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Abstract. We study the rotational structures of aperiodic tilings in Euclidean space of
arbitrary dimension using topological methods. Classical topological approaches to the study
of aperiodic patterns have largely concentrated just on translational structures, studying an
associated space, the continuous hull, here denoted Ωt. In this article we consider two further
spaces Ωr and ΩG (the rotational hulls) which capture the full rigid motion properties of
the underlying patterns. The rotational hull Ωr is shown to be a matchbox manifold which
contains Ωt as a sub-matchbox manifold. We develop new S-MLD invariants derived from the
homotopical and cohomological properties of these spaces demonstrating their computational
as well as theoretical utility. We compute these invariants for a variety of examples, including
a class of 3-dimensional aperiodic patterns, as well as for the space of periodic tessellations of
R3 by unit cubes. We show that the classical space group of symmetries of a periodic pattern
may be recovered as the fundamental group of our space ΩG. Similarly, for those patterns
associated to quasicrystals, the crystallographers’ aperiodic space group may be recovered as a
quotient of our fundamental invariant.

1. Introduction

Space groups, also known as crystallographic groups or Bieberbach groups, capture the
symmetries of periodic patterns or tilings in Euclidean space Rd. The space group of a
particular pattern T ⊂ Rd is the subgroup of the full isometry group of Rd that fixes T ; such
groups have been classical objects both of study and application in Mathematics, Physics and
Chemistry since at least the 19th century.

In this article we consider aperiodically ordered patterns, an infinite class of highly structured but
non-periodic patterns in Rd. This class includes, as special cases, various well-known examples
such as the Penrose Tilings, as well as the objects used to model quasicrystals, materials only
discovered at the end of the 20th century [44]. For those patterns used to model quasicrystals
there is a well developed analogue to the space group of a periodic pattern [15, 33, 24, 39, 16]
which captures information about their rotational and translational structures relating to their
diffraction images. In this article we use a topological approach to define and compute new
algebraic invariants for aperiodic patterns. Our first invariant, in the case of the patterns
modelling quasicrystals, has the crystallographers’ aperiodic space group as, typically, a strict
quotient.

The association of a ‘space group’ to a non-periodic pattern may seem at first sight an oxymoron:
the traditional association of a group to a periodic pattern is an algebraic encoding of the
precise symmetries it enjoys, but it is the very nature of an aperiodic pattern that it is notably
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short of symmetries, at least considered translationally. However, methods from Topology and
Dynamics (see, for example [4], or the collection of surveys [27]) have long proved effective
in capturing various structural properties in the absence of exact symmetries. Topology in
particular has come into the study of aperiodic patterns as follows. To any periodic or aperiodic
tiling T , a topological space Ω known as the tiling space or continuous hull, is constructed
from the set of translated images of T . The properties of Ω, particularly as seen by tools such
as Čech cohomology or K-theory, reveal many key aspects of the translational structure of
T : see [23, 41] for a discussion and brief survey of some of the more significant results of this
approach. For a periodic pattern, Ω is just a d-torus, and for pertinent reasons this should
be thought of as the classifying space of the group Zd of translational symmetries of T ; for
an aperiodic example, Ω may be seen as a natural generalisation in that it can be realised as
the classifying space of a certain associated translation groupoid, an aspect to which we shall
return in a further article.

Nevertheless, with a few notable exceptions, such as [5, 29, 36, 37, 46, 49], and see also [4],
the topological study to date has largely been confined to the analogue of the translational
symmetries for aperiodic patterns. This is perhaps surprising as many of the most interesting
examples display apparent strong rotational or reflective organisation. Indeed, although it
is the translational structure that determines in what way the pattern is diffractive, it is
precisely the rotational structure that gives rise to the rotational properties of any associated
diffraction pattern, the properties that first alerted researchers to consider them as models for
quasicrystals.

Considering only the translational structure misses a good deal. For example, in the case of
periodic tilings in the plane, it is well known that there are 17 ‘wallpaper groups’ that can act –
but the subgroup of translations in all cases is just free abelian of rank 2. In three dimensions,
there are over 2001 ‘crystallographic groups’, but again all translation subgroups of these are
isomorphic. In general Rd, the rigid symmetries of a periodic pattern are captured by its space
group Γ which can always be described as an extension

0 −→ Zd −→ Γ −→ G→ 1

of the translation subgroup by the finite point group G. For given Zd and G there is usually
more than one such possible extension. For aperiodic patterns modelling quasicrystals, the
corresponding space group is again finite by free abelian, though the rank of the free abelian
subgroup is larger than the dimension d of the quasicrystal.

In general, sufficiently regular (for example, repetitive) aperiodic patterns have an analogous
‘point group’ which likewise captures richer structure about the pattern than is capable with
the purely translationally defined tiling space alone; in the aperiodic case this group can even
be infinite, for example it is the group O(2) in the case of the Pinwheel tiling [36]. The notion
of point group is already documented in the literature, see for example [3], but we discuss
it in detail for general patterns in Section 3, defining precisely the class of aperiodic tilings
considered in Section 2. This includes all repetitive tilings (Definition 2.11), which are shown
to always have well-defined point groups in Proposition 3.8.

In this article we develop the topological approach beyond translational issues, we study this
richer structure for aperiodic patterns also by way of an associated topological space, in fact by
two such spaces. The first of these is the rotational hull Ωr. Just as Ω, the continuous, or what
we shall now refer to as the translational, hull, denoting it by Ωt, can be considered as a certain
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completion of the space of translates of the pattern, the rotational hull Ωr is the corresponding
completion of the set of all Euclidean motions of T . The space Ωr has been considered before,
but by and large only for 2-dimensional patterns [6, 41, 49]. Like Ωt, the space Ωr is also a
matchbox manifold (Proposition 2.16), but now of dimension d+ d(d− 1)/2, where d is the
dimension of the Euclidean space in which the pattern lives. (Ωt is a matchbox manifold of
dimension d.)

Our second space, which we denote ΩG, is the Borel construction (or ‘homotopy quotient’ of
Ωt by G) arising from the action of the aperiodic point group G on Ωt; this space lies at the
heart of our topological analogue of the space group. We formally define the spaces Ωt and Ωr

in Section 2 and ΩG in Section 4, where we also relate these three spaces.

The main results of this paper provide an analysis of the algebraic topology of Ωr and ΩG, and
this allows us to define algebraic objects associated to an aperiodic pattern that are invariant
under a standard, natural notion of equivalence (specifically, under S-MLD equivalence, see
[5]). We consider both homotopical and cohomological viewpoints and present a framework for
computation for patterns in any dimension of space Rd, d > 2, Section 4. The spaces Ωr and
ΩG are of course closely related, and hence so are their topological invariants. The homotopy
theory of ΩG appears to be the more fundamental, but the space Ωr has the practical advantage
of being cohomologically finite dimensional, and so may be seen as a useful staging post on the
way to mining the richer information in ΩG.

The computation of any of these invariants even for the translational hulls is frequently difficult,
especially as the dimension d increases: computation for the rotational analogues is typically
more complex still. Nevertheless, we are able to present a number of worked examples to
demonstrate the practicality of the machinery we develop.

In fact, there is some merit even in applying our approach to periodic examples, and in Section
6.4 we give a complete computation for the cohomology H∗(Ωr;Z) in the case of the periodic
tessellation of R3 by unit cubes. This is effectively a computation of the cohomology of the
6-manifold of configurations of the cubical lattice in R3, and may be of independent interest.
This computation then provides the foundation for our final result, the computation of the
integral cohomology of the rotational hull of a class of 3-dimensional aperiodic tilings based on
decorated cubes, Section 6.5.

More can be said in the case of rational cohomology, which gives a less subtle but more
easily computable invariant. In Section 6.1 we give for tilings T in all dimensions d > 2 a
complete description of the rational cohomology H∗(Ωr;Q) in terms of the aperiodic point
group G and its action on H∗(Ωt;Q). These calculations determine the ranks of H∗(Ωr;Q) (or
equivalently H∗(Ωr,R)) in terms of invariants from the translational setting, for which there
are well-established tools of computation. We note that the cohomology groups H∗(Ωt;F ), for
F = Q or R, have been used in the past for trace purposes, most notably in Bellissard’s Gap
Labelling Theorem [8]. See also [2, Section 9], and [42], where the top degree Hd(Ωt,Q) plays
a distinguished role. It seems natural to exploit the extra structure provided by the action of
rotational symmetry in such constructions. In Section 6.2 we identify the top degree rational
cohomology of Ωr with the subgroup of elements of the top degree rational cohomology of Ωt

invariant under the action of the point group G, from which there exists a natural trace map
induced by patch frequencies.

The integral cohomology requires deeper input. The case of integral cohomology of planar
tilings has already been covered by the second author [49], and in Section 6.3 we recover the
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final descriptions of that work via the machinery of the current article. In higher dimensions,
full computations are difficult. Several of the results in Section 6 provide the first steps to
effective calculation of these invariants, which we hope will provide the foundations for more
powerful tools in the future. One technique which has proved to be useful is the replacement of
the space Ωr (and related spaces, such as Ωt) with shape equivalent [30] but less pathological
cellular approximations, which have isomorphic cohomology.

The homotopy groups associated to aperiodic tilings have been less well studied, though we
note the pioneering work of Geller and Propp [21] in the translational context. As already
indicated, although Ωr and ΩG are closely related, here it would seem the latter which is the
more fundamental.

For a periodic tiling T , the fundamental group π1(ΩG) is naturally isomorphic to the group
Γ of symmetries of T , i.e., its space group (Corollary 5.10). There is a canonical cover of Γ
(for d = 2 it is a Z cover which keeps track of winding number information of symmetries, and
for d > 2 it is a Z/2 cover) which is realised (Corollary 5.11) by the fundamental group of Ωr.
For periodic tilings, all information required to reconstruct a tiling (up to a natural notion of
locally defined redecoration) is contained in its space group. Thus the homotopical study of
ΩG, and less directly Ωr, is tightly linked with the classical study of such tilings, giving in turn
a further context in which to understand what the cohomology of Ωr tells us about the tiling.
We note in particular the article of Hiller [22] which uses related cohomological tools to classify
the periodic space groups.

Although there is no direct analogue of the space group for a general aperiodic tiling, the
topological spaces ΩG and Ωr are still defined. Because of the pathological nature of these
spaces, the classical homotopy groups are not well suited to them, but Shape Theory [31]
provides appropriate replacements via the shape homotopy groups [11, 30]. We thus introduce
our fundamental invariant, our ‘topological space group’ of a pattern as the shape fundamental
group of ΩG. This is a natural extension of the notion of space group for a periodic pattern, and
in the case of tilings modelling quasicrystals, the crystallographers’ aperiodic space group can
be derived from the topological space group, but the latter appears to be a richer invariant (and
one retains more information still by using the ‘topological space pro-group’, Definition 5.16).
As in the periodic case the shape fundamental pro-group of Ωr corresponds to an associated
cover of the topological space group.

We note that the topological space group is an invariant of the original tiling T , rather than the
space ΩG. Indeed, a priori, there may be a base point dependence for aperiodic T , although we
do not currently know of specific examples for which this is the case.

A full description of the topological space group would seem infeasible in all but the simplest
examples (such as those given by products of one-dimensional tilings). However, invariants of
the topological space pro-group could be more accessible yet still contain rich information. For
example, one may apply the functor hom(−, G) for a finite (and non-abelian) group G and
take the corresponding direct limit. Such invariants were considered by Sadun in [40, Section
4] and have been calculated by Gähler for some one- and two-dimensional substitution tilings
in the translational setting. Even with relatively small groups G, these invariants are often
capable of distinguishing examples with isomorphic cohomology.

The topological space group thus defined is a new invariant associated to tilings, which is
invariant under S-MLD equivalence of tilings. Such invariance, together with results relating
the shape homotopy groups of Ωt, Ωr, ΩG, are presented in Section 5, where we also relate the
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topological space group to the classical space groups of periodic tilings and quasicrystals. Section
5 also contains computations and descriptions for several families of aperiodic examples.

Acknowledgements. The authors thank Michael Baake and Franz Gähler for helpful dis-
cussions concerning aperiodic space groups for quasicrystals. We also thank the anonymous
referee for their valuable suggestions.

2. Patterns, tilings and their hulls

For the purposes of this article, and for simplicity, the patterns we consider are tilings of Rd,
d > 2, by compact d-dimensional polyhedral subsets. The restriction to polyhedral tilings is
not an important one. Other patterns – represented for example by labelled point sets, or
tilings of fractal or possibly overlapping tiles – can, given reasonable restrictions, always be
represented by polyhedral tilings that are equivalent. More precisely, such a pattern can always
be represented by a polyhedral tiling which is S-MLD equivalent to it (see [5] and Definition
2.8 below for details of this equivalence relation).

We follow the standard set-up for discussing aperiodic tilings in Rd, and briefly introduce the
necessary concepts for the new reader here. Further details may be found, for example, in [4]
or [41] where there is extended commentary on the underlying ideas.

Definition 2.1. A tiling T in Rd is a cover of Rd by compact d-dimensional polyhedral subsets,
called tiles, meeting full face to full face, and only ever on boundaries. To distinguish tiles
of the same geometric shape further, it is sometimes convenient to also allow each to carry a
‘label’ or ‘colour’. We assume that each tile is congruent (with matching labels), by translation,
to one of a finite set of (labelled) polyhedra, the prototiles.

For example, the ‘infinite chess board’ has two prototiles: a black unit square and a white
unit square. The Penrose tiling has 10 prototiles, each congruent (by rotation) to a unit sided
rhombus with either a π/5 angled corner, or a 2π/5 angled one, each rhombus occurring in one
of 5 possible rotations.

Definition 2.2. A patch of a tiling T is a finite selection P ⊂ T of tiles from T . The patch of
tiles intersecting a closed Euclidean ball of radius r at x ∈ Rd is called the r-patch centred at x.

With these definitions, the objects we study include most of the standard examples of aperiodic
tilings studied in the literature. Under the conditions stated, the tilings necessarily have
translational finite local complexity, that is, for any given radius r, there are up to translation
only a finite number of r-patches; we call such a tiling an FLC tiling. Thus we exclude, for
example, the Pinwheel tiling [36]: there is good reason for this in that the Pinwheel, whose
rotational structure has been well studied already [6, 18], has an infinite point group; we are
concerned here with tilings with finite rotational structure, as defined in the next section.

We introduce the first two tiling spaces considered in this paper. Both use a metric on sets of
tilings; in fact there is a considerable choice in the actual metric used and it is the topology
they define that really matters, but the key underlying concept is the following. Loosely
speaking, two tilings are considered as close if, up to a small perturbation of either, the two
agree to a large radius about the origin in Rd. For the definitions below, and under our current
assumptions about our tilings, it will be enough to take as a ‘perturbation’ a rigid motion.
Thus we take two tilings as close if they agree to a large radius about the origin after a small
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translation followed by a small rotation of either of them. One can easily make this geometric
structure precise by introducing a ‘tiling metric’ [41] on a given suitable collection of tilings, or
a uniformity [48], which is more canonical and more easily verified as providing the required
geometric structure.

Definition 2.3. Given a tiling T , say that another T ′ is locally indistinguishable from it if
every patch of tiles of T ′ appears, up to translation, in T . We define the translational hull or
tiling space Ωt of T to be the topological space of tilings locally indistinguishable from T , taken
with the topology described above.

In fact, the tiling metric or uniformity also provides a notion of a Cauchy sequence of tilings.

One may show that Ωt
∼= T + Rd; that is, the translational hull is homeomorphic to the

completion of the space of translates of the tiling T .

The space Ωt encodes information related to the translational structure of T topologically. It
has been widely studied in the literature, see [41] for an introduction. In this paper we wish to
consider a closely related space which also captures rotational aspects of the tiling. This is
done by a natural modification of the above definition: local indistinguishability only allows
for comparison of patches by translations. By allowing general rigid motions, we define the
rotational hull:

Definition 2.4. The rotational hull or rotational tiling space Ωr of T is defined as the space
of tilings whose finite patches all appear, up to rigid motion, in T .

Here, and throughout, ‘rigid motion’ means an orientation preserving isometry of Rd, for
reasons elaborated on below in Remark 2.12.

Finite local complexity allows us to alternatively define Ωr as the space of rotates of elements
from Ωt:

Proposition 2.5. We have that T1 ∈ Ωr if and only if T1 = g(T2), for some g ∈ SO(d) and
T2 ∈ Ωt, that is, Ωr = SO(d) · Ωt.

Proof. If T2 ∈ Ωt then every finite patch in T2 appears in T up to translation, and hence every
finite patch of T1 = g(T2) appears in T up to rigid motion, so SO(d) · Ωt ⊆ Ωr. Suppose then
that T1 ∈ Ωr. Let Pn denote the patch of radius n centred at the origin in T1. Since these
patches appear in T up to rigid motion, there exist gn ∈ SO(d) for which gn(Pn) appears in
T up to translation, for all n ∈ N. By FLC, there are only finitely many such gn, so gn = h
for infinitely many n, for some h ∈ SO(d). Given gn = h, we have that h(Pj) ⊆ h(Pn) also
appears in T up to translation for any j ≤ n, so we may take gn = h for all n ∈ N. Hence,
every n-patch centred at the origin in h(T1) appears in T , up to translation. Since every finite
patch of h(T1) is eventually contained in such a patch, we see that h(T1) ∈ Ωt. So T1 = g(T2),
where we take T2 = h(T1) ∈ Ωt and g = h−1 ∈ SO(d), as required. �

As for the translational hull, the rotational hull can also be described as a completion (for
more details, see [6]): Ωr is the completion of the space of rigid motions of T . This allows for a
shorter proof of the above, noting that SO(d) · Ωt is a compact subset of Ωr containing the
Euclidean orbit of T , and so is all of Ωr.
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Remark 2.6. It follows immediately from these definitions that Ωt has a natural Rd action,
by translation, and Ωr has a natural action by the (positive) Euclidean group of rigid motions:
if Φ is a translation, respectively a rigid motion, in Rd and T ′ ∈ Ωt, respectively Ωr, then
Φ(T ′) is also an element of the corresponding tiling space. In particular, Ωr has an action by
SO(d). It may readily be checked that these actions are continuous from the definition of the
underlying topology.

The issue of when two tilings should be considered ‘equivalent’ is an important one. A
key concept is that of Mutually Locally Derived (MLD) equivalence, and, when we consider
rotational structures, its analogue S-MLD equivalence [5].

Definition 2.7. Given tilings T1 and T2, we say that T2 is locally derivable from T1 if there
exists some r > 0 for which, whenever Φ is a translation which identifies the r-patch at x of T1

with that at Φ(x), then Φ also identifies the 1-patch at x of T2 to that at Φ(x).

Definition 2.8. Given tilings T1 and T2, we say that T2 is S-locally derivable from T1 if there
exists some r > 0 for which, whenever Φ is a rigid motion which identifies the r-patch at x of
T1 with that at Φ(x), then Φ also identifies the 1-patch at x of T2 to that at Φ(x).

The choice of radius 1 in these definitions is arbitrary: the point is that to decide how the
pattern of T2 is tiled locally about a point x ∈ Rd, one only needs to know the decoration of T1

to radius r centred at x, up to rigid motion. Thus the local derivation is encoded by a rule for
redecorating T1 to get T2 which is locally defined, and respecting rotational symmetries for an
S-local derivation.

Definition 2.9. If T2 is locally derivable, respectively S-locally derivable, from T1 and vice
versa, then we call T1 and T2 MLD, respectively S-MLD. These are equivalence relations on
sets of tilings.

These equivalence relations can be generalised to patterns which are not necessarily polyhedral
tilings, and one could incorporate orientation reversing symmetries too if desired.

Remark 2.10. If T2 is locally derivable from T1 then there is an induced map from the
translational hull for T1 to that for T2. It follows that if T1 and T2 are MLD equivalent, then
their translational hulls are homeomorphic, in fact with homeomorphism commuting with the
translation action by Rd. Similarly, if T1 and T2 are S-MLD equivalent, then their rotational
hulls are homeomorphic with homeomorphism commuting with the action of rigid motions, in
particular by rotations in SO(d).

Most tilings currently of interest in the field of Aperiodic Order are repetitive.

Definition 2.11. A tiling T is repetitive if for each r > 0 there is an Rr > 0 such that every
r-patch can be found, up to translation, within distance Rr of every point x ∈ Rd.

For a repetitive tiling T , and T ′ locally indistinguishable from T , it is easily shown that T ′

has the same set of finite patches, up to translation (that is, T is also locally indistinguishable
from T ′). Hence, repetitivity ensures that if Ω is the hull of T (translational or rotational),
T ′ ∈ Ω and Ω′ is the hull of T ′, then Ω = Ω′. This fails if T is not repetitive. Repetitivity is
equivalent to minimality of the dynamical system (Ωt,Rd) [27].
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Remark 2.12. The symmetry structure for tilings considered throughout this paper is mostly
confined to orientation preserving symmetries; the reader may reasonably wonder why we
do not consider orientation reversing symmetries of our tilings. Certainly the existence or
not of orientation reversing symmetries of a given pattern is important, and extending some
of the constructions here to orientation reversing symmetries is essentially straightforward,
but provides limited additional insight. One of our central focuses here is an analysis of the
topology of the rotational hull Ωr. Suppose we define Ωs as the corresponding completion
but now of all Euclidean motions, orientation reversing as well as preserving. For a repetitive
tiling, if every finite patch which occurs in T also has its mirror image occurring in T (up to
some rigid motion) then Ωr = Ωs, which additionally carries a Z/2 action corresponding to a
reflection. If finite patches do not have mirror images in the tiling then Ωs is homeomorphic to
the disjoint union of two copies of Ωr (and the additional Z/2 action merely swaps the two
components), so in either case it suffices to study this space Ωr alone.

2.1. Global structure of the rotational hull. In the translational setting, it is well known
that Ωt is an orientable matchbox manifold, see [1, 10, 35]. In brief, a matchbox manifold is a
continuum foliated with Euclidean leaves with totally disconnected local transversals. If we
can take for each transversal just a single point, this is an ordinary manifold, as is the case
for periodic tilings, but aperiodicity forces us to need the richer structure; the leaves of the
foliation for Ωt are the path components, given by the d-dimensional translational orbits. A
similar result, Proposition 2.16, holds for Ωr: the rotational hull is a matchbox manifold of
dimension d + d(d − 1)/2 whose leaves are the orbits of tilings under rigid motion. We will
explain in this section how charts are constructed to give this local product structure, but first
we begin by recalling the definition of a matchbox manifold. We follow [10, 12, 13, 14, 35]
where the reader may find further discussion of this concept.

Definition 2.13. A matchbox manifold of dimension n is a continuum M satisfying the
following conditions.

• Charts. There is a compact, separable, totally disconnected metric space X, and for
each x ∈M a compact subspace Xx ⊂ X, an open set Ux ⊂M, and a homeomorphism
φx : Ux → [−1, 1]n × Xx on its closure Ux in M such that φx(x) = (0, wx) for some
wx ∈ int(Xx). Moreover, we assume φx may be extended to a homeomorphism

φ̂x : Ûx → [−2, 2]n ×Xx for some open set Ûx ⊂M with Ux ⊂ Ûx.

• Plaques. Let πx : Ux → Xx denote the composite of φx followed by projection onto the
second factor, and for z ∈ Ux define the plaque Px(z) through z for the chart φx as
π−1
x (πx(z)) ⊂ Ux. Each plaque Px(z) is given the topology such that the restriction
φx : Px(z)→ [−1, 1]n × {πx(z)} is a homeomorphism.

• Compatibilities. For two charts (Ux, φx) and (Uy, φy), any intersection Px(z) ∩ Py(z′) is

open in each plaque, each plaque Px(z) in Ux meets at most one plaque in Uy, and for
each z ∈ Px(z) ∩ Py(z) there is a connected set W ⊂ Px(z) ∩ Py(z), open in the plaque
topology, containing z, and such that

φy ◦ φ−1
x : Px(z) ∩W → Py(z) ∩W

is a smooth diffeomorphism from φx(Px(z) ∩W ) to φy(Py(z) ∩W ).

Our result, Proposition 2.16, holds for tilings that only have Euclidean finite local complexity,
that is, tilings for which, for each r > 0, there are only finitely many r-patches up to rigid
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motion (rather than the more restrictive condition of agreeing up to translation). Therefore, in
this section we temporarily weaken our usual FLC condition to Euclidean FLC.

We choose a ‘puncture’ (an interior point) for each tile, so that isometric tiles are punctured
identically. We assume this is done so that all possible symmetries of a tile preserve the
puncture. This may be achieved, for example, by taking tiles to be convex polytopes (which
may always be done, up to S-MLD equivalence) and taking punctures to be centres of mass of
tiles. By Euclidean FLC, there are only finitely many tiles in T up to rigid motion. We may
thus choose a finite set of representative prototiles P satisfying the following:

• each t ∈ P is a tile appearing in T , up to rigid motion;

• every tile of T is a rigid motion of some t ∈ P;

• each t ∈ P has puncture over the origin.

Of course, we could assert that each tile of T is the rigid motion of a unique tile from P, but
for analogy later with the translational setting we allow multiple rotates of tiles in P, which
will not affect our arguments.

We define the (canonical) transversal as

Ξ := {T ′ ∈ Ωr | t appears in T , for t ∈ P}.
That is, we consider the collection Ξ ⊂ Ωr of tilings with a puncture at the origin, so that the
tile containing the origin is oriented identically to a prototile in P.

Lemma 2.14. The transversal Ξ is a compact, separable, totally disconnected space.

Proof. The elements of Ξ may be identified with sequences

P0 ⊂ P1 ⊂ P2 ⊂ P3 ⊂ P4 ⊂ · · · ,
where P0 = {t} for some t ∈ P, and for higher n ∈ N each Pn is an n-patch, centred at the
origin, which appears in T up to rigid motion and extends Pn−1. Since the Pn cover all of Rd,
such a sequence defines and is defined by a tiling of Ξ.

The prototile set P is finite, and by Euclidean FLC there are only finitely many ways of
extending a finite patch to another. Hence there are only finitely many possibilities for each Pi.
Two such sequences are close in the tiling topology if and only if they agree for large n. So, as
a subspace of Ωr with the tiling topology, Ξ is an inverse limit of discrete, finite spaces. �

Small but distinct rigid motions move tilings of Ξ to distinct tilings in Ωr. To see this, first let
ε > 0 be such that all punctures are distance greater than ε from the boundaries of tiles. Choose
a small neighbourhood U of the origin in SO(d), homeomorphic to the closed ball in Rd(d−1)/2,
so that for all u1, u2 ∈ U and t1, t2 ∈ P, if u1(t1) = u2(t2) then u1 = u2. Equivalently, for
any t ∈ P and non-trivial g ∈ U ◦ U−1, we have that g(t) /∈ P. Since SO(d) is a Lie group of
dimension d(d− 1)/2, and sufficiently small non-trivial rotates of prototiles do not appear in P
(since P is a finite set of convex polytopes), such a U ⊂ SO(d) exists.

Define B = Bε × U , where Bε is the set of translations of Rd of norm at most ε, which we may
identify with the unit ball of Rd. So we may identify B with a Euclidean ball of dimension
d+ d(d− 1)/2. We associate each (τ, g) ∈ B with the rigid motion τ ◦ g and define

f : B × Ξ→ Ωr, f(b, Y ) := b(Y )
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Let X denote the image f(B × Ξ).

Lemma 2.15. The map f : B × Ξ→ X is a homeomorphism.

Proof. Continuity of f follows from the definition of the tiling topology. By definition f is
surjective onto X. To see that f is injective, suppose that g1(T1) + x1 = g2(T2) + x2 for some
x1, x2 ∈ Rd with norm at most ε, rotations gi ∈ U and Ti ∈ Ξ. Each gi(Ti) is a tiling with
puncture over the origin. Since x1 and x2 have norm at most ε, translates of the same tiles
contain the origin after translation by x1 and x2, which thus now have punctures at x1 and
x2. It follows that x1 = x2, since we have assumed that punctures can be uniquely determined
from the geometry of the tiles. By translating back by −x1 = −x2, we see that g1(T1) = g2(T2).
Since each Ti ∈ Ξ contains a tile of P at the origin, by the definition of U we have that g1 = g2.
Similarly, by applying g−1

1 , it follows that T1 = T2 and f is injective, as required. Since B×Ξ is
compact and Ωr is Hausdorff, the inverse of f is also continuous, so f is a homeomorphism. �

Note that for x ∈ Ξ we have f(0, x) = x, where 0 = (id, id) is the origin of B with x belonging
to the interior of X. This establishes that Ωr is locally a product B×Ξ about points of Ξ, with
each chart φx given by f−1 for x ∈ Ξ. By choosing appropriate values of ε, the full regularity
condition of the first part of Definition 2.13 (the extension of chart maps φx to φ̂x) follows. We
can easily move these charts to other locations using the action of rigid motion. Indeed, take
any T ′ ∈ Ωr and a rigid motion g ∈ Rd o SO(d) so that g(T ′) ∈ Ξ. Such a rigid motion can
be found, for example, by first translating a puncture of a tile in T ′ over the origin, and then
applying a rotation so as to orient this central tile as a prototile of P . So we may consider the
map

fg : B × Ξ→ g−1(X), fg(b, Y ) := g−1(b(Y )),

which satisfies fg(0, g(T
′)) = T ′ with g(T ′) ∈ Ξ. Since rigid motions act as homeomorphisms

on Ωr, the above shows that there is a local product structure of B × Ξ at all points of Ωr,
where B is homeomorphic to a d + d(d − 1)/2-dimensional closed ball and Ξ is a compact,
separable, totally disconnected space and hence:

Proposition 2.16. For a tiling T with Euclidean FLC, Ωr is a matchbox manifold with
Euclidean leaves of dimension d+ d(d− 1)/2.

We note that the situation is somewhat simpler than for the general case of a matchbox manifold
since we can take each transverse model as the whole transversal Ξ, rather than a subspace
depending on the chart. It is easily checked that transition maps between charts are isometries
on the Euclidean coordinates, induced by multiplying by fixed rigid motions, which follows
from the fact that all charts are related to the one about the canonical transversal by rigid
motion. The plaques determined by the charts are given by small rigid motions of tilings, so
the leaves, which are stitched together from these plaques, are given by orbits of tilings through
rigid motion. As is always the case for matchbox manifolds, these leaves are precisely the
path-components of Ωr.

The above constructions extend those of the translational setting. When translational FLC
is satisfied (which shall be assumed in the following chapters) P may be taken as the set of
translation classes of tiles, with representatives taken with puncture over the origin. Then
Ξ is the standard canonical transversal. By omitting the rotational component in the above
constructions, the space Ωt is equipped with charts making it a d-dimensional sub-matchbox
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manifold of Ωr. The group SO(d) acts on Ωr transversally to the embedded subspace Ωt, in
the sense that sufficiently small rotates g(Ωt) are mutually disjoint. However, the subspaces
g(Ωt) need not be disjoint for all distinct g ∈ SO(d). Non-trivial rotations of elements of Ωt

can again belong to Ωt. This can occur because of (discrete) rotational symmetries of tilings
or, in general, because of elements of the point group.

3. Point Groups For FLC Tilings

In this section we set out what it means for a tiling T in Rd to have a point group, extending
the usual notion from the periodic case. As in the previous section, given a rigid motion Φ we
let Φ(T ) denote the tiling given by applying Φ to each tile of T (preserving their labels, if the
tiles are labelled). Similarly, given a patch P ⊂ T we can define the patch Φ(P ) ⊂ Φ(T ).

Definition 3.1. We say that a finite subgroup G ≤ SO(d) acts on T by rotations if, for every
patch P of T and g ∈ G, we have that g(P ) is also a patch of T , up to translation.

Proposition 3.2. If G acts on T by rotations then G canonically acts on Ωt, by g ·T ′ := g(T ′).

Proof. If T ′ ∈ Ωt then every patch P of T ′ is a patch of T . Since G acts on T by rotations,
g(P ) is also a patch of T . It follows that every patch of g(T ′) is a patch of T , so g(T ′) ∈ Ωt.
This is a continuous group action, from the definition of the topology of Ωt. �

We would like to define the point group of T to be the maximal subgroup of SO(d) that acts.
There will be such a maximal group, all groups that act are subgroups of the finite group of all
rotational symmetries of the set of prototiles, but for general tilings this may not pass to a
well defined group shared by all tilings in Ωt: other elements of Ωt may have larger or smaller
maximal groups acting on them.

Example 3.3. Consider T to be the tiling of R2 by unit squares, indexed by elements of
Z2, where we colour squares (x, y) black for x = 0 and white for x 6= 0. Then the group
Z/2 < SO(2) consisting of the identity and rotation by π acts on T and its translates, but no
larger subgroup of SO(2) does. Nevertheless, in Ωt there are periodic tilings consisting of only
white tiles, and the group Z/4 generated by rotation by π/2 acts on these.

Following [49] we may avoid issues related to this by demanding the point group only to be
defined if a further condition is satisfied.

Definition 3.4. Say that T has point group G if G acts on T and there exists some r > 0
for which, whenever an r-patch P as well as its rotate g(P ) belong to T up to translation, for
some g ∈ SO(d), then g ∈ G.

In the example above, there is no point group defined because although Z/2 is the largest
rotation group that acts on T , there are patches P of arbitrarily large radius for which g(P ) is
in T for g rotation by π/2. It should be remarked, however, that it is not necessary for Ωt to
contain only tilings with the same point group to ensure that the original has well defined point
group. For example, tilings such as the next will not be excluded in what is to follow.
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Example 3.5. Consider a tiling T of black and white unit squares of alternating concentric
rings: a central tile is coloured black, its 8 neighbours are coloured white, their neighbours are
coloured black, and so on. Then Z/4 acts on T . However, there are tilings in Ωt of alternating
black and white vertical lines of tiles, and similarly ones of horizontal lines. The point group
for such tilings is Z/2. More peculiar is that there are also limiting ‘corner tilings’ in Ωt which
do not have a well defined point group at all. Nonetheless, T has well defined point group Z/4
which still acts on Ωt, permuting the 1-periodic tilings and corner tilings between themselves.

Throughout the rest of the article we shall assume that our tilings have point groups; the
following simple property of such tilings will be important in the next section in describing the
topology of Ωr.

Proposition 3.6. Suppose T has point group G. Let T1, T2 ∈ Ωt with g(T1) = T2 for some
g ∈ SO(d). Then g ∈ G.

Proof. Taking a patch P at the origin of T1 ∈ Ωt, we have that P ⊂ T must appear as a
translate of a patch from T , and similarly g(P ) ⊂ T2 must appear as a translate in T . By
taking P sufficiently large, we see that g ∈ G. �

Propositions 3.2 and 3.6 characterise the point group in terms of the action of rotation on Ωt:
suppose that T has point group G and that g ∈ SO(d). If T ′ ∈ Ωt and g ∈ G then g(T ′) ∈ Ωt.
Conversely, if for some T ′ ∈ Ωt we have that g(T ′) ∈ Ωt too then g ∈ G. The same criteria
may be used to define the point group for non-FLC tilings. For example, for the Pinwheel
the tiling space Ωt, taken as the completion of a translational orbit, is the full rotational
hull of all pinwheel tilings, and one should take the point group to be the full rotation group
G = SO(2).

Note that for a periodic tiling Ωt consists only of translates of T , so for g ∈ SO(d) we have
that g ∈ G if and only if g(T ) is a translate of T . Thus G may be identified with the standard
(orientation preserving) point group, i.e., as the quotient of (orientation preserving) symmetries
of T modulo translational symmetries. As addressed in Remark 2.12, we restrict our attention to
orientation preserving isometries in this article, but of course orientation reversing symmetries
may easily be introduced in all of the constructions above.

Remark 3.7. In the case that the tiling has a point group, we can identify it as follows. Let
Gn be the subset of SO(d) of rotations g such that whenever P is an n-patch then g(P ) is also a
patch of T , up to translation. It is easy to show, using FLC, that each Gn is finite (indeed, note
that the finite set of polyhedral prototiles have at most finite rotational symmetry). Moreover
it is evident that each is closed under composition, so each Gn is a subgroup of SO(d). They
sit as a nested sequence

G1 ⊃ G2 ⊃ · · · ⊃ Gn ⊃ · · ·
since if any larger patch has a given rotation, then so must any smaller patch. Since each Gn
is finite the sequence is eventually constant, so there exists some N for which Gm = Gn for all
m,n > N . It is then immediate from Definitions 3.1, 3.4 that T has point group GN .

The next proposition shows that a repetitive tiling cannot be subject to the problems highlighted
in Example 3.3. Since the tilings of main interest here are those which are highly structured,
and certainly repetitive, the assumption that the tiling has a point group is therefore not
restrictive in this setting.
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Proposition 3.8. Suppose that T is repetitive or, equivalently, that (Ωt,Rd) is minimal. Then
T has a point group G. Moreover, every element of Ωr also has point group G.

Proof. Following Remark 3.7, we need to show that T has point group GN , where N is chosen
so that Gm = GN for m > N . By repetitivity, every N -patch appears in every R-patch for
some R > 0. We claim that if P is an R-patch and g(P ) also appears in T for g ∈ SO(d), then
g ∈ GN . Indeed, since every N -patch appears in P , every rotate by g of patch of radius N
appears in g(P ) and hence in T . So by the definition of GN we have that g ∈ GN , as required.

Every tiling T ′ ∈ Ωt has the same collection of finite patches, by repetitivity. Since the point
group is defined purely in terms of these patches, every element of Ωt also has point group G.
By Proposition 2.5, every element of Ωr is given by applying a global rotation to an element of
Ωt, which clearly does not change the point group. �

3.1. Action of the point group on leaves. As noted in Section 2.1, Ωt is a d-dimensional
matchbox manifold, with leaves the translational orbits of tilings. Since G acts on Ωt by
rotations, it maps leaves diffeomorphically onto others. In fact, since a d-dimensional leaf
consists precisely of the set of translates of some tiling, we have the following:

Theorem 3.9. Each g ∈ G induces a bijection on the set of leaves of Ωt. We have that ` = g(`)
for a leaf ` if and only if each tiling T ′ ∈ ` has a global symmetry with rotational part given by
g, that is, T ′ = (τ ◦ g)(T ′), where τ is a translation τ = x 7→ x+ y for some y ∈ Rd.

Examples 3.10. The Penrose tilings have point group Z/10, although we note that while
there are two Penrose tilings with five-fold rotational symmetry about the origin, there are no
individual tilings with ten-fold rotational symmetry. So the rotation g by 2π/10 is a bijection
on the leaves of Ωt which sends leaves to distinct leaves, but g2 sends precisely two leaves to
themselves (each with a single fixed point: the unique tiling with Z/5 rotational symmetry on
each leaf). The chair tilings have point group Z/4 and in this case there are examples with
the full rotational symmetry group about the origin. The Ammann–Beenker tilings have point
group Z/8.

We saw in Section 2.1 that Ωr is a matchbox manifold, of dimension d + d(d − 1)/2 whose
leaves are the Euclidean orbits. In particular, since SO(d) is path-connected, for any g ∈ SO(d)
and a leaf `, we have that g` = `. We have that g(Ωt) = h(Ωt), as subspaces of Ωr, if and only
if gh−1 ∈ G. This observation implies a construction of Ωr from the action of G on Ωt, which
we exploit in the following section.

4. Useful fibrations

Our initial goal is to analyse the topology of the rotational hull Ωr. To this end, in this section
we introduce various fibre bundles which relate the topology of Ωr to the simpler translational
hull Ωt and the action of the point group G on it. In so doing we also introduce a further space,
denoted ΩG, the homotopy quotient of Ωt by the action of G.

Although our original motivation for ΩG was simply as a useful subsidiary space in studying
Ωr, its homotopy theory appears to be of fundamental importance, as we shall see in Section 5.
We thus advise the reader to interpret the results of this section as relating the topologies of
Ωr and ΩG, our spaces of interest, to other spaces, namely the translational hull and various
homogeneous spaces, which have been more widely studied.
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The action of SO(d) on Ωr is not free, nor is that of G on Ωt. Indeed, tilings fixed by non-trivial
rotational symmetries are of particular interest: it is precisely these which stop Ωr from being
the simple product Ωt × SO(d). Topologically, however, it is easier to work with free actions,
and a standard way of converting the G-action on Ωt into a free action is to add an additional
factor upon which G does act freely.

It turns out to be convenient in many cases to pass to the universal cover Spin(d) of SO(d),

and the corresponding lift of G, which we shall denote G̃. For d = 2, we take2 Spin(2) ∼= R
as the infinite cover of S1, so G ∼= Z/n for some n ∈ N and the elements of G̃ ∼= Z can be
thought of as rotations by 2πk/n for some k ∈ Z, where rotates differing by a multiple of 2π

are distinguished in the lift G̃. For d > 2, G̃ sits as the upper extension in the diagram

Z/2 G̃ G

Z/2 Spin(d) SO(d)

q

in which the right hand square is a pullback. Here, for d > 2, Spin(d) is the universal double
cover of SO(d), and we may think of its elements as simply rotations which are also imbued
with an extra binary piece of information recording chirality (for example, a 2π rotation of R3

about an axis does not correspond to the identity, but a 4π rotation does). For d = 3, we have

that Spin(3) ∼= S3 and the groups G̃ thus act freely on an odd dimensional sphere and so have
periodic group cohomology [47] (which need not be true for the original groups G, for example
G = A5). More generally, while SO(d) has non-trivial fundamental group, Spin(d) has nth

homotopy group πn(Spin(d)) = 0 for n = 1 and 2; this will give us computational advantage
later.

The group G̃ still acts on Ωt, and Spin(d) acts on Ωr, in the obvious way via the quotient maps

q : G̃→ G and Spin(d)→ SO(d), that is, by g · T := q(g) · T : simply consider g as a rotation,
forgetting about the chirality information, then rotate in the usual way.

4.1. First fibration for Ωr. Consider the action of G̃ on Ωt × Spin(d) given by g · (T, s) :=
(g · T, sg−1). This is a free action, since it is free on the Spin(d) component. In fact, we have
the following.

Proposition 4.1. The quotient space (Ωt × Spin(d))/G̃ is homeomorphic to Ωr, so we have a

principal G̃-bundle G̃→ Ωt × Spin(d)→ Ωr.

Proof. Denote the equivalence class in the quotient of any (T, s) ∈ Ωt × Spin(d) by [T, s]. We

let f : (Ωt × Spin(d))/G̃→ Ωr be defined by f([T, s]) := s(T ). The map is well defined since
g · (T, s) = (g(T ), sg−1) and s(T ) = (sg−1)(g(T )).

The map is surjective, since every element of Ωr is a rotate of some element of Ωt. To show that
the map is injective, suppose that f([T1, s1]) = f([T2, s2]), so s−1

2 s1(T1) = T2. Let g := s−1
2 s1.

2It is common in the literature to denote the universal cover by ˜Spin(2) in dimension d = 2, and to take

Spin(2)→ SO(2) as the double fold cover S1 ×2−−→ S1. Since we always wish to consider the universal cover, for
convenience we take the convention here that Spin(d) denotes the universal cover, even for d = 2.
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Since g(T1) = T2 ∈ Ωt, we must have that g ∈ G̃, since by Proposition 3.6 the image of g in
SO(d) is in G. Moreover,

g · (T1, s1) = (s−1
2 s1(T1), s1(s−1

2 s1)−1) = (T2, s2),

so [T1, s1] = [T2, s2]. The quotient space is Hausdorff since G̃ is a proper group action; as Ωr is
compact f is thus a homeomorphism. �

Remark 4.2. In a similar way we have that Ωr
∼= (Ωt × SO(d))/G.

Corollary 4.3. There are fibrations

Ωt × Spin(d)→ Ωr → BG̃

Ωt × SO(d)→ Ωr → BG. �

Here BG, etc., denotes the classifying space of the group G. Recall that the set of principal
G-bundles over a space X are classified by the homotopy classes of maps f : X → BG: given
such a map f , the corresponding G-bundle is the pullback by f of the universal G-bundle,
which we write as G→ EG→ BG. As such, the universal bundle and the spaces BG and EG
are only defined up to homotopy equivalence; indeed, given any contractible free G-space E,
the quotient E/G gives an example of a BG. The first (and similarly the second) fibration

of the Corollary may be seen as the pullback of the universal bundle G̃→ EG̃→ BG̃ via the

map f : Ωr → BG̃ which classifies the G̃-bundle of Proposition 4.1 and which we shall also

refer subsequently to as the de-looping of the bundle G̃→ Ωt × Spin(d)→ Ωr. Note that the

action of π1(BG̃) = G̃ on the fibre Ωt×Spin(d) is (essentially by definition) precisely the action
above.

4.2. Second fibration for Ωr. Corollary 4.3 gives the first of our two main fibrations for
Ωr. Its main application in this article will be in establishing Theorem 6.1 on the rational
cohomology of Ωr, and deriving our second fibre bundle description of Ωr. This second fibre
bundle will be used for the deeper calculations of the integral cohomology groups in Section 6.3
onwards. It has the advantage that the spaces involved are finite dimensional; by contrast, the

first fibration has base space BG̃ or BG, which is typically cohomologically infinite dimensional
over Z-coefficients.

We consider the quotient space Spin(d)/G̃ where G̃ acts on the right (so we identify s and sg

for s ∈ Spin(d) and g ∈ G). We denote by ζ the quotient map Spin(d)→ Spin(d)/G̃. We have

a map θ : Ωr → Spin(d)/G̃, which we call the orientation map, defined as follows. Proposition

4.1 identifies Ωr with (Ωt × Spin(d))/G̃ and we define θ[T, g] = [g]. Equivalently, every tiling
T of Ωr is a rotate by some g ∈ Spin(d) of a tiling from Ωt, and θ(T ) := [g]. The space

Spin(d)/G̃ ∼= SO(d)/G parametrises how patches are oriented with respect to those from the
translational hull.

Recall the following construction of the fibre bundle associated to a principal Q-bundle and
left Q-space (see [34, Theorem 2.10]):

Lemma 4.4. Let Q be a topological group, p : S → S/Q a principal Q-bundle and X a left
Q-space. Then we have a fibre bundle

X −→ X × S
Q

p′−→ S

Q
.
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where p′[x, s] := p(s) and Q acts diagonally on X × S. By choosing a base point of S, the fibre
over p(s) is the image of the canonical inclusion of X into the first coordinate of (X × S)/Q.

Recall from Corollary 4.3 that we have a description for Ωr as the total space of a fibration

with fibre Ωt × Spin(d) (or Ωt × SO(d)) and base BG̃ (or BG, respectively). This comes from

the de-looping of the principal G̃-bundle (or principal G-bundle) from Proposition 4.1. Our
second bundle, given by the orientation map, is derived from this by applying the above lemma.

It expresses Ωr in terms of the finite dimensional spaces Ωt and Spin(d)/G̃.

Corollary 4.5. We have a fibre bundle

Ωt → Ωr
θ→ Spin(d)/G̃ .

The map θ is given by θ(g(T )) := [g] for T ∈ Ωt and g ∈ Spin(d).

Proof. Define a left G̃-action on Spin(d) by g · s := sg−1. Then the quotient Spin(d) →
Spin(d)/G̃ is a principal G̃-bundle, so by Lemma 4.4 we have the fibre bundle

Ωt → (Ωt × Spin(d))/G̃
θ−→ Spin(d)/G̃

where θ[x, s] := [s] and the action of G̃ on the product is the one given before Proposition
4.1. The element [x, s] of the quotient is identified with s(T ) ∈ Ωr under the homeomorphism
constructed in the proof of Proposition 4.1 and the result follows. �

4.3. Approximant fibrations. An important underlying perspective in much of the topologi-
cal analysis of tiling spaces is that of Shape Theory, and to make use of this perspective it is
necessary to have expansions of the spaces studied via ‘good’ inverse limits of CW complexes,
referred to as approximants, ‘good’ here as usual merely meaning helpful for whatever issue is
being studied. Following [6] and in the spirit of [2] we note that the translational hull may be
written Ωt = lim←−Kn where the spaces Kn, n ∈ N, are defined as Ωt/∼n for a set of equivalence
relations ∼n on tilings given by

T1 ∼n T2 ⇐⇒ T1 ∩Bn(0) ≡ T2 ∩Bn(0) .

Here Bn(0) denotes the closed ball in Rd of radius n centred at the origin: essentially, a tiling
T1 ∈ Ωt is defined uniquely by the sequence of increasing patches {T1 ∩Bn(0)}. Equivalently,
Ωt = lim←−Rd/≈n where Rd is decorated with the single tiling T and the relation ≈n is defined
by

x ≈n y ⇐⇒ (T − x) ∩Bn(0) ≡ (T − y) ∩Bn(0) .

The same equivalence relations apply also to the rotational tiling space Ωr and we define
Jn = Ωr/∼n, and similarly obtain the description Ωr = lim←− Jn.

The fibrations above have analogues at the level of these approximants.

Proposition 4.6. For sufficiently large n there are fibrations

Kn × Spin(d)→ Jn → BG̃ and Kn → Jn → Spin(d)/G̃

and similarly for Spin(d) and G̃ replaced by SO(d) and G. All maps involved commute in the
obvious sense with the forgetful maps between approximants.
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Proof. The proofs are the exact analogues of those for the corresponding fibrations of the
complete tiling spaces. A point in Jn is an n-patch in Ωr, which is a rotation of an n-patch in

Ωt, unique in Spin(d)/G̃ ∼= SO(d)/G so long as n is sufficiently large, by the definition of the
point group (given in Definition 3.4). �

4.4. The homotopy quotient of Ωr by rotations. We finish this section with the introduc-
tion of a further space associated to a tiling T and its rotation group. It will become important
in the next section when we consider the homotopy groups of tiling spaces. Recall that for
any space X equipped with an action of a group Q, the Borel construction, XQ, or homotopy
quotient of X is defined as (X ×EQ)/Q where, as before, EQ is any contractible free Q-space.
As the space EQ is only defined up to homotopy, so is XQ. Note that if Q is a subgroup of S,
then any candidate for ES is also an EQ.

Definition 4.7. Given a tiling T with point group G, define ΩG as the Borel space (Ωt×EG)/G

and Ω
G̃

as the Borel space (Ωt × EG̃)/G̃.

We can alternatively express these spaces as homotopy quotients of the rotational hull:

Proposition 4.8. We have a homotopy equivalence between ΩG and the homotopy quotient of
Ωr by SO(d), given by (Ωr × ESO(d))/SO(d). Similarly Ω

G̃
' (Ωr × ESpin(d))/Spin(d).

Proof. By Proposition 4.1 we have a homeomorphism Ωr
∼= (Ωt × SO(d))/G. With respect to

this identification, the action by rotations of SO(d) on Ωr is given by h · [T, s] = [T, hs]. So the
Borel space of Ωr mod rotations is

(Ωr)SO(d)
∼=

(Ωt×SO(d))
G × E
SO(d)

,

where E = ESO(d). This is the quotient of (Ωt × SO(d)) × E by the equivalence relation
((T, s), e) ∼a h · (g · (T, s), e) = ((gT, hsg−1), he), where g ∈ G and h ∈ SO(d). Consider instead
the equivalence relation given by ((T, s), e) ∼b ((gT, s′), ge), where g ∈ G and s′ ∈ SO(d) are
arbitrary. Since EG can be taken as E = ESO(d), this gives quotient ΩG, since the middle
coordinate is annihilated and the outer two are given the diagonal action by G on Ωt × E.

These quotient spaces are homeomorphic, which may be seen as follows. We have a self-
homeomorphism f on (Ωt × SO(d)) × E given by ((T, s), e) 7→ ((T, s), s−1e), with inverse
((T, s), e) 7→ ((T, s), se). Now, f identifies

((T, s), e)↔ ((T, s), e′) , ((gT, s′), he)↔ ((gT, s′), ge′)

where g ∈ G and h ∈ SO(d) are arbitrary, s′ = hsg−1 and e′ = s−1e. The left-hand pairs
are precisely those identified with the first equivalence relation, and the right-hand pairs
are those identified with the second, so f interleaves the equivalence relations and induces a
homeomorphism of the quotients, as required. The proof for Ω

G̃
is analogous. �

Remark 4.9. Since we may take ΩG as the homotopy quotient of Ωr by the action of SO(d),
this provides the appropriate analogue of this space when extending to the setting that T has
finite local complexity with respect to all rigid motions, rather than just translations (such as
for T a pinwheel tiling).
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The approximants Kn of Ωt naturally provide approximants for ΩG and Ω
G̃

. Indeed, G and G̃
canonically act on each Kn (a point of Kn corresponds to an n-patch with prescribed origin,
the point group acts by rotating such a patch about the origin). So we may take the associated

Borel constructions (Kn×EG)/G and (Kn×EG̃)/G̃. As n varies these have obvious ‘forgetful
maps’ induced by those of Kn and the identity on the second factors. It is easily verified that
their inverse limits are homeomorphic to models for ΩG and Ω

G̃
, respectively.

We summarise the main structures of this section in the following omnibus proposition. Again,
note that our main interest is in the spaces Ωr and ΩG, which the below shows may be studied
via the action of the point group on Ωt.

Proposition 4.10. (1) We have a commutative diagram

G̃ G̃ Ωt Ωt

Ωt × ESpin(d) Ωt × Spin(d) Ωr Ω
G̃

Ω
G̃

Ωr
Spin(d)

G̃
BG̃

θ

ξ

in which the vertical columns are fibre bundles, and principal G̃-bundles for the left-hand
two.

(2) There is a similar diagram replacing occurrences of G̃ with G and Spin(d) with SO(d).

(3) Likewise, there are also such diagrams with the hulls replaced with their approximants,
in which case the various structure maps between them commute with the maps of the
diagram in the obvious sense.

The ESpin(d) term of the left-hand fibre bundle can be ignored up to homotopy since it is
contractible; the de-looping of this fibration corresponds to that on the right. The maps of this
diagram are described in the course of its proof.

Proof. By definition we may replace terms Ω
G̃

with (Ωt × ESpin(d))/G̃ and, by Proposition

4.1, Ωr with (Ωt × Spin(d))/G̃. The first and second columns are then simply the principal

G̃-bundles associated with the corresponding quotient maps. The third is the fibre bundle of
Corollary 4.5 and the fourth is constructed analogously, using Lemma 4.4.

Following the above replacements the horizontal maps have the obvious description in each case.

We take T ∈ Ωt as base point, and choose a base point e ∈ Spin(d). We have a map G̃→ Ωt

defined by g 7→ g · T , and a map Spin(d)→ ESpin(d) defined by s 7→ s−1 · e. The remaining
horizontal maps are induced by these two and the diagram is easily seen to commute. The

proofs with G replacing G̃, or the hulls with their approximants, are essentially identical. �

Remark 4.11. In earlier work [6, 49] on rotational structures there is a yet further space Ω0

considered, defined as Ωt/G or equivalently as Ωr/SO(d). We do not discuss this space here,
but we do note that ΩG is in some sense a homotopy analogue: whereas Ω0 is the quotient of
Ωt by the G-action, ΩG is the homotopy quotient of Ωt by G; homotopy quotients are more
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natural to consider in the context of homotopy invariants such as cohomology or homotopy
groups.

5. Homotopy groups

In this section we use the fibrations introduced above to study and determine the relations
between homotopical invariants of the spaces involved. We begin in the general setting, which
covers both periodic and aperiodic examples. In Subsection 5.2 we specialise to the periodic
setting, where it will transpire that the constructed invariants may be identified with the space
groups of the given patterns. Then Subsection 5.3 addresses our notion of topological space group
for aperiodic patterns, and demonstrates methods of computing this and related homotopical
invariants. Finally, in Subsection 5.4 we relate our invariants to the crystallographers’ aperiodic
space group.

5.1. Homotopy groups for aperiodic patterns. For aperiodic patterns the classical ho-
motopy groups are not appropriate objects to consider, due to the pathological nature of
the associated hulls. Instead one should utilise the perspective of Shape Theory, using the
pro-homotopy groups πpro

k (−) as replacements. We shall briefly digress to describe the bare-
minimum framework and definition of these, see [11, 30] for further details, in particular the
latter for the full set-up and justification of the formal shape category.

For us, an inverse system of groups or pro-group is a diagram of groups and homomorphisms
(structure maps) indexed over the natural numbers of the form

G0 ←− G1 ←− G2 ←− · · · ←− Gn ←− · · · .

It is useful to consider an individual group G also as a pro-group by representing it as the
inverse limit of copies of G with the identity as each of the structure maps. A morphism
between two pro-groups, G∗ and H∗, is a sequence of homomorphisms gi : Gi → Hj(i), for some
monotonically ascending sequence of integers j(i) with j(i) → ∞ as i → ∞, commuting in
the obvious way with the structure maps for G∗ and H∗. Such a morphism is level-preserving
if j(i) = i for all i; this is not required, but most of our examples will be of this form. Two
pro-groups G∗ and H∗ are pro-equivalent if there are morphisms g∗ : G∗ → H∗ and h∗ : H∗ → G∗
whose composites are equal to the structure maps in G∗ and H∗ respectively.

We will need to consider exact sequences of pro-groups. For all our purposes we can restrict to

level preserving morphisms; in this case a sequence of morphisms F∗
f∗−→ G∗

g∗−→ H∗ is exact at

G∗ if each sequence Fi
fi−→ Gi

gi−→ Hi is exact at Gi.

Shape Theory considers representations of spaces X in terms of expansions, diagrams involving
(pointed) CW complexes Xn

X0 ←− X1 ←− X2 ←− · · · ←− Xn ←− · · · ←− X

satisfying a certain universal property with respect to X. An example of such an expansion
would be when a space X is given by the inverse limit X = lim←−Xn, but not all expansions need
to be of this form.

The kth pro-homotopy group of X, denoted πpro
k (X,x), is then the pro-group given by the

induced tower

πk(X0, x0)←− πk(X1, x1)←− πk(X2, x2)←− · · · ←− πk(Xnxn)←− · · ·
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of homotopy groups, where x is a base point of X, represented by (x0, x1, . . .) in the tower.
Choosing different inverse limit presentations can clearly change the specific components of the
inverse system of homotopy groups, and as such one should consider it as only one of many
possible presentations of πpro

k (X,x) in the corresponding pro-category of groups, but all such
presentations will be pro-equivalent.

More generally, Shape Theory considers a notion of shape equivalence of expansions. Loosely
speaking, two spaces will be shape equivalent if there are morphisms of the expansions of the
spaces which change the component CW complexes and structure maps only by homotopies.
Clearly two shape equivalent spaces will then share the same pro-homotopy groups, even though
the resulting point set inverse limits of their expansions could be vastly different.

Example 5.1. The translational hull Ωt of the one-dimensional Fibonacci tilings may be
constructed [2, 17] as an inverse limit involving a single space and structure map

Z Z Z Z · · ·γ γ γ γ

The space Z may be chosen to be homotopy equivalent to W , the one point union of two copies
of the circle. Moreover, the structure map is itself a homotopy equivalence (though certainly
not a homeomorphism). Thus there is a shape equivalence of Ωt to W , considered as having
the constant expansion. I.e., there is a homotopy commutative diagram

Z Z Z Z · · ·

W W W W · · ·

γ γ γ γ

id id id id

where the vertical arrows are homotopy equivalences.

Although Ωt is clearly far from being homeomorphic, or even homotopy equivalent to W ,
this diagram shows that their pro-homotopy groups are pro-isomorphic. In a similar manner,
one may show that Ωt for any Sturmian tiling is shape-equivalent to W , although two such
translational hulls are typically not homeomorphic.

The important aspect of this sort of observation for us is that it is at times convenient to change
one of our tiling spaces to a shape equivalent, but much simpler one; this will not change the
value of any shape invariants we apply, such as Čech cohomology, or pro-homotopy groups,
but it can make the underlying topology much easier to manage. We shall see this working in
practice later on, for example in Example 5.24.

We turn now to consider the pro-homotopy groups for the tiling spaces associated to our tiling
T of interest. For our application, we shall assume that T is used to point the hulls Ωt, Ωr (and
ΩG, Ω

G̃
, once an arbitrary base point of ESpin(d) is chosen), as well as all their approximants.

It should be remarked that a change of base points may result in different pro-homotopy groups,
related issues are considered in [21].

Proposition 5.2. For k > 1 we have isomorphisms πpro
k (Ωr, T ) ∼= πpro

k (Ωt, T )⊕ πk(SO(d)).

Proof. Consider the second column of Proposition 4.10 and de-loop to the fibration Ωt ×
Spin(d) → Ωr → BG̃. Following Proposition 4.6 this may be expanded as a map of inverse
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systems

· · · Kn−1 × Spin(d) Kn × Spin(d) Kn+1 × Spin(d) · · · Ωt × Spin(d)

· · · Jn−1 Jn Jn+1 · · · Ωr

· · · BG̃ BG̃ BG̃ · · · BG̃ .

Applying πk(−), the proof follows from πk(BG̃) ∼= 0 and πk(Spin(d)) ∼= πk(SO(d)) for k > 1,
the latter by the fact that by definition Spin(d) is the universal cover of SO(d). �

Proposition 5.3. For k > 1 we have isomorphisms πpro
k (Ωt, T ) ∼= πpro

k (ΩG, T ) ∼= πpro
k (Ω

G̃
, T ).

Proof. The proof is similar to the above, where we use the right-hand fibrations of Proposition
4.10. �

The above two results shows that the higher pro-homotopy groups of the spaces Ωr, ΩG and
Ω
G̃

are functions only of those of Ωt and the Lie groups SO(d), the latter being closely related
to the (unsolved problem of the) higher homotopy groups of spheres πn(Sm).

Remark 5.4. In the periodic case Ωt is a d-torus and thus has no higher homotopy (see
Theorem 5.7). The higher pro-homotopy groups for aperiodic tilings are in general more
complicated to describe. For an illustration, a dimension d, codimension 1 canonical projection
tiling is shape equivalent to a punctured d+ 1 torus [17], (Td+1−{p}), and we may identify
the pro-homotopy groups of the tiling space with the usual homotopy groups of the punctured
torus. For d > 2, the inclusion i : (Td+1−{p}) −→ Td+1 gives an isomorphism on π1. However,
if, like Td+1, the subspace Td+1−{p} had all higher homotopy groups zero, the map i would be
a homotopy equivalence, by Whitehead’s theorem. This is clearly not the case, for example by
considering homology in degree d+ 1.

To obtain results on the pro-fundamental group of the rotational hull we shall consider the third

column of Proposition 4.10, so we first determine the homotopy groups of Spin(d)/G̃.

Lemma 5.5. The map ξ : Spin(d)/G̃→ BG̃ of Proposition 4.10 induces an isomorphism in π1.

We have that π2(Spin(d)/G̃) ∼= 0 and πk(Spin(d)/G̃) ∼= πk(Spin(d)) ∼= πk(SO(d)) for k > 1.

Proof. We have a covering map Spin(d)→ Spin(d)/G̃ and, since Spin(d) is the universal cover
of SO(d), we have that πk(Spin(d)) ∼= πk(SO(d)) for k > 1. The final claim follows easily from
these two facts.

There are canonical fibre bundles SO(d)→ SO(d+ 1)→ Sd, where an element g ∈ SO(d+ 1)
is sent to g(x0) ∈ Sd for x0 ∈ Sd a chosen base point. A simple inductive argument then shows

that π2(SO(d)) ∼= 0. It follows from the above that π2(Spin(d)/G̃) ∼= 0.
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The map ξ : Spin(d)/G̃→ BG̃ is the fibration classifying the principal G̃-bundle G̃→ Spin(d)→
Spin(d)/G̃. That ξ∗ induces an isomorphism in π1 follows from the resulting long exact sequence
in homotopy. �

Theorem 5.6. We have a diagram of pro-fundamental groups in which each row is a short
exact sequence induced by a fibre bundle of Proposition 4.10.

πpro
1 (Ωt, T ) πpro

1 (Ωr, T ) G̃

πpro
1 (Ωt, T ) πpro

1 (Ω
G̃
, T ) G̃

πpro
1 (Ωt, T ) πpro

1 (ΩG, T ) G .

θ

∼=

q

Proof. The quotient map q : G̃→ G induces a map between the fibre bundles Ωt → Ω
G̃
→ BG̃

and Ωt → ΩG → BG, with the induced map on π1 from BG̃ to BG being identified with q.
Similarly to the proof of Proposition 5.2, we may expand the spaces of this diagram in a natural
way using the approximants of Proposition 4.6. Applying homotopy we obtain the bottom two

rows of the above diagram and maps between them, using the fact that π2 of BG and BG̃ are
trivial. We may stitch on the top three terms by considering the map of fibre bundles from the

third to fourth column of Proposition 4.10, where we use the fact that π2(Spin(d)/G̃) ∼= 0 and

ξ : Spin(d)/G̃→ BG̃ induces an isomorphism in π1, by Lemma 5.5. �

5.2. Homotopy groups for periodic patterns. We now apply the above results in the
periodic setting. In this case the hulls associated to our patterns are CW complexes – in fact,
Ωt is a d-torus and Ωr is a manifold of dimension d+ d(d− 1)/2. The pro-homotopy groups
may be replaced with the classical homotopy groups3: results of the previous section still apply,
but occurrences of πpro

k may be replaced with πk. Since all spaces in this section are connected
CW complexes, we omit base points from homotopy groups.

Theorem 5.7. For T a periodic pattern in Rd there are isomorphisms πk(Ωr) ∼= πk(SO(d))
for k > 1.

Proof. This follows directly from Proposition 5.2. Indeed πk(Ωt) ∼= 0 for k > 1 since Ωt is a
d-torus and thus has trivial higher homotopy. �

Remark 5.8. Note that in the case d = 2, this shows that Ωr is an Eilenberg–Mac Lane
space, that is πk(Ωr) ∼= 0 for k > 1. Therefore, for d = 2, to calculate the cohomology of Ωr is
to calculate the group cohomology of π1(Ωr). This fundamental group will be determined in
Corollary 5.11.

3This follows from the exact sequences associated to taking inverse limits and their first derived functors lim←−
1,

which will be discussed in the next subsection. When X is a CW complex, and so the tower of approximants may

be taken as the constant diagram X
id←− X id←− · · · , we may identify lim←−πk(X) ∼= πk(X) and lim←−

1 πk(X) ∼= 0.
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Recall that Γ, the space group or crystallographic group of a periodic tiling T is the group of
all symmetries of T , a subgroup of the full Euclidean group E(d) ∼= Rd o O(d). Let us call the
positive space group Γ+ the subgroup of all orientation preserving symmetries of T ; it has the
standard extension Zd → Γ+ → G as the group of translational symmetries of T by the point
group G.

Theorem 5.9. We have the following commutative diagram in which each row is a short exact
sequence. Each of the top three rows is induced by a fibre bundle of Proposition 4.10. The
bottom row is the standard extension of Γ+.

π1(Ωt) π1(Ωr) G̃

π1(Ωt) π1(Ω
G̃

) G̃

π1(Ωt) π1(ΩG) G

Zd Γ+ G

θ

∼=

q

∼= ∼=

Proof. The upper three rows of the diagram follow from the results of the previous subsection,
so we need only establish the bottom isomorphism of extensions.

The third row of the diagram is induced from the de-looping of the principal G-bundle
G→ Ωt ×EG→ (Ωt ×EG)/G. Let Λ ∼= Zd denote the normal subgroup of Γ+ consisting of
translational symmetries of Γ+. The map x 7→ T + x induces a G-equivariant homeomorphism
Rd/Λ→ Ωt, where the G-action on the quotient is the one induced, as a subgroup, by Γ+ acting
on Rd by isometries. Let Γ+ act on EG by considering only the rotational part of a symmetry,
so in particular Λ acts trivially on EG. Hence, we have G-equivariant homeomorphisms
Ωt × EG ∼= (Rd/Λ)× EG ∼= (Rd × EG)/Λ and thus an isomorphism of principal G-bundles:

G Ωt × EG (Ωt × EG)/G

G (Rd × EG)/Λ ((Rd × EG)/Λ)/G .

∼= ∼=

f

Writing E := Rd × EG we have that Γ+ acts freely on the contractible space E. The map f is
then just the induced quotient map E/Λ→ E/Γ+, so the corresponding map of fundamental
groups may be identified with the inclusion Λ ↪→ Γ+. �

Corollary 5.10. We have an isomorphism π1(ΩG) ∼= Γ+, and in fact an isomorphism between
the standard extension of Γ+ and the extension Zd → π1(Ωr) → G realised by the fibration
Ωt → ΩG → BG of Proposition 4.10.

Corollary 5.11. The fundamental group π1(Ωr) is uniquely determined as the pullback under

the quotient map q : G̃→ G of the standard extension of Γ+ to the extension Zd → π1(Ωr)→ G̃,

realised by the fibration Ωt → Ωr → Spin(d)/G̃ of Proposition 4.10.
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Remark 5.12. Note that Γ+ is the semi-direct product of G with Zd precisely if there is a
point in T with full point group symmetry G; in this case then π1(Ωr) is likewise the semi-direct

product of G̃ with Zd.

Remark 5.13. The above result shows that π1(Ωr) is to Γ+ as G̃ is to G. An element of π1(Ωr)
is represented by a continuously parametrised motion of tilings (Tt)t∈[0,1], with T0 = T1 = T .
This determines an orientation preserving symmetry of T . Conversely, such a symmetry
determines a based loop in Ωr, unique up to homotopy when complemented with winding
number information in Z for d = 2 or with chirality information in Z/2 for d > 2. Forgetting
the explicit extension, we obtain the following corollary.

Corollary 5.14. For a periodic tiling T in R2, the fundamental group is an extension

Z→ π1(Ωr)→ Γ+ .

For a periodic tiling T in Rd for d > 3, the fundamental group π1(Ωr) is an extension

Z/2→ π1(Ωr)→ Γ+ .

Remark 5.15. The proof of Theorem 5.9 shows that ΩG ' BΓ+, so its higher homotopy
groups are trivial. Notwithstanding the comments at the end of Section 3 for why we restrict to
orientation preserving symmetries of our tilings, Corollary 5.10 has an immediate analogue for
the whole space group Γ. Denote by G± the extension of the point group G to include reflections
which act on T , in the appropriate sense. Then Γ is an extension 0→ Zd → Γ→ G± → 1 and
by the same argument as for Theorem 5.9 we obtain π1(ΩG±) ∼= Γ.

5.3. Topological space groups. The above results show that the classical space group of a
periodic pattern may be described as the fundamental group of ΩG, and the spin cover of the
space group as the fundamental group of Ω

G̃
or Ωr. As discussed, in the aperiodic setting the

fundamental groups of these spaces are not appropriate objects to consider, but we do have
the pro-fundamental groups.

Taking the inverse limit of an inverse system of groups defines a functor from the category of
pro-groups to the category of groups. Applied to the tower representing πpro

k (X,x), we obtain
the inverse limit lim←−πk(Xn, xn); these are shape invariants of X [30] which we call the shape
homotopy groups.

While it is generally more straightforward to describe the inverse limit of a pro-group than
the pro-group itself, it contains potentially less information. Moreover, inverse limits in this
setting are only half exact functors, and so have first derived functors lim←−

1 πk(X,x). In the

case of tiling spaces these are the L-invariants Lk of [11]. Recall that while lim←−
1 πk(X,x) is an

abelian group for k > 1, lim←−
1 π1(X,x) is only a pointed set; moreover, it is either the one point

set 1, or is uncountable [32, Theorem 2].

The following definition extends the notion of the space group from the classical periodic
setting, as seen from the previous subsection.

Definition 5.16. Let T be an aperiodic tiling in Rd with point group G and extension G± that
includes reflections where relevant. Define the topological space group Γ of T as lim←−π1(ΩG± , T )

and the topological space pro-group Γpro as the pro-group πpro
1 (ΩG± , T ). Similarly, define the
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positive topological space group Γ+ as lim←−π1(ΩG, T ) and the positive topological space pro-group

Γpro
+ as πpro

1 (ΩG, T ).

As the pro-homotopy groups are homeomorphism invariants, we immediately have:

Theorem 5.17. The groups and pro-groups Γpro, Γ, Γpro
+ and Γ+ are S-MLD invariants of T .

The following extends Corollary 5.14 to the aperiodic setting:

Proposition 5.18. For d = 2 the shape fundamental group lim←−π1(Ωr, T ) is a Z-cover

Z→ lim←−π1(Ωr, T )→ lim←−π1(ΩG, T ) = Γ+

of the positive topological space group, and is a Z/2-cover

Z/2→ lim←−π1(Ωr, T )→ lim←−π1(ΩG, T ) = Γ+

for d > 2.

Proof. By Proposition 4.8 we have that ΩG
∼= (Ωr ×ESO(d))/SO(d), with associated fibration

SO(d)→ Ωr → ΩG. We thus have the following long exact sequence of pro-homotopy groups

· · · → πpro
2 (Ωr, T )→ πpro

2 (ΩG, T )→ π1(SO(d))→ πpro
1 (Ωr, T )→ πpro

1 (ΩG, T )→ 0 ,

since SO(d) is connected. As can be seen from the proof of Proposition 4.8, the map Ωr → ΩG

here may be identified with f : (Ωt × SO(d))/G → (Ωt × ESO(d))/G, which corresponds
to the map of fibrations from the second to the first column of Proposition 4.10. These
de-loop to the fibrations Ωt × SO(d) → Ωr → BG and Ωt × ESO(d) → ΩG → BG. Since
π2(SO(d)) ∼= π2(BG) ∼= π3(BG) ∼= 0, it follows that the map Ωr → ΩG induces an isomophism
πpro

2 (Ωr, T ) ∼= πpro
2 (ΩG, T ), and thus the above long exact sequence gives the short exact

sequence

0→ π1(SO(d))→ πpro
1 (Ωr, T )→ πpro

1 (ΩG, T )→ 0.

Since π1(SO(d)) ∼= Z for d = 2 and π1(SO(d)) ∼= Z/2 for d > 2, the above gives the desired
short exact sequence after passing to inverse limits. �

Just as in the periodic case, we have that Γpro
+ is an extension of the point group by the shape

fundamental group of Ωt, which in the periodic case corresponds to the lattice of translations.
Thus in the pro-category, we have directly from Theorem 5.6:

Corollary 5.19. There is a short exact sequence of pro-groups

πpro
1 (Ωt, T ) −→ Γpro

+ −→ G

However, upon passing to limits, we obtain the following 5 term exact sequences; these follow
by applying inverse limits to Propositions 5.2, 5.3 and Theorem 5.6. In the below we omit the
base points, taken as T for each space.

Corollary 5.20. For k > 1 we have isomorphisms

lim←−πk(Ωt) ∼= lim←−πk(ΩG) ∼= lim←−πk(ΩG̃
), lim←−πk(Ωr) ∼= lim←−πk(Ωt)⊕ πk(SO(d))



26 JOHN HUNTON AND JAMES WALTON

and the Lk invariants of Ωt, ΩG, Ω
G̃

and Ωr all agree. In degree 1 we have the following
commutative diagram

0 lim←−π1(Ωt) lim←−π1(Ωr) G̃ lim←−
1 π1(Ωt) lim←−

1 π1(Ωr) 1

0 lim←−π1(Ωt) lim←−π1(Ω
G̃

) G̃ lim←−
1 π1(Ωt) lim←−

1 π1(Ω
G̃

) 1

0 lim←−π1(Ωt) lim←−π1(ΩG) G lim←−
1 π1(Ωt) lim←−

1 π1(ΩG) 1 .

∼=

∂′

∼=

q

∂̃

∂

in which each five term row is exact.

Using similar techniques and considering the fibration Ωt → ΩG± → BG±, we also have an
exact sequence

(5.1) 0→ lim←−π1(Ωt)→ lim←−π1(ΩG±)→ G±
∂±−−→ lim←−

1π1(Ωt)→ lim←−
1π1(ΩG±)→ 1

for a general aperiodic pattern.

Thus the space group will be an extension of lim←−π1(Ωt, T ) by the point group precisely when
the appropriate ∂ map in the above 5-term exact sequences is the trivial map; similarly for
orientation preserving and Ωr cover cases. Certainly this will hold when, for example, the
L1-invariant for Ωt is trivial.

Example 5.21. By [20] the translational hull Ωt of a rational projection method tiling in Rd
is stable, in the sense [30], i.e., that it is shape equivalent to a finite CW complex. Thus the
L1-invariant of Ωt is trivial and we have extensions

lim←−π1(Ωt, T )→ lim←−π1(Ωr, T )→ G̃ lim←−π1(Ωt)→ lim←−π1(ΩG±)→ G± .

When a translate of T realises the whole point group as its group of symmetries, we may also
deduce that the ∂ maps of Corollary 5.20 or Equation 5.1 are trivial:

Theorem 5.22. Let g ∈ G̃ and suppose that a translate T ′ of T satisfies g(T ′) = T ′. Let
∂′ be as in the statement of Corollary 5.20. Then ∂′(g) = 0. Moreover, if there exists a

translate of T preserved under rotation by the entire group G̃, then ∂′ = 0 and the extension

lim←−π1(Ωt, T )→ lim←−π1(Ωr, T )→ G̃ is split.

Analogous statements hold for each of the other 5-term exact sequences of Corollary 5.20 and
Equation 5.1.

Proof. Although it need not be true that a change of base points preserves the pro-homotopy
groups of the hulls, it is easily verified that changing base point by a translate defines natural
isomorphisms between them. So without loss of generality we take T ′ = T .

It suffices to prove the result for the case of the rotational hull Ωr since the vanishing of the
other ∂ homomorphisms will follow. Similar arguments will apply for the analogous splitting
results.
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Take a path ζ ′(g) : [0, 1]→ Spin(d) from the identity to g. Applying the quotient, this defines

a loop ζ(g) in Spin(d)/G̃ representing g ∈ G̃ ∼= π1(Spin(d)/G̃). This also defines based loops
ζn(g) in the approximants Jn, given by rotating in the approximant according to ζ ′(g); these
are loops since T is assumed to be preserved under rotation by g. By construction these loops
are preserved under application of the forgetful maps Jn → Jn−1, so the sequence (ζn(g))
defines an element of lim←−π1(Ωr). Each has trivial translational part, in the sense that each

may be written as the loop t 7→ [bn, ζ
′(g)(t)], where we identify Jn ∼= (Kn × Spin(d))/G̃ (for

sufficiently large n) and bn is the base point of Kn corresponding to T . By construction, the

map θ∗ : lim←−π1(Ωr) → G̃ at the approximant level sends each such loop to g ∈ G̃, so g is in

the image of θ∗, and by exactness the kernel of ∂′.

In the case where T has full symmetry group G̃, it is not hard to verify that the map
g 7→ (ζn(g))n ∈ lim←−π1(Ωr) is a homomorphism, defining a splitting of the short exact sequence.
The proofs for the other exact sequences are analogous. �

It is tempting to conjecture that the above theorem still holds when the assumption that T ′ is
a translate of T is replaced with T ′ only being an ‘almost translate’ of T , that is with T ′ ∈ Ωt.
However, we have heuristic reasons to believe that one should not expect for such a result to
hold, although as yet do not have a full counter-example to the claim.

We finish this subsection with a couple of example computations of topological space groups.

Example 5.23. Consider canonical codimension 1 projection tilings in Rd whose tiles are
formed by projecting the d-skeleton of the unit cubical tesselation with vertices Zd+1 < Rd+1

in a strip of the form E + Id+1, where E is a suitably irrationally positioned d-dimensional
hyperplane in Rd+1 and Id+1 denotes the unit hypercube. The translational hulls of such
patterns, as mentioned in Remark 5.4, are shape equivalent to punctured (d + 1)-tori. In
particular the translational and rotational hulls are stable in the sense of [30], that is, shape
equivalent to CW complexes, so their pro-homotopy groups are base point independent.

The projected 1-skeleton has 1-cells of (d + 1) types, one for each direction of edge in Id+1.
The full point group G±, including orientation reversing symmetries, must permute the
corresponding vectors, and their negatives, and it is not too hard to show that non-periodicity
implies that in fact G± ∼= Z/2, consisting only of the identity and x 7→ −x. Since the latter is
orientation preserving if and only if d is even, we have that G ∼= Z/2 for d even and G ∼= 0 for
d odd. For d even, following some further simple calculations from the observations of Remark
5.4, one may show that the action of the generator of G on lim←−π1(Ωt, T ) ∼= Zd+1 is given by

v 7→ −v. There are tilings of the hull with Z/2 rotational symmetry, so by Theorem 5.22, for d
even the topological space group Γ = Γ+ = lim←−π1(ΩG, T ) is the semi-direct product of Z/2
and Zd+1. For d odd this also describes Γ, but Γ+ = lim←−π1(Ωt, T ).

For d odd Ωr
∼= Ωt × SO(d), so lim←−π1(Ωr, T ) ∼= Zd+1 × Z/2. For d even, the covering group G̃

is Z for d = 2 and Z/4 for d > 4. In these cases lim←−π1(Ωr, T ) is the corresponding semi-direct

product of G̃ and lim←−π1(Ωt, T ) with action of G̃ as given above via the quotient G̃→ G.

The following is an example where we can describe completely all the homotopy for a 3-
dimensional aperiodic tiling.
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Example 5.24. Let S be a dimension and codimension 1 canonical projection tiling, so a tiling
of two tile types which occur according to a Sturmian sequence, equivalently a cutting sequence
[43] of irrational slope. It is readily checked that the corresponding tiling space ΩS is closed under
taking mirror images of sequences. Let F be the aperiodic tiling on R3 given by cuboid tiles
decorated as the product of three copies of the 1-dimensional tiling S and write Ωt(F), ΩG(F),
etc., for its respective hulls. Then for all n > 1, lim←−πn(ΩG(F),F) = lim←−πn(Ωt(F),F) = 0 and

lim←−πn(Ωr(F),F) = πn(SO(3)), while lim←−π1(ΩG(F),F) is a semi-direct product

1 −→ F2 ⊕ F2 ⊕ F2 −→ lim←−π1(ΩG(F),F) −→ G −→ 1 .

Here F2 denotes the free group on two generators, and G is the group of rotational symmetries
of the cube. That the point group of F is the full rotation group of the cube, and that this is
split (using Theorem 5.22) follows from the fact that ΩS carries the action of Z/2 given by
reflection and, as in the example above, the tiling space is stable and so these constructions
are base point independent. The action of G on F2 ⊕ F2 ⊕ F2 is as follows. The group G is
generated by permutation matrices

R =

 0 1 0
−1 0 0
0 0 1

 D =

 0 1 0
0 0 1
1 0 0

 .

Let us write the generators of the three copies of F2 as elements a1 and b1, a2 and b2 and a3

and b3. Then the elements R and D act

R :



a1 7→ a2

b1 7→ b2
a2 7→ a−1

1

b2 7→ b−1
1

a3 7→ a3

b3 7→ b3

D :



a1 7→ a2

b1 7→ b2
a2 7→ a3

b2 7→ b3
a3 7→ a1

b3 7→ b1

To see all this, we use the fact that the 1-dimensional tiling space ΩS is shape equivalent to W ,
the one point union of two circles (for example, see [17] Chapter III), and hence Ωt(F) is shape
equivalent to W ×W ×W . Thus lim←−π1(Ωt(F),F) = F2 ⊕ F2 ⊕ F2 and lim←−πn(Ωt(F),F) = 0
for n > 1, by the homotopy of W and that homotopy groups take cartesian products to direct
sums.

5.4. Relation to the crystallographic aperiodic space group. In Crystallography there
has long been a concept of aperiodic space group (ASG) that generalises the classical space
group to the case of quasicrystals [15]. Briefly, let us assume the quasicrystal is modelled on an
irrational slice through the higher dimension lattice Λ ∼= Zk, and denote by Λ′ the projection
of Λ to the physical space Rd of the tiling (isomorphic to Λ as a group). Then the ASG is
the extension of the full point group G± (as in Section 3, and containing reflections as well as
orientation preserving symmetries) by Λ′, using the natural action of G± on Λ′. Thus it is an
extension

(5.2) Λ′ −→ ASG −→ G± .

Here we elaborate the relation of the ASG to the topological space group Γ = lim←−π1(ΩG± , T )

and the pro-group Γpro = πpro
1 (ΩG± , T ).

Recall that the dynamical system Ωt with translation action by Rd has a maximal equicontinuous
factor (MEF), here denoted by E , with factor map denoted η : Ωt → E . In turn this induces
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a homomorphism in degree 1 cohomology η∗ : H1(E ;Z)→ H1(Ωt;Z). This homomorphism is
examined in detail by Barge, Kellendonk and Schmieding [7]. In particular, they prove that η∗

is injective and, in many important cases such as for almost canonical projection tilings (see
[20, 25]), or when H1(Ωt;Z) is finitely generated, the image of η∗ is a direct summand.

We now give a variant of the topological space group which, as we shall see, corresponds to
the ASG. The action of G± naturally induces an action on the MEF E (which is a k-torus for
such projection tilings) and so we may define the Borel construction EG± by (E ×EG±)/G± as
before.

Definition 5.25. We let Γpro
E := πpro

1 (EG±) and ΓE := lim←−π1(EG±).

Analogously to the fourth column of Proposition 4.10 we have a fibre bundle

(5.3) E → EG± = (E × EG±)/G± → BG±

and the map η induces a map between these fibrations, in particular a map σ : ΩG± → EG±.
So we have a diagram of extensions

(5.4)

πpro
1 (Ωt, T ) Γpro G±

πpro
1 (E , T ) Γpro

E G± .

η∗ σ∗

Before examining this diagram further, we would like to relate the crystallographers’ aperiodic
space group ASG to ΓE within a broad setting in which the former is defined, the rational
projection tilings [20, Section 4].

For the rational projection tilings the cohomology H1(Ωt;Z) is finitely generated and the lattice
Λ may be identified with the first homology H1(E) of the MEF [17, 20]. Its image under the
projection to Rd associated to the pattern is Λ′, which can be identified with the translation
module of the tiling, dual to the Fourier module H1(E ;Z). In fact, E may equally be identified
as the classifying space of Λ. Since π1(E) is abelian it is naturally identified with H1(E) under
the Hurewicz homomorphism. So applying the long exact sequence in homotopy establishes
the following:

Theorem 5.26. Let T be a rational projection tiling. Then there is a natural isomorphism
between the extension of Equation 5.2 and the extension

lim←−π1(E)→ ΓE → G±

induced by the bottom row of Equation 5.4. In particular, for such a tiling ASG ∼= ΓE .

An alternative argument for the above is to consider the ASG as acting on the ambient
Euclidean space of the lattice Λ 6 RN and applying a similar line of reasoning to the proof of
Theorem 5.9, namely via the observation that we may take RN × EG± as E(ASG).

Having connected ASG with ΓE , we now want to compare the latter with the topological space
group Γ, that is we consider the map σ∗ of Equation 5.4 upon passing to the inverse limit.
Let us now consider any repetitive tiling with stable tiling space. In Shape Theory, a space is
termed stable if it can be written as an inverse limit of finite CW complexes

(5.5) X1
α1←− X2

α2←− X3
α3←− · · · ←− Xn

αn←− · · ·X
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whose structure maps αn are homotopy equivalences, as in Example 5.1. In this situation, there
is no information lost passing from the pro-group πpro

1 (X,x) to its limit group lim←−π1(X,x). It

follows (from stability and [7]) that a tiling whose translational hull Ωt is stable has MEF E a
torus; moreover, its cohomology H1(E ;Z), which can be interpreted as the group of dynamical
frequencies associated to the Rd action on Ωt, is a finitely generated, free abelian group.

Theorem 5.27. Let T be a tiling with Ωt stable and H1(Ωt;Z) finitely generated. Then the
map σ∗ : Γ→ ΓE induced by the corresponding map of Equation 5.4 is a surjection.

Proof. By stability lim←−
1 π1(Ωt, T ) = 0 and, by [7], E must be a torus so lim←−

1 π1(E) = 0 too. It
follows that we may replace the pro-groups of Equation 5.4 with their inverse limits:

lim←−π1(Ωt, T ) Γ G±

π1(E) ΓE G± .

η∗ σ∗

So it is sufficient to show that η∗ is surjective.

Take a stable inverse limit expansion for Ωt, as in Equation 5.5. By a theorem of Rogers [38] we
can realise η, up to homotopy, as a map of expansions where, for example, we take the constant
expansion for E . So without loss of generality we may identify η∗ : lim←−π1(Ωt, T )→ lim←−π1(E)

with f∗ : π1(X1, x1) → π1(E) for some suitable map f : X1 → E , where X1 is the first CW
approximant of the expansion. Because H1(E) is abelian, we may factor f∗ through homology

lim←−π1(Ωt, T ) ∼= π1(X1) H1(X1) H1(E) ∼= π1(E) ,h f∗

by naturality of the Hurewicz homomorphism h. So η∗ is surjective if H1(X1)
f∗−→ H1(E) is.

It follows from the universal coefficient theorem [45] that we may identify H1(E ;Z)
η∗−→ H1(Ωt;Z)

with the dual
hom(H1(E),Z)→ hom(H1(X1),Z)

of f∗. By [7] η∗ is the injection of a direct summand. Since the groups involved are finitely
generated abelian groups, it is easily verified that this can only happen if f∗ is surjective, as
desired. �

Since rational projection method patterns have stable tiling spaces with finitely generated
cohomology [20], we obtain the following:

Corollary 5.28. Let T be a rational projection tiling. Then there is a canonical surjection
σ∗ : Γ� ASG.

In the most general case, for example when E is a solenoid and H1(Ωt;Z) is no longer finitely
generated as a group, the translation module typically vanishes. One nevertheless still has the
Fourier module, corresponding to H1(E ;Z), with its G±-action. With similar constructions to
before, the pro-group πpro

1 (Ωt, T ) will still determine

H1(Ωt;Z) ∼= lim−→ hom(πpro
1 (Ωt, T ),Z)

and the extension of G± by H1(E ;Z) is a subgroup of the extension of H1(Ωt;Z) by G± by
[7].
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In conclusion, the pro-group Γpro is generally richer than the ASG or its analogue to the degree
that πpro

1 (Ωt, T ) is richer than π1(E). The topological space group is of course generally distinct
from the ASG, not least it being a non-abelian invariant on the translational component.

Remark 5.29. In practice, the topological space group Γ and its related objects are hard
to compute in general: even the shape fundamental group lim←−π1(Ωt, T ) of the translational
hull is unknown for most tilings in dimensions greater than 1. The observations of this section
however suggest variants that still retain new information, but are more readily accessible to
computation. We note two possibilities, as follows, but leave these constructions for further
investigation elsewhere.

First, there is a homological analogue: as the point group G± acts on Ωt and hence lim←−π1(Ωt),

so it acts on the homology lim←−H1(Ωt) and we may form the extension

lim←−H1(Ωt) −→ ∆ −→ G± ,

a homological analogue for Γ. In the stable, finitely generated case, as in Theorem 5.27, this
gives an S-MLD invariant which again surjects onto the ASG, by the same argument as above.
For the non-stable case the pro-group analogue, or the cohomological object

lim−→H1(Kn;Z) −→ ∆∗ −→ G±

would be suitable replacements.

The second variant, following the approach noted in [40] and used to great effect by Gähler
in his recent and ongoing classification of certain one dimensional tilings, is to examine the
representation variety of Γ, that is

Rep(Γ;S) = lim−→ hom(π1(Jn);S)

for suitably chosen finite groups S.

6. Cohomology

We turn now to consider the Čech cohomology of the rotational hulls Ωr. The fibrations of
Section 4

Ωt × Spin(d)→ Ωr → BG̃

Ωt → Ωr → Spin(d)/G̃

give rise to two Serre type spectral sequences

Hn(BG̃;Hk(Ωt × Spin(d);Z)) =⇒Hn+k(Ωr;Z)

Hn(Spin(d)/G̃;Hk(Ωt;Z)) =⇒Hn+k(Ωr;Z) .

It is important to note that in both cases, the left hand groups are cohomology with twisted
coefficients: there is an action of the fundamental group of the base space (in both cases the

group G̃) on the cohomology of the fibre, and in part it is here that much of the subtlety

of the computations arise. Cohomology H∗(BG̃;M) for any ZG̃ module M can of course be

interpreted as group cohomology H∗(G̃;M). See [9] for details of group cohomology and its
calculation.
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Of course both these spectral sequences require knowledge of the more traditional tiling

cohomology, H∗(Ωt;Z), as well as the G̃-action on this object. This is often highly non-
trivial, though there are now many techniques that can be effective for individual classes
[6, 20, 41].

We will not dwell on the closely related cohomology H∗(ΩG;Z), but using the corresponding
fibration

Ωt → ΩG → BG

the same techniques detailed below will yield calculations for these groups as well. Indeed, the
arguments for navigating the spectral sequences for specific cases of H∗(Ωr;Z) generally give
what is needed for computation of the corresponding H∗(ΩG;Z).

In the next section we examine the rational cohomology H∗(Ωr;Q). It is derivable from the
integral cohomology by the universal coefficient theorem [45], which in this case says that we
have a natural isomorphism

Hn(X;Q) ∼= Hn(X;Z)⊗Q.
In particular, the rational cohomology loses torsion information, and as a result is a far less
subtle invariant. When we turn to the integral cohomology calculations of our periodic and
aperiodic cubical examples, we shall also compute the Z/2-coefficient cohomology. By the
universal coefficient theorem [45], this is derivable from the integral cohomology via the following
split exact sequence:

0→ Hn(X;Z)⊗ Z/2→ Hn(X;Z/2)→ TorZ1 (Hn+1(X;Z);Z/2)→ 0.

The Z/2-cohomology has the advantage that the cohomology groups are in fact fields over Z/2,
so the extension problems in the associated spectral sequences are trivial.

6.1. Rational cohomology. The case of cohomology for Ωr with rational coefficients proves
to be significantly more straightforward than the integral problem, for one reason because of
the finiteness of G, and hence the vanishing of the group cohomology Hn(G;Q) for positive n.
The following result applies to all dimensions d > 2, and irrespective of whether the tiling is
periodic or aperiodic.

Theorem 6.1. Let T be a tiling in Rd with point group G. Then its rational Čech cohomology
satisfies

Hn(Ωr;Q) ∼=
⊕
a+b=n

Ha(Ωt;Q)G ⊗Hb(SO(d);Q)

where Ha(Ωt;Q)G = Ha(Ωt;Q)G̃ denotes the G-invariant elements of Ha(Ωt;Q).

Proof. We use the fibration of Corollary 4.3, which runs Ωt × SO(d)→ Ωr → BG. The Serre
spectral sequence is a spectral sequence computing H∗(Ωr;Z) with E2-page

Eij2 = H i(G;Hj(Ωt × SO(d);Q)) .

The right hand object is group cohomology with twisted coefficients in the Q-module

Hj(Ωt × SO(d);Q) =
⊕
r+s=j

Hr(Ωt;Q)⊗Hs(SO(d);Q) .

The G-action on this is the diagonal one, but note that the action of any subgroup of SO(d) on
SO(d) is homotopically trivial (SO(d) is path connected, so given any x ∈ SO(d) and g ∈ G,
there is always a path back from g · x to x. Thus Hs(SO(d);Q)G = Hs(SO(d);Q)).
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However, for any coefficient G-module M , as G is a finite group, H i(G;M) for i > 0 is killed
by multiplication by |G|. Thus if M is a Q-vector space, H i(G;M) = 0 for all i > 0. So
the E2-page of our spectral sequence is non-zero only in the column i = 0. Moreover, as

H0(G;M) = MG, the G-invariant elements of M , the column E0,j
2 is the G-invariants

Hn(Ωt × SO(d);Q)G =
⊕
a+b=n

Ha(Ωt;Q)G ⊗Hb(SO(d);Q) .

As there can be no differentials or extension problems with a single column spectral sequence,
this completes the proof. �

Example 6.2. The dimension d, aperiodic, canonical, codimension 1 tilings of Example 5.23
have translational tiling hulls shape equivalent to a once-punctured (d+ 1)-torus, which has
rational cohomology

Ha(Ωt;Q) ∼=


Q for a = 0;

Q(d+1
a ) for 0 < a < d+ 1;

0 otherwise.

For d odd G ∼= 0 so Ha(Ωt;Q)G = Ha(Ωt;Q) and Ωr
∼= Ωt × SO(d). For d even G ∼= Z/2 and

it is not hard to show that the non-trivial element of G acts trivially on Ha(Ωt;Q) for a even,
so that Ha(Ωt;Q)G = Ha(Ωt;Q); and by x 7→ −x for a odd, so Ha(Ωt;Q)G = 0.

Example 6.3. Consider the decorated cube tiling F of Example 5.24. Up to shape equivalence
Ωt(F) is the product Π of three copies of W , the one point union of two circles. The group G
of rotational symmetries is the group of orientation preserving symmetries of the cube, whose
action on the 1-cells are as described in Example 5.24.

Let us name the 1-cells in the three copies of W by {xij ; 1 6 i 6 3, j = 1, 2}. These are the
1-cells of Π; the 2-cells are those products xi1j1xi2j2 where i1 6= i2; there are twelve of these.
There are eight 3-cells, the eight products x1j1x2j2x3j3 . As a cell complex, the boundaries all
vanish. We get a description of the integral cohomology H∗(Ωt(F);Z): in dimensions 0, 1,
2 and 3 it is respectively Z, Z6, Z12 and Z8, and is zero in higher dimensions. The cells as
described may be taken as generators of these groups. The rational cohomology H∗(Ωt(F);Q)
is obtained by tensoring with Q.

To compute H∗(Ωr(F);Q) we need to determine the G-invariants H∗(Ωt(F);Q)G. For each
1 or 2-cell there is a rotation that acts as the involution x 7→ −x, and so there can be no
G-invariant elements of H1(Ωt(F);Q) and H2(Ωt(F);Q). The degree zero group H0(Ωt(F);Q)
is necessarily G-invariant, while in H3 the G-invariant submodule is of rank 4, spanned by the
set {

x11x21x31, x11x21x32 + x11x22x31 + x12x21x31

x12x22x32, x11x22x32 + x12x22x31 + x12x21x32

}
.

Finally, note that Hn(SO(3);Q) ∼= Hn(S3;Q) ∼= Q for n = 0, 3 and is 0 otherwise, so by
Theorem 6.1 we obtain

Hn(Ωr(F);Q) =


Q for n = 0
Q5 for n = 3
Q4 for n = 6
0 otherwise.
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6.2. Top degree rational cohomology. A similar argument to the proof of Theorem 6.1,
using the fibration Ωt → ΩG → BG, shows that Hr(ΩG;Q) ∼= Hr(Ωt;Q)G. Likewise, for
the space Ω0 := Ωt/G (equivalently, the quotient Ωr/SO(d)) it is not hard also to show that
Hr(Ω0;Q) ∼= Hr(Ωt;Q)G (c.f., [6, Theorem 7]). Theorem 6.1 thus says that Ωr and Ω0× SO(d)
have isomorphic rational cohomology, generalising [6, Theorem 8].

Let D = d+ d(d− 1)/2 (the top non-trivial cohomological degree of Ωr). As a consequence
of Theorem 6.1, we may relate the top degree Q or R-coefficient cohomology of Ωr to the top
degree cohomologies of Ω0 and Ωt.

Corollary 6.4. We have natural identifications

HD(Ωr;Q) ∼= Hd(Ωt;Q)G ∼= Hd(Ω0;Q).

Proof. Since SO(d) is a Lie group, its top degree cohomology group is Hd(d−1)/2(SO(d);Q) ∼= Q.
By Theorem 6.1, we have that Hd(Ωt;Q)G ∼= HD(Ωr;Q). For the isomorphism Hd(Ωt;Q)G ∼=
Hd(Ω0;Q), see for example [48, Proposition 3.12]. �

The top degree cohomology of Ωt has an important trace function for sufficiently regular tilings
(those with uniform patch frequencies, see [4]). Under the pattern-equivariant (PE) formalism
(see [26, 28, 40]) representatives ψ of classes in Hd(Ωt;Q) may be viewed as PE cochains. In
top cohomological degree d for Ωt, we may average the value of a Q-valued PE d-cochain ϕ on
d-cells intersecting any given r-ball (by dividing the sum by the volume of an r-ball) which
converges to some τ(ψ) ∈ R as r →∞, assuming that T has uniform patch frequencies. The
value τ(ψ) does not depend on the representative of the cohomology class of ψ taken, and τ
induces a well-defined homomorphism

τ : Hd(Ωt;Q)→ R

called the trace. By Corollary 6.4 this also defines a trace on the top-degree rational cohomology
of Ωr. In the translational setting, this trace function is central in Bellissard’s Gap Labelling
Theorem [8], regarding the spectral gaps of quasiperiodic potentials. Arguably, comparing
patches up to rigid motion rather than just translations may be more natural for certain
applications, so it may be of interest to investigate the tracial theory from this perspective
further. It is possible that this natural trace on HD(Ωr;Q) may be extended to lower degrees,
which is done in the translational setting using the Ruelle–Sullivan current [28].

6.3. Integral cohomology of the planar tilings. Integral Čech cohomology should be
expected to be a considerably more subtle invariant, as it will see the higher cohomology of the
finite group G involved. In this section we restrict to dimension d = 2, for which reasonably
complete answers can frequently be given; this is perhaps not least because the only finite
subgroups of SO(2) = S1 are the cyclic ones Z/n. The following, using the techniques of this
paper, recover the final results of the second author’s work [49]. It applies equally whether the
tiling is periodic or not.

Theorem 6.5. [49, Theorem 4.1] Suppose T is a tiling in R2 with point group G. Then the
Čech cohomology of Ωr in degree n is an extension

0 −→ Hn−1(Ωt;Z)G −→ Hn(Ωr;Z) −→ Hn(Ωt;Z)G −→ 0
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where, for a G-module M , we use the usual notation of MG to mean the G-invariant elements
of M , and we write MG to mean the G-coinvariants of M , the quotient of M by the submodule
generated by elements of the form m− gm as m and g run over M and G respectively.

Proof. As SO(2) is just the circle S1, the quotient SO(2)/G is also a copy of S1. The fibration
of the orientation map, Proposition 4.5, is thus

Ωt → Ωr → S1 = BZ

and the Serre spectral sequence of this has just two non-zero columns, namely, writing in terms
of group cohomologies, E0,n

2 = H0(Z;Hn(Ωt;Z)) and E1,n
2 = H1(Z;Hn(Ωt;Z)). The Z-action

on H∗(Ωt;Z) given by the holonomy of this fibration is given by the natural G-action and the
quotient Z→ G. As any 0th group cohomology H0(G;M) is the G-invariants of M , the first
column is identified as H∗(Ωt;Z)G. As Z is a Poincaré duality group, we have an isomorphism
of the second column

E1,n
2 = H1(Z;Hn(Ωt;Z)) = H0(Z;Hn(Ωt;Z)) = Hn(Ωt;Z)G

since any 0th group homology H0(G;M) is the group of G-coinvariants of M . There is no room
for any differentials in this spectral sequence, and the result follows. �

Remark 6.6. It is not clear that all these extensions will always split, since there may be torsion
in H2(Ωt;Z): for example in the Tübingen Triangle Tiling [19]. The remaining extensions do
not have this problem and so in general we have

Hn(Ωr;Z) =


Z for n = 0,

Z⊕H1(Ωt;Z)G for n = 1,

Extension H1(Ωt;Z)G → H2(Ωr;Z)→ H2(Ωt;Z)G for n = 2,

H2(Ωt;Z)G for n = 3.

Example 6.7. Consider an aperiodic, canonical codimension 1 projection tiling of R2. As in
Example 6.2, Hn(Ωt;Z) ∼= Z, Z3, Z3 for n = 0, 1, 2, respectively, and is trivial otherwise. The
action of the point group G = Z/2 on Hn(Ωt;Z) is the trivial action in degrees n = 0, 2 and
x 7→ −x in degree 1. Then Hn(Ωt;Z) ∼= Hn(Ωt;Z)G ∼= Hn(Ωt;Z)G for n = 0, 2; H1(Ωt;Z)G ∼= 0
and H1(Ωt;Z)G ∼= (Z/2)3. Hence

Hn(Ωr;Z) =


Z for n = 0

Z for n = 1

(Z/2)3 ⊕ Z3 for n = 2

Z3 for n = 3.

6.4. Dimension 3: Configurations of the cubic lattice. We consider here the cohomology
of the space Ωr for the case of the periodic cubical tiling in R3. A point in this space corresponds
to a placement of a (unit) cubical tessellation of R3 at some specific position relative to the
origin and at some specific orientation relative to the coordinate axes. Thus in this case Ωr is a
6-manifold: the translational hull Ωt (for example, the subspace of these tilings with cube sides
parallel to the axes) is a 3-torus, and there are a further 3 degrees of rotational freedom.

The computation of H∗(Ωr;Z) runs as follows. The point group G is the group of symmetries

of the cube, and the index 2 covering group G̃ of G acts freely on S3 with a fundamental
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Figure 6.1. Tables of the group cohomologies Hn(BG̃;Hk(T3;Z)) (left) and

Hn(BG̃;Hk(T3;F2)) (right). Recall that Hk(T3;R) = 0 for k > 3. In the
notation 2 denotes the group Z/2, and 4 denotes Z/4. All these are 4-periodic,

in the sense that Hn(BG̃;Hk(T 3;R)) = Hn+4(BG̃;Hk(T3;R)) for all n > 1.

domain 1/48th of the sphere. We compute using the fibration T3 = Ωt −→ Ωr −→ S3/G̃ which
gives our main spectral sequence

H∗(S3/G̃;H∗(T3;Z)) =⇒ H∗(Ωr;Z) .

It is important to note that the action of π1(S3/G̃) = G̃ on H∗(T3;Z) is not trivial, and
thus the left hand term (the E2-page of the spectral sequence) is ‘cohomology with twisted
coefficients’. Specifically, it is non-trivial on Hn(T3;Z) precisely for n = 1 and 2, where it can
be read off directly from the natural action of G on the cubical lattice.

It will turn out that this spectral sequence has 2-torsion, and in order to solve the resulting
extension problems we compute in parallel the analogous spectral sequence with F2, as opposed
to Z, coefficients.

In order to compute H∗(S3/G̃;H∗(T3;R)) (where R = Z or F2), we first compute the group

cohomology H∗(BG̃;H∗(T3;R)). By virtue of G̃ being a discrete subgroup of S3, this group

cohomology is 4-periodic and it can be computed using an efficient resolution of G̃ as described
in [47]. We obtain the results as shown in Figure 6.1.

The groups H∗(S3/G̃;H∗(T3;R)) may be easily deduced from these calculations using the
following lemma.

Lemma 6.8. Let Q be a finite subgroup of S3 and M a Q-module. Then Hn(BQ;M) ∼=
Hn(S3/Q;M) for n = 0, 1, 2. We have that Hn(S3/Q;M) ∼= 0 for n > 3, and for n = 3 we
have a long exact sequence:

0→ H3(BQ;M)→ H3(S3/Q;M)→ H0(BQ;M)→ H4(BQ;M)→ 0.

Proof. As S3/Q is a 3-manifold, necessarily its cohomology vanishes in dimensions more than
3. For low dimensions we note that Q is a 4-periodic group and so it has a resolution that is
4-periodic. A model for BQ can be taken with the corresponding cell structure, and S3/Q as
its 3-skeleton. Denoting by Cn the cochain group of BQ in dimension n with M coefficients,
we get a short exact sequence of cochain complexes

0→ C∗−4 u−→ C∗
i−→ C∗(S3/G̃)→ 0 .
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Figure 6.2. E2-pages of the cohomology spectral sequence

Hn(S3/G̃;Hk(T3;Z)) =⇒ Hn+k(Ωr;Z) (left) and Hn(S3/G̃;Hk(T3;F2))
=⇒ Hn+k(Ωr;F2) (right). As before, 2 denotes the group Z/2, and 4 denotes
Z/4.

Here C∗(S3/Q) is the cochain complex of S3/Q with M coefficients, equal to C∗ for ∗ 6 3
and 0 for ∗ > 3, and u is the periodicity operator, identifying Cn with Cn+4 for n > 0. The
homomorphism i may be identified as that induced by the inclusion S3/Q→ BQ. The lemma
now follows from the resulting long exact sequence: for n < 3 we have

0→ Hn(BQ;M)
i∗−→ Hn(S3/Q;M)→ 0

and finally for n = 3 the exact sequence as stated in the lemma. �

From this we deduce the E2-pages of the spectral sequencesH∗(S3/G̃;H∗(T3;R)) =⇒ H∗(Ωr;R),
as shown in Figure 6.2.

The computation of H∗(Ωr;Z) now proceeds via these spectral sequences. By E∗,∗n (R) we mean

the nth page of the spectral sequence H∗(S3/G̃;H∗(T3;R)) =⇒ H∗(Ωr;R), where R is Z or
F2.

Lemma 6.9. The spectral sequences H∗(S3/G̃;H∗(T3;R)) =⇒ H∗(Ωr;R) for both R = Z and
F2 have no non-trivial differentials.

Proof. The torus T3 = R3/Z3 has a natural cell structure inherited from the cube, so, with
one 0-cell, three 1 and 2-cells and one 3-cell. This cell structure is preserved under the action

of G̃ and so we may consider the subspaces Yn = (Xn × S3)/G̃, n = 0, 1, 2, where Xn is the
n-skeleton of T 3 with this cell structure. There are then fibrations and inclusions

T3 −→ Ωr −→ S3/G̃
↑ ↑ ||
Xn −→ Yn −→ S3/G̃

induced by the inclusions in : Xn → T3. We write i∗n both for the induced map in cohomology
Hr(T3;R)→ Hr(Xn;R), and also for the resulting map of spectral sequences.

As i∗n : Hr(T3;R)→ Hr(Xn;R) is an isomorphism for r 6 n, and Hr(Xn;R) = 0 for r > n, the

E2-page of spectral sequence for Xn → Yn → S3/G̃ with R coefficients is equal to the bottom

n+ 1 rows of that for T3 → Ωr → S3/G̃ and i∗n on the E2-pages is the resulting projection.
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Now suppose there are non-trivial differentials in E∗,∗n (R), and suppose dm is the first, i.e.,

with smallest m. Suppose x ∈ Ea,bm (R) is an element with dm(x) = y 6= 0 ∈ Ea+m,b−m+1
m (R) for

minimal b. Since dm is the first non-zero differential, i∗b−1(y) 6= 0 in E∗,∗m (R). However

i∗b−1(y) = i∗b−1(dm(x)) = dm(i∗b−1(x)) = dm(0) = 0

since anything in row b, that is, in E∗,bm (R), lies in the kernel of i∗b−1. This is our contradiction
and so there can be no such non-trivial differential dm. �

Proposition 6.10. The cohomology Hn(Ωr;F2) of the rotational hull of the cubical tiling of
R3 with F2 coefficients is the F2 vector space of rank

Hn(Ωr;F2) =



1 n = 0
2 n = 1
4 n = 2
6 n = 3
4 n = 4
2 n = 5
1 n = 6
0 n > 6 .

Proof. By the previous lemma the spectral sequence E∗,∗∗ (F2) collapses and over the field F2

there are no extension problems. The rank of Hn(Ωr;F2) can thus be read off the E2-page,

counting the ranks of the groups on the diagonal Ea,n−a2 (F2) to give the result stated. �

Theorem 6.11. The cohomology Hn(Ωr;Z) of the rotational hull of the cubical tiling of R3

with integer coefficients is the group

Hn(Ωr;Z) =



Z n = 0
0 n = 1
Z/2⊕ Z/2 n = 2
Z2 ⊕ Z/2⊕ Z/4 n = 3
Z/2⊕ Z/4 n = 4
Z/2⊕ Z/2 n = 5
Z n = 6
0 n > 6 .

Proof. The Lemma 6.9 tells us that E∗,∗∞ (Z) = E∗,∗2 (Z). Unlike the case of field coefficients there
are potential extension problems. However, the case of all extensions being trivial is the only
one compatible with the size of the F2 coefficient result as stated in the previous proposition:
any non-trivial extension would lower the rank of the corresponding Hn(Ωr;F2). �

6.5. Dimension 3: an aperiodic example. We conclude with the computation of the full
integer cohomology of the Sturmian decorated cube tiling of Examples 5.24 and 6.3. As in
Section 6.4, we use the fibration

Ωt −→ Ωr −→ S3/G̃ .
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Figure 6.3. Tables of the group cohomologies Hn(BG̃;Hk(Ωt;Z)) (left) and

Hn(BG̃;Hk(Ωt;F2)) (right). Recall that Hk(Ωt;R) = 0 for k > 3. The notation
is as before, so 22 denotes the group Z/2×Z/2, etc. All these are 4-periodic, in

the sense that Hn(BG̃;Hk(Ωt;R)) = Hn+4(BG̃;Hk(Ωt;R)) for all n > 1.

k
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0 Z 0 2 Z
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2 F2
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Figure 6.4. E2-pages of the spectral sequences Hn(S3/G̃;Hk(Ωt;R)) ⇒
Hn+k(Ωt;R) for R = Z and F2 respectively. All other rows and columns
are zero.

Here G̃ is still the double cover of the group of symmetries of the cube, but Ωt is shape
equivalent to the product of three copies of W , the one point union of two circles. Example 6.3

sets out the cohomology H∗(Ωt;Z) and the G̃-action.

Computation of group cohomology proceeds analogously to that used in the previous section.
As there, we keep track of both the Z and F2 coefficient computations, the latter being used

to solve our extension problems at the end. The results for H∗(BG̃;H∗(Ωt;R)) are shown in
Figure 6.3.

As in the periodic case, we can deduce H∗(S3/G̃;M) from calculations of H∗(BG̃;M). This
allows us to compute the E2-pages of the main spectral sequences in Z and F2 coefficient

cohomology, i.e., that for the fibration Ωt −→ Ωr −→ S3/G̃. These are as shown in Figure
6.4.

Lemma 6.12. The spectral sequences H∗(S3/G̃;H∗(Ωt;R)) =⇒ H∗(Ωr;R) for both R = Z
and F2 have no non-trivial differentials.
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Proof. The argument is identical to that used in the proof of Lemma 6.9. �

Counting ranks now gives the values of Hn(Ωt;F2), which in turn, as in the previous section,
shows there to be no non-trivial extensions in the integer cohomology. We obtain

Theorem 6.13. The cohomology Hn(Ωr;Z) of the rotational hull of the Sturmian decorated
cube tiling with coefficients in Z and in F2 is

Hn(Ωr;Z) =



Z n = 0
0 n = 1
(Z/2)3 n = 2
Z5 ⊕ (Z/2)3 ⊕ (Z/4)2 n = 3
(Z/2)3 ⊕ (Z/4)2 n = 4
(Z/2)9 n = 5
Z4 n = 6
0 n > 6

Hn(Ωr;F2) =



F2 n = 0
F3

2 n = 1
F8

2 n = 2
F15

2 n = 3
F14

2 n = 4
F9

2 n = 5
F4

2 n = 6
0 n > 6 .
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