τi}ni=1 form an orthonormal basis for (Σ, g), and {να}mα=1 span the normal
space.

The second fundamental form of the immersion is

Aijα = G(∇τiνα, τj) = −G(∇τiτj , να),

while the mean curvature vector is

Hα = gijAijα.

We have the following two equations for the splitting of the connection

(2.2) ∇τiτj = ∇‖τiτj −A
α
ijνα
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(2.3) ∇τiνα = Ajiατj + Cβiανβ ,

where ∇‖ is the induced connection and Cβiα are the components of the normal
connection

∇⊥τiνα = Cβiανβ .

3. Multi-angles

We now consider how to use orthonormal frames to define a matrix of angles
between two spacelike n-planes in an n+m-manifold.

For frames {ei, Tα} and {τi, να} as above, introduce the notation

Xij = G(τi, ej) Wiβ = G(τi, Tβ) Uαj = −G(να, ej) Vαβ = −G(να, Tβ).

Thus

ei = Xjiτj + Uαiνα Tβ = Wiβτi + Vαβνα,

and the (n+m)× (n+m) dimensional matrix

M =

(
X W
−U −V

)
,

is an element of the orthogonal group O(n,m).

Proposition 1. With notation as above, the O(n,m) condition on M reads

(3.1) XTX = In + UTU V TV = Im +WTW UTV = XTW.

Proof. This follows from the requirement that

MT

(
In 0
0 −Im

)
M =

(
In 0
0 −Im

)
.

�

The vectors {τi}n1 span the tangent space of Σ, while {να}m1 span the normal
bundle. We are free to rotate these frames within these two spaces, and this corre-
sponds to left action of O(n) and O(m) on O(n,m).

Similarly, we consider rotations of {ei}n1 that preserve the n-dimensional vec-
tor space that they span, along with rotations of {Tβ}m1 that preserves the m-
dimensional space they span. These correspond to right actions of O(n) and O(m)
within O(n,m). Note that the positive definite norm in Definition 2 is preserved
by these rotations.

Proposition 2. By rotations of the frames {ei, Tα} and {τj , νβ} which preserve
the tangent and normal bundles of Σ, as well as the tensor norm of Definition 2,
we can simplify the matrix M ∈ O(n,m) for n ≥ m to

M =

 In−m 0 0
0 D1 ±D4A

T

0 AD3 D2

 ,

where A ∈ O(m), D1, D2, D3 and D4 are diagonal matrices satisfying

D2
1 = Im +D2

3 D2
2 = Im +D2

4 |D1|2 = |D2|2,
and ± of a diagonal matrix means a free choice of sign on the entries of the matrix.

The case n < m has a similar decomposition with n and m interchanged in the
above formulae.
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Proof. Consider first the matrix Xij =< τi, ej >. The matrix XTX is symmetric
and non-negative definite and so it has a well-defined square root, namely a sym-

metric n×n matrix which we denote by
√
XTX. By the first equation of (3.1), X is

invertible since det(X) ≥ 1 and so we can define the n×n matrix A =
√
XTXX−1.

Then

AT InA = (X−1)T
√
XTX

√
XTXX−1 = (X−1)TXTXX−1 = In,

so that A ∈ O(n). Define a new frame by {Aijτj , να} and then

X̃ij = Aik < τk, ej >=
√
XTXX−1X =

√
XTX,

which is symmetric. Now we can act on both the left and right of X̃ by O(n) to
diagonalize it.

A similar argument yields a diagonalization of Vαβ .
After diagonalization of X, the first of equations (3.1) implies that the matrix

UTU is diagonal. Thus the n m-dimensional vectors {Uαiνα}ni=1 are mutually
orthogonal and, since n ≥ m, we conclude that n−m of these vectors must be zero.

After a reordering of the basis elements, the matrix M then decomposes into

M =

 In−m 0 W2

0 X1 W1

0 U1 V

 .

The last of equations (3.1) now implies that W2 = 0 and we reduce the problem to
the square case:

XT
1 X1 = Im + UT1 U1 V TV = Im +WT

1 W1 UT1 V = XT
1 W1.

In fact, to indicate that X1 and V are diagonal, let us write X1 = D1 and
V = D2. Thus

(3.2) D2
1 = Im + UT1 U1,

(3.3) D2
2 = Im +WT

1 W1,

(3.4) UT1 D2 = D1W1.

Equations (3.2) and (3.3) imply that there exists diagonal matrices D3 and D4

(with entries defined up to a sign) such that

U1 = AD3 W1 = BD4 for some A,B ∈ O(m).

Thus equations (3.2), (3.3) and (3.4) now read

(3.5) D2
1 = Im +D2

3,

(3.6) D2
2 = Im +D2

4,

(3.7) D3A
TD2 = D1BD4.

Taking the transpose of this last equation, multiplying across by the inverses of D1

and D2 (which exist by equations (3.5) and (3.6)), and multiplying back on the
right hand-side we find that

(3.8) AD−2
1 D2

3A
T = D−2

2 D2
4.

Similarly
BD−2

2 D2
4B

T = D−2
1 D2

3,
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and so A = ±BT .
Moreover, if A ∈ O(m) conjugates a diagonal matrix to a diagonal matrix, then

A must permute the diagonal elements. Denote the diagonal elements of D1, D2,
D3 and D4 by λi, µi, ai and bi, respectively, where i = n − m + 1, ..., n. Then
equations (3.5), (3.6) and (3.8) read

λ2
i = 1 + a2

i µ2
i = 1 + b2i µ2

i a
2
i = λ2

p(i)b
2
p(i),

where p is the permutation of (n−m+ 1, ..., n) determined by A. Combining these
three equations we get

a2
i + a2

i b
2
i = b2p(i) + a2

p(i)b
2
p(i),

which when summed yields∑
i

a2
i =

∑
i

b2i and
∑
i

λ2
i =

∑
i

µ2
i .

Thus |D1|2 = |D2|2, where for any diagonal matrix D, |D|2 = tr(D2).
�

Definition 4. The function v is defined to be

v2 = V αβVαβ ,

where V αβ = −G(να, T β) = −Gijναi T
β
j , with respect to the dual coframes {ei, Tα}

and {τ i, να}. This is a generalization of the tilt function in the case of codimension
one [4].

We now use the normal form to construct estimates for the norm of the adapted
frames in terms of v:

Proposition 3. For an adapted frame {τi, να} we have

‖τi‖2 ≤ (n/m+ 2)v2 ‖να‖2 ≤ 2v2,

for all i = 1, 2, ..., n and α = 1, 2, ...,m.

Proof. First consider an adapted frame {τ̊i, ν̊α} for which, with respect to an or-

thonormal background basis {̊ei, T̊α}, the matrix M has the form given in Propo-
sition 2. For a general adapted frame {τi, να}

τi = Aji τ̊j να = Bβαν̊β ,
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where A ∈ O(n) and B ∈ O(m). Then

‖τi‖2 =
∑
j

(G(τi, e̊j))
2 +

∑
α

(G(τi, T̊α))2

=
∑
j

[∑
k

AkiG(̊τk, e̊j)

]2

+
∑
α

[∑
k

AkiG(̊τk, T̊α)

]2

≤
∑
j

[∑
k

|Aki | |G(̊τk, e̊j)|

]2

+
∑
α

[∑
k

|Aki | |G(̊τk, T̊α)|

]2

≤
∑
j

[∑
k

|G(̊τk, e̊j)|

]2

+
∑
α

[∑
k

|G(̊τk, T̊α)|

]2

≤
∑
j

[∑
k

|Xkj |

]2

+
∑
α

[∑
k

|Wkα|

]2

≤
∑
j,k

|Xj,k|2 +
∑
α,k

|Wkα|2

= n−m+ |D1|2 + |D4|2

= n− 2m+ 2v2

≤ (n/m+ 2)v2.

Similarly for να:

‖νβ‖2 =
∑
j

(G(νβ , e̊j))
2 +

∑
α

(G(νβ , T̊α))2

=
∑
j

[∑
γ

BγβG(̊νγ , e̊j)

]2

+
∑
α

[∑
γ

BγβG(̊νγ , T̊α)

]2

≤
∑
γ,j

|Uγj |2 +
∑
α,γ

|Vαγ |2

= |D3|2 + v2

= |D1|2 −m+ v2

≤ 2v2.

�

4. The height functions

Let uα : Σ→ R be the height function uα = tα ◦ f . We now prove

Proposition 4. For all α = 1, ...,m we have

∇uα = ∇tα + ψ−1
α

∑
β

Vβανβ ,

∇uα · ∇uβ = ψ−1
α ψ−1

β

(∑
γ

VγαVγβ − δαβ

)
.
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Proof. From the definition of uα and Tα we have

∇uα = ∇tα + ψ−1
α

∑
β

Vβανβ = ψ−1
α

∑
β

Vβανβ − Tα

 ,

and so

∇uα · ∇uβ =ψ−1
α ψ−1

β G

(∑
γ

Vγανγ − Tα,
∑
δ

Vδβνδ − Tβ

)

= ψ−1
α ψ−1

β

(∑
γ

VγαVγβ − δαβ

)
.

as claimed. �

Proposition 5.
4uγ = −ψ−1

γ VαγH
α + gij∇i∇jtγ .

4Vαβ =Vγβ(AijγA
ij
α+ < R(τi, νγ)τi, να >)−∇⊥TβHα −Aijα Tβ(gij)

+ 1
2 (∇LTβG)(να, τi, τi)− (∇LTβG)(τi, να, τi)− (∇Tβ)(H, να)

− 2C γ
iα < νγ ,∇Tβτi > +(∇iC γ

iα + C δ
iα C γ

iδ )Vγβ ,

where 4 is the Laplacian of the induced metric 4 = gij∇i∇j and ∇⊥ is the normal
connection.

Proof. The first statement follows from a straightforward generalization of the codi-
mension one case [7].

For the second statement we follow Bartnik [4], fix a point p ∈ Σ and choose
an orthonormal frame {τi} on Σ such that (∇iτj)(p) = 0. Extend this frame to a
neighbourhood of Σ satisfying LTβτi = 0 for a fixed β. Then

−4Vαβ = 4 < να, Tβ >

= τiτi < να, Tβ >

= τi(< ∇τiνα, Tβ > + < να,∇τiTβ >)

= τi(A
j
iα < τj , Tβ > +Cγiα < νγ , Tβ > + < να,∇τiTβ >)

=< R(τi, Tβ)τi, να > + < να,∇Tβ∇τiτi > + < ∇τiνα,∇Tβτi >)

+ (∇τiHα+ < R(τi, τj)να, τi > −AγijC
α
iγ +HγCαjγ) < τj , Tβ >

+ Cγiα(< ∇τiνγ , Tβ > + < νγ ,∇τiTβ >)+ < νγ , Tβ > ∇τiC
γ
iα

+Ajiα(< ∇τiτj , Tβ > + < τj ,∇τiTβ >)

=< R(τi, νγ)τi, να >< νγ , Tβ > + < να,∇Tβ∇τiτi > +2Ajiα < τj ,∇Tβτi >
+ 2Cγiα < νγ ,∇τiTβ > + < τi, Tβ > ∇iHα +HγCiγα < τi, Tβ >

+AijαA
γ
ij < νγ , Tβ > +CγiαC

δ
iγ < νδ, Tβ > + < νγ , Tβ > ∇τiC

γ
iα

= −Vγβ(AijγA
ij
α+ < R(τi, νγ)τi, να >) +∇⊥TβHα

< να,∇Tβ∇iτi > +Aijα Tβ < τi, τj >

+ 2C γ
iα < νγ ,∇Tβτi > +(∇iC γ

iα − C δ
iα C γ

iδ )Vγβ .(4.1)

We now use the following:
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Lemma 1.

Tβ < τi,∇iνα > = − < ∇iτi,∇Tβνα > + 1
2 (∇LTβG)(να, τi, τi)

− (∇LTβG)(τi, να, τi)− < ∇HTβ , να > .

Proof. The proof of this follows the codimension one case (Proposition 2.1 of [4]).
�

To complete the proof of the proposition we note that

< να,∇Tβ∇iτi > = Tβ < να,∇iτi > − < ∇Tβνα,∇iτi >
= −Tβ < ∇iνα, τi > − < ∇Tβνα,∇iτi >
= − 1

2 (∇LTβG)(να, τi, τi) + (∇LTβG)(τi, να, τi)

+ < ∇HTβ , να >,

where in the last equality we have used Lemma 1. Substituting this in equation
(4.1) then yields the result.

�

5. The initial value problem

Let fs : Σ → M for s ∈ [0, s0) be a family of compact n-dimensional spacelike
immersed submanifold in an n + m-dimensional manifold M with a metric G of
signature (n,m). In addition, we assume that n ≥ m. The case n < m follows by
similar arguments.

Then fs moves by parameterized mean curvature flow if it satisfies the following
initial value problem:

Let fs : Σ→M be a family of spacelike immersed submanifolds satisfying

df

ds
= H,

with initial conditions

f0(Σ) = Σ0,

where H is the mean curvature vector associated with the immersion fs in (M,G),
and Σ0 is some given initial compact n-dimensional spacelike immersed submani-
fold.

The evolution of the functions uγ and v is then given by:

Proposition 6.

(5.1)

(
d

ds
−4

)
uγ = −gij∇i∇jtγ ,

v

(
d

ds
−4

)
v ≤− V αβVγβ(AijγA

ij
α+ < R(τi, νγ)τi, να >) +AijαLTβgijV αβ

− 1
2 (∇LTβG)(να, τi, τi)V

αβ + (∇LTβG)(τi, να, τi)V
αβ

+ 2C γ
iα < νγ ,∇Tβτi > V αβ − C δ

iα C γ
iδ VγβV

αβ .
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Proof. Generalizing Proposition 3.1 of [7], note the time derivatives are

duγ
ds

= −ψ−1
γ VαγH

α,

dVαβ
ds

= −∇TβHα −Hγ < ∇νγTβ , να > .

This last equation follows from

dVαβ
ds

=− dG(να, Tβ)

ds

=− dG
ds

(να, Tβ)−G(
dνα
ds

, Tβ)−G(να,
dTβ
ds

)

=−∇TβHα −G(να,∇HTβ).

The flow of uγ then follows immediately from Proposition 5.
The evolution of the tilt function v2 = V αβVαβ ≡ VαβVαβ reads

v

(
d

ds
−4

)
v =Vαβ

(
d

ds
−4

)
Vαβ

+
1

v2
[(Vγδ∇Vγδ) · (Vµν∇Vµν)− (VγδVγδ)(∇Vµν · ∇Vµν)] .

The expression in the square bracket is non-positive since for scalars ak and vectors
vk in an inner product space we have∑

k

akvk ·
∑
l

alvl =
∑
k,l

akalvk · vl ≤
1

4

∑
k,l

(a2
k + a2

l )(|vk|2 + |vl|2)

=
∑
k

a2
k|vk|2 +

1

2

∑
k 6=l

a2
k|vl|2 ≤

(∑
k

a2
k

)(∑
l

|vl|2
)
.

We conclude that

v

(
d

ds
−4

)
v ≤ Vαβ

(
d

ds
−4

)
Vαβ .

Now contracting the second equation of Proposition 5 with Vαβ yields the claim. �

Proposition 7. Assume that M satisfies the timelike curvature condition (2.1).
Let Σs be a smooth solution of the initial value problem on the interval 0 ≤ s < s0

such that Σs is contained in a compact subset of M for all 0 ≤ s < s0. Then the
function v satisfies the a priori estimate

v(p, s) ≤ (m+ sup
Σ×0

v) sup
(q,s)∈Σ×[0,s0]

exp[K(u(q, s)− u(p, s))],

for some positive constant K(n,m, ‖t‖3, |ψ|, ‖R‖, |H|, k), where u =
∑
α uα.

Proof. The argument is an extension of Bartnik’s estimate in the stationary case
[4] to the parabolic case with higher codimension.

Let K>0 be a constant to be determined later and set

CK = (m+ sup
Σ×0

v) sup
Σ×[0,s0]

exp(Ku).
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Consider the test function h = v exp(Ku). Suppose, for the sake of contradiction,
that the function h reaches CK for the first time at (p1, s1) ∈ Σ× (0, s0]. Then at
this point v ≥ m+ 1 and by the maximum principle(

d

ds
−4

)
h
·
≥ 0 ∇h ·= 0.

Here and throughout a dot over an inequality or equality will refer to evaluation at
the point (p1, s1). Working out these two equations we have

(5.2)

(
d

ds
−4

)
v +Kv

(
d

ds
−4

)
u− 2K∇u · ∇v −K2v|∇u|2

·
≥ 0,

(5.3) ∇v +Kv∇u ·= 0.

Substituting the second of these in the first we obtain

(5.4) Kv

(
d

ds
−4

)
u
·
≥ −

(
d

ds
−4

)
v −K2v|∇u|2.

Now, from Proposition 6 and the estimates in Proposition 3

(5.5)

(
d

ds
−4

)
uγ = −gij∇i∇jtγ ≤ ‖∇i∇jtγ‖.‖τi‖.‖τj‖ ≤ C1v

2,

where C1 = C1(n,m, ‖t‖2).

At p1 we can set C β
iα = 0 and then, Proposition 6 and the timelike curvature

condition (2.1) imply that

v

(
d

ds
−4

)
v
·
≤−

∑
α

V 2
α |Aα|2 + C2(‖T‖1)|Aα|Vα + C3(n,m, ‖T‖2)v4

≤− (1− ε)
∑
α

V 2
α |Aα|2 + C4(ε, n,m, ‖T‖2)v4,(5.6)

for any ε > 0. Here we have utilised the gauge choice Vαβ = Vαδαβ , summation is
over α and the last inequality follows from Young’s:

ab ≤ εa2

2
+
b2

2ε

Now, from the Schwartz and arithmetic-geometric mean inequalities

(5.7)
∑
α

V 2
α |Aα|2 ≥

∑
α

(
1 +

1

n

)
λ2
αV

2
α −H2

αV
2
α ,

where λα is the eigenvalue of Aijα with the maximum absolute value, so that in an
eigenframe Aijα ≤ |λα|δij .

On the other hand we compute

∇iVαβ = −Ajiα < τj , Tβ > − < να,∇iTβ >,

and so

v∇iv = V αβ∇iVαβ = −AjiαWjβV
αβ− < να,∇iTβ > V αβ .
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The square norm is

v2|∇v|2 = v2∇iv∇iv

=
(
AjiαWjβ+ < να,∇iTβ >

)(
Aikγ Wkδ+ < νγ ,∇

i
Tδ >

)
V αβV γδ

=
(
AjiαA

ik
γ WjβWkδ + 2AjiαWjβ < νγ ,∇

i
Tδ > + < να,∇iTβ >< νγ ,∇

i
Tδ >

)
V αβV γδ

Take these three summands separately, computing in an eigenframe (so that V αβ =
Vαδ

αβ and Aijα ≤ |λα|δij). The first term is

AjiαA
ik
γ WjβWkδV

αβV γδ ≤ |λαλγ |.|W k
βWkδV

αβV γδ|

= |λαλγ |.|
(
V ρβ Vρδ − δβγ

)
V αβV γδ|

=
∑
α

λ2
α

(
V 2
α − 1

)
V 2
α

≤ v2
∑
α

λ2
αV

2
α

where we have used the relationship between the matrices W and V given in the
middle of equations (3.1). Note that this equation implies ‖Wβ‖2 = V 2

β − 1 ≤
v2 − 1 ≤ v2.

For the second term, again computing in an eigenframe for V αβ ,

2AjiαWjβ < νγ ,∇
i
Tδ > V αβV γδ ≤ 2|λα|.|Wiβ < νγ ,∇

i
Tδ > V αβV γδ|

= 2
∑
α,γ

|λα|.|Wiα < νγ ,∇
i
Tγ > |.|VαVγ |

≤ 2
∑
α,γ

|λα|‖Wα‖.‖νγ‖.‖∇Tγ‖.|VαVγ |

≤ 2m
3
2 v2‖T‖1

∑
α,γ

|λα|.|VαVγ |,

where we use ‖Wβ‖2 ≤ v2 and ‖νγ‖2 ≤ m3v2 from Proposition 3.

For each α we use Young’s inequality with a = vλα|Vα| and b = m
3
2 v‖T‖1

∑
γ |Vγ |

to conclude the second estimate

2AjiαWjβ < νγ ,∇
i
Tδ > V αβV γδ ≤ ε

∑
α

v2λ2
αV

2
α +m5ε−1‖T‖21v4

The final term is easily estimated in a similar manner

< να,∇iTβ >< νγ ,∇
i
Tδ > V αβV γδ ≤ C5(m, ‖T‖1)v4

Putting these last three estimates together and cancelling the v2 factor we bound
the square norm:

|∇v|2 ≤ (1 + ε)
∑
α

V 2
αλ

2
α + C6(ε,m, ‖T‖1)v2.

or, rearranging

(5.8)
∑
α

V 2
αλ

2
α ≥

1

1 + ε
|∇v|2 − C6v

2.
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Combining inequalities (5.7) and (5.8) we get∑
α

V 2
α |Aα|2 ≥

(
1 +

1

n

)[
1

1 + ε
|∇v|2 − C6v

2

]
−
∑
α

H2
αV

2
α ,

which, when substituted in inequality (5.6) yields

v

(
d

ds
−4

)
v
·
≤ −

(
1 +

1

n

)
1− ε
1 + ε

|∇v|2 + C7(ε, n,m, |H|, ‖T‖1)v2 + C4v
4,

and, by virtue of equation (5.3),

|∇v|2 ·= K2v2|∇u|2,

yielding

(5.9)

(
d

ds
−4

)
v
·
≤ −

(
1 +

1

n

)
1− ε
1 + ε

K2v|∇u|2 + C7v + C4v
3.

Substituting inequalities (5.5) and (5.9) in (5.4) we get

KC1v
2
·
≥
[(

1 +
1

n

)
1− ε

(1 + ε)
− 1

]
K2|∇u|2 − C7 − C4v

2,

for any ε > 0.
Now for 0 < ε < 1/(1 + 2n)(

1 +
1

n

)
1− ε
1 + ε

− 1 > 0,

and so using Proposition 4

|∇u|2 =
∑
α,β

∇uα · ∇uβ ≥ minαψ
−2
α (v2 −m),

we have

KC1v
2
·
≥ C8(ε, n, |ψ|)K2(v2 −m)− C7 − C4v

2,

which can be rearranged to

v2
·
≤ mC8K

2 + C7

C8K2 − C1K − C4
,

where, in summary, C1(n,m, ‖t‖2), C4(ε, n,m, ‖T‖1), C7(ε, n,m, ‖t‖2, ‖T‖1) and
C8(ε, n, |ψ|).

For large K this inequality violates v ≥ m+ 1 and we have a contradiction. �

6. Proof of Theorem 1

For tensors Hα and Aijα we define a positive norm by

|H|2+ = −HαH
α |A|2+ = −AijαAijα,

and similarly for their gradients.



16 BRENDAN GUILFOYLE AND WILHELM KLINGENBERG

Proposition 8. Under the mean curvature flow, the norms of the mean curvature
vector and the second fundamental form of a spacelike m-dimensional submanifold
in an indefinite m+n-dimensional manifold evolve according to:(

d

ds
−4

)
|H|2+ = −2|∇̃H|2+ − 2|H ·A|2+ − 2HαHβR̄iαiβ ,(

d

ds
−4

)
|A|2+ = −2|∇̃A|2+ − 2|A|4+ +A ∗A ∗R+A ∗ ∇ R,

where ∇̃ is the covariant derivative in both the tangent and normal bundles and ∗
represents linear combinations of contractions of the tensors involved.

Proof. These are proven in Proposition 4.1 of [14], generalizing the expressions in
Proposition 3.3 of [7]. �

Proposition 9. Under the mean curvature flow

|H|2+ ≤ C1(1 + s−1),

|A|2+ ≤ C2(1 + s−1),

where C1 = C1(n, k) and C2 = C2(n, ‖R‖1), k being the constant in the timelike
curvature condition (2.1).

Proof. From the previous proposition and the timelike curvature condition we con-
clude that (

d

ds
−4

)
|H|2+ ≤ −2n−1|H|4+ + 2k|H|2+,

while (
d

ds
−4

)
|A|2+ ≤ −2|A|4+ + C3|A|2+ + C4|A|+ ≤ −|A|4+ + C5.

The result then follows by a suitable modification of Lemma 4.5 of [7]. �

We now assemble the proof of Theorem 1:

Proof. The flow is a quasilinear parabolic system and therefore short time existence
follows from linear Schauder estimates and the implicit function theorem.

Having bounded the gradient and the second fundamental form in Propositions
7 and 9, bounds on the higher derivatives and long-time existence follow from
standard parabolic bootstrapping arguments, as in [7]. �
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