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Abstract

We present new spatial models and distance estimates for globular clusters and dwarf spheroidals orbiting our
Galaxy based on RR Lyrae (RRab) stars in the Pan-STARRS1 (PS1) 3π survey. Using the PS1 sample of RRab
stars from Sesar et al. in 16 globular clusters and 5 dwarf galaxies, we fit structural models in (l, b, D) space; for 13
globular clusters and 6 dwarf galaxies, we give only their mean heliocentric distance D. We verify the accuracy of
the period–luminosity relations used in Sesar et al. to constrain the distance to those stars, and compare them to
period–luminosity–metallicity relations using metallicities from Carretta et al. We compare our Sesar et al.
distances to the parallax-based Gaia DR2 distance estimates from Bailer-Jones et al. and find our distances to be
consistent and considerably more precise.
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1. Introduction

In this paper, we exploit the opportunities provided by the
Pan-STARRS1 (PS1) 3π RR Lyrae catalog (Sesar et al. 2017)
to explore the Galactic halo. Using that large data set of RRab
stars covering three quarters of the sky out to more than
130 kpc, in Hernitschek et al. (2018) we looked at the
seemingly smooth part of the stellar halo. We now focus on
the RRab stars in globular clusters (GC) and dwarf galaxies in
order to determine their distances and constrain their structure.
For most of these objects, RRab stars may be the most precise
distance tracers. As shown in Section 8, all GC and dwarf
galaxies we study here are beyond any parallax precision of
Gaia DR2, which is according to Bailer-Jones et al. (2018)
only valid within a heliocentric distance range of about 5 kpc.
The main advantages of such a study are that due to the large
angular extent and depth of PS1 3π, the source of observational
data as well as the methodology are the same for all GC and
dwarf spheroidal (dSph) galaxies we analyze. The aim of this
paper is to precisely constrain the position and extent of each of
these overdensities from RRab stars, where we determine these
properties for 29 GC and 11 dSph galaxies, and if this is not
possible, to at least give their mean heliocentric distances.
Furthermore, from the globular clusters we demonstrate that the
period–luminosity relations used by Sesar et al. (2017) to
determine the distances of the RRab stars are precise and their
predicted magnitudes are well within the claimed uncertainties.

RR Lyrae stars (RRL) as distance indicators have the
advantage of being low-mass stars found in both early- and
late-type stellar systems (van den Bergh 1999). When periods,
or periods and metallicities, for RRL are known, their distances
can be estimated using period–luminosity (PL) or period–
luminosity–metallicity (PLZ) relations. Visual magnitude–
metallicity relations are described for example in Chaboyer
et al. (1996), Bono et al. (2003), and Cacciari & Clementini
(2003). In the infrared, the extinction is smaller and the

amplitude of variation is smaller. In the near-infrared (NIR),
well-defined PL relations can be found (Longmore et al. 1986;
Bono et al. 2001, 2003; Catelan et al. 2004; Braga et al. 2015;
Sesar et al. 2017), extending to the midinfrared with only small
scatter (Madore et al. 2013; Klein et al. 2014).
These individual distance estimates can then be used to

calculate distances to and the shape of globular clusters as well
as dwarf galaxies. Dwarf galaxies orbiting our Milky Way are
not only interesting objects per se, but can also provide us with
important information to determine the Milky Way’s total mass
and dynamics. Dambis et al. (2013) used WISE as well as zero-
points from HST parallaxes to derive PL relations from 360
RRL belonging to 15 globular clusters.
More recent work on the distances of globular clusters was

carried out by Neeley et al. (2015) who investigated mid-IR
PLZ relations for the globular cluster NGC 6121 (M4), which
is not in our sample because it lies outside of the PS1 3π
footprint. Their work contains PL relations for both the RRab
and RRc samples as well as for the combined RRab+RRc
sample. In their 2017 paper, Neeley et al. (2017) also present
theoretical mid-IR PLZ relations for RR Lyrae stars at Spitzer
and WISE wavelengths and show that the mid-IR PLZ relations
can provide distance estimates to individual RR Lyrae stars
with uncertainties better than 2%. This is comparable to the
result by Sesar et al. (2017) derived for the RRab stars with
optical photometry used in this paper. For the dSph Sculptor,
which lies outside of the PS1 3π footprint, Garofalo et al.
(2018) derived mid-IR PLZ relations and calculated the
distance to the dwarf galaxy as part of the Spitzer SHMASH
project, which targeted in total four dSph (Ursa Minor dSph,
Bootes dSph, Sculptor dSph, and Carina dSph).
This paper is structured as follows. In Section 2, we introduce

the PS1 3π survey and lay out the properties of the PS1 RRab
stars. This is followed in Section 3 by a description of the spatial
area covered by PS1 3π, and the list of GCs and dSph that are
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included in it. In Section 4, we present the method of fitting a
series of parameterized stellar density models and the probabilistic
approach to constrain their model parameters. We describe fitting
tests on mock data in Section 4.3. In Section 5, the position and
extent are estimated for each GC and dSph. We present various
analyses based on these fitted parameters. In Section 6, we
calculate mean distances for those dwarf galaxies and GC, which
do not have enough sources for the fitting process. We also
discuss the implications on PL relations in Section 7 and compare
our distance estimates to those derived using the second Gaia data
release in Section 8. A discussion and summary of our results is
given in Section 9. The main part of the paper is followed by a
large Appendix containing figures as well as tables.

2. RR Lyrae Stars from the PS1 Survey

As in our previous papers, e.g., Hernitschek et al. (2017) and
Hernitschek et al. (2018), our analysis is based on a sample of
highly likely RRab stars, as selected by Sesar et al. (2017) from
the Pan-STARRS1 3π survey. Here, we briefly describe the
pertinent properties of the PS1 3π survey and the RR Lyrae light
curves obtained, and recapitulate briefly the process of selecting
the likely RRab for the catalog of PS1 RRab stars, as laid out in
Sesar et al. (2017). We also briefly characterize the obtained
candidate sample.

The Pan-STARRS 1 (PS1) survey (Kaiser et al. 2010)
collected multi-epoch, multicolor observations undertaking a
number of surveys, among which the PS1 3π survey (Chambers
et al. 2016) is currently the largest. It has observed the entire sky
north of decl. −30° in five filter bands (gP1, rP1, iP1, zP1, yP1)
with a 5σ single epoch depth of about 22.0, 22.0, 21.9, 21.0, and
19.8mag in gP1, rP1, iP1, zP1, and yP1, respectively (Stubbs et al.
2010; Tonry et al. 2012).

Starting with a sample of more than 1.1×109 PS1 3π
sources, Hernitschek et al. (2016) and Sesar et al. (2017)
subsequently selected a sample of 44,403 likely RRab stars, of
which ∼17,500 are at Rgc�20 kpc, by applying machine-
learning techniques based on light-curve characteristics. RRab
stars are the most common type of RR Lyrae, making up ∼91%
of all observed RR Lyrae (Smith 2004), and displaying the
steep rises in brightness typical of RR Lyrae.

The identification of the RRab stars is highly effective, and
the sample of RRab stars is pure (90%) and complete (�80% at
80 kpc) at high galactic latitudes. Distances to these stars were
calculated based on flux-averaged iP1 magnitudes, corrected for
dust extinction using extinction coefficients of Schlafly &
Finkbeiner (2011) and the dust map of Schlafly et al. (2014).
The distance estimates are precise to 3%, based on newly
derived PL relations for the optical/near-infrared PS1 bands
(Sesar et al. 2017). Overall, this results in the widest (three
quarters of the sky) and deepest (reaching >120 kpc) sample of
RR Lyrae stars to date, allowing us to observe them globally
across the Milky Way. Out of these sources, 1093 exist beyond
a Galactocentric distance of 80 kpc, with 238 beyond 100 kpc,
which enables us to estimate distances to and extents of dwarf
galaxies and globular clusters. RRc stars, which were also
selected by Sesar et al. (2017), are not included in our study.

3. Sample of Globular Clusters and Dwarf Galaxies

PS1 3π, as it covers the entire sky north of decl. −30° out to
more than 130 kpc, gives us access to many globular clusters
(GC) and several dwarf galaxies.

To select those overdensities for which fitting their density
might be feasible, we started with a list of dwarf galaxies within
3Mpc by McConnachie (2012), its update from 20147 and a list
of currently known globular clusters from the 2010 update of
Harris (1996). We excluded the ones outside the PS1 3π
footprint and made plots of regions on the sky around for each
of the remaining ones. If an overdensity is apparent in the PS1
RRab sample from visual inspection, we consider it for further
analysis. We ended up with a list of 11 dwarf galaxies and 29
globular clusters within PS1 3π, as given in Tables 1 and 2.
Plots of a subset of these overdensities are found in the
Appendix, Figures 1–11. For plotting those overdensities, we
chose a Cartesian projection of (l, b) to more easily compare to
their marginalized distributions in l and b (histograms). With
this choice, high-latitude overdensities such as NGC 5024,
NGC 5053, and NGC 5272 appear to be elongated in the
l direction.
We expected that the central regions of the globular clusters

might not be well represented due to crowding and blending
effects that made many RRab stars fail to meet the criteria for
inclusion in the catalog of PS1 RRab stars (Sesar et al. 2017). To
test that, we compared our sample with the Catalog of Variable
Stars in Globular Clusters from Clement et al. (2001). There are
11 globular clusters detectable with RRab stars both in the
catalog of PS1 RRab stars and the Catalog of Variable Stars in
Globular Clusters. As shown in Figure 12, we find that for each
of the 11 globular clusters available in both catalogs, our catalog
misses most RRab in the globular cluster’s central regions. The
dSph galaxies are sufficiently diffuse that this is not a significant
issue.

4. Density Fitting

In this section, we lay out a forward-modeling approach to
describe the spatial distribution of RRab stars within and near
overdensities such as dwarf galaxies and globular clusters.
We are using a local halo model describing the background of
field stars from the halo as in Hernitschek et al. (2018) and a
smooth spheroidal distribution describing the overdensity itself.
Regarding the dwarf galaxies, this approach is similar to Martin
et al. (2008), who derived structural parameters of Milky Way
satellites from SDSS data.

Table 1
Dwarf Galaxies, Attempted

Name (lprior [°], bprior [°], Dprior [kpc])

Aquarius II dSph 55.0 −53.0 108
Bootes I dSph 358.036 69.642 60
Crater II dSph 282.9084 42.0276 117.5
Draco dSph 86.3747 34.7171 79
Sagittarius dSph 5.6081 −14.0858 26.3
Segue 1 dSph 220.488 50.420 23
Segue 2 dSph 149.433 −38.1352 35
Sextans dSph 243.4981 42.2721 86
Ursa Minor Dwarf dE4 104.9527 44.8028 63
Ursa Major I dSph 159.4311 54.4143 100
Ursa Major II Dwarf 152.464 37.443 30

Note. The list of dwarf galaxies within the PS1 3π footprint for which we want
to determine their distance. Their (l, b, D) coordinates are from McConnachie
(2012).

7 https://www.astrosci.ca/users/alan/Nearby_Dwarfs_Database.html
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We presume that the local stellar halo distribution can be
sensibly approximated by a spheroidal distribution with a
parameterized radial profile (see also Hernitschek et al. 2018).
The overdensities can be described by multivariate Gaussians
in (l, b, D). Following a number of previous studies (e.g., Sesar
et al. 2013; Cohen et al. 2015; Xue et al. 2015; Iorio et al. 2017;
Hernitschek et al. 2018), we presume that the overall radial
density profile of the halo outside of overdensities—the
distance-dependent “background” of field stars in a given
direction—can be described by a power-law profile. We
attempt to carry out the fit on small 5×5 deg2 patches on
the sky around the assumed position prior (lprior, bprior). We
thus neglect the selection effects and halo flattening described
in Hernitschek et al. (2018) and instead fit for a local stellar
halo distribution as a function of a power-law index n only.

We apply a forward-modeling process to fit stellar-density
models to the data by generating the expected observed
distribution of stars in the RRab sample, based on our model
for the halo background and overdensity. The predicted
distribution is then automatically compared to the observed
star counts to calculate the likelihood.

4.1. Stellar Density Model

For the overall radial density profile of the halo stars, we
assume a power-law model

r r=  ( ) ( ) ( )X Y Z R r, , , 1q
n

halo RRL

where ρeRRL gives the number density of RR Lyrae at the
position of the Sun, n is the power-law index where larger
values of n indicate a steeper profile, Re is the distance of the

Sun from the Galactic center, and = + +( ( ) )r X Y Z qq
2 2 2

is the flattening-corrected radius.
In Hernitschek et al. (2018), we derived the halo flattening

on concentric ellipsoids. However, as we deal here with very
small patches on the sky, and do not want to derive a reliable fit
for the halo but want to remove any background distribution,
we decided to set q=0.75, leaving n the only free parameter
for the halo component. Also, we are not fitting for ρeRRL.
The spatial density of an overdensity, i.e., a dwarf galaxy or

globular cluster, is described by a multivariate Gaussian  :

*
r

s s s p

=

=
- + +

s s s
- - -⎛
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⎡
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⎤
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2
. 2

l l b b D D

l b D

2 2 2

3 2
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The data set  is given as  d= ( )D D l b, , , . The
parameters are

*
q s s s= (¯ ¯ ¯ )l b D f n, , , , , , ,l b D , composed of

the spatial position of the overdensity (¯ ¯ ¯ )l b D, , , its extent
(σl, σb, σD), and the fraction of the stars f* in the overdensity,
and the power-law index n of the halo model. The heliocentric
distance distribution of stars is then characterized by

*
*

* *

  q q q
r

r s s s

= +
= - ´

+ ´

( ∣ ) ( ∣ ) ( ∣ )
( ) ˆ ( )

ˆ ( ¯ ¯ ¯ ) ( )

p p p

f l b D n

f l b D l b D

1 , , ,

, , , , , , , , , 3l b D

RRL halo
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ò
r
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r
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( )l b D q n

l b D q n

l b D q n dD
, , , ,

, , , ,

, , , ,
, 4halo

halo

halo

with an analogous definition of
*
r̂ .

Although we were aware of a distance uncertainty of 3% for
RRab stars from Sesar et al. (2017), we have not included it in
our calculations yet. The reason for this is that the distance
uncertainty can easily be taken into account later on, as the
distance uncertainty òD∼0.03D adds in quadrature to the
(true) width in distance:

s s= ¢ +( ) ( ). 5D D D
2 2

We will deal with the distance precision versus true line-of-
sight depth later when we evaluate our fitting results.

4.2. Constraining Model Parameters

With the model  qr ( ∣ )RRL at hand, we can directly calculate
the likelihood of the data  given the model ρRRL and the
fitting parameters q.
The normalized unmarginalized logarithmic likelihood for

the ith star with the observables i is then




ò ò ò
q

q
q

r
r

=( ∣ )
( ∣ )∣ ∣

( ∣ )∣ ∣
( )

J

J
p

l b D dldbdD
ln

, ,
, 6i

iRRL

RRL

where the normalization integral is over the observed volume.
The Jacobian term =∣ ∣J D bcos2 reflects the transformation
from (X, Y, Z) to (l, b, D) coordinates.
We evaluate the logarithmic posterior probability of the

parameters q of the halo model, given the full data  and a

Table 2
Globular Clusters, Attempted

Name (lprior [°], bprior [°], Dprior [kpc])

IC 1257 16.54 15.15 25
NGC 2419 180.37 25.24 82.6
NGC 4147 252.85 77.19 19.3
NGC 4590 (M68) 299.63 36.05 10.3
NGC 5024 (M53) 332.96 79.76 17.9
NGC 5053 335.7 78.95 17.4
NGC 5272 (M3) 42.22 78.71 10.2
NGC 5466 42.15 73.59 16
NGC 5634 342.21 49.26 25.2
NGC 5694 331.06 30.36 35
NGC 5897 342.95 30.29 12.5
NGC 5904 (M5) 3.86 46.8 7.5
NGC 6093 (M80) 352.67 19.46 10
NGC 6171 (M107) 3.37 23.01 5.4
NGC 6229 73.64 40.31 30.5
NGC 6356 6.72 10.22 15.1
NGC 6402 (M14) 21.32 14.81 9.3
NGC 6426 28.09 16.23 20.6
NGC 6864 (M75) 20.3 −25.75 20.9
NGC 6934 52.1 −18.89 15.6
NGC 6981 (M72) 35.16 −32.68 17
NGC 7006 63.77 −19.41 41.2
NGC 7078 (M15) 65.01 −27.31 10.4
NGC 7089 (M2) 53.37 −35.77 11.5
NGC 7099 (M30) 27.18 −46.84 8.1
Pal 1 130.06 19.03 11.1
Pal 3 240.15 41.86 92.5
Pal 5 0.85 45.86 23.2
Pal 13 87.1 −42.7 26

Note. The list of globular clusters within the PS1 3π footprint for which we
want to determine their distance. Their (l, b, D) coordinates are from a current
update of Harris (1996).
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prior q( )p ,  q q q= +( ∣ ) ( ∣ ) ( )p p pln ln ln with

 åq q=( ∣ ) ( ∣ ) ( )p pln ln 7
i

i

being the marginal log likelihood for the full data set.
To determine the best-fit parameters and their uncertainties,

we sample the posterior probability over the parameter space
with Goodman & Weare’s Affine Invariant Markov Chain
Monte Carlo (Goodman & Weare 2010), making use of the
Python module emcee (Foreman-Mackey et al. 2013).

The final best-fit values of the model parameters have been
estimated using the median of the posterior distributions; the
uncertainties have been estimated using the 15.87th and
84.13th percentiles. For a parameter whose pdf can be well-
described by a Gaussian distribution, the difference between
the 15.87th and 84.13th percentile is equal to 1σ.

Our model has eight free parameters, q = (¯ ¯ ¯l b D, , ,

*
s s s )f n, , , ,l b D , and each star has three-dimensional coordi-
nates (l, b, D). As we attempt to carry out the fit on small
5×5 deg2 patches on the sky around the assumed position
prior (lprior, bprior), we always have a sufficient number of
overdensity and background RRab stars for the fit as shown
in Figures 1–11. The overdensity itself is fit by a three-
dimensional Gaussian describing the spatial position of the
overdensity (¯ ¯ ¯ )l b D, , and its extent (σl, σb, σD). Thus a
minimum number of two RRab stars within the overdensity, in
addition to the background, is needed for a successful fit, albeit
with large uncertainties when the number of RRab is small. All
overdensities for which we later claim fitted positions and
spatial extents meet these criteria, i.e., the minimum number of
RRab stars is 3.

4.2.1. Model Priors

We now lay out the “pertinent range,” across which the priors
for the model parameters

*
q s s s= (¯ ¯ ¯ )l b D f n, , , , , , ,l b D are

given. Based on Tables 1 and 2, we can set priors on l̄ , b̄, D̄. In
general, we allow a rather wide prior, i.e., allow the on-sky
positions to vary around the object’s center by ±5°, and the
heliocentric mean distance D̄ to vary by±20 kpc. In cases with a
second overdensity nearby (i.e., NGC 5024, NGC 5053), we set
more rigid priors on l̄ , b̄, D̄. As the halo profile tends to vary a
lot on such small patches on the sky as are evaluated here, we
allow the power-law index n to vary between 1.7 and 5.

Our complete prior function is then:

offset deg
offset deg
offset kpc

*



q

s
s
s

= <
+ <
+ - <
+ - <
+ - <
+ < <
+ < <
+ < <

( ) ( )
( )
( ∣¯ ∣ )
( ∣ ¯ ∣ )
( ∣ ¯ ∣ )
( ( ) ( ) ( ))
( ( ) ( ) ( ))
( ( ) ( ) ( ))

( )

p f

n

l l

b b

D D

ln Uniform 0.05 1

Uniform 1.7 5.0

Uniform log log _

Uniform log log _

Uniform log log _
Uniform log 0.1 log log 10
Uniform log 0.1 log log 10
Uniform log 0.1 log log 20 ,

8

l

b

D

tab

tab

tab

where the index “tab” denotes the values from Tables 1 and 2,
respectively, and offset_deg=5°, offset_kpc=20 kpc
for all overdensities except for NGC 5024, NGC 5053. For NGC
5024 and NGC 5053, we set the offset to offset_deg=1°.

4.3. Fitting Tests on Mock Data

In order to test the methodology for fitting the density as
discussed in Section 4, we created mock data samples of RRab
stars in the Galactic halo, superimposed Gaussian mock
overdensities with typical distance, extent, and star count to
mimic dwarf galaxies and globular clusters, and finally added
noise in distance to mimic the distance uncertainty of 3%. We
then applied our fitting method.
Figure 13 shows two examples of a simulated distribution of

halo and overdensity RRab along with a fit, analogous to the plots
of the GC and dSph shown in Figures 1–11. One of them is an
overdensity with a high contrast against the background of (mock)
field stars that resembles a dSph, whereas the other is a sparse
overdensity, comparable to typical GC. We give their distribution
in (l, b, D) space as well as their marginalized distributions, the
distribution these mock stars were drawn from and the best-fit
distribution after applying our fitting methodology.
We find results that are consistent with the input model

within reasonable uncertainties, which means that we are able
to recover the input parameters for the models within their
assumed parameter range.

5. Results from Fitting

When trying to fit all dSph from Table 1 and globular
clusters from Table 2, we found that the data available for some
of them do not allow for a reasonable fit. For the Crater II
dSph at a distance of ∼120 kpc, the PS1 RRab catalog does not
contain enough sources for a good fit, not surprising given the
large distance. As Sagittarius dSph lies at the edge of the PS1
3π footprint, we cannot successfully fit its on-sky position
(l, b), but we can fit its heliocentric distance D. Among the
globular clusters, we have to exclude NGC 4147, NGC 5634,
NGC 5694, NGC 5897, IC 1257, NGC 6093 (M80), NGC
6171 (M107), NGC 6356, NGC 6402 (M14), NGC 6426, NGC
7099 (M30), Pal 1, and Pal 13, as in those cases, we find too
few, if any, RRab stars associated with these overdensities
picked up by the PS1 3π survey.
In Tables 3 and 4 as well as in Figures 1–11, we give the

dSph and GC best-fit parameters we get from successfully
carrying out the fitting as described in Section 4. Tables 3 and 4
list the name, fitted position (l, b, D), fitted angular extent σl,
σb, and depth σD assuming a multivariate Gaussian, as well as
the derived linear extents (Δl, Δb, ΔD) as

sD = -(( ( )) )( ( )) ( )l D b2 2 cos 1 cos 9l
2

sD = ( ) ( )b D2 tan 10b

sD = ( )D 2 . 11D

We also give the axis ratios ΔD/Δl and ΔD/Δb describing
the morphology, as well as the number of sources found in the
dSph or globular cluster in each case.

5.1. Comments on Individual Dwarf Galaxies and Globular
Clusters

We now comment on the fitting results for individual dwarf
galaxies and globular clusters.
We fitted the five dwarf galaxies Sagittarius dSph, Sextans

dSph, Draco dSph, Ursa Minor Dwarf dE, and Ursa Major
I dSph.
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As the Sagittarius dSph lies at the edge of the PS1 3π
footprint, we cannot successfully fit its on-sky position (l, b),
but we can fit its heliocentric distance D. This can be clearly
seen from Figure 2. For this reason, we do not give any values
dependent on the fitted (l, b) position in the tables.

For the other dwarf galaxies, we found that the fit is well
defined as these overdensities typically have 100 sources,
except for Ursa Major I. In the case of the latter, the
marginalized best-fit model for l as given in the lower left
panel of Figure 3 does not seem to match the histogram well.
However, this is only an effect due to the marginalization in the
histogram, as it shows all sources independent of their distance,
whereas the Gaussian is centered on the fitted (l, b, D).
Comparing the best-fit model to the map of stars as given in the
upper left panel reveals the accuracy of the fit.

Regarding globular clusters, we have to deal with over-
densities of fewer sources, given that the central regions are
too crowded for the PS1 RRab catalog (Sesar et al. 2017).

Comparing, for example, the panel of NGC 5024 in Figure 12
to the histograms in Figure 5, we clearly see that stars are
missing near the assumed center of the globular cluster.
However, the fit is stable enough to identify a reasonable center
position.
As for the dwarf galaxy Ursa Minor Dwarf dE, in the case of

the globular clusters NGC 5024, NGC 5904, NGC 4590, NGC
6864, and NGC 7089, the marginalized best-fit model in l and b
does not seem to match the histogram as well as might be
expected, as the histogram shows all sources independent of
their distance, while the Gaussian is centered on the fitted (l, b,
D). Again, comparing the best-fit model to the map of stars, we
see that the fit is reliable.
In some dSphs and GCs, only three to four RRab were

detected. This is the case for Ursa Major I dSph, Ngc 5053,
NGC 6864 (M75), NGC 8089 (M2), Pal 3, and Pal 5. In each
of those cases, the overdensity is clearly visible in the map of
RRab stars. The histograms might look unconvincing, as they

Table 3
Fitted Dwarf Galaxies

Name Fitted Fitted Δl [kpc] Δb [kpc] ΔD [kpc] ΔD/Δl ΔD/Δb Sources
(l [°], b [°], D [kpc]) (σl [°], σb [°], σD [kpc])

Draco dSph -
+86.37 0.01

0.01, -
+34.71 0.01

0.01, -
+74.26 0.18

0.18
-
+0.13 0.01

0.01, -
+0.13 0.01

0.01, -
+2.40 0.15

0.17 0.28 0.33 4.81 14.48 14.66 191

Sagittarius dSph —, —, -
+28.18 0.10

0.10 —, —, -
+1.01 0.01

0.02 2.02 — — — — 538

Sextans dSph -
+243.55 0.04

0.04, -
+42.26 0.03

0.04, -
+81.42 0.40

0.41
-
+0.26 0.03

0.03, -
+0.23 0.03

0.04, -
+3.24 0.37

0.43 0.55 0.66 6.49 9.83 9.87 99

Ursa Major I dSph -
+159.38 1.48

2.07, -
+54.43 0.39

2.79, -
+94.33 4.94

10.80
-
+0.34 0.20

2.53, -
+0.33 0.19

2.05, -
+2.59 1.11

5.90 0.65 1.07 5.18 4.84 4.84 4

Ursa Minor Dwarf dE4 -
+105.00 0.06

0.62, -
+44.74 0.06

0.36, -
+68.41 0.51

0.51
-
+0.16 0.03

0.86, -
+0.14 0.02

1.45, -
+2.17 0.59

3.10 0.22 0.33 4.35 19.77 13.11 53

Note. The best-fit positions (l, b, D) and extent (σl, σb, σD) of dwarf galaxies from Table 1, along with their 1σ uncertainties. Assuming an ellipsoidal shape for each
dwarf galaxy, we calculate their axis ratios by first translating their angular extent (σl, σb) into a linear extent (Δl,Δb) as given by Equations (9) and (10), and then use
the line-of-sight depthΔD=2σD (11) to calculate the axis ratiosΔD/Δl,ΔD/Δb. In this table, Sagittarius Dwarf dSph and Crater II dSph from Table 1 are missing,
as we were not able to determine reasonable fits for them. For details on this, see Section 4.

Table 4
Fitted Globular Clusters

Name Fitted Fitted Δl [kpc] Δb [kpc] ΔD [kpc] ΔD/Δl ΔD/Δb Sources
(l [°], b [°], D [kpc]) (σl [°], σb [°], σD [kpc])

NGC 2419 -
+180.36 0.03

0.03, -
+

-
+25.24 , 79.700.03

0.04
0.37
0.32

-
+0.11 0.01

0.01, -
+0.11 0.01

0.02, -
+4.24 1.14

1.33 0.28 0.30 8.47 30.25 27.81 8

NGC 4590 (M68) -
+299.62 0.08

0.12, -
+36.07 0.11

0.10, -
+10.48 0.28

0.26
-
+0.15 0.04

0.68, -
+0.15 0.04

0.65, -
+0.66 0.13

1.29 0.04 0.05 1.32 33.0 24.15 5

NGC 5024 (M53) -
+332.93 0.12

0.12, -
+79.74 0.04

0.04, -
+18.25 0.14

0.13
-
+0.35 0.08

0.12, -
+0.11 0.01

0.02, -
+0.55 0.03

0.08 0.04 0.07 1.09 15.57 15.31 12

NGC 5053 -
+335.78 0.18

0.19, -
+78.93 0.14

0.16, -
+16.66 0.26

0.28
-
+0.30 0.16

1.08, -
+0.18 0.06

1.10, -
+0.75 0.20

3.69 0.03 0.10 1.50 50.0 14.54 4

NGC 5272 (M3) -
+42.20 0.07

0.08, -
+78.71 0.02

0.02, -
+10.48 0.07

0.07
-
+0.45 0.05

0.05, -
+0.10 0.002

0.01 , -
+0.51 0.01

0.02 0.03 0.04 1.02 34.0 27.05 56

NGC 5466 -
+42.13 0.04

0.04, -
+73.59 0.03

0.04, -
+15.76 0.14

0.14
-
+0.12 0.02

0.03, -
+0.11 0.01

0.02, -
+0.54 0.03

0.07 0.02 0.06 1.08 54.0 17.76 10

NGC 5904 (M5) -
+3.88 0.04

0.03, -
+46.77 0.02

0.03, -
+7.87 0.19

0.19
-
+0.13 0.02

0.04, -
+0.11 0.005

0.02 , -
+0.53 0.02

0.08 0.02 0.03 1.05 52.5 36.01 24

NGC 6229 -
+73.64 0.04

0.04, -
+40.31 0.04

0.04, -
+29.94 0.19

0.17
-
+0.11 0.01

0.02, -
+0.11 0.01

0.03, -
+0.61 0.08

0.19 0.09 0.12 1.22 13.5 10.31 12

NGC 6864 (M75) -
+20.28 0.23

0.25, - -
+25.76 0.28

0.20, -
+20.79 0.35

0.32
-
+0.25 0.13

1.46, -
+0.34 0.21

2.70, -
+1.59 0.93

4.27 0.16 0.24 3.17 19.8 13.01 4

NGC 6934 -
+52.12 0.04

0.04, - +18.870.04
0.03, -

+16.77 0.21
0.21

-
+0.11 0.01

0.03, -
+0.11 0.01

0.02, -
+0.57 0.05

0.16 0.06 0.07 1.14 19.00 17.14 10

NGC 6981 (M72) -
+335.16 0.03

0.03, - -
+32.70 0.03

0.03, -
+17.51 0.17

0.15
-
+0.11 0.01

0.01, -
+0.11 0.01

0.01, -
+0.56 0.05

0.11 0.06 0.07 1.12 18.70 16.90 15

NGC 7006 -
+63.78 0.03

0.03, - -
+19.39 0.03

0.03, -
+40.12 0.15

0.16
-
+0.11 0.004

0.01 , -
+0.11 0.01

0.01, -
+0.59 0.06

0.11 0.15 0.15 1.17 7.80 7.87 16

NGC 7078 (M15) -
+65.03 0.08

0.11, - -
+27.32 0.08

0.07, -
+11.07 0.22

0.24
-
+0.15 0.04

1.07, -
+0.13 0.03

0.95, -
+0.60 0.08

2.69 0.05 0.05 1.21 24.20 23.42 10

NGC 7089 (M2) +53.460.25
0.22, - -

+35.81 0.29
0.29, -

+12.11 0.28
0.39

-
+0.35 0.21

2.38, -
+0.62 0.47

3.60, -
+1.47 0.84

6.28 0.12 0.26 2.95 24.58 11.24 4

Pal 3 -
+240.14 0.09

0.10, -
+41.95 0.18

0.21, -
+85.05 0.34

0.32
-
+0.14 0.03

0.17, -
+0.34 0.17

0.31, -
+1.76 1.08

1.77 0.31 1.01 3.53 11.39 3.50 3

Pal 5 -
+0.87 0.27

0.29, -
+45.80 0.28

0.26, -
+21.66 0.30

0.33
-
+0.58 0.43

2.82, -
+0.31 0.19

2.37, -
+1.61 0.98

7.52 0.31 0.24 3.23 10.41 13.56 3

Note. The best-fit positions (l, b, D) and extent (σl, σb, σD) of globular clusters from Table 2, along with their 1σ uncertainties. Assuming an ellipsoidal shape for each
globular cluster, we calculate their axis ratios by first translating their angular extent (σl, σb) into a linear extent (Δl, Δb) as given by Equations (9) and (10), and then
use the line-of-sight depth ΔD=2σD (11) to calculate the axis ratios ΔD/Δl, ΔD/Δb. In this table, NGC 4147, NGC 5634, NGC 5694, NGC 5897, IC 1257, NGC
6093 (M80), NGC 6171 (M107), NGC 6284, NGC 6356, NGC 6402 (M14), NGC 6426, NGC 7099 (M30), Pal 1, and Pal 13 from Table 2 are missing, as we were
not able to determine reasonable fits for them. For details on this, see Section 4.
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show all sources independent of their distance and thus are
heavily influenced by field stars. The corresponding best-fit
model assigns a distance and position (l, b, D) corresponding
well with the map of RRab stars. However, we expect that the
center, (l, b, D), and the extent of the overdensity, (σl, σb, σD)
cannot be determined accurately from only three to four stars,
as there is a high chance that the stars are not representative,
i.e., are at the bright or shallow end or are not located
symmetrically with respect to the center.

5.2. Uncertainty-corrected Depth of Dwarf Galaxies and
Globular Clusters

In Tables 3 and 4, we give the axis ratiosΔD/Δl andΔD/Δb
describing the morphology of each fitted overdensity. Starting
with the dwarf galaxies, we find that all five of them are found to
be quite elongated in the direction of D. In contrast, their values
for ΔD/Δl and ΔD/Δb are comparable (except for Sagittarius
dSph, where we cannot calculate them), which is not surprising
from Figures 1 and 3 showing a very round shape in (l, b). We
now check if the elongation in D direction can be explained by
the distance uncertainty.

For Sextans dSph, Draco dSph, Ursa Minor Dwarf dE4, and
Ursa Major I dSph, we find a ΔD/Δl of 9.83, 14.48, 19.77,
and 4.84, respectively. Using Equation (5) with òD=0.03D,
we calculate the uncertainty-corrected (true) line-of-sight depth

s s sD ¢ = ¢ = - = -( ) ( ) ( ( ) )D D2 2 2 0.03D D D D
2 2 2 2 . We

find thus (ΔD)′=4.28 for the Sextans dSph, (ΔD)′=1.79
for the Draco dSph, (ΔD)′=1.41 for the Ursa Minor Dwarf
dE4, (ΔD)′=0.94 for the Ursa Major I dSph.

For the Ursa Major I dSph, òD must be 0.027D instead of
0.03D to make the result sensible. With the values for Δl given
in Table 3 and òD=0.03D, we calculate ΔD/Δl=7.78 for
Sextans dSph, 6.36 for Draco dSph, 6.40 for Ursa Minor Dwarf
dE4, and 1.44 for Ursa Major I dSph.

This means that introducing a distance uncertainty, which is
appropriate as shown by Sesar et al. (2017), reduces the
elongation in the D direction, but is still far away from an axis
ratio of 1. As the distance uncertainty òD and the true line-of-
sight extent s¢D add in quadrature to make the fitted line-of-
sight extent σD, a slight variation in òD from the nominal 3%
derived by Sesar et al. (2017) would be able to explain all
of the asymmetry. For example, in the case of for the Sextans
dSph, òD=0.0396D instead of 0.030D would result into a
(ΔD)′=0.55 and thus (ΔD)′/Δl∼1. Similarly, an axis ratio
of 1 could be achieved for the Draco dSph with òD=0.0322D,
for the Ursa Minor Dwarf dE4 with òD=0.0316D, and for the
Ursa Major I dSph with òD=0.027D.

In addition to variations in the distance uncertainties, for
globular clusters we suggest that fitting uncertainties and
especially shot noise are responsible for the non-spherical axis
ratios we find. This means, because of the expected small line-
of-sight extent, even with a distance uncertainty of 3% we
cannot say much about the line-of-sight extent for GC and
dwarf galaxies at the distances considered here.

5.3. The Radii of Globular Clusters and Dwarf Galaxies

We also compared our fitted extent σl, σb to the tidal radius
and core radius.

For globular clusters, we use the tidal radius rt and core
radius rc from the 2010 update of Harris (1996). We use the
core radii from Stoehr et al. (2002) for the dwarf galaxies Draco

dSph, Sextans dSph and Ursa Minor Dwarf dE4. A core radius
for Ursa Major I dSph is provided by Simon & Geha (2007).
We use tidal radii from Odenkirchen et al. (2001; Draco dSph),
Roderick et al. (2016; Sextans dSph), and Kleyna et al. (1998;
Ursa Minor Dwarf dE4). A tidal radius for Ursa Major I dSph is
not available.
Tables 7 and 8 and Figure 14 summarize these comparisons.
We find that for globular clusters, while the distribution

shows a lot of scatter, our estimated extent from max(σl, σb)
represents significant fractions of the tidal radius. We find
sources far beyond the core radius. For the dwarf galaxies in
our sample, except Ursa Major I dSph, our estimated
extent from max(σl, σb) matches the core radius quite well.
In all cases, our estimated extent is below the tidal radius. We
do not pick up sources within or near the core radius for GC.
We attribute this to the fact that in the case of GC, we
are losing the RRab stars in the cores, as mentioned in
Section 3.

6. Mean Distances to Other Globular Clusters and Dwarf
Galaxies

For those dwarf galaxies and globular clusters from Tables 1
and 2, which do not have enough sources to carry out the fitting
process described in Section 4, we derived their mean distances
(in the case of finding multiple RRab stars likely associated
with the overdensity) or give the distance to the single RRab
star found within this overdensity.
Tables 5 and 6 list the distances, along with the number of

RRab stars found in each case.
In total, for each of the 13 GC and 6 dSph we found at least

one RRab star associated with the overdensity. For those with
at least two RRab stars, we give the mean distance, and
otherwise, the distance from the only RRab star found. In
most cases, our distance estimate lies well within the
3% uncertainty we claim for the PS1 3π sample of RR
Lyrae stars.
For some overdensities, we find a lot of stars in the field at

about the same distance. This is the case for NGC 5897, where
one RRab star is very close to the assumed coordinates of this
GC, but there are in total up to four stars that could be
associated with that GC. For NGC 6402 (M14), the field is
even more crowded; there are many sources in the field at that
distance without revealing an overdensity.
In the case of NGC 6356, we find one source close to the

coordinates given for this GC, but at a different distance: the
RRab star from our catalog is at a heliocentric distance of
11.02 kpc, whereas Harris (1996) gives a heliocentric distance of
15.1 kpc for NGC 6356. In the case of Pal 1, we find no RRab
stars clearly associated with this GC. For Pal 13, we find three
RRab stars for which we calculate a mean distance of 23.59 kpc,
which is about 2.5 kpc lower than the distance given by the recent
compilation of Harris (1996). Siegel et al. (2010) claim a distance
of 24.8 kpc, which is within our distance precision. The same is
the case for the dwarf galaxy Bootes I dSph. We find a mean
heliocentric distance of 60.61 kpc, which is about 5 kpc off from
the distance given by Okamoto et al. (2012). However, our
distance estimate matches very well the distance of 60.4 kpc by
Hammer et al. (2018). For Segue 1 dSph, it is difficult to identify
which sources are likely associated with this dwarf galaxy, as
there are many sources in the field at about that distance. For the
farthest dwarf galaxy in our sample, Crater II dSph, our
heliocentric distance estimate of 105.48 kpc is somewhat lower
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than distance estimates in the literature, i.e., the 112 kpc claimed
by Joo et al. (2018).

7. PL Relations

In one of our previous papers (Sesar et al. 2017), we used the
period–absolute magnitude–metallicity (PLZ) relation known
for RR Lyrae stars to calculate the RRab star’s distances we use
in the paper at hand. The PLZ relation is given as (e.g., Catelan
et al. 2004; Sollima et al. 2006):



a b= + -
+ +

l l l

l

( ) ([ ] [ ] )
( )

M P P

M

log Fe H Fe H

, 12
10 ref ref

ref,

where λ denotes the bandpass, P is the period of pulsation, Mref is
the absolute magnitude at some reference period and metallicity
(here chosen to be Pref=0.6 days, [Fe/H]ref= −1.5 dex), and α,
β describe the dependence of the absolute magnitude on period
and metallicity. The ò is a standard normal random variable
centered on 0 and with a standard deviation of the uncertainty in
Mλ in order to model the intrinsic scatter in the absolute magnitude
convolved with unaccounted measurement uncertainties.

As PS1 3π itself has no metallicity information available, we
constrained the PLZ relation Equation (12) in PS1 bandpasses
using metallicities and distance moduli of PS1 RRab stars in
the five Galactic globular clusters NGC 6171, NGC 5904,
NGC 4590, NGC 6341, and NGC 7078 (Sesar et al. 2017).
Table 1 in Sesar et al. (2017) gives the fitted PLZ relations
in all bandpasses. The resulting relation in the iP1 band is
then used to constrain distances also for stars where no
metallicity is available.

In the case of no available metallicity, the expression for the
absolute magnitude in the iP1 band, MiP1, simplifies to (Sesar
et al. 2017, Equation (5)): = - +( )M P1.77 log 0.6 0.46i 10P1 ,
and, in general, the expression for the absolute magnitude in
the λP1 band simplifies to

a= +l l l( ) ( )M P Mlog 0.6 . 1310 ref,P1

Distances are then constrained using the dereddened flux-
averaged iP1-band magnitude (this is iF in Sesar et al. 2017) and
Equation (13). This equation was used to calculate the PS1 3π
RRab distances we use in this paper.

Now, after having fitted the spatial extent and distance of 16
globular clusters, we are interested in comparing the fitted PLZ
relation from Sesar et al. (2017) to fits carried out for each
cluster using the [Fe/H] from spectra of red giants of Carretta
et al. (2009; Table A1). For each RRab star in each GC, we

have the period from the RRab catalog, the [Fe/H]—assumed
to be constant for a given GC—from Carretta et al. (2009)
and the fitted distance modulus (DM) and distance from the
RRab catalog.
For Figure 15, we selected the RRab stars for each globular

cluster and plot their dereddended apparent r-band magnitude
(rF in the PS1 RRab catalog) versus their period. The typical
trend of a PL relation is clearly visible.
We then took a closer look at the individual globular

clusters. For each of them, in each bandpass λä{gP1,K, zP1},
we plot each star’s dereddened apparent magnitude mλ

versus P. We also plot the apparent (unreddened) magnitude
as expected from the PLZ relation αλ log10(P/Pref)+
βλ([Fe/H]−[Fe/H]ref)+Mref+DM versus P, as well as
the apparent magnitude as expected from the equation without
metallicity αλ log10(P/Pref)+Mref+DM versus P.
This results in Figures 16–31. The error bars in the predicted

apparent magnitudes correspond to an uncertainty of
∼0.06 mag in the absolute magnitude and thus DM (Sesar
et al. 2017). As the DM was derived from the iP1 band, in this
band, per definition, the observed magnitude and the apparent
magnitude as predicted without [Fe/H] are the same. We find
that for most of the 16 globular clusters we have evaluated, the
predicted apparent magnitude with [Fe/H] (blue markers in the
figures) is a bit brighter than the predicted apparent magnitude
without taking into account [Fe/H] (black markers), and this is
again a bit brighter than the observed dereddened apparent
magnitude (orange markers). NGC 6864 (Figure 24) is the only
GC where the predicted apparent magnitude with [Fe/H] is
higher than the one predicted without [Fe/H]. It has the highest
metallicity in the sample of GC studied here.
The offset in the predicted apparent magnitude depends on

the metallicity of the GC in this case. The predicted apparent
magnitudes with [Fe/H] (blue markers in the figures) are
calculated using Equation (12) and the DM for each RRab
star given in the PS1 RRab catalog (Sesar et al. 2017). For the
black markers, we neglect the term βλ([Fe/H]−[Fe/H]ref)
from Equation (12), and again use the DM. As βλ ranges from
0.06 to 0.09, [Fe/H]ref=−1.5, and [Fe/H], which ranges

Table 6
Globular Clusters with Too Few RRab Stars

Name Mean Sources Comment
D̄ [kpc]

IC 1257 27.24 1
NGC 4147 18.54 1
NGC 5634 25.81 1
NGC 5694 33.96 1
NGC 5897 12.91 1 up to three additional sources

nearby
NGC 6093 10.74 2
NGC 6171 (M107) 6.01 7
NGC 6356 11.02 1
NGC 6402 (M14) many field stars at this distance
NGC 6426 19.83 5
NGC 7099 (M30) 8.41 2
Pal 1 nothing detected at this position:

mean D=10.08 kpc
Pal 13 23.59 3

Note. The mean positions (l, b, D) of those globular clusters from Table 2 that
do not have enough sources in the PS1 catalog of RR Lyrae stars for carrying
out the fitting process described in Section 4.

Table 5
Dwarf Galaxies with Too Few RRab Stars

Name Mean Sources Comment
D̄ [kpc]

Aquarius II dSph 107.87 1
Bootes I dSph 60.61 2
Crater II dSph 105.48 2
Segue 1 dSph 23.24 1 up to two additional sources

nearby
Segue 2 dSph 33.31 1
Ursa Major II

Dwarf
33.02 1

Note. The mean positions (l, b, D) of those dwarf galaxies from Table 1 that do
not have enough sources in the PS1 catalog of RR Lyrae stars for carrying out
the fitting process described in Section 4.
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from −2.33 to −1.29, is <−1.5 for most GC, this term is
negative. Thus, for most of the 16 globular clusters we have
evaluated, the predicted apparent magnitude with [Fe/H] (blue
markers in the figures) is a bit brighter than the predicted
apparent magnitude without taking into account [Fe/H] (black
markers).

The offset between observed and predicted apparent
magnitudes can be explained by the way the distance to the
RRab stars was derived. The DM we use here to calculate the
predicted magnitudes was derived in Sesar et al. (2017) using
the flux-averaged iP1-band magnitude. Thus, for the i band, the
observed magnitude (orange markers) and the magnitude
predicted without [Fe/H] agree, while for the other bands,
we find the predicted magnitudes to deviate slightly from the
observed ones (black versus orange markers). This deviation is
on the order of the uncertainty claimed for the DM, 0.06
(rnd)±0.03 (sys) mag (Sesar et al. 2017).

8. Gaia DR2 Distances

In this section, we compare the PS1 3π distances to those
published for the second Gaia data release (hereafter Gaia
DR2; Gaia Collaboration 2018).

According to Bailer-Jones et al. (2018), for the vast
majority of stars in Gaia DR2, reliable distances cannot be
obtained by inverting the parallax, but should be derived
by an algorithm that accounts for the nonlinearity of the

transformation. Carrying out a probabilistic approach, Bailer-
Jones et al. (2018) published distances to 1.33 billion stars in
Gaia DR2.
To compare our heliocentric distance estimates DPS1 from

Sesar et al. (2017) to those of Gaia DR2 Bailer-Jones et al.
(2018), we cross-matched our PS1 RRab sample of 44,403
stars with Gaia DR2, and found a cross-match for 43,791
sources. In Figure 32, we show the DGaiaDR2 and a rough
distance estimate 1/parallax versus DPS1 for the RRab stars
within DPS1<20 kpc.
At the present time, we find a rather large scatter in the

distances, much larger than the PS1 distance uncertainty of 3%
or an estimate of the distance uncertainty from the parallax
error. When the parallax error exceeds 10%, which happens at a
heliocentric distance of about 5 kpc, the distances from Gaia
DR2 become very unreliable. Bailer-Jones et al. (2018) already
claim quite large uncertainties of their distance estimates. In
Figure 33, we plot the upper and lower 68% confidence interval
boundaries of their distance estimates for our cross-matched
sample of RRab stars. According to Bailer-Jones et al. (2018),
the confidence intervals are asymmetric with respect to the
distance estimate DGaiaDR2 as a consequence of the nonlinear
transformation from parallax to distance.
Up to now, the precision of those distances—which are

calculated only from geometric principles without any
assumptions on astrophysics such as pulsation or PLZ
relationships—is not competitive with the precision of our
distances from Sesar et al. (2017), and especially cannot be
used for the distant GC and dwarfs. However, this might
change at least partially for the end-of-mission data. Until then,
we strongly recommend using the RRab distances from Sesar
et al. (2017) and subsequent analysis instead of those from
Gaia DR2.

9. Discussion and Summary

We started our analysis based on a list of dwarf galaxies
within 3Mpc by McConnachie (2012) and a list of currently
known globular clusters from a current online version of the
Harris (1996) database. We excluded those outside the PS1 3π
footprint and attempted to fit the (l, b, D) distribution of the
remaining ones. For the ones for which a fit was not possible
due to only a small number of RRab stars available, we instead
selected those stars and give their mean distance.
\In Tables 9 and 10, we compare our distances for dwarf

galaxies and GC to literature distances. For almost all dwarf
galaxies and globular clusters, the estimated distances compared
to those in the recent literature are well within our distance
precision of 3%. However, there are a few dwarf galaxies and

Table 7
Radii of Dwarf Galaxies

Name rt [arcmin] rc [arcmin] max(σl, σb) [arcmin]

Draco dSph 40.1±0.9 (Odenkirchen et al. 2001) 8.33 (Stoehr et al. 2002) 7.8
Sextans dSph 83.2±7.1 (Roderick et al. 2016) 14.14 (Stoehr et al. 2002) 16.5
Ursa Minor Dwarf dE4 34±2.4 (Kleyna et al. 1998) 10.5 (Stoehr et al. 2002) 9.6
Ursa Major I dSph 7.28 (Simon & Geha 2007) 20.4

Note. Comparison of tidal radii rt and core radii rc to the angular extent max(σl, σb) from our analysis for the four fitted dwarf galaxies. Ursa Major I dSph lacks a
published tidal radius. We give uncertainties as far as provided. See also Figure 14.

Table 8
Radii of Globular Clusters

Name rt [arcmin] rc [arcmin] max(σl, σb) [arcmin]

NGC 2419 8.74 0.35 6.6
NGC 4590 (M68) 30.34 0.69 9.0
NGC 5024 (M53) 21.75 0.36 21
NGC 5053 13.67 1.98 18
NGC 5272 (M3) 38.19 0.55 27
NGC 5466 34.24 1.64 7.2
NGC 5904 (M5) 28.40 0.42 7.8
NGC 6229 5.38 0.13 6.6
NGC 6864 (M75) 7.28 0.10 20.4
NGC 6934 8.37 0.25 6.6
NGC 6981 (M72) 9.15 0.54 6.6
NGC 7006 6.34 0.24 6.6
NGC 7078 (M15) 21.50 0.07 9.0
NGC 7089 (M2) 21.45 0.34 37.2
Pal 3 4.81 0.48 20.4
Pal 5 16.28 3.25 34.8

Note. Tidal radius rt, core radius rc from the 2010 version of Harris (1996), as
well as the angular extent max(σl, σb) from our analysis for all the fitted
globular clusters. See also Figure 14.
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globular clusters for which our distances deviate significantly
from those given in the literature.
In the case of NGC 6356, we find only one source close to

the coordinates given for this GC, but at a different distance:
while the RRab star from our catalog is at a heliocentric
distance of 11.02 kpc, the updated catalog of Harris (1996)
gives a heliocentric distance of 15.1 kpc for NGC 6356. For Pal
3, we find three stars within a small distance range, resulting in
a heliocentric distance estimate of 85.05 kpc, whereas Harris
(1996) gives a distance of 92.5 kpc. For Pal 13, we find three
RRab stars resulting in a mean distance of 23.59 kpc, which is
about 2.5 kpc off from the distance given by Harris (1996).
However, this star might be a member of Pal 13, as Siegel et al.
(2010) claim a distance of 24.8 kpc, which is within our
distance precision. For IC 1257, we have found only one RRab
star associated with this GC and estimated its distance to
27.24 kpc, in comparison to the 25 kpc given by Harris (1996).
For the dwarf galaxy Bootes I dSph, we find a mean

heliocentric distance of 60.61 kpc, which is about 5 kpc off
from the distance given by Okamoto et al. (2012) and about
1.5 kpc off from the distance given by Siegel (2006). However,
our distance estimate matches very well the distance of
60.4 kpc given by Hammer et al. (2018). The most distant
dwarf galaxy in our sample is Crater II dSph. Our heliocentric
distance estimate of 105.48 kpc for this dwarf galaxy is
somewhat off from the 117.5 kpc distance estimate reported by
McConnachie (2012), but there are closer distance estimates
like the 112±5 kpc claimed by Joo et al. (2018), which agrees
within the uncertainties with our result. For Sagittarius dSph,
our distance estimate of 28.18 kpc is slightly larger than, but
within the uncertainties of the 26.3±1.8 kpc result obtained
by Monaco et al. (2004). For Ursa Minor Dwarf dE4, we find a
distance of 68.41 kpc, whereas the distance is given as 76 kpc
from Bellazzini et al. (2002) as well as Carrera et al. (2002).
In some cases, it is hard to find stars associated with the

overdensities, especially if there are many field stars within the

Table 9
Distance Comparison for Dwarf Galaxies

Name D [kpc] Method Literature D [kpc] Method and Reference

Aquarius II dSph 107.87 1 RRab 107.900±3.300 BHB stars (Torrealba et al. 2016b)
Bootes I dSph 60.61 mean of 2 RRab 65.3 (BHB + RR Lyr) HSC/Subaru imaging (Okamoto et al. 2012)

62±4 15 RR Lyr (Siegel 2006)
60.4 (Hammer et al. 2018)

Crater II dSph 105.48 mean of 2 RRab ∼120 CMD (Torrealba et al. 2016a)
112±5 RR Lyr (Joo et al. 2018)
117.5±5 (McConnachie 2012)

Draco dSph -
+74.26 0.18

0.18
fit 71±7 SDSS photometry (Odenkirchen et al. 2001)

75.8±5.4 94 RR Lyr (Bonanos et al. 2004)
Sagittarius dSph -

+28.18 0.10
0.10

fit 26.3±1.8 RGB tip (Monaco et al. 2004)
Segue 1 dSph 23.24 1 RRab 23±2 CMD fitting, esp. horizontal branch (Belokurov et al. 2007)
Segue 2 dSph 33.31 1 RRab 35 from 4 BHB stars (Belokurov et al. 2009)
Sextans dSph -

+81.42 0.40
0.41

fit 84.2±3.3 RR Lyr from Dark Energy Camera imaging (Medina et al. 2018)
Ursa Minor Dwarf dE4 -

+68.41 0.51
0.51

fit 76 RR Lyr and HB (Bellazzini et al. 2002)
76±4 distance from HB, considering metallicity of UMi (Carrera et al. 2002)

Ursa Major I dSph -
+94.33 4.94

10.80
fit 96.8±4 V mag of HB, HSC/Subaru imaging study (Okamoto et al. 2008)

-
+97.3 5.7

6.0 variable stars in UMa 1 (Garofalo et al. 2013)
Ursa Major II Dwarf 33.02 1 RRab -

+34.7 1.9
2.0 1 RR Lyr (Dall’Ora et al. 2012)

Note. Comparison of our distance estimates (column D [kpc]) to reference values from literature. For our distance estimates, we note whether they are a result of
the fitting process or are determined as a mean distance from a small number of RRab stars. For literature values, we give the method used to obtain the distance and
the reference.

Table 10
Distance Comparison for Globular Cluster

Name D [kpc] Method Literature D [kpc]

IC 1257 27.24 1 RRab 25
NGC 2419 -

+79.70 0.37
0.32

fit 82.6

NGC 4147 18.54 1 RRab 19.3
NGC 4590 (M68) -

+10.48 0.28
0.26

fit 10.3

NGC 5024 (M53) -
+18.25 0.14

0.13
fit 17.9

NGC 5053 -
+16.66 0.26

0.28
fit 17.4

NGC 5272 (M3) -
+10.48 0.07

0.07
fit 10.2

NGC 5466 -
+15.76 0.14

0.14
fit 16

NGC 5634 25.81 1 RRab 25.2
NGC 5694 33.96 1 RRab 35
NGC 5897 12.91 1 RRab 12.5
NGC 5904 (M5) -

+7.87 0.19
0.19

fit 7.5

NGC 6093 (M80) 10.74 2 RRab 10
NGC 6171 (M107) 6.01 7 RRab 5.4
NGC 6229 -

+29.94 0.19
0.17

fit 30.5

NGC 6356 11.02 1 RRab 15.1
NGC 6426 19.83 5 RRab 20.6
NGC 6864 (M75) -

+20.79 0.35
0.32

fit 20.9

NGC 6934 -
+16.77 0.21

0.21
fit 15.6

NGC 6981 (M72) -
+17.51 0.17

0.15
fit 17

NGC 7006 -
+40.12 0.15

0.16
fit 41.2

NGC 7078 (M15) -
+11.07 0.22

0.24
fit 10.4

NGC 7089 (M2) -
+12.11 0.28

0.39
fit 11.5

NGC 7099 (M30) 8.41 2 RRab 8.1
Pal 3 -

+85.05 0.34
0.32

fit 92.5

Pal 5 -
+21.66 0.30

0.33
fit 23.2

Pal 13 23.59 3 RRab 26

Note. Comparison of our distance estimates (column D [kpc]) to reference
values from the literature. For our distance estimates, we note whether they are
a result of the fitting process or are determined as a mean distance from a small
number of RRab stars. For literature values, we use the 2010 online version of
the Harris (1996) catalog.
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assumed distance range of the dwarf galaxy or GC, and there is
no apparent overdensity. This is the case for NGC 5897, where
one RRab star is very close to the assumed coordinates of this
GC, but there are in total up to four stars that could be
associated with that GC. For the GC NGC 6402 (M14), the
field is even more crowded, so many sources in the field are at
its assumed distance without revealing an overdensity. For
NGC 6356, we find one source close to the coordinates given
for this GC, but at a different distance: the RRab star from our
catalog is at a heliocentric distance of 11.02 kpc, whereas
Harris (1996) give a heliocentric distance of 15.1 kpc for NGC
6356. In the case of Pal 1, we find no stars clearly associated
with this GC. For Segue 1 dSph, it is difficult to identify the
sources that might be associated with this dwarf galaxy, as
there are many sources in the field at about that distance.

For the GC, even though these sources are closer, in most
cases our distance uncertainties are larger than for dwarf
galaxies. This probably occurs because we are missing sources
near the centers of the GCs as the spatial density of sources is
higher than that which can be handled by the PS1 analysis
codes.

In this paper we have computed the extents Δl, Δb, ΔD and
the axis ratios ΔD/Δl and ΔD/Δl for all dwarf galaxies and
GCs in which a sufficient number of RRab were picked up in
the PS1 RR Lyr database of Sesar et al. (2017). Our distances
to the stellar overdensities we study here, including both GCs
and dwarf galaxy satellites of the Milky Way, are accurate to
better than 3% when more than eight RRab occur within a
system (i.e., a GC or a dSph).

In the past 5 years many groups have attempted to determine
distances to some of the dwarf galaxies using RRab, but they
have each used their own procedures and calibrations to
convert a mean RRab magnitude into a distance (see Tables 9
and 10 for references). Our work is unique in that every
object, within the large sample we study, is treated identically
and comes from the same survey, including the metallicity
dependence of the RR luminosity, so that the distances for our
large sample of objects are on the same scale across the entire
part of the sky covered by the PS1 3π survey, for all halo stellar
overdensities within which a sufficient number of RRab could
be detected. Thus overall we believe that our distances for the
sample of stellar overdensities in the Milky Way halo, i.e.,
globular clusters and dwarf galaxies, that we study here are

more precise and more homogeneous than those in the
published literature.
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Programme (FP 7) ERC grant Agreement No. [321035].
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University of Hawaii, the Pan-STARRS Project Office, the
Max-Planck Society and its participating institutes, the Max
Planck Institute for Astronomy, Heidelberg and the Max
Planck Institute for Extraterrestrial Physics, Garching, The
Johns Hopkins University, Durham University, the University
of Edinburgh, Queen’s University Belfast, the Harvard-
Smithsonian Center for Astrophysics, the Las Cumbres
Observatory Global Telescope Network Incorporated, the
National Central University of Taiwan, the Space Telescope
Science Institute, the National Aeronautics and Space Admin-
istration under grant No. NNX08AR22G issued through the
Planetary Science Division of the NASA Science Mission
Directorate, the National Science Foundation under grant No.
AST-1238877, the University of Maryland, and Eotvos Lorand
University (ELTE) and the Los Alamos National Laboratory.

Appendix

Figures 1–11 give plots of the dwarf spheroidals and
globular clusters including their (l, b, D) fit.
Figure 12 give the incompleteness of our RRab sample

towards the central regions of globular clusters.
Figure 13 gives a fit to two mock overdensities.
Figure 14 gives a comparison between the estimated extent

of the overdensities in the present and the tidal radii radii from
the literature.
Figure 15 shows the typical trend of a PL relation we get

from dereddened r-band magnitudes and periods of the
globular clusters.
Figures 16–31 give observed and predicted apparent

magnitudes for the globular clusters, and PL relations
constructed from that.
Figure 32 compares compare our RRab distance estimates to

those of Gaia DR2.
Figure 33 shows the confidence interval boundaries on the

Gaia distances of RRab stars.
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Figure 1. Dwarf spheroidals Draco dSph (a) and Sextans dSph (b). For both subfigures, the first panel shows a map of RRab stars near the dwarf galaxy, 270 stars in
the figure for Draco dSph, and 157 for Sextans dSph, respectively. The stars are color-coded according to their heliocentric distances. The other three panels show the
histograms in l, b, D for the stars from the first panel. Overplotted is the best-fit model from Section 4 with the parameters given on the right.
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Figure 2. The dwarf spheroidal Sagittarius dSph. The first panel shows a map of 1413 RRab stars near the dwarf galaxy; the stars are color-coded according to their
heliocentric distance. The other three panels show the histograms in l, b, D for the stars from the first panel. Overplotted is the best-fit model from Section 4 with the
parameters given on the right. As the Sagittarius dSph lies near the edge of the PS1 3π footprint, we cannot successfully fit its on-sky position (l, b), but we still can fit
its heliocentric distance D.
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Figure 3. Dwarf spheroidals Ursa Major I dSph (a) and Ursa Minor Dwarf dE4 (b). The first panel shows a map of RRab stars near the dwarf galaxy, 26 for Ursa
Major I dSph, and 98 stars in the figure for Ursa Minor Dwarf dE4, respectively. The stars are color-coded according to their heliocentric distance. The other three
panels show the histograms in l, b, D for the stars from the first panel. Overplotted is the best-fit model from Section 4 with the parameters given on the right. In the
case of Ursa Major I dSph, the best-fit model in the lower left panel does not seem to match the histogram quite well. However, this is only an effect due to the
marginalization in the histogram, as it shows all sources independent of their distance, while the Gaussian is centered on the fitted (l, b, D).
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Figure 4. Globular clusters NGC 2419 (a) and NGC 4590 (M68) (b). The first panel shows a map of RRab stars near the globular cluster, 74 stars in the figure for
NGC 2419, and 119 for NGC 4590, respectively. The other three panels show the marginalized histograms in l, b, D for the stars from the first panel. Overplotted is
the best-fit model from Section 4 with the parameters given on the right. For NGC 4590, the best-fit model in the lower left panel does not seem to match the histogram
quite well. However, this is only an effect due to the marginalization in the histogram, as it shows all sources independent of their distance, while the Gaussian is
centered on the fitted (l, b, D).
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Figure 5. Globular clusters NGC 5024 (M53) (a) and NGC 5053 (b). The first panel shows a map of RRab stars near the globular cluster, 40 stars in the figure for
NGC 5024, and 75 stars for NGC 5272, respectively. The stars are color-coded according to their heliocentric distance. In the Cartesian projection, both NGC 5024
and NGC 5053 appear to be elongated in l direction because of its high latitude. The other three panels show the histograms in l, b, D for the stars from the first panel.
Overplotted is the best-fit model from Section 4 with the parameters given on the right.
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Figure 6. Globular clusters NGC 5272 (M3) (a) and NGC 5466 (M5) (b). The first panel shows a map of RRab stars near the globular cluster, 75 in the figure for NGC
5272, and 36 for NGC 5904, respectively. In the Cartesian projection, both NGC 5272 and NGC 5466 appear to be elongated in the l direction because of its high
latitude. The other three panels show the histograms in l, b, D for the stars from the first panel. Overplotted is the best-fit model from Section 4 with the parameters
given on the right.
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Figure 7. Globular clusters NGC 5904 (M5) (a) and NGC 6229 (b). The first panel shows a map of RRab stars near the globular cluster, 177 in the figure for NGC
5904, and 104 for NGC 6229, respectively. The other three panels show the histograms in l, b, D for the stars from the first panel. Overplotted is the best-fit model
from Section 4 with the parameters given on the right. For NGC 5904, the best-fit model in the lower left panel does not seem to match the histogram quite well.
However, this is only an effect due to the marginalization in the histogram, as it shows all sources independent of their distance, while the Gaussian is centered on the
fitted (l, b, D).
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Figure 8. Globular clusters NGC 6864 (M75) (a) and NGC 6934 (b). The first panel shows a map of RRab stars near the globular cluster, 81 in the figure for NGC 6864, and
378 for NGC 6934, respectively. The other three panels show the histograms in l, b, D for the stars from the first panel. Overplotted is the best-fit model from Section 4 with
the parameters given on the right. For NGC 6864, the best-fit model in the lower left panel does not seem to match the histogram quite well. However, this is only an effect
due to the marginalization in the histogram, as it shows all sources independent of their distance, while the Gaussian is centered on the fitted (l, b, D).
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Figure 9. Globular clusters NGC 6981 (M72) (a) and NGC 7006 (b). The first panel shows a map of RRab stars near the globular cluster, 271 in the figure for NGC
6981, and 278 for NGC 7006, respectively. The other three panels show the histograms in l, b, D for the stars from the first panel. Overplotted is the best-fit model
from Section 4 with the parameters given on the right.
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Figure 10. The globular clusters NGC 7078 (M15) (a) and NGC 7089 (M2) (b). The first panel shows a map of RRab stars near the globular cluster, 211 in the figure
for NGC 7078, and 163 for NGC 7089, respectively. The other three panels show the histograms in l, b, D for the stars from the first panel. Overplotted is the best-fit
model from Section 4 with the parameters given on the right. For NGC 7089, the best-fit model in the lower left panel does not seem to match the histogram quite well.
However, this is only an effect due to the marginalization in the histogram, as it shows all sources independent of their distance, while the Gaussian is centered on the
fitted (l, b, D).
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Figure 11. Globular clusters Pal 3 (a) and Pal 5 (b). The first panel shows a map of RRab stars near the globular cluster, 8 in the figure for Pal 3, and 28 for Pal 5,
respectively. The other three panels show the histograms in l, b, D for the stars from the first panel. Overplotted is the best-fit model from Section 4 with the parameters
given on the right.
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Figure 12. Comparison of the RRab stars available in our PS1 RRab catalog (Sesar et al. 2017) as used for this work, to the RRab stars in the Catalog of Variable Stars
in Galactic Globular Clusters (Clement et al. 2001). For the 11 globular clusters available in both catalogs, we find that our catalog misses most RRab in the central
regions of the globular clusters. These regions are too compact, and thus most stars did not pass the quality criteria for the PS1 RRab catalog.
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Figure 13. Fit to two mock overdensities, where the one in subfigure (a) resembles a typical dSph with 166 sources, and the one in subfigure (b) resembles a typical
GC with 91 sources. We used mock overdensities to test the methodology for fitting overdensities, as well as estimate typical error ranges. The best-fit set of
parameters along with their 1σ intervals, as well as the input parameters used to generate the mock overdensities and background distribution of halo stars, are given in
the right part of each panel. In each case, the first panel shows a map of the star distribution near the overdensity, where the stars are color-coded according to their
heliocentric distance. The other three panels show the histograms in l, b, D for the stars from the first panel. Overplotted are both the distribution the mock stars were
drawn from (red) and the best-fit model from Section 4 (blue). We find results that are consistent with the input model within reasonable uncertainties, which means
that we are able to recover the input parameters for all models in their assumed parameter range.
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Figure 14. Comparison between the estimated extent of the overdensities (here we take the maximum of σl and σb, max(σl, σb)) in the present study and the tidal radii
rt and core radii rc for globular clusters (Harris 1996, no uncertainties are available) and for dwarf galaxies (from different sources, see Table 7; uncertainties are
partially available). For all of our remote globular clusters and for three of our dwarf galaxies, we were able to look up rt, rc. The dwarf galaxy Ursa Major I lacks a
published tidal and core radius. The diagonal line represents the one-to-one relation. We find that for globular clusters, whereas the distribution shows a lot of scatter,
our estimated extent from max(σl, σb) represents significant fractions of the tidal radius. We find sources far beyond the core radius. For dwarf galaxies, our estimated
extent from max(σl, σb) matches the core radius quite well. We do not pick up sources that are as distant as the tidal radius. Tables 7 and 8 list the data used
for this figure.
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Figure 15. We plot the dereddened apparent r-band magnitude (rF in the PS1 RRab catalog) for each of the RRab in our sample for each globular cluster vs. their
period. The typical trend of a PL relation is clearly visible.

25

The Astrophysical Journal, 871:49 (33pp), 2019 January 20 Hernitschek et al.



Figure 16. In this and the following plots, we select the RRab stars for each globular cluster and plot their dereddended apparent g, r, i, z magnitudes (gF,K, zF in the
PS1 RRab catalog) vs. their periods. These are the orange points in each panel. Along with that, we plot the apparent magnitude one would get from the PLZ or PL
relation for each of the periods. The gray points describe the predicted apparent magnitude based on period without any assumption on metallicity (Equation (13))
whereas the blue points describe the predicted apparent magnitude based on period when taking the metallicity [Fe/H] from Equation (12) into account. We find that
for most of the 16 globular clusters we have evaluated, the predicted apparent magnitude with [Fe/H] (blue markers in the figures) is a bit brighter than the predicted
apparent magnitude without [Fe/H] (black markers), and this is again a bit brighter than the observed dereddened apparent magnitude (orange markers). This figure
was made for the globular cluster NGC 2419. In the following figures, we show similar plots for all the globular clusters discussed in this paper.

Figure 17. Observed and predicted apparent magnitudes for the globular cluster NGC 5024 (M53). See Figure 16 for a detailed description.
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Figure 18. Observed and predicted apparent magnitudes for the globular cluster NGC 5053. See Figure 16 for a detailed description.

Figure 19. Observed and predicted apparent magnitudes for the globular cluster NGC 5272 (M3). See Figure 16 for a detailed description.

Figure 20. Observed and predicted apparent magnitudes for the globular cluster NGC 5466. See Figure 16 for a detailed description.

27

The Astrophysical Journal, 871:49 (33pp), 2019 January 20 Hernitschek et al.



Figure 21. Observed and predicted apparent magnitudes for the globular cluster NGC 5904 (M5). See Figure 16 for a detailed description.

Figure 22. Observed and predicted apparent magnitudes for the globular cluster NGC 4590 (M68). See Figure 16 for a detailed description.

Figure 23. Observed and predicted apparent magnitudes for the globular cluster NGC 6229. See Figure 16 for a detailed description.
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Figure 24. Observed and predicted apparent magnitudes for the globular cluster NGC 6864 (M75). See Figure 16 for a detailed description.

Figure 25. Observed and predicted apparent magnitudes for the globular cluster NGC 6934. See Figure 16 for a detailed description.

Figure 26. Observed and predicted apparent magnitudes for the globular cluster NGC 6981 (M72). See Figure 16 for a detailed description.
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Figure 27. Observed and predicted apparent magnitudes for the globular cluster NGC 7006. See Figure 16 for a detailed description.

Figure 28. Observed and predicted apparent magnitudes for the globular cluster NGC 7078 (M15). See Figure 16 for a detailed description.

Figure 29. Observed and predicted apparent magnitudes for the globular cluster NGC 7089 (M2). See Figure 16 for a detailed description.

30

The Astrophysical Journal, 871:49 (33pp), 2019 January 20 Hernitschek et al.



Figure 30. Observed and predicted apparent magnitudes for the globular cluster Pal 3. See Figure 16 for a detailed description.

Figure 31. Observed and predicted apparent magnitudes for the globular cluster Pal 5. See Figure 16 for a detailed description.
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