
An adaptive SVD-Krylov reduced order model for
surrogate based structural shape optimization through

isogeometric boundary element method

S. Lia, J. Trevelyanc, Z. Wub, H. Liand, D. Wangb,∗, W. Zhangb

aArtificial Intelligence Research Center, National Innovation Institute of Defense
Technology, 53 Fengtai East Road, Beijing 100071, China

bCollege of Aerospace Science and Engineering, National University of Defense Technology,
109 Deya Road, Changsha 410073, China

cDepartment of Engineering, Durham University, South Road, Durham DH1 3LE, United
Kingdom

dInstitute of Computational Engineering, University of Luxembourg, 6 Avenue de la Fonte,
Esch-sur-Alzette 4364, Luxembourg

Abstract

This work presents an adaptive Singular Value Decomposition (SVD)-Krylov

reduced order model to solve structural optimization problems. By utilizing the

SVD, it is shown that the solution space of a structural optimization problem

can be decomposed into a geometry subspace and a design subspace. Any struc-

tural response of a specific configuration in the optimization problem is then

obtained through a linear combination of the geometry and design subspaces.

This indicates that in solving for the structural response, a Krylov based iter-

ative solver could be augmented by using the geometry subspace to accelerate

its convergence. Unlike conventional surrogate based optimization schemes in

which the approximate model is constructed only through the maximum value

of each structural response, the design subspace can here be approximated by

a set of surrogate models. This provides a compressed expression of the sys-

tem information which will considerably reduce the computational resources

required in sample training for the structural analysis prediction. Further, an
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adaptive optimization strategy is studied to balance the optimal performance

and the computational efficiency. In order to give a higher fidelity geometric

description, to avoid re-meshing and to improve the convergence properties of

the solution, the Isogeometric Boundary Element Method (IGABEM) is used

to perform the stress analysis at each stage in the process. We report on the

benchmarking of the proposed method through two test models, and apply the

method to practical engineering optimization problems. Numerical examples

show the performance gains that are achievable in comparison to most existing

meta-heuristic methods, and demonstrate that solution accuracy is not affected

by the model order reduction.

Keywords: Structural optimization, Isogeometric Boundary element method,

Singular value decomposition, Krylov subspace, Adaptive model reduction
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1. Introduction

Optimization algorithms are commonly applied as a part of the structural

design process to provide lighter, stronger and cheaper structural components.

However, where the design has a complex geometry, a wide search space or

many design variables and constraints, significan computational resources are5

required to find the optimal structure. To alleviate this bottleneck, a number

of optimization algorithms have been developed, mainly depended on the meta-

heuristics method [1], such as genetic algorithms (GA) [2], simulated annealing

(SA) [3], particle swarm optimization (PSO) [4], ant colony algorithm (ACO)

[5] and differential evolution (DE) [6]. These methods are typically inspired10

by the recognition that good optimized solutions can be found in nature [7].

Unlike the gradient-based optimization schemes, evolutionary-based algorithms

do not involve a gradient based search and offer adaptability. The stochastic

nature of evolutionary-based algorithms enables them to find the solution for

complicated optimization problems with robustness and reliability. However,15

this can come at the cost of significant run times. Hence, a suitable structural
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optimization algorithm needs to be developed with low computational cost,

generality, robustness and high accuracy. In particular, we focus on the following

approaches to improve the performance in finding an optimized solution: 1)

surrogating the real system with simple functions; 2) updating the surrogate20

model with fast structural response computations.

Surrogate-based optimization (SBO) algorithms employ a surrogate model

in lieu of the real system response to execute the optimization. Commonly

applied techniques include the response surface method [8, 9], neural networks

[10, 11], polynomial regression models [12], Kriging methods [13] and the radial25

basis function (RBF) [14] method. The hallmark of a good surrogate model

is that it should provide a good approximation to the system behavior with

only a small demand on computational resources. However, in conventional

SBO schemes [15], a “black-box” system links the system input to its response;

there is no a priori knowledge of the process and the approximation is entirely30

based on a simple input-output observation. This can lead to the black-box

system becoming complicated and cause the convergence rate to deteriorate.

As an alternative, the system behaviour can be captured in more detail in a

larger number of simplified surrogate models. The system is more accurately

represented, but at the cost of more time spent in construction of the surrogate.35

A reduced order surrogate model [16, 17] has been developed to balance

the accuracy and efficiency in constructing the surrogate model. This mainly

relies on a reduction method, such as the Reduced Basis Method (RBM) [18],

which may be used to obtain low-dimensional approximate descriptions of high-

dimensional phenomena and use a surrogate model to reconstruct the original40

solution space with a much lower computational cost. It is now widely used in

solving parametrized Partial Differential Equations (PDEs) [19, 20, 21], opti-

mization problems [22, 23], inverse problems [24], engineering design [25], etc.

The idea could be further enhanced by updating the surrogate model only when

the optimum is approached. These ideas suggest two related topics: 1) high45

fidelity simulation for refining the surrogate model; 2) reuse of information for

accelerating high fidelity computations.
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A high fidelity simulation is almost always a time consuming component of

an optimization scheme, and a major contributor is repeated mesh generation.

However, the comparatively recent development of Isogeometric Analysis (IGA)50

[26] offers precise and efficient geometric modelling, simplicity of model refine-

ment, and control over the smoothness of the basis functions. The essential

idea behind IGA is to replace the conventional piecewise polynomial approxi-

mation of the structural response in the Finite Element Method (FEM)[27, 28]

with a basis formed from Non-Uniform Rational B-Splines (NURBS). NURBS55

are a standard tool for geometric description in CAD systems and solid mod-

elers. Thus integration of CAD and structural analysis can be seamless, and

this gives IGA immediate advantages in structural optimization. The IGA con-

cept was further explored and combined with the Boundary Element Method

(BEM) to become the Isogeometric Boundary Element Method (IGABEM). The60

IGABEM framework has been realized in various areas including elastostatics

[29, 30, 31, 32], shape optimization [33, 34, 35], acoustics [36, 37, 38] and fracture

mechanics [39, 40]. This enables the BEM to execute a high fidelity simulation

directly from any boundary represented geometry, circumventing costly meshing

procedures and eliminating geometry representation errors for many engineering65

products.

However, both BEM and IGABEM have some drawbacks. Notably, the

governing system matrix is dense and (in the collocation form of the BEM)

asymmetric, so that O(n2) operations are required to compute the matrix coef-

ficients and another O(n3) operations to solve the system by using direct solvers70

(n being the number of degrees of freedom (DOF)). Many popular techniques

are available to accelerate the process of assembling the coefficient matrix and

using it in an iterative solver, including the Fast Multipole Method (FMM)

[41, 42, 43, 44], Adaptive Cross Approximation (ACA) method [45, 46, 47] and

pre-corrected Fast Fourier Transformation (pFFT) method [48, 49, 50]. GM-75

RES [51] is a popular choice for solving dense, asymmetric systems, and further

operations (augmentation [52], preconditioning [53]) can be implemented to ac-

celerate the solution. It is evident that, if some information could be obtained
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and reused from previous solutions, this would be helpful in efficiently converg-

ing to a new solution for any similar problems [54]. This idea motivates the80

present work. A reduced order based optimization scheme [55, 56] would pro-

vide a suitable invariant subspace to represent the solutions; hence, we consider

the use of information from previous solutions to accelerate the high fidelity

analysis at the heart of the optimization strategy. The IGABEM is chosen here

for its well-known benefits in both the ease of shape control for optimization85

and the accuracy of geometric description for numerical simulation from a view

to practical application in industry.

Therefore, the current work contains three key elements of novelty:

1. We directly construct the surrogate model of the optimization problem

from a subspace based on the SVD. This extends existing sequential ap-90

proximate optimization [15], by no longer basing the surrogate model on

the maximum or minimum value of each system response. Instead the sys-

tem details are more fully approximated with a low computational cost.

This greatly enhances the speed of reaching the optimal solution.

2. The subspace can be further used in accelerating the IGABEM solution,95

and this can be considered as a type of augmentation of the Krylov sub-

space, enhancing the GMRES convergence rate. It has been shown that

when using exactly invariant subspaces, an augmentation approach is su-

perior to a preconditioning approach[57]. Hence, for solving IGABEM or

BEM problems, we modify the GMRES scheme by augmentation of the100

original Krylov subspace, and to the authors’ knowledge this approach has

not been reported before.

3. We propose an incremental algorithm involving an adaptive optimiza-

tion strategy, in which the reduced order surrogate model and the aug-

mented Krylov subspace are updated simultaneously, and the state evo-105

lution would be forecast by the reduced model, offering the optimization

scheme a good balance of efficiency and accuracy.

The paper is organized as follows: a brief introduction is given of the
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NURBS-based IGABEM discretization procedure and the corresponding linear

system of equations; the reduced order based adaptive algorithm is proposed110

for the structural optimization process; the proposed method is fully evaluated

through a parameter study and a benchmark test case and, finally, numerical

examples are shown to verify the performance of this scheme in solving 3-D

structural problems.

2. IGABEM discretization115

For a 3-D linear elastic problem, the structure occupies a continuous physical

domain, Ω ⊂ R3, with the boundary ∂Ω ≡ Γ. The boundary integral equation

(BIE), in the absence of body forces, can be written as follows:

C(s)u(s) +−
∫

Γ

T(s,x)u(x)dΓ(x) =

∫
Γ

U(s,x)t(x)dΓ(x), (1)

ui = ūi on Γūi ⊂ Γ, (2)

ti = t̄i on Γt̄i ⊂ Γ, (3)

where s ∈ Γ denotes the source point and x ∈ Γ the field point, u ∈ R3 the

displacement field, t ∈ R3 the traction field, U(s,x) = [Uij ] the displacement

fundamental solutions kernel, T(s,x) = [Tij ] the traction fundamental solutions

kernel, C(s) = [Cij ] the jump term, ūi and t̄i the prescribed displacements and

tractions, Γūi and Γt̄i the domain of prescribed displacements and tractions on120

a specific direction with Γui ∪ Γtj = Γ, Γui ∩ Γtj = ∅, i 6= j, i and j the indices

running from 1 to 3 in three dimensions to denote the x-,y- and z-directions

and −
∫

denotes an integral taken in the Cauchy Principal Value (CPV) sense.

The displacement and traction fundamental solutions are given as:

Uij(s,x) =
1

16πµ(1− ν)r
[(3− 4ν)δij + r,ir,j ], (4)

Tij(s,x) = − 1

8π(1− ν)r2

{ ∂r
∂n

[(1− 2ν)δij + 3r,ir,j ] + (1− 2ν)(r,jni − r,inj)
}
,

(5)
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where r = r(s,x) = ‖x−s‖ is the distance between source point and field point,

ni the ith component of the unit outward normal vector n, r,i = ∂r
∂xi

, µ the125

shear modulus and ν the Poisson’s ratio.

In the IGABEM approach the geometry and the solution variables (traction

and displacement) are both discretized using the same shape functions. Based

on a NURBS expansion, the geometry, displacement and traction fields around

the boundary are expressed:

x(ξ̃) =

na∑
a=1

Ra(ξ̃)x̃a, (6)

u(ξ̃) =

na∑
a=1

Ra(ξ̃)ũa, (7)

t(ξ̃) =

na∑
a=1

Ra(ξ̃)t̃a, (8)

where a denotes the control point index, na the number of control points, x̃a,

ũa and t̃a are the nodal coordinate, displacement and traction parameters as-

sociated with the control point with index a, and ξ̃ = (ξu, ξv) the intrinsic

coordinates (i.e. in parametric space) of the field point in a specific patch or

element. It should be noted that ũa and t̃a should not be interpreted as the

displacements and tractions at control points. Indeed, the control points may

lie outside the geometry. They are simply coefficients using which the displace-

ments and tractions can be recovered using Eq. (7) and Eq. (8). The NURBS

basis functions Ra then can be given by:

Ra(ξ̃) =
waNa(ξu)Ma(ξv)

na∑
a=1

waNa(ξu)Ma(ξv)

, (9)

where Na and Ma are the B-spline basis functions in the u- and v-directions,

respectively, and wa is a weight associated with each basis function or control

point. The p degree B-spline basis functions Na,p may be defined using the

Cox-de Boor recursion formula [58, 59], starting with p = 0:130

Na,0(ξ) =

 1 if ξa 6 ξ < ξa+1,

0 otherwise,
(10)
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and for p = 1, 2, 3, . . .:

Na,p(ξ) =
ξ − ξa

ξa+p − ξa
Na,p−1(ξ) +

ξa+p+1 − ξ
ξa+p+1 − ξa+1

Na+1,p−1(ξ). (11)

These expressions rely on a knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1}, ξa ∈ R,

which is a set of non-decreasing real numbers in the parametric space. Here, a

denotes the knot index, p the curve degree, and n the number of basis functions

or control points.135

With this NURBS expansion, the BIE (Eq. (1)) can be written in the dis-

cretized form:

C(ζ̃c)

na0∑
a0=1

Re0a0(ζ̃c)ũe0a0 +

ne∑
e=1

−
∫

Γe

T(ζ̃c, ξ̃)

na∑
a=1

Rea(ξ̃)ũeaJe(ξ̃)dξ̃

=

ne∑
e=1

∫
Γe

U(ζ̃c, ξ̃)

na∑
a=1

Rea(ξ̃)t̃eaJe(ξ̃)dξ̃. (12)

We use this BIE in a collocation scheme, so that ζ̃c = (ζu, ζv) indicates the

intrinsic coordinate of the collocation point, c the collocation point index, e0

the element in which the collocation point is located, and a0 is the local index

of the collocation point in element e0. ξ̃ denotes the intrinsic coordinates of

field point in parent element, e the element index, a the local index of the node140

in element e, Rea the shape function, Je the Jacobian and Γe the portion of

boundary Γ represented by element e.

With special handling for the strongly singular [60] and weakly singular [61]

cases, the above integrals can then be evaluated by Gauss-Legendre quadrature.

By considering Eq. (12) at a sufficient number of collocation points s, a system

of equations can be assembled into a matrix form:

Hũ = Gt̃, (13)

where matrix H is a square matrix containing a combination of the integrals of

the T kernel and the jump terms, G a rectangular matrix of U kernel integrals, ũ

contains the nodal displacement coefficients and t̃ the nodal traction coefficients.

Both ũ and t̃ include a mixture of unknown values and the values prescribed
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by boundary conditions. Application of the boundary conditions in the usual

BEM fashion then yields the final form of the linear system:

Aλ = f , (14)

where matrix A contains the entries of kernel coefficients associated with the

unknown displacements and tractions, λ includes all the unknown displacement

and traction coefficients and f a known column vector. This linear system can145

now be solved using any solver capable of dealing with a dense, non-symmetric

matrix. In the current work we use the acclerated GMRES scheme.

3. Reduced order model based structural optimization

3.1. Problem definition

The structural optimization problem considered herein can be formulated

as:

(SO)


min
α∈D

F(α,λ(α)),

s.t. Hi(α,λ(α)) = 0, i = 1, . . . , nh,

Gj(α,λ(α)) ≤ 0, j = 1, . . . , ng,

(15)

where D ⊂ Rnα denotes the parameter domain, α = (α1, . . . , αnα) ∈ D the

design variables, F : Rn ×D → R the objective function, Hi : Rn ×D → R the

equality constraint and Gj : Rn × D → R the inequality constraint. The state

vector λ : D → Rn on α is obtained by the state equations:

A(α)λ(α) = f(α), (16)

which is computed by the IGABEM (Eq. 12) for a set of structural configu-150

rations. Therefore, A : D → Rn×n is a dense, asymmetric coefficient matrix,

f : D → Rn the column vector of all the known values and the state vector λ

denotes all the unknown values of displacement and traction.

The Eq. 15 can be solved by any evolutionary based algorithm to perform the

optimization process, and DE is chosen in this paper since the better convergence155
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speed and stability compared with other meta-heuristics based optimizers[62].

In the following section, we will develop a subspace for the solution of Eq. 15

and Eq. 16.

3.2. Subspace constructed by SVD

For the optimization problems, we define any specific value of the design

state αs with its related response λ(αs) as a snapshot. After several high-

fidelity calculations, the snapshots can be grouped to from a solution space Λ,

which can be represented as a set of discrete data written as:

Λ = [λ(α1),λ(α2), · · · ,λ(αm)]

=


λ11 λ12 · · · λ1m

λ21 λ22 · · · λ2m

...
...

. . .
...

λn1 λn2 · · · λnm

 , (17)

so that Λ ∈ Rn×m. Thus the scale of the discretized solution space is dependent

on both the number of mesh grids n and number of snapshots or sampling

points m. The SVD is chosen to decompose Λ and compute a set of bases

which can optimally represent a given state in the evolution process. The SVD

factorization of Λ results in the form:

Λ = UΣVT =

r∑
j=1

ujσjv
T
j , (18)

where r = min(m,n). U ∈ Rn×n is an orthogonal matrix, with columns uj160

being the eigenvectors of ΛΛT, also known as the left-singular eigenvectors

of Λ. Similarly, V ∈ Rm×m is also orthogonal and its columns vj are the

eigenvectors of ΛTΛ, or the right-singular eigenvectors of Λ. Σ ∈ Rn×m is a

rectangular diagonal matrix with positive real entries σj on the diagonal and

zeros elsewhere. The singular values σj of Λ are ordered decreasingly such that165

σ1 is the largest.

The form of the description of the structural response in Eq. 18 is useful, since

we now suppose that the subspace Up = span{u1, . . . ,up}(p � r) can describe
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the structural geometry, and the subspace Vq = span{σ1v1, . . . , σqvq}(q � r)

can describe the design variables. Further, we introduce x ∈ R3 to denote a

geometry variable, and the entry uij of matrix U can be defined as:

uij = fxj (xi), i = 1, . . . , n and j = 1, . . . , r, (19)

similarly, we define the entry σjvij as:

σjvij = fαj (αi), i = 1, . . . ,m and j = 1, . . . , r. (20)

Having made these definitions, we can rewrite the Eq. 18 in a separated func-

tional form:

λ(x,α) =

r∑
j=1

fxj (x)fαj (α). (21)

This illustrates an important feature of SVD that it can decompose a multi-

variate system function into independent variables. It can be noted that any

system response could be easily obtained through a linear combination of the

geometry functions fxi (x) and design space functiosn fαi (α). In the following170

sections, we will illustrate the applications of those two functions in improving

the optimization process.

3.3. Augmented Krylov subspace

The fundamental idea of the augmented Krylov algorithms is to split the

search space into two supplementary spaces:

K = Up +Kj , (22)

where Kj is the standard Krylov subspace,

Kj(A, f) = span{f ,Af , . . . ,Aj−1f}. (23)

The standard Krylov subspace is commonly considered the primary subspace,

and this can be augmented by another subspace Up. The intuitive rationale for175

these methods is that Kj will lack a priori knowledge and may not be able to

capture all the ”frequencies” of A. This will lead to a sub-optimal convergence
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rate in reaching the solution. However, the SVD result for the optimization

problem will contain some a priori information about the solution space and this

will be helpful in improving convergence. We obtain the augmented method by180

modifying a standard implementation of GMRES based on the Arnoldi process.

Following the idea of an augmentation approach in [52], the Eq. 14 can be

applied into an augmented GMRES solving scheme. At the jth iteration step,

with initial value λ0 = 0, the solution λj satisfies:

‖Aλj − f‖ = min
λ∈Up∪Kj(A,f)

‖Aλ− f‖, λj ∈ Up ∪ Kj(A, f). (24)

The augmentation of the Krylov subspace Kj through Up is carried out firstly

by executing a QR-decomposition as:

AUp = W̃pH̃p, (25)

where each column of matrix Up ∈ Rn×p is the basis of subspace Up, the matrix

W̃p ∈ Rn×p has orthonormal columns and matrix H̃p ∈ Rp×p is upper triangu-

lar. The new Krylov bases then become appended to W̃p, to which they will be

orthogonal. The initial vector is simply chosen as (I−W̃pW̃
T
p )f . The generated

vectors are appended to the matrix W̃p as they are available. After j steps, the

Arnoldi process will become:

A[Up Wj ] = Wp+j+1Hp+j , (26)

where Wp+j+1 = [W̃p Wj+1] ∈ Rn×(p+j+1) has orthonormal columns, the first

column of Wj+1 is (I − W̃pW̃
T
p f)/‖I − W̃pW̃

T
p f‖ and the matrix Hp+j = H̃p

0
Hj

 ∈ R(p+j+1)×(p+j) is a quasi upper Hessenberg matrix with a lead-

ing p × p upper triangular submatrix H̃p constructed by Eq. 25. The trailing185

submatrix Hj is determined by a modified Arnoldi process which can be seen

in Algorithm 1.

If we set λj = [Up Wj ]yp+j , the solution can then be obtained by solving
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the least squares problem:

J(y) = min
y∈Rp+j

‖WT
p+j+1f −Hp+jy‖

= min
y∈Rp+j

‖QT
p+j+1W

T
p+j+1f −Rp+jy‖. (27)

The above minimization is achieved by decomposing the matrix Hp+j with

the same QR approach as Hp+j = Qp+j+1Rp+j , where Qp+j+1 ∈ R(p+j+1)×(p+j+1)

and Rp+j ∈ R(p+j+1)×(p+j). Since the last row of Rp+j is zero, the coefficient190

vector y can be easily solved by removing the last row of the matrix Rp+j and

last term of the vector gp+j+1 = QT
p+j+1W

T
p+j+1f . Also, the residual norm is

equal to the absolute value of the last term of gp+j+1 without explicitly com-

puting λ, exactly as is found in the standard GMRES.

Similar to the standard GMRES algorithm, the computation may be restarted195

rather than increasing the value of j to limit the memory requirement, but this

may lead to poor convergence and even stagnation. Empirically, a restarting

scheme is not always required since the IGABEM coefficient matrix A is rea-

sonably well conditioned. In Section 4, we will fully evaluate the performance of

the above algorithm and apply it in the solution of several numerical examples200

in Section 5.

3.4. Approximating the state evolution process

It is well known that SBO algorithms are not always effective in tackling

complex optimization problems. Specifically, an inaccurate surrogate may lead

to incorrect estimation of the system behavior, causing convergence rates to205

deteriorate. This fact suggests the existence of an optimal surrogate problem

which can be incrementally improved without repeatedly evaluating the high-

fidelity model. The design subspace Vq represents a good choice to optimally

capture the trends of the system behavior[15]. Therefore, in this section, we will

use a Radial Basis Function (RBF) network to approximate the design subspace,210

with the aim of solving the optimal surrogate problem with an appropriate

balance between time cost and fidelity.
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The RBF network is a three-layer feed-forward network which is similar to

the Kriging model with the linear part reduced to constant. The guiding prin-

ciple is to create a multidimensional interpolation in which each basis function

depends only on the Euclidean distance from its center. Then, we can approxi-

mate the design function as:

fα(α) ≈ f̂α(α) =

m∑
i=1

ωiφi(α), (28)

where m is the number of sampling points and each radial basis function φi(α)

is weighted by the coefficient ωi. In this paper, the following Gaussian kernel is

employed as the basis function φi(α):

φi(α) = e−(1/γ2
i )‖α−αi‖. (29)

The shape parameter γi, which is related to the width of the basis function, can

be computed from our previous study [15] as:

γi = m−1/nα (30)

The expansion coefficient ωi is determined by the interpolation condition fα(αi)

for i = 1, . . . ,m. This leads to a symmetric linear system which is uncondition-

ally nonsingular if the data points are distinct:
φ1(α1) φ2(α1) · · · φm(α1)

φ1(α2) φ2(α2) · · · φm(α2)
...

...
. . .

...

φ1(αm) φ2(αm) · · · φm(αm)




ω1

ω2

...

ωm

 =


f̂α(α1)

f̂α(α2)
...

f̂α(αm)

 . (31)

Now, the system function (Eq. 21) can be written as:

λ(x,α) ≈
r∑
j=1

fxj (x)f̂αj (α), (32)

and any system response may be approximated through this linear combination

rather than a full IGABEM computation. The reason that we follow the idea

[63, 25] to directly interpolate the fαj (α) rather than solving Eq. 16 like some215
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advanced projection-based ROM [64] is that matrix A does not admit the easy

execution of an affine decomposition in a low-rank sense, especially for the multi-

parameter environment. In the next subsection, we will introduce an adaptive

approach to incrementally update the surrogate model during the optimization

process.220

3.5. Reduced order optimization: an adaptive approach

3.5.1. Initialization

The implementation of the reduced order optimization scheme is similar to a

conventional surrogate based optimization with an initial sampling stage. The

design variable α ∈ D is scaled into an nα-dimensional unit hypercube (from

engineering experience, a design space comprising nα 6 20 is recommended

in order to give a stable approximation; for a detailed discussion, the reader is

directed to [65]), which is then sampled by the Optimal Latin Hypercube Design

(OLHD) method [66]. For the sake of brevity, interested readers are referred

to [66], where the related criteria and comparisons are given for the sampling

quality and density. The number of sampling points m is generally estimated

from the following rule:

m =

 5nα ∼ 10nα nα 6 10,

100 nα > 10.
(33)

The real system response is evaluated through IGABEM computation to

form the initial snapshots. For convenience, in the currrent work we use a

standard block diagonal preconditioner for these initial computations, where the225

coefficients are formed by directly evaluating the singular integrals and making

use of left preconditioning. By decomposing the snapshots, a reduced order

surrogate model is generated. The detailed process can be expressed as shown

in Algorithm 2.

3.5.2. Termination criterion and resampling230

In order to focus the optimization near the optimized solution, and to be

efficient in use of computational resources, we first define a relative distance
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function as follows so the design variables are confined to a local region. We

define a distance δd, where

δd = ‖αi −αi−1‖, (34)

where ‖•‖ is the L2-norm (similarly hereinafter). This determines the distance

of the design variable αi from its previous iteration αi−1 (commonly used in the

sequential approximation optimization approach). Once δd exceeds a threshold

value, a new sampling point is needed to proceed. Here we use the sampling

strategy proposed in [15], which balances exploration and exploitation, allowing

high-efficiency searching for the optimum during the optimization process. The

reduced order model is deemed to have reached a satisfactory solution for the

design variable αi if the residual, δr:

δr = ‖Aλ̂− f‖, (35)

becomes smaller than a prescribed threshold εr. Here λ̂ ∈ Rn are the system

response predicted by the approximate model and A and f are computed from

by IGABEM. This will decide whether a high-fidelity simulation is needed to

update the surrogate model for the next iteration. Some other efficient ROM

error estimation methods can be found in [67, 23, 64].235

3.5.3. Update of the SVD

Once new snapshots have been computed, the system bases should also be

updated to maintain computational efficiency. The new SVD bases can be

computed once a new snapshot is available. We note that the snapshots do not

need to be stored once the SVD decomposition has been computed. Writing

Λm = UmΣmVT
m, Λm ∈ Rn×m, the new snapshot is appended to the end of

Λm, arriving at Λm+1 = [Λm λm+1]. This enrichment process due to Brand

[68] is reproduced here:

Mm+1 =

 Σm UT
mλm+1

0T ‖q‖

 , (36)
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Λm+1 = [Λm λm+1] =

[
Um

q

‖q‖

]
Mm+1

 VT
m 0

0T 1

 (37)

where q is a column vector which is computed by Gram-Schmidt orthogo-

nalization of λm+1 with the columns of Um. By decomposing the matrix

Mm+1 ∈ R(m+1)×(m+1) in the SVD manner, Λk+1 may be rewritten as:

Λk+1 =

[
Uk

q

‖q‖

]
Ũk+1Σk+1Ṽ

T
k+1

 VT
k 0

0T 1


= Uk+1Σk+1V

T
k+1. (38)

Then, the new subspace is formed from the newly decomposed bases that

the number of singular values retained is an automatic output of the criterion

in Algorithm 2.

3.5.4. An adaptive optimization algorithm240

The general framework of the proposed methods is shown in Fig. 1 and the

full implementation of adaptive reduced order optimization can be found in

Algorithm 3. The previous termination criterion allows the solution space to be

refined by detecting the regions with large errors. In the framework of adaptive

strategies, the surrogate quality (Eq. 35) will be checked while two sampling245

points are close to each other (Eq. 34), since high accuracy is important only

near the optimum [69]. In those regions, the surrogate model can be improved by

adding snapshots which will enrich the original bases. The enrichment process

relies on an a posteriori approach. Once the quality of surrogate model can no

longer be guaranteed (δr > 10−5), the computation of the previous τ steps will250

be directly evaluated through the IGABEM scheme, and the Krylov subspace

will be applied to accelerate the IGABEM solution. In practice, for the first

several loops, τ can be chosen as 1, which will allow the possible optimal region

to be located quickly, then it can be changed to 2 or 3 until the quality criterion

is fulfilled.255
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Figure 1: General framework of the proposed methods
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4. Evaluation of the proposed approach

In this section, the proposed method is fully and critically evaluated through

a study in two parts. In the first part a parametric study is performed to

find the best parameter combination for augmenting the Krylov subspace to

solve IGABEM problems. In the second part a comparison is drawn between260

the present work and previous research in adaptive reduced order optimization

processes.

4.1. Parametric study of the augmented Krylov subspace

We consider a single quarter cylinder, shown in Fig. 2, under an internal pres-

sure (blue area) for which the analytical solution may be easily computed. The265

left (yellow), right (red) and bottom (purple) surfaces have prescribed displace-

ment constraints in the direction normal to each surface. The initial geometry

is constructed as a set of quadratic NURBS surfaces, defined by three design

variables: the height h, inner radius ri and outer radius ro. The lower and

upper bounds of each variable are given in Tab. 1. The related control points270

are shown in Fig. 3. The material properties of steel are used in the following

computations. Here, we adopt a reanalysis scheme to check the performance of

the augmented Krylov subspace in solving a set of similar IGABEM problems.

The reanalysis scheme could be adopted to mimic the optimization procedure

while avoiding the influence of unrelated parameters; the scheme is defined as275

the following steps: 1) by using OLHD [66], a set of sampling points m are gen-

erated in a D ⊂ R3 design space; 2) by executing the IGABEM computation, we

can obtain a matrix of snapshots, Λ, and its SVD decomposition Λ = UΣVT;

3) another 10 sampling points are generated by using the same OLHD method

as the test case; 4) The first p bases are then taken in augmenting the Krylov280

subspace to evalute the test case. We present the parametric study in order

to evaluate the influence of the parameters used in this paper. The study in-

cludes five main parameters: computational complexity with knot insertion (h),

NURBS degree (p), number of sampling points (m), number of bases (np) used
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in augmentation and the residual tolerance of the augmented GMRES solver285

(εg).

Figure 2: Geometry size of the quarter cylinder

Table 1: Design space of the quarter cylinder

Design variables Lower bound Upper bound

h (mm) 1000 2000

ri (mm) 400 800

ro (mm) 1000 1500

The accuracy of the structural analysis is quantified in terms of a relative

L2 displacement error norm Er, where

Er =

‖
ne∑
e=1

na∑
a=1

Rea(ξ̃)ũea − ũex‖

||ũex||
× 100%, (39)

where ũea are the coefficients that allow us to recover the approximate displace-

ments in a NURBS basis and ũex is the exact displacement.

The first study is related to the scaling of the elements of the run time under
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Figure 3: The quarter cylinder geometry with NURBS control points
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an h-refinement scheme. In an IGABEM context this is done by knot insertion.290

The knot vector used for the initial geometry (Fig. 3) is Ξ = {0, 0, 0, 1, 1, 1}

for each dimension in parametric space. We then insert knots h times with p

repetitions to arrive at Ξ = {0, 0, 0, ξ1, ξ1, . . . , ξh, ξh, 1, 1, 1}, so that each surface

is converted into (h + 1) × (h + 1) individual Bézier elements for calculation.

This can be seen as an isogeometric form of h-refinement and the details are295

shown in Table 2, where ne is the number of Bézier elements, Ēr the average

relative error of all the test cases computed by using Eq. (39), t̄r the average

time cost of the SVD process, t̄g the average time cost per iteration, n̄ag the

average number of augmented GMRES iterations, n̄pg the average number of

preconditioned GMRES iterations, n̄g the average number of standard GMRES300

iterations. From the table it is evident that the cost of SVD exhibits O(nm2)

complexity, and the time cost of the GMRES solver is strongly dependent on

two factors: the matrix-vector products in each iteration and the total number

of iterations. It can be seen that by augmenting the Krylov subspace, the

number of iterations will be significantly decreased compared with both the305

preconditioned and standard method, and this will give rise to considerable

gains in computational efficiency, especially for large problems. Here, we use a

block diagonal preconditioner as mentioned before.

Table 2: Parametric study: h-refinement

DOF ne p h m np εg Ēr t̄r (s) t̄g (s) n̄ag n̄pg n̄g

78 6 2 0 10 4 1E-5 3.26E-3 6.00E-5 3.75E-2 2 12 29

294 24 2 1 10 4 1E-5 9.29E-4 7.10E-5 1.13E-1 2 12 32

654 54 2 2 10 4 1E-5 1.06E-4 9.30E-5 2.41E-1 2 13 35

1806 150 2 4 10 4 1E-5 5.86E-5 1.57E-4 6.82E-1 3 13 36

7206 600 2 9 10 4 1E-5 7.69E-5 3.16E-4 2.63E+0 4 15 40

28806 2400 2 19 10 4 1E-5 7.55E-5 1.75E-3 1.11E+1 4 15 45

The second study relates to degree elevation (the isogeometric form of p-

refinement). The surface degree in each dimension is increased from 2 to 7310
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with the knot vector expressed as Ξ = {
p+1︷ ︸︸ ︷

0, . . . , 0,

p+1︷ ︸︸ ︷
1, . . . , 1}. Table 3 shows the

comparisons between different degrees, and it can be seen that the relative error

will increase for large p, so the surface degrees p = 2, 3, 4 are recommended

depending on the complexity of the geometry.

Table 3: Parametric study: p-refinement

DOF ne p h m np εg Ēr t̄r (s) t̄g (s) n̄ag n̄pg n̄g

78 6 2 0 10 4 1E-5 3.26E-3 6.00E-5 3.75E-2 2 11 29

168 6 3 0 10 4 1E-5 8.83E-4 1.18E-4 6.29E-2 2 12 30

294 6 4 0 10 4 1E-5 2.51E-3 1.53E-4 6.81E-2 3 12 33

456 6 5 0 10 4 1E-5 5.19E-3 1.76E-4 8.33E-2 3 12 40

654 6 6 0 10 4 1E-5 9.66E-3 2.17E-4 1.17E-1 3 14 48

888 6 7 0 10 4 1E-5 2.12E-2 2.57E-4 1.65E-1 3 14 54

The third study investigates the influence of the number of sampling points,315

m, used (Tab. 4). One can find that use of a sufficient number of sampling

points will improve the convergence rate but cost more time, so that use of

m = 10 ∼ 30 is recommended (see also Eq. 33).

Table 4: Parametric study: number of sampling points

DOF ne p h m np εg Ēr t̄r (s) t̄g (s) n̄ag n̄pg n̄g

78 6 2 0 10 4 1E-5 3.26E-3 6.00E-5 3.75E-2 2 11 29

78 6 2 0 20 4 1E-5 3.11E-3 3.40E-4 3.68E-2 2 11 29

78 6 2 0 30 4 1E-5 2.78E-3 4.93E-4 3.77E-2 2 11 29

78 6 2 0 40 4 1E-5 3.34E-3 1.47E-3 3.81E-2 2 11 29

78 6 2 0 50 4 1E-5 2.95E-3 1.85E-3 3.69E-2 1 11 29

78 6 2 0 60 4 1E-5 3.02E-3 2.42E-3 3.72E-2 1 11 29

The fourth study relates to the influence of the number of SVD bases used in

augmentation (Tab. 5). A low level augmentation will make the Arnoldi process320

fast for each iteration but with a poor convergence property, and a high level of
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augmentation will cause more time to be spent during each orthogonalization

process. The results suggest a number np = 3, 4 is suitable.

Table 5: Parametric study: number of SVD bases

DOF ne p h m np εg Ēr t̄r (s) t̄g (s) n̄ag n̄pg n̄g

78 6 2 0 10 1 1E-5 3.29E-3 6.00E-5 3.23E-2 8 11 29

78 6 2 0 10 2 1E-5 3.35E-3 6.00E-5 3.49E-2 6 11 29

78 6 2 0 10 3 1E-5 3.12E-3 6.00E-5 3.58E-2 4 11 29

78 6 2 0 10 4 1E-5 3.26E-3 6.00E-5 3.75E-2 2 11 29

78 6 2 0 10 5 1E-5 2.88E-3 6.00E-5 4.11E-2 2 11 29

78 6 2 0 10 6 1E-5 2.93E-3 6.00E-5 4.92E-2 1 11 29

The last study shows the effect of the residual tolerance of the augmented

GMRES (Tab. 6). With reducing values of the stopping threshold value, the325

computational precision is seen to improve at first but then stagnate. The

results reveals a tolerance εg = 10−5 ∼ 10−6 is suitable.

Table 6: Parametric study: precision of the augmented GMRES

DOF ne p h m np εg Ēr t̄r (s) t̄g (s) n̄ag n̄pg n̄g

78 6 2 0 10 4 1E-2 7.25E-2 6.00E-5 3.19E-2 1 7 18

78 6 2 0 10 4 1E-3 9.63E-3 6.00E-5 3.25E-2 1 9 22

78 6 2 0 10 4 1E-4 6.82E-3 6.00E-5 3.81E-2 1 10 26

78 6 2 0 10 4 1E-5 3.26E-3 6.00E-5 3.75E-2 2 11 29

78 6 2 0 10 4 1E-6 2.75E-3 6.00E-5 3.66E-2 2 13 35

78 6 2 0 10 4 1E-7 1.99E-3 6.00E-5 3.74E-2 3 15 47

4.2. Validation of the adaptive optimization algorithm

In this second subsection we evaluate the optimization problem for a 72-bar

space frame structure as shown in Fig. 4, making use of the proposed opti-330

mization algorithm and replacing the IGABEM computation with an analytical

engineering approach. The material properties, as well as the node and member
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Figure 4: Geometry size of the 72-bar spatial truss structure
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numbering systems, are shown in Fig. 4. There are 72 truss elements which are

divided into 16 groups as shown in Tab. 7. This grouping reduces the number

of design variables to 16, being the cross-sectional areas of the member groups;335

these areas vary from 64.52 to 1612.90 mm2. The material density is 2770 kg/m3

and the modulus of elasticity is 68.95 GPa. We seek a minimum weight solution

subject to constraints that the von Mises equivalent stress in the members is re-

quired to be smaller than 172.37 MPa, and all nodal displacements are required

to be smaller than 6.35 mm. The structure is subject to two loading conditions,340

as detailed in Tab. 8.

Table 7: 72-bar truss member area groups

Area group Truss members Design variables

A1 1, 2, 3, 4 x1

A2 5, 6, 7, 8, 9, 10, 11, 12 x2

A3 13, 14, 15, 16 x3

A4 17, 18 x4

A5 19, 20, 21, 22 x5

A6 23, 24, 25, 26, 27, 28, 29, 30 x6

A7 31, 32, 33, 34 x7

A8 35, 36 x8

A9 37, 38, 39, 40 x9

A10 41, 42, 43, 44, 45, 46, 47, 48 x10

A11 49, 50, 51, 52 x11

A12 53, 54 x12

A13 55, 56, 57, 58 x13

A14 59, 60, 61, 62, 63, 64, 65, 66 x14

A15 67, 68, 69, 70 x15

A16 71, 72 x16

The optimization problem is solved by the proposed algorithm with 50 initial
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Table 8: 72-bar truss loading cases

Load case Node Fx (kN) Fy (kN) Fz (kN)

1 1 22.24 22.24 -22.24

2

1 0.0 0.0 -22.24

2 0.0 0.0 -22.24

3 0.0 0.0 -22.24

4 0.0 0.0 -22.24

sampling points. The termination criterion is satisfied after 88 iterations, as

revealed by the variation of the relative residual shown in Fig. 5. It is also

worthwhile observing from Fig. 5 that the approximation accuracy improves,345

although non-monotonically, with the optimization iterations. The evolution of

the objective function is displayed in Fig. 6.

The results are compared against those of recent publications, namely, the

SAO [15], the augmented Lagrange multiplier based PSO [70], the penalty based

PSO [71], the hybrid big bang-big crunch [72] and ant colony algorithms [73].350

Tab. 9 summarizes the results for the 72-bar truss problem using the different

optimizers. For comparison, the best and worst results from 20 independent

trials are also listed. It is noticed that the optimized weight obtained agrees

with the optimized results in references, while the average number of iterations,

n, to reach the optimum is reduced from the order of 104 to less than 100,355

indicating a substantial reduction in computational cost. More specifically, the

method outperforms our previous work[15].

5. Numerical examples

In this section, we demonstrate the application of the proposed method in

three practical structural shape optimization cases.360
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Table 9: Optimized results for the 72-bar truss

Optimized Optimized SAO ALPSO PSO HBB-BC ACO

(best) (worst) [15] [70] [71] [72] [73]

DV

x1 (mm2) 1.01E+02 1.03E+02 1.01E+02 1.01E+02 1.05E+02 1.01E+02 1.01E+02

x2 (mm2) 3.55E+02 3.30E+02 3.54E+02 3.52E+02 3.28E+02 3.50E+02 3.55E+02

x3 (mm2) 2.63E+02 2.77E+02 2.62E+02 2.61E+02 3.21E+02 2.66E+02 2.52E+02

x4 (mm2) 3.61E+02 3.57E+02 3.58E+02 3.65E+02 3.63E+02 3.72E+02 3.82E+02

x5 (mm2) 3.40E+02 3.08E+02 3.31E+02 3.35E+02 3.32E+02 3.34E+02 3.62E+02

x6 (mm2) 3.32E+02 3.17E+02 3.41E+02 3.34E+02 3.52E+02 3.36E+02 3.17E+02

x7 (mm2) 6.45E+01 6.45E+01 6.45E+01 6.45E+01 6.45E+01 6.45E+01 6.45E+01

x8 (mm2) 6.45E+01 6.45E+01 6.45E+01 6.45E+01 7.10E+01 6.52E+01 6.90E+01

x9 (mm2) 8.32E+02 7.95E+02 8.08E+02 8.12E+02 8.44E+02 8.12E+02 8.41E+02

x10 (mm2) 3.32E+02 3.27E+02 3.38E+02 3.31E+02 3.35E+02 3.25E+02 3.30E+02

x11 (mm2) 6.45E+01 6.45E+01 6.45E+01 6.45E+01 6.45E+01 6.45E+01 6.52E+01

x12 (mm2) 6.45E+01 6.45E+01 6.45E+01 6.45E+01 6.45E+01 6.45E+01 6.45E+01

x13 (mm2) 1.21E+03 1.55E+03 1.18E+03 1.22E+03 1.12E+03 1.23E+03 1.26E+03

x14 (mm2) 3.26E+02 3.25E+02 3.30E+02 3.31E+02 3.35E+02 3.33E+02 3.28E+02

x15 (mm2) 6.45E+01 6.45E+01 6.45E+01 6.45E+01 6.45E+01 6.45E+01 6.52E+01

x16 (mm2) 6.45E+01 6.45E+01 6.45E+01 6.45E+01 6.45E+01 6.45E+01 6.58E+01

SC
umax (mm) 6.35E+00 6.35E+00 6.35E+00 6.35E+00 6.34E+00 6.35E+00 6.35E+00

σmax (MPa) 1.72E+02 1.72E+02 1.72E+02 1.72E+02 1.69E+02 1.72E+02 1.72E+02

OFV m (kg) 1.72E+02 1.74E+02 1.72E+02 1.72E+02 1.73E+02 1.72E+02 1.72E+02

NI n 76 89 252 > 103 N/A 13200 18500

DV: Design Variables

SC: State Constraints

OFV: Objective Function Value

NI: Number of Iterations
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Figure 5: Convergence for 72-bar truss optimization

Figure 6: The objective function history
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5.1. Open spanner

The first study, we consider the problem whose objective is to find the opti-

mal outer shape of an open spanner. The initial design is illustrated in Fig. 7.

The structure has a predefined length 90 mm, a maximum allowable width 40

mm, a jaw width 20mm and a thickness 4 mm. A force F = 1 kN is applied365

at the end of the spanner as shown, and the opposing surfaces of the jaws are

fixed, also as shown. The Young’s modulus and Poisson’s ratio are 200 GPa and

0.3, respectively (and these properties will be reused for the remaining examples

in this paper). As design variables, the vertical positions of the outer control

points are defined and changed symmetrically. The outer shape quality is main-370

tained to be smooth by a 3rd order curve fitting and degenerated through Bézier

extraction. In total, we construct 62 cubic Bézier elements with 1680 DOF. All

control weights are set to 1. The design objective is to minimize the weight of

material while constraining the maximum stress to be below 200 MPa (similarly

in the remaining examples in the paper).375

At the initialization stage, the ten design variables are sampled into an opti-

mal Latin hypercube to give around 100 initial sampling points, and the struc-

tural response computed by IGABEM for the designs based on these sampling

points. We treat the structural responses as snapshots that can be decomposed

by an SVD approach, and the design space could be further interpolated by380

the use of radial basis functions. The optimization process then proceeds un-

til the stopping criterion is reached. The DE algorithm is adopted to find a

solution as close as possible to the optimal one, and here we evaluate the dis-

tance between the current and previous design variable, which indicates that

whether new a sampling point is needed. If these two points become sufficiently385

close together, the interpolation quality of the RBF is checked against the di-

rectly solved IGABEM coefficients. If the quality of the RBF approximation

is deemed satisfactory, the surrogate model can be used to predict the optimal

configuration. Otherwise, the RBF is further improved through direct IGABEM

computation with an AGMRES approach to accelerate the computation. The390

new snapshot can then be used to update the original design space to form a
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new RBF model. The optimal design reached in 65 iterations is depicted in

Fig. 10 and the convergence history is shown in Fig. 9. The optimized shape

with its deformation and von Mises stress distribution is shown in Fig. 8 and

Tab. 10 presents the optimized results of each of the design variables.

Figure 7: Geometry size and control points of the open spanner

Figure 8: Deformed structure of the optimized shape with von Mises stress

395
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Figure 9: Convergence history of the open spanner optimization

Figure 10: Objective function history of the open spanner optimization
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Table 10: Design space and optimized value of design variables

Lower Bound Upper Bound Optimized

DV

h1 (mm) 11.0 20.0 11.02

h2 (mm) 11.0 20.0 13.29

h3 (mm) 1.0 20.0 8.79

h4 (mm) 1.0 20.0 5.69

h5 (mm) 1.0 20.0 5.00

h6 (mm) 1.0 20.0 4.09

h7 (mm) 1.0 20.0 3.04

h8 (mm) 1.0 20.0 1.21

h9 (mm) 1.0 20.0 1.00

h10 (mm) 1.0 1.0 1.00

SC
umax (mm) / / 1.81

σmax (MPa) / / 198.52

OFV m (g) / / 22.21
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5.2. Torque arm

A torque arm, or connecting rod, is commonly used in mechanical compo-

nents in order to connect a crankshaft with a piston, the load being applied

through pins in the holes at the two end bearings. The geometry, model pa-

rameters and loading force are illustrated in Fig. 11. The design variables are400

six parameters that significantly affect the performance of the torque arm (α, b,

D, h, t1 and t2). Other geometric parameters are predefined and fixed during

the optimization. The torque arm is subjected to a pressure load P=10 MPa as

shown. The torque arm is fixed at the inner diameter of the large bearing on the

left side. The model consists of 10794 DOF and 400 cubic Bézier elements. The405

proposed method requires 85 iterations to converge to the optimum. Fig. 12

illustrates the deformation (x10 magnified) and von Mises stress distribution.

Tab. 11 presents the design space and the final result obtained by the proposed

method. The evolution of the objective function is presented in Fig. 14 with its

residual in Fig. 13.

Figure 11: Geometry size of the torque arm

410

5.3. Spigot

Aircraft pylons have the function of supporting external payloads and are

installed under the wing or fuselage. Inside the pylon, a structure called a

spigot (or, in some cases, pivot) is a highly stressed structure, typically made
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Figure 12: Deformed structure of the optimized torque arm shape with v.Mises stress

Figure 13: Convergence history of the torque arm optimization
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Figure 14: Objective function history of the torque arm optimization

Table 11: Design space and optimized value of the torque arm

Lower Bound Upper Bound Optimized

DV

α (◦) 2.0 4.5 4.50

b (mm) 15.0 35.0 29.67

D (mm) 85.0 100.0 85.00

h (mm) 20.0 30.0 29.99

t1 (mm) 2.0 15.0 2.20

t2 (mm) 2.0 10.0 8.80

SC
umax (mm) / / 1.52

σmax (MPa) / / 199.74

OFV m (kg) / / 3.01
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of a high strength steel, that transfers the concentrated loads to the wing or415

fuselage structure. In this section we optimize such a spigot. The initial design

model, depicted in Fig. 15, is constructed with 888 cubic Bézier element and

7960 control points. A horizontal load Fx = 2.75 kN and a vertical load Fz =

5.5 kN are applied to the outer surface of the shaft neck (shown in blue). Fixed

displacement constraints are prescribed over the bolt holes on the bottom.420

Here, we also minimize the weight and constrain the maximum stress to

200 MPa. The optimization process is stopped after 277 iterations. Fig. 16

shows the deformation (x100 magnified) and the von Mises stress distribution

in the optimized configuration. Tab. 12 presents the design space of the spigot

optimization problem, giving the values for the optimized solution found, and425

the evolution of the objective function is presented in Fig. 18 with its residual

in Fig. 17.

Figure 15: Geometry size of the spigot
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Figure 16: Deformed structure of the optimized spigot shape with v.Mises stress

Figure 17: Convergence history of the spigot optimization
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Figure 18: Objective function history of the spigot optimization

Table 12: Design space and optimized value of the spigot

Lower Bound Upper Bound Optimized

DV

w (mm) 32.0 90.0 51.22

t1 (mm) 3.0 20.0 19.99

t2 (mm) 3.0 15.0 14.96

t3 (mm) 3.0 10.0 3.86

r1 (mm) 35.0 60.0 43.09

r2 (mm) 35.0 60.0 41.32

r3 (mm) 35.0 60.0 41.20

r4 (mm) 35.0 60.0 35.89

r5 (mm) 35.0 60.0 35.79

r6 (mm) 35.0 60.0 35.55

SC
umax (mm) / / 1.21

σmax (MPa) / / 198.75

OFV m (kg) / / 17.78
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6. Conclusion

In this paper, we have presented an adaptive strategy for solving surrogate

based structural optimization problems. The algorithm is combined with a430

model reduction approach based on the use of the Singular Value Decomposi-

tion to improve the convergence property of both the IGABEM computation and

the optimization process. In the algorithm, the solution space of the optimiza-

tion problem will be fully mimicked by the surrogate model. Together, these

strategies provide a promising computational approach for the rapid analysis435

of large-scale structural optimization problems. In comparison with previous

structural optimization strategies, the required computational resources are de-

creased without losing accuracy. From the numerical examples presented, our

method has been successfully demonstrated in industrially relevant engineer-

ing problems, providing a stepping stone towards fully integrated CAD-CAE440

software.
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