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18 Abstract

19 Geochronology is essential for understanding Earth’s history. The availability of 

20 precise and accurate isotopic data is increasing; hence it is crucial to develop transparent and 

21 accessible data reduction techniques and tools to transform raw mass spectrometry data into 

22 robust chronological data. Here we present a Monte Carlo sampling approach to fully propagate 

23 uncertainties from linear regressions for isochron dating. Our new approach makes no prior 

24 assumption about the causes of variability in the derived chronological results and propagates 

25 uncertainties from both experimental measurements (analytical uncertainties) and underlying 

26 assumptions (model uncertainties) into the final age determination. Using synthetic examples, 

27 we find that although the estimates of the slope and y-intercept (hence age and initial isotopic 

28 ratios) are comparable between the Monte Carlo method and the benchmark “Isoplot” 

29 algorithm, uncertainties from the later could be underestimated by up to 60%, which are likely 

30 due to an incomplete propagation of model uncertainties. An additional advantage of the new 

31 method is its ability to integrate with geological information to yield refined chronological 

32 constraints. The new method presented here is specifically designed to fully propagate errors 

33 in linear regressions especially in geochronological applications involves linear regressions 

34 such as Rb-Sr, Sm-Nd, Re-Os, Pt-Os, Lu-Hf, U-Pb (with discordant points), Pb-Pb and Ar-Ar.

35

36 Keywords

37 Linear regression; Isochron; Geochronology; Uncertainty Propagation; Monte Carlo; Isoplot
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38 1. Introduction

39 Geochronology is an essential aspect of Earth sciences, and advances in this field have 

40 resulted in many breakthroughs in understanding the history of our solar system and the 

41 evolution of life on Earth [1]. In general, extracting geologically meaningful ages from rocks 

42 and minerals starts with sample collection, followed by sample processing, and isotopic ratio 

43 measurements via mass spectrometry. The raw isotopic ratios generated by mass spectrometers 

44 then need to be transformed into atomic ratios, and eventually into chronological dates with 

45 propagation of associated uncertainties [e.g., 2, 3]. Over the past three decades, a great number 

46 of analytical innovations and instrumentation advances have emerged, which gave rise to 

47 unprecedented levels of accuracy and precision for isotopic ratio measurements as well as 

48 pioneering new radiometric systems for questions ranging from early solar system evolution to 

49 Anthropocene climate change. Advances in the precision and accuracy as well as the expansion 

50 of available geochronometers has been facilitated by a combination (often iteratively) of better 

51 analytical approaches and robust, transparent and accessible data reduction tools [e.g., 4, 5-13]. 

52 To more fully harness these technical improvements, it is critical to concomitantly develop 

53 data reduction techniques and appropriate visualization methods. Although there have been 

54 significant progresses made in data reduction techniques for U-Th-Pb and Ar-Ar systems [3, 

55 6, 7, 14-20], fewer advances have been seen in isochron dating, a method utilized for systems 

56 including Re-Os.

57 Isochron dating is based on linear regression in which one determines the slope, y-

58 intercept and associated uncertainties of the best fitting line to the parent and daughter isotopic 

59 ratios (including their uncertainties and error correlations). The fundamental assumptions 

60 behind isochron dating include: (1) all co-genetic samples have near-identical initial daughter 

61 isotopic compositions; (2) samples begin accumulating daughter isotopes via radiogenic decay 

62 at the same time; (3) these samples remain closed in terms of both parent and daughter isotopes 
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63 following the accumulation of the daughter isotope. A further requirement is that these samples 

64 should have variable parent isotope (or daughter isotope) ratios to define a line. This linear 

65 regression is routinely carried out by the “Isoplot” program that is based on a Microsoft Excel 

66 macro [2, 21] and includes York’s algorithm [22-24]. This algorithm performs a least-squares 

67 fit to data with normally distributed but correlated uncertainties, and assumes that the data 

68 points lie along a straight line (isochron) and offsets from this line are due to imperfect 

69 measurements, otherwise known as analytical uncertainties. In reality however, the data points 

70 might not fall on a straight line even if they could be measured perfectly because of differences 

71 in initial isotopic composition, varying ages and/or open system behavior, which we will refer 

72 as model uncertainties. To address this, the “Isoplot” program uses two different techniques 

73 (additional options are discussed below) for error propagation and decides which one to use 

74 based on the probability of how well the data “fits” to the line. If the probability of fit is 

75 satisfactory, “Isoplot” assumes that analytical uncertainty is the only cause of scatter and uses 

76 York’s algorithm to propagate only analytical uncertainties to produce a so-called Model 1 age. 

77 If the fit of the data to a common line is not satisfactory resulting in a violation of York’s 

78 assumption (i.e., in the case of over-dispersion), “Isoplot” uses an adapted regression that 

79 accounts for an unknown but normally distributed variation in the initial isotopic ratios of the 

80 samples [2, 25], producing a Model 3 age. Though the users can choose the cutoff value 

81 between the two Models (between 0.05 and 0.3 with a default of 0.15), in the absence of 

82 additional geologic constraints, there is no standard criteria to choose this cutoff value, which 

83 can lead to inconsistencies in chronological results if this value is not properly documented.

84 “Isoplot” also offers a Model 2 solution in which case equal weights and zero error 

85 correlations are assigned to the samples, as opposed to those used in Model 1 and Model 3 

86 where each sample has a weighting proportional to the inverse square of its analytical 

87 uncertainties (also accounts the error correlation). When the assumption that residuals 
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88 (observed scatter) of the data-points from a straight line have a normal (Gaussian) distribution 

89 is invalid, “Isoplot” has an option called “Robust regression” which makes no assumptions 

90 about the cause(s) of the observed scatter of the data from a straight line. We do not discuss 

91 these two options further as they are rarely used and beyond the scope of this study.

92 As pointed out by Ludwig [26], uncertainty determined by Monte Carlo sampling is the 

93 most reliable approach, therefore in this paper we propose an method to determine the slope, 

94 y-intercept and their uncertainties, based on Monte Carlo sampling and simple linear regression. 

95 Unlike the Monte Carlo method in York et al., (2004) [24], the proposed method here 

96 propagates not only analytical uncertainties, but also uncertainties arising from the underlying 

97 assumptions (model uncertainties). This approach differs from Model 1 and Model 3 solutions 

98 from Isoplot as our new method propagates uncertainties in a consistent manner regardless of 

99 the probability of fit and hence avoids subjective choosing of the cut-off value discussed above. 

100 Our method can be applied to data with any goodness of fit and distinguishes between 

101 analytical and model uncertainties. This paper discusses three key aspects: (1) the Monte Carlo 

102 based method; (2) the examination of differences and similarities to Isoplot; and (3) the use of 

103 a synthetic dataset to demonstrate the potential to integrate independent geological information 

104 for refined chronologic constraints.

105 2. Monte Carlo simulation

106 2.1 Experimental data and their uncertainties

107 The parent and daughter isotopic ratios (X, Y) of a sample are measured experimentally, 

108 with their uncertainties (δX, δY) inherited from the analytical procedure. Additionally, the 

109 uncertainties of the parent and daughter isotopic ratios are typically correlated due to the 

110 utilization of a common isotope used to convert absolute atomic numbers into isotopic ratios 

111 (e.g., 86Sr in 87Rb/86Sr and 87Sr/86Sr; 144Nd in 147Sm/144Nd and 143Nd/144Nd), which is quantified 
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112 by a correlation coefficient [denoted by ρ or rho; 27]. Experimental data with the same parent 

113 and daughter isotopic ratios and uncertainties, but variable error correlations are graphically 

114 illustrated in Figure 1A as error ellipses at the 2-sigma level (all uncertainties are presented at 

115 the 2-sigma level in absolute values unless otherwise stated). By definition, a high error 

116 correlation indicates that the sources of δX and δY are predominately from one contributor, 

117 which for isotope geochemistry is likely to be caused by the analytical uncertainty of the stable 

118 isotope used to convert absolute atomic numbers into isotopic ratios. As emphasized by Ludwig 

119 [26] and illustrated in Figure 1A, the 2-sigma ellipses including error correlation extend farther 

120 than the 2-sigma range of δX and δY, which is a non-intuitive characteristic of joint 

121 distributions. As such, excluding error correlations for linear regressions will yield an incorrect 

122 uncertainty for the slope and its uncertainty [28]. Hence it is critical to report and use accurate 

123 error correlations for the experimental data in all geochronological studies which can be 

124 estimated through differentiation and observation [2]. The analytical uncertainties with error 

125 correlation can also be presented as probability density functions (PDFs, Fig. 1B). This 

126 probability density function is the basis for the resampling process used in our Monte Carlo 

127 method.

128 2.2 Propagation of analytical uncertainties

129 We demonstrate the principles of our Monte Carlo based technique using a synthetic 

130 example consisting of five samples. The parent and daughter isotopic ratios and associated 

131 uncertainties including error correlations of the five samples are graphically illustrated in 

132 Figure 2A as error ellipses. To propagate analytical uncertainties, we perform the following 

133 steps:

134 1. for each of the five samples, we randomly select a coordinate from its 

135 corresponding probability density function as that defined in Figure 1B. Each 
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136 sampled coordinate is considered to be a pair of absolute values without 

137 uncertainty (Fig. 2A);

138 2. once a coordinate has been selected for each of the five samples, the parameters 

139 (slope and y-intercept) of the regression line are determined (Fig. 2A) following 

140 a least-square estimation [29]. The slope and y-intercept of this regression line 

141 is plotted in Figure 2B;

142 3. repeating steps 1 and 2 yields a distribution representing the probability of slope 

143 and y-intercept of the five samples. By increasing the iteration times (Figs. 2C 

144 and 2E), the shape of the resulting probability distribution becomes apparent 

145 (Figs. 2D and 2F). We acknowledge here that more iterations will yield a more 

146 accurate distribution, but will also increase computing time. A discussion on 

147 how to balance the iteration time and computing resource is presented in section 

148 2.4 below.

149 This approach only propagates analytical uncertainties but not uncertainties from the 

150 linear regression itself. This is illustrated by the example in Figure 3. For a dataset consisting 

151 of five samples that have no analytical uncertainty and do not plot on a common line (Fig. 3A), 

152 using the above algorithm will result in no uncertainty for the slope and y-intercept (Fig. 3B), 

153 which is not a plausible result because the fitted line does not pass through all the five samples. 

154 We term these non-analytical uncertainties as the model uncertainty. The primary contributors 

155 of this model uncertainty include differences in the initial isotope composition, ages, or those 

156 which arise from open isotopic system behavior violating the fundamental assumptions behind 

157 isochron dating. In realistic scenarios it is likely that both analytical and model uncertainties 

158 will be present at some level though careful selection of samples and refined measurements 

159 maybe used to minimize their effect. Using the simple Monte Carlo algorithm described above 

160 which only propagates analytical uncertainties and fails to capture this extra source of 
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161 uncertainty. We therefore propose an extension of our method to account for this as described 

162 below.

163 2.3 Propagation of model uncertainties

164 Uncertainties for the slope and y-intercept of the regression line in each sampling step 

165 in section 2.2 (Fig. 2) are calculated as standard errors following that of James et al., (2009) 

166 [29]. Further, these uncertainties are correlated as defined by the correlation coefficient (C) in 

167 equation 1, 

168 C =  xi ) /  xi
2 ))0.5)            (equation 1)― ∑n

i = 1( (𝑛 × (∑n
i = 1(

169 where n is the number of samples (e.g., 5 for the example in Fig. 2), and xi denotes the sampled 

170 point’s X-axis.

171 Knowing these uncertainties and error correlation for each sampling step, it is possible 

172 to include them by replacing the outcome of each sampling step by a new probability density 

173 distribution. This process is illustrated in Figure 3, where one of the outcomes from the 

174 sampling step (Fig. 3B) is replaced by a new probability density distribution (Figs. 3D). For 

175 input data with analytical uncertainties (Figs. 3E), when model uncertainties are included for 

176 all simulations, a final distribution (blue in Fig. 3F) is obtained. This final distribution includes 

177 both analytical and model uncertainties, and we term them as total uncertainties. In the presence 

178 of both analytical uncertainties and model uncertainties, we cannot determine exactly whether 

179 the scatter in the final distribution is inherited from analytical uncertainties or caused by model 

180 uncertainties, or a combination of both.

181 Statistical analysis is applied to the final distribution to quantify the uncertainties for 

182 data interpretation. We use the means and two standard deviations of the slope and y-intercept, 

183 plus the correlation between them, to assess the significance of this final distribution. 

184 Additionally, the contribution of analytical uncertainties to the total uncertainties (analytical + 

185 model uncertainties) could be assessed. Here we emphasis that as discussed above, analytical 
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186 uncertainties could be an additional source of model uncertainties, hence the contribution only 

187 can be assessed semi-quantitatively.

188 The advantage of this method is that regardless of the degree of fit, both analytical and 

189 model uncertainties are propagated into the final distribution. In other words, the degree of fit 

190 is not a prerequisite to alter the strategy of error propagation. As such, the proposed method 

191 ensures that quoted uncertainties can be fairly compared as they are calculated in a consistent 

192 manner.

193 2.4 The iteration times

194 To achieve a representative final distribution for the given sample set, a high number 

195 of iterations are required at the expense of consuming more computing resources and time. In 

196 this regard, the iteration times should be balanced between the accuracy of the final distribution 

197 and the simulation time. Here we monitor the mean and standard deviation of the final 

198 distribution and stop iteration once this mean and standard deviation are stabilized. Our 

199 preliminary experiment suggests that an iteration count of about 106 is sufficient in most cases, 

200 and could be increased when necessary.

201 3. Comparison with Isoplot

202 It is important to compare the results from the Monte Carlo based approach with those 

203 from the Isoplot program to understand differences in the assumptions and how they propagate 

204 into the resultant age estimations. In the following section, we construct a synthetic 

205 experimental data set to highlight the magnitude of these differences and explore implications 

206 in isochron dating.

207 3.1 Synthetic experimental dataset

208  Using the Re-Os isotopic system as an example, where 187Re decays to 187Os with a 

209 decay constant of 1.666*10-11 year-1 [30, 31], we generate synthetic examples for the 
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210 experiment (Table 1). To be representative of geological scenarios, the examples are designed 

211 to cover plausible scenarios in isochron dating, as represented by the probability of fit which 

212 varies between 0 and 1 (Figure 4). For uncertainty propagation using the Isoplot program, we 

213 follow the default approach in the Isoplot program to set the cut-off value as 0.15. As can be 

214 seen from the following discussion, using different cut-off values should not bias our 

215 conclusion. Below we outline the approaches generating these examples.

216 1. An age and an initial daughter isotopic ratio (i.e., 187Os/188Osinitial) are randomly 

217 assigned between 100 and 4500 Ma and 0.2–1.2, respectively, following 

218 uniform distributions.

219 2. The number of samples, n, used to construct an isochron is randomly chosen 

220 between 5 and 30 following a uniform distribution.

221 3. For the n samples, their parent isotopic ratios (i.e., 187Re/188Os) at present day 

222 are randomly selected following uniform distributions between 100 and 1000. 

223 Specifically, for each example, we first randomly pick a lowest ratio and a 

224 highest ratio which lie between 100 and 1000. Afterwards, we randomly pick 

225 n-2 ratios following a uniform distribution between that lowest ratio and highest 

226 ratio. The purpose of this specific approach is to guarantee that for these 

227 examples, the variety of the parent isotopic ratios (spread of the isochron) in 

228 each example follows a uniform distribution.

229 4. The daughter isotopic ratios (e.g., 187Os/188Os) at present day of the n samples 

230 are calculated individually following equation 2 using the t, initial daughter 

231 isotopic ratio and parent isotope ratios generated in step 1, 2 and 3, respectively.

232 187Os/188Os = 187Os/188Osinitial + 187Re/188Os * (eλt – 1)       (equation 2)

233 5. We then introduce scatter to the daughter isotopic ratios by adding or 

234 subtracting a value ranging from 0.2 to 1.2 % of the corresponding daughter 
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235 isotopic ratios following uniform distributions, and the decision whether to add 

236 or subtract is also random. Note that this scatter serves to imitate model 

237 uncertainties. The model uncertainties are introduced through modifying the 

238 daughter isotopic ratios, which cover all the potential causes of model 

239 uncertainties including variations in initial isotopic composition and age, as well 

240 as open system behaviour to the isotopic system and imperfect measurements.

241 6. The 2-sigma relative uncertainty (i.e., percentage uncertainty) of the parent and 

242 daughter isotope ratios are randomly assigned between 0.2 and 1 % following 

243 uniform distributions, with their error correlations randomly given between 0.4 

244 and 0.999, which also follow uniform distributions. 

245 The data generated above are processed by our new Monte Carlo method as well as the 

246 Isoplot program. Therefore, one age and one initial isotopic composition plus their associated 

247 uncertainties (2-sigma) will be obtained from the Isoplot program either following Model 1 (p 

248 > 0.15) or Model 3 (0 < p < 0.15) solutions. For the Monte Carlo simulation, one age, one 

249 initial isotopic ratio, and associated total uncertainties (analytical uncertainties+ model 

250 uncertainties) are obtained for each example. We perform this process 10000 times, and as 

251 expected, the probability of these examples varies between 0 and 1 with the corresponding 

252 Mean Square Weighted Deviation (MSWD) ranging from >10 to 0.

253 3.2. Results from Monte Carlo method and the Isoplot program

254 Regardless of which linear regression tool is employed, the slopes and y-intercepts, 

255 hence ages and initial isotopic ratios, are the same (Figs. 4A-D). Minimal scatter exists when 

256 the spread in the synthetic data points is limited, which renders an accurate age estimation 

257 difficult. Notably, uncertainties obtained from the Monte Carlo simulation are consistently 

258 larger than those from the Isoplot program (Figs. 4E-5F). Here we use the RMC/Iso to illustrate 

259 these results, where RMC/Iso equals to age uncertainties (total) from the Monte Carlo method 
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260 divided by age uncertainties from the Isoplot program. When p decreases from 1 to 0.15, the 

261 running mean of RMC/Iso increases from 2 to 2.5, and indicates a progressively increasing degree 

262 of underestimation of uncertainties by the Isoplot program. When p decreases from 0.15 to 0, 

263 we observe a significant decrease in the running mean of the RMC/Iso from ~2 to ~1.5, and then 

264 gradually decrease to >1. This relationship can further be illustrated by plotting RMC/Iso as a 

265 function of MSWD (which is dependent on p, Fig. 4F), and shows that RMC/Iso reduce from 2.5 

266 to 1.5 as the MSWD increases from 1.3 to 2.5, ultimately RMC/Iso approaches one when the 

267 scatter is sufficiently large (i.e., MSWD >> 2.5). A notable feature here is the abrupt change in 

268 the relationship between RMC/Iso and probability/MSWD when p approaches 0.15. Such an 

269 abrupt transition is mainly due to the contrasting error propagation strategies in Isoplot caused 

270 by the utilization of an arbitrary cut-off value.

271 These results indicate that uncertainties following the Model 1 scenarios in the Isoplot 

272 program are underestimated by 50 – 60 % compared to total uncertainties derived from the 

273 Monte Carlo method (as calculated by the difference between the uncertainties relative to the 

274 Monte Carlo based total uncertainties). For the Model 3 age in Isoplot, the uncertainties can 

275 also be underestimated by as much as 60 %, though uncertainties become more comparable for 

276 increasing MSWD. 

277 An underestimation of uncertainty could be detrimental in geological studies when high 

278 temporal resolution is essential. For example, when verifying the relationship between two 

279 geological processes that are indistinguishable in time (e.g., 1000 ± 0.6 Ma and 999 ± 0.6 Ma), 

280 an underestimation of the uncertainties by 50 % will yield ages of 1000 ± 0.3 Ma and 999 ± 

281 0.3 Ma, which could lead to a conclusion that the two geological events were not 

282 contemporaneous in time, hence rejecting a direct causal link between them. In contrast, with 

283 full propagation of the uncertainties, a potential causal link cannot be ruled out.
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284 We speculate that the underestimation of uncertainties in the Model 1 ages arises from 

285 only considering analytical uncertainties without incorporating model uncertainties. This is 

286 supported by the observations that the analytical-only uncertainties from the Monte Carlo based 

287 method are comparable (though slightly larger, discussed below) to those from the Model 1 

288 scenario in Isoplot program (Fig. 4G-H). The underestimation of uncertainties in the Model 3 

289 ages is less transparent, but most likely due to an incomplete propagation of model 

290 uncertainties.

291 A further feature is that when p>0.15, the analytical only uncertainties from our Monte 

292 Carlo method are slightly larger than those from the Model 1 solution (Figs. 4G and 4H). Such 

293 a discrepancy is expected based on York et al., (2004) [24] — the uncertainties from Monte 

294 Carlo method only becomes comparable with those from the least square method when 

295 sampling the least-squares-adjusted data points (i.e., the projection of the observed data point 

296 onto the isochron) by Monte Carlo, rather than sampling the observed data points as has been 

297 done here. 

298 4. Potential to integrate geological information

299 An additional advantage of using the Monte Carlo based method is that the resulting 

300 distribution of age and initial isotopic ratios can be adjusted to integrate with geological 

301 information and produce improved chronological constraints. We demonstrate this by using a 

302 synthetic example consisting of 12 samples. Their 187Re/188Os and 187Os/188Os ratios and 

303 associated uncertainties including error correlations (Table 2) are used to determine their age 

304 and initial isotopic ratio. Results obtained from the Monte Carlo method and the algorithm of 

305 the Isoplot program are presented in Figure 5. The ages and initial isotopic ratios from the two 

306 methods are essentially the same (Isoplot age = 540 ± 2 Ma, initial 187Os/188Os = 0.600 ± 0.013; 

307 Monte Carlo age = 540 ± 6, initial 187Os/188Os = 0.600 ± 0.063), but uncertainties from the 

308 Isoplot program are significantly smaller as discussed above. If there is evidence that these 

Page 13 of 26

www.scibull.com

Science Bulletin

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

14

309 samples are younger than 541 Ma, i.e., based on independent geological constraints, it is 

310 reasonable to discard regression results that are older than 541 Ma from the final distribution 

311 (Fig. 5). By doing so, the final distribution is altered, and skewed to younger ages and higher 

312 initial isotopic ratios (Fig. 6). If we consider quantiles to interpret uncertainties for this 

313 distribution, the age estimate changes to 539  Ma and the initial isotopic composition to  +2
―6

314 0.616  at the 95% percentile level. Similarly, if the initial isotopic ratio can be  +0.026
―0.035

315 independently constrained, this information can also be integrated into the Monte Carlo method. 

316 This approach is analogous to a common practice in isochron dating, where a sample or a 

317 mineral containing low or negligible parent isotope is selected together with samples bearing 

318 high parent isotope for isochron dating (e.g., using matrix and garnet with low and high 

319 176Lu/177Hf ratios, respectively for Lu-Hf dating; using plagioclase and pyroxene with low and 

320 high 147Sm/144Nd ratios, respectively for Sm-Nd dating), through which the y-intercept of the 

321 isochron is “fixed” by the sample (e.g., matrix and plagioclase) plotting near or at the y-

322 intercept. It is possible that the independent constrained geological information would also 

323 have uncertainties or follow a certain distribution, these also can be considered in our Monte 

324 Carlo method. 

325 In addition, with semi-quantitatively constrained contributions of analytical 

326 uncertainties to the total uncertainties, the new method provides guidance on how to yield 

327 refined chronological constrains. For example, if the uncertainties are dominated by analytical 

328 approaches, then improving experimental techniques would be an obvious next step to generate 

329 improved chronological information. In contrast, if analytical uncertainty is not the primary 

330 contributor to the total uncertainty, then the studied samples may not meet the criteria for 

331 isochron dating, and better sampling strategy would be the solution for refined chronological 

332 constrains. 
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333 5. Conclusions

334 A Monte Carlo based method is developed to estimate parameters (slope, y-intercept) 

335 in linear regression with full propagation of their uncertainties, which is then applied to data 

336 reduction for isochron geochronology. Crucially, the new method propagates both analytical 

337 and model uncertainties in a consistent manner, and also allows for the user to employ a 

338 posteriori geological criterion to yield refined chronological constrains and interpret the 

339 significance of the analytical/model uncertainty. Using a synthetic data set, results obtained 

340 from the Monte Carlo method and those from the Isoplot program are compared. The 

341 comparison indicates that although the estimates of the slope (age) and y-intercept (initial 

342 isotopic ratio) from both methods are similar, uncertainties following the Model 1 approach in 

343 the Isoplot program are underestimated by ~60 %. For Model 3 solution in the Isoplot program, 

344 the uncertainties can be underestimated by as much as 60 % depending on the goodness of fit, 

345 and the results from the two methods only start to converge when the goodness of fit 

346 approaches 0 (i.e., MSWD >> 2.5). We further demonstrate that geological information can be 

347 integrated into our Monte Carlo based method to yield improved chronological constraints.
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445 Table 1, Parameters for the synthetic dataset.

Age n initial X dX Y dY scatter rho
100–4500 5–30 0.2–1.2 100–1000 0.2–1% 0.2–1% 0.4–0.999
uniform uniform uniform uniform uniform

Equation 
2 uniform

0.2-1.2%
uniform uniform

446

447 Table 2, Re-Os data for the synthetic samples.

Sample No. 187Re/188Os 2-sigma 188Os/188Os 2-sigma rho
Sample 1 100.000 1.540 1.504 0.023 0.936
Sample 2 200.000 2.940 2.407 0.024 0.473
Sample 3 300.000 4.830 3.311 0.037 0.764
Sample 4 400.000 3.960 4.215 0.078 0.565
Sample 5 500.000 7.150 5.118 0.057 0.635
Sample 6 600.000 10.200 6.022 0.090 0.484
Sample 7 700.000 11.620 6.926 0.082 0.949
Sample 8 800.000 12.880 7.830 0.078 0.945
Sample 9 900.000 12.780 8.733 0.096 0.910
Sample 10 1000.000 10.900 9.637 0.165 0.994
Sample 11 1100.000 19.580 10.541 0.065 0.477
Sample 12 1200.000 7.440 11.444 0.161 0.452

448
449
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450 Figure 1, Data and uncertainties with associated error correlations (rho) are presented as 

451 error ellipse and error bar (A) as well as probability density function (B). The plots show 

452 the same data and their uncertainties (cross hairs) and only vary in their correlation 

453 (values are indicated on each plot). All uncertainties are presented at the 2-sigma level 

454 (95.45% confidence).

455

456 Figure 2, The principle of the Monte Carlo based simulation is illustrated by an example 

457 comprising five samples. A) Randomly sampling a data point from the PDFs of each of the 

458 five samples and estimating its slope and y-intercept using the simple least-squares method. 

459 The slope and y-intercept from A are plotted in B. C-D) 10 and E-F) 1000 iterations of the 

460 procedure described for panels A and B. The accuracy of the final distribution (F) 

461 improves with increasing iterations / sampling.

462

463 Figure 3, The presence of model uncertainties. As illustrated by a synthetic example 

464 comprising five samples not plotting on a line, assuming no analytical uncertainties (A), 

465 sampling according to their PDFs will yield a distribution without uncertainties (B) 

466 although in fact it has uncertainty. This indicates the presence of non-analytical 

467 uncertainties, which are defined as model uncertainties and need to be accounted for. 

468 Using the same samples without analytical uncertainties (B), the model uncertainty has 

469 been illustrated by a new distribution in blue (C). A more realistic data set, in which data 

470 have analytical uncertainties (E), model uncertainties have been added to all resampled 

471 regressions, a final distribution (blue points) is obtained (F) which includes both analytical 

472 and model uncertainties.

473
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474 Figure 4, Comparison results from Isoplot and Monte Carlo methods using synthetic examples. 

475 Note for uncertainties from Monte Carlo method and Isoplot program, their relationship 

476 has an abrupt change at p=0.15, likely due to the contrasting strategies of error 

477 propagation in Model 1 and Model 3 solutions. Comparison of the slope estimate as a 

478 function of the probability of fit (A) and MSWD (B) and y-intercept estimate as a function 

479 of the probability of fit (C) and MSWD (D). The slope and y-intercept estimates, hence age 

480 and initial isotopic ratio estimates, from the two methods are comparable. In cases when 

481 the analytical and model uncertainties are taking into account (E, F), the uncertainties of 

482 the slopes and y-intercepts from the Monte Carlo based simulation are larger than those 

483 from the Isoplot program. When only the analytical uncertainties are considered (G, H), 

484 the Isoplot Model 1 age uncertainty is comparable but slightly larger than the Monte Carlo 

485 based approach.

486

487 Figure 5, Re-Os chronological results of the 12 synthetic samples using the Monte Carlo based 

488 method and the Isoplot program. A), Isochron diagram using the algorithm of the Isoplot 

489 program; B), Analytical only and analytical + model uncertainties obtained from the 

490 Monte Carlo method at the 2-sigma level; C), The final distribution of age and initial 

491 isotopic composition visualized by the Monte Carlo based method.

492

493 Figure 6, Improving chronological constraints through integrating geological information for 

494 the synthetic example in Figure 5. In this example, we assume that the samples are younger 

495 than 541 Ma, and hence simulation results larger than 541 Ma are removed to yield a 

496 better constrained chronological result.

497
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