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Abstract

We introduce and axiomatize a class of single-winner contest success func-
tions that embody the possibility of a draw. We then analyze the game of
contest that our success functions induce, having different prizes delivered
in the occurrence of a win and a draw. We identify conditions for the exis-
tence and uniqueness of a symmetric interior Nash equilibrium and show that
equilibrium efforts and equilibrium rent dissipation can be larger than in a
Tullock contest (with no possibility of a draw) due to increased competition
even if the draw-prize is null. These results suggest that a contest designer
may profit from introducing the possibility of a draw. Finally, we show that
this approach naturally extends to multi-prize contests with multiple draws
across different subsets of the set of players.
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1 Introduction

In a contest, participants compete for a prize or a number of prizes by exerting
costly efforts. Many competitive environments have the structure of a contest, and
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the model has been applied in a variety of fields in economics and related disciplines.1

A crucial element of a contest model is the contest success function (success func-
tion hereinafter), which defines how the contended resources are distributed across
players depending on their efforts. Contests are typically modeled as exhaustive, in
the sense that all contended resources are allocated to participants.2 In a Tullock
contest, a single prize is always allocated to a single winner and a success function
defines a probability distribution on the identity of the winner as a function of ef-
forts, which is the probabilistic version of the aforementioned exhaustive property.
However, in many applications it is possible for a contest to have no clear winner,
i.e., there is a draw (or an impasse).3 In this paper we consider this possibility and
address the problem along three directions.

First, we generalize a well-known class of exhaustive success functions for contests
with single winner (including the popular functional forms in Tullock, 1980 and
Hirshleifer, 1989) by introducing the possibility of a draw, justifying this novel class
of success functions via an axiomatic characterization along the lines of Skaperdas
(1996) and related approaches in the literature. Second, we apply these success
functions to a basic contest game which delivers different prizes depending on the
outcome being a win or a draw, showing that a contest designer may profit from
introducing the possibility of a draw in a single-winner contest.4 Third, we show that
our approach naturally extends to multi-prize contests by introducing the possibility
of multiple draws across different subsets of the set of players.

Let us start by introducing our novel class of success functions for single-winner con-
tests with the possibility of a draw. Our fundamental axiom in the characterization,
weak exhaustivity, requires the winning probabilities to be a convex transformation
of an exhaustive success function. The basic idea is that there is an underlying
‘ghost contest’ without draw (abbreviated for “without the possibility of a draw”)
that indirectly determines players’ chances of victory in the contest with draw (ab-
breviated for “with the possibility of a draw”) via a transforming technology or
institution. Our approach is particularly suited for situations where participants
must outperform rivals in multiple tasks to succeed, or for settings where the suc-
cess of a contestant is indirectly determined by her control of scarce resources of
strategic value such as ball possession in soccer, territory in warfare, audience’s
attention in litigation or marketing, etc. To see an example of the former (multi-
ple tasks), consider a promotion contest between two candidates (candidate 1 and

1See, e.g., military conflicts (Hirshleifer, 1991), litigation (Robson and Skaperdas, 2008), sports
(Szymanski, 2003), marketing (Schmalensee, 1976), lobbying and rent-seeking (Nitzan, 1994)
among others. Konrad (2009) provides an introduction to this literature.

2An exception may occur when all efforts are zero so that no contestant effectively participates.
3In sports such as soccer, chess, and cricket the possibility of a draw is incorporated by design.

For rent-seeking, this possibility may emanate from lack of commitment of the prize-granting
authority, see, e.g., Kahana and Nitzan (1999). In military conflicts, Garfinkel and Skaperdas
(2007) argue that it is not uncommon to have contenders keeping the status-quo bargaining position
they had before the outbreak of war.

4An earlier version of the basic model and the core equilibrium results can be found in Yildiz-
parlak (2014).
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candidate 2) whose relative performance is measured in two different tasks (task A
and task B). Supremacy in each task is governed by an identical success function
that is exhaustive, and each candidate exerts an effort that is common to the two
tasks (e.g., her overall dedication to promotion). In this contest, we have a winner
whenever a candidate prevails in both tasks, while we have a draw whenever a differ-
ent candidate prevails in each task (see Table 1 below). This contest satisfies weak
exhaustivity as a candidate’s probability of winning the contest is the exhaustive
success function squared (i.e., the product of the probabilities of prevailing in each
task).5 To exemplify the latter (scarce resources), consider a soccer match between

1 wins B 2 wins B
1 wins A 1 wins the contest Draw
2 wins A Draw 2 wins the contest

Table 1. Each of the four entries in the table indicates the outcome of the joint realization of
the events in the corresponding column and row.

two teams (team 1 and team 2) where s and (1− s) denote their respective shares
of ball possession time. In this setting, it seems natural that each team’s winning
probability is an increasing function of its ball possession time, which we denote by
p(s) and p(1 − s) for Team 1 and Team 2 respectively. As soccer matches can end
in a draw, the function p must be strictly convex so that p(s) + p(1− s) < 1. Then,
if we assume that ball possession time is the outcome of an exhaustive contest, the
soccer match is a contest that satisfies weak exhaustivity.6 Note that as p is strictly
convex the probability of a draw is maximal whenever the two teams have equal ball
possession time, which is a fundamental property of our class of success functions.
Figure 1 illustrates this via an example.

Ours is not the first model of a contest with the possibility of a draw. Within the
literature, the class of success functions introduced by Loury (1979) and axiomatized
in Blavatskyy (2010) is perhaps the most widely known (the Loury-Blavatskyy model
hereinafter), and there are a handful of other models that we discuss in detail in
Section 2. A crucial feature of the Loury-Blavatskyy model is that the probability of
a draw decreases in the sum of contestants’ efforts. While this may seem plausible
for many environments, there are cases for which it may not hold. For instance,
Peeters and Szymanski (2014) question its plausibility in sports, as one expects two
teams to draw more often when they have a similar investment in talent, not when
they aggregately have a large investment. Note that, as exemplified in Figure 1,
according to our framework the probability of a draw is maximal when efforts are

5In this example the ghost contest is the competition in each single task, while the transform-
ing technology requires supremacy in both tasks to win the contest. We refer to Kovenock and
Roberson (2012) for a review of different approaches to contests with multiple tasks or battlefields.

6In this example the ghost contest is the competition for ball possession time, while the trans-
forming technology implies increasing returns of the winning probability of a team in its ball
possession time.

3



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Team 1’s share of ball possession time
P

ro
b
ab

il
it

y
of

a
d
ra

w

Figure 1. The solid ( ), dashed ( ) and dotted ( ) lines correspond to the cases
p(s) = s1.5, p(s) = s2 and p(s) = s2.5, respectively.

symmetric and it is independent of the magnitude of such efforts.7

After axiomatizing our class of success functions, we apply it to contest games.
We consider the basic extension of a single-winner contest where either there is a
winner or a draw, so that: if there is a winner she obtains a win-prize and the
losers get nothing; if there is a draw all players receive a draw-prize that is non-
negative and weakly lower than the win-prize. We identify sufficient conditions for
the existence and the uniqueness of a symmetric pure strategy Nash equilibrium
and characterize equilibrium efforts. We show that in such equilibrium individual
effort is independent of the value of the draw-prize, although a sufficiently high
draw-prize can be necessary to guarantee the existence of the equilibrium when the
number of players is high. On the other hand, a large draw-prize is detrimental
for aggregate effort in an extension of our model where players are asymmetrically
constrained in the resources available for the contest. We argue that this second
result may explain a change of rule in soccer that took place in the 1980s, which
decreased the points for a draw relative to the points for a win with the intention of
increasing the competitiveness of soccer matches. Having established these general
properties of our model, we compare a contest with draw with the corresponding
contest without draw regarding aggregate effort exerted. For the two-player case,
we find that equilibrium effort can be larger in the contest with draw, and this
holds true even when a draw is equivalent to losing (i.e., when the draw-prize is
null), indicating an increase in the level of competition. This result is in sharp
contrast to the equilibrium results in Jia (2012) and Deng et al. (2018) using the
Loury-Blavatskyy model. Finally, although introducing the draw possibility always
reduces equilibrium efforts when the number of players is three or more, we find that
equilibrium rent dissipation (i.e., the share of the expected value of the delivered
prize that corresponds to the value of the total exerted efforts in equilibrium) is
systematically higher in a contest with draw compared to the contest without draw

7Yildizparlak (2018) shows that our class of success functions and a success function introduced
in Jia (2012) (the one with performance gap in ratio form, see Section 2) give a better fit than the
Loury-Blavatskyy model for the empirical analysis of soccer matches.
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for a broad set of parameter configurations. All in all, our results suggest that a
contest designer may profit from introducing the possibility of a draw associated with
a relatively small or null prize. For instance, a practical way to do so is to require
contestants to prevail in two tasks as in the example of the promotion contest in
Table 1.

We conclude our analysis by showing that our framework can be extended to multi-
prize contests with multiple draws that can occur across different subsets of the set of
players. To do so, we take as a benchmark the well-known class of success functions
for multi-prize contests introduced in Clark and Riis (1996) and axiomatized in Lu
and Wang (2015). These success functions can be interpreted as the outcome of a
sequential procedure where prizes are allocated from best to worst to the winners
of a sequence of exhaustive stage-contests restricted to players that have not been
awarded any prize yet. In our extension, we modify each of these stage-contests
to allow for the possibility of a draw so that each prize has a probability of not
being awarded to any player. We show that this extended model coincides with our
baseline model under the prize configuration that maximizes equilibrium efforts, and
that all our core intuitions generalize to this broader class of contests with draws.
An example of real-life contest (roughly) organized along these lines is the political
campaigning across political parties for a runoff election, such as the one to elect
the president in many countries.

The rest of the paper is organized as follows. We provide a review of the literature
in Section 2, define our model in Section 3 and provide an axiomatic foundation in
Section 4. In Section 5 we study the existence, uniqueness, and the properties of a
symmetric equilibrium. In Section 6 we extend our framework to multi-prize contests
with multiple draws. We conclude with Section 7. All proofs are in Appendix.

2 Literature

In this section, we focus on the narrow body of literature on contests with the
possibility of a draw. In particular, as we axiomatize a novel class of models, we
give priority to foundational work on success functions for such contests. We also
briefly compare our equilibrium analysis with known results in the literature on
contests with draw and related models (i.e., tournaments and all-pay auctions).
This comparison is far from comprehensive as it aims only at highlighting the crucial
differences between our framework and the leading approaches in the literature. We
conclude the section by mentioning alternative extensions of our approach to multi-
prize contests.

To the best of our knowledge, the only other axiomatic characterization of a class
of success functions for contests with draw is Blavatskyy (2010), which provides a
foundation for the framework introduced by Loury (1979). As ours, this charac-
terization is along the lines of Skaperdas (1996) and presents an extension of the
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canonical class of success functions for single-winner contests, however, it differs fun-
damentally from ours in the way it introduces the possibility of a draw as discussed
in the previous section.8

The Loury-Blavatskyy model may be considered the most popular in the literature.
Other models of contests with draw are: Jia (2012), which presents a stochastic
foundation of a broad class of success functions; Cohen and Sela (2007) and Gelder
et al. (2015a), which analyze the possibility of a draw in an all-pay auction frame-
work.9 In the general framework of Jia (2012), the winning probability of a player is
given by the chance of outperforming each rival by a sufficiently wide performance
gap in all pairwise comparisons. If the performance gap takes the difference form,
the model of Jia (2012) leads to the Loury-Blavatskyy model, while if the perfor-
mance gap takes the ratio form, the model leads to a novel class of success functions.
Similar to the framework in Jia (2012), Cohen and Sela (2007) and Gelder et al.
(2015a) assume that a draw takes place when the difference of players’ efforts is
below a given threshold.

The idea of relating the occurrence of a draw to a threshold performance gap, which
is common to all aforementioned models, dates back at least to Nalebuff and Stiglitz
(1983). Other contributions that follow this approach include Eden (2006) and
Imhof and Kräkel (2014b, 2016). The crucial difference between these models and
ours is that, while they all introduce a draw when the performance gap falls below
an exogenous level, we assume a continuous proportionality between our success
function and the success function of a contest without draw, where the latter is
scaled down to allow for the draw possibility. So, our approach is substantially
different from the literature from a conceptual viewpoint.

As already mentioned in the previous section, equilibrium results of the game of
contest using our class of success functions differ remarkably from the results in Jia
(2012) and Deng et al. (2018) with the popular Loury-Blavatskyy model. There,
individual and aggregate equilibrium efforts decline due to the introduction of a
draw for a symmetric two-player contest with null draw-prize, while we show that
both can increase under the same conditions with our class of success functions.
Deng et al. (2018) also show that introducing the possibility of a draw can increase
the winner’s effort (but not the aggregate effort) if players’ valuations are sufficiently
asymmetric (but not if they are symmetric). While these results are not directly
comparable to ours, they can be seen as alternative (and equally plausible) reasons
for introducing the possibility of a draw in a contest.

A result similar to ours (i.e., that the possibility of a draw can increase equilibrium
efforts) is in Nalebuff and Stiglitz (1983) and related contributions, but it relies on

8See Corchón and Dahm (2010) and Jia et al. (2013) for reviews on the axiomatic and stochastic
foundations of success functions for single-winner contests. For more recent contributions to the
axiomatic foundation of success functions for single-winner and multi-prize contests we refer to Lu
and Wang (2015, 2016), Cubel and Sanchez-Pages (2016), Vesperoni (2016), Bozbay and Vesperoni
(2018) and references therein.

9Gelder et al. (2015b) test the latter model experimentally.
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a different mechanism. Broadly speaking, while in Nalebuff and Stiglitz (1983) the
greater aggregate effort arises due to the constrained effect of luck in producing
output, in ours, it takes place as a result of the convex transformation of the contest
technology, which leads to increased competition in the sense of a larger incentive
to beat the opponent conclusively.

We find two other relevant points concerning our equilibrium analysis in relation to
the literature. Firstly, we show that equilibrium effort is invariant to the value of the
draw-prize, which is again in contrast with the Loury-Blavatskyy model where (by
our own calculations) a higher draw-prize leads to lower equilibrium effort if payoffs
are symmetric. Cohen and Sela (2007) and Imhof and Kräkel (2014a) find effects
analogous to this invariance result respectively in an all-pay auction context and a
moral-hazard exercise, and (by our own calculations) the same effect can be found
using the class of success functions in Jia (2012) with performance gap in ratio form
when payoffs are symmetric. We stress that this invariance result should hold with
any contest model where the probability of a draw is independent of the level of
efforts whenever efforts are symmetric. In relevance to this point, we also show that
in our setup the value of the draw-prize can nevertheless affect the existence of the
equilibrium and that a positive value can be necessary when the number of players
is high, a point that has not been highlighted by the literature so far. Secondly, in
an extension of our basic model for two players where contestants are asymmetric in
their resources available for efforts, i.e., when there is a ‘rich’ and a ‘poor’ (resource
constrained) contestant, we show that an increase in the value of the draw-prize is
detrimental to aggregate efforts. This result is chiefly due to both players desiring to
reduce the difference in their efforts (in order to increase the probability of a draw)
in response to an increase in the draw-prize, but only the richer player managing to
do so due to the binding resource constraint of the poorer player. To the best of our
knowledge this result is unique in the literature.

We conclude this section by briefly discussing success functions for multi-prize con-
tests in relation to our framework. The extension of our model to multiple draws is a
generalization of the class of success functions for multi-prize contests introduced in
Clark and Riis (1996) and axiomatized in Lu and Wang (2015), known in the liter-
ature as the best-shot model. While this is by far the most widely applied model in
the literature on multi-prize contests, there are two other classes of models that are
equally convenient as they deliver explicit functional forms for the probabilities of
outcomes: the worst-shot and the pair-swap success functions introduced in Fu et al.
(2014) and Vesperoni (2016), respectively. Our approach can be equally applied to
these alternative models.

3 Model

A set N := {1, . . . , n} of n ≥ 2 players compete in a contest that has two possible
outcomes: (i) one player wins and all other players lose; (ii) the contest ends in a
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draw. If a player wins she gets a prize of value 1 and the others get nothing, while if
the outcome is a draw each player gets a prize of value δ ∈ [0, 1].10 Each player i ∈ N
exerts an effort xi ≥ 0, and given any effort profile x := (x1, . . . , xn) ∈ X := Rn

+,
the probability of player i ∈ N being the winner is pi(x) ∈ [0, 1]. We call pi(x) the
success function. Assuming

∑
i∈N pi (x) ≤ 1, we define the probability of a draw as

pd(x) := 1−
∑

i∈N pi (x), and we let the payoff of player i ∈ N be

πi (x) := pi (x) + δpd (x)− xi for each x ∈ X. (1)

In this paper we consider the particular class of success functions that, for each
i ∈ N and x ∈ X, take the form

pi (x) = Γ(si(x)) (2)

for some function Γ : [0, 1] → [0, 1] that is increasing, strictly convex and twice-
differentiable with Γ(0) = 0 and Γ(1) = 1, and some function si : X → [0, 1] which
is twice-differentiable in the interior and satisfies each of the following properties:∑

i∈N si(x) = 1 for each x ∈ X; it is anonymous (i.e., invariant to permutations
of players’ identities), increasing, and strictly concave in xi at each x ∈ X with
xi, xj > 0 for some j 6= i; si(x) = 0 if and only if xj > xi = 0 for some j 6= i. We
refer to Γ as the transformation function and to si as the ghost success function. In
our comparative static exercises, for any success function in form (2) we take as its
benchmark the corresponding ghost success function si. Note that the probability
of a draw is zero with the benchmark while with form (2) it is always positive in the
interior, therefore the benchmark constitutes the obvious comparison to evaluate
the effect of introducing the possibility of a draw in a contest while keeping all else
equal. One crucial property of form (2) is that the probability of a draw achieves its
maximum value 1− nΓ(1/n) at any effort profile that is symmetric (i.e., whenever
players exert equal effort).

Form (2) is intuitive and appealing but, as we will see later on, it is too general to
achieve sharp predictions in equilibrium analysis (e.g., exact conditions for existence
and uniqueness) beyond some basic stylized facts. Among the various specifications
within class (2), in this paper we mostly focus on the narrower class of success
functions that for each i ∈ N and x ∈ X can be written as

pi (x) =



(
f (xi)/

∑
j∈Ax

f (xj)

)k

if i ∈ Ax,

1/nk if Ax = ∅,
0 if i /∈ Ax and Ax 6= ∅,

(3)

10All our results equally hold if we restrict δ to take value in [0, 1/n], which is reasonable if δ is
interpreted as a way to share a ‘materialistic’ win-prize in the occurrence of a draw. However, in
many applications there is no such materialistic constraint, for instance in soccer games prizes are
simply points assigned to teams.
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for some function f : R++ → R++ that is increasing and some parameter k ≥ 1,11

where Ax ⊆ N denotes the set of players that are active (i.e., that exert positive ef-
fort) at x. Note that class (3) corresponds to the specification pi (x) = Γ(si(x)) with
Γ(si) = ski and si(x) = f(xi)/

∑
j∈Ax

f(xj), where for each k and f the correspond-
ing benchmark belongs to the well-known class of exhaustive success functions à la
Skaperdas (1996). In line with the literature we refer to f as the impact function,
and to k as the elasticity parameter as it coincides with the (constant) % increase
in pi relative to the corresponding % increase in si, i.e.,

k = Γ′(si)si/Γ(si).

First, k can be seen as a quantification of the increasing marginal returns of pi in si.
Second, it is easy to show that the probability of a draw increases in k for any given
effort profile such that at least two players (or none) are active, so k can also be
interpreted as a measure of the tendency to draw in our model. The class of success
functions (3) has an intuitive interpretation whenever k is a positive integer, which
is the extension of the example on the promotion contest in Table 1 to multiple tasks
(where k is the number of tasks). To further motivate our framework, in the next
section we provide an axiomatic characterization of (3) valid for any real number
k > 1 along the lines of the example on the soccer match in Introduction.

4 Axiomatization

We now take a step back from the previous section to provide a foundation for
our class of success functions. With some abuse of notation, for each i ∈ N let
pi : X→ R+ be any non-negative real valued function, so that we can more generally
interpret pi(x) as a quantification of the ‘success’ of player i in the contest (not
necessarily a probability), which naturally depends on the effort profile x ∈ X.12

Starting from this broader premise, in this section we show that the function pi
satisfies a set of axioms if and only if it takes the form (3). The first three axioms
are straightforward.

A1. Probability: Given any x ∈ X,
∑

i∈N pi (x) ≤ 1.

A2. Anonymity: For each x ∈ X and ρ : N → N , let xρ := (xρ−1(1), . . . , xρ−1(n)).
Given any x ∈ X and i ∈ N , pi (x) = pρ(i) (xρ) for any ρ that is a bijection.

A3. Strict monotonicity: Given any x,x′ ∈ X and i ∈ Ax with |Ax| ≥ 2,
pi (x) > pi (x

′) if xi > x′i and xj = x′j for all j ∈ N\{i}.

By probability, the success of each player takes value in the unit interval and their
aggregate success sums up to 1 or less. Then, a player’s success can be interpreted as

11Note that letting k < 1 would lead to pd (x) < 0, which is at odds with the probabilistic
interpretation.

12This is the standard premise of the axiomatic foundation of a class of success functions, see
e.g., Bozbay and Vesperoni (2018).
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the probability of winning a contest where there can be a single winner or a draw.
Anonymity and strict monotonicity are standard axioms: the former demands a
contest to be a priori fair (as a player’s success should be invariant to permutations
of players’ identities), while the latter requires a player’s success to increase in her
own effort when she is active and there is at least another active player, everything
else equal. Our next axiom specifies what should happen when some players are
inactive.

A4. Perfect discrimination at zero: Given any x ∈ X and i ∈ N ,

pi (x)

{
> 0 if i ∈ Ax,

= 0 if i /∈ Ax and Ax 6= ∅.

Perfect discrimination at zero requires a player’s success to be positive if she is
active, and to be null if she is inactive and there is at least one active player.13

The intuition is that active players try to succeed in the contest (which gives all
active players a chance) while inactive players do not try and therefore are a priori
excluded from success (unless all players are inactive).14 The next axiom is our
crucial axiom, which is a generalization of the standard requirement

∑
i∈N pi (x) = 1

that is sometimes known in the literature as the axiom of exhaustivity. To strengthen
our characterization, we present this axiom in two alternative (but equivalent) forms.

A5. Weak exhaustivity 1. For some continuous and increasing function r : R+ →
R+,

(i)
∑

i∈N r (pi (x)) = r(1) for all x ∈ X;

(ii) r (pi (x)) /r(1) = r (pi (x)µ) /r (µ) for all x ∈ X, i ∈ N and µ > 0.

A5’. Weak exhaustivity 2. For some differentiable and increasing function r :
R+ → R+,

(i)
∑

i∈N r (pi (x)) = r(1) for all x ∈ X;

(ii) dr(pi(x))
dpi(x)

pi(x)
r(pi(x))

= dr(pi(x
′))

dpi(x′)
pi(x

′)
r(pi(x′))

for all x,x′ ∈ X with pi(x), pi(x
′) > 0.

Roughly speaking weak exhaustivity demands that, by some mapping r, a player’s
success pi (x) is proportional to an amount of resources r (pi (x)) under her control
from a common budget r(1) shared with other players. In either form (A5 or A5’),
Point (i) of the axiom demands the budget constraint to be binding, which suggests
scarcity of the resources. In form A5, Point (ii) requires that player i’s fraction of
resources r (pi (x)) /r(1) is independent of the unit of measurement of success µ (so
that the interpretation of pi (x) as a winning probability - instead of, e.g., the share
of a pie of total value µ - relies on normalization only), while in form A5’ Point (ii)

13Although perfect discrimination at zero does not impose any restrictions on a success function
when all players are inactive, our other axioms (in particular probability, anonymity and weak
exhaustivity) are sufficient to characterize our form for the case Ax = ∅.

14This is in line with the idea of sub-contest put forward in Skaperdas (1996).
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demands that the % increase in resources r(pi (x)) relative to the corresponding %
increase in success pi (x) is independent of the level of success (so that the elasticity
of resources with respect to success is constant).15 Details aside, the basic idea of
weak exhaustivity is that the success of a player is closely related to her control of
scarce resources that are of strategic value.16 In line with this intuition, the axiom
requires a continuous proportionality between these two variables (represented by
the mapping r), implying (jointly with other axioms) the crucial feature of our model
that the probability of a draw is maximized at symmetric effort profiles. To see this,
Figure 2 illustrates an example with three players comparing the distribution of
scarce resources and the mapping r for two different effort profiles x and x′. Note
that, as jointly demanded by weak exhaustivity and probability, the mapping r is
concave.17 Given this, as the distribution of success under x′ is more egalitarian
than under x, the probability of a draw is higher under x′ than under x, as shown
by the dashed lines in the plots on the right-hand side of Figure 2.

Our last axiom is strong, but standard in the literature.

A6. Effort independence: Given any x,x′ ∈ X and i, j ∈ N such that pj (x) > 0

and pj (x′) > 0, pi(x)
pj(x)

= pi(x
′)

pj(x′)
if xi = x′i and xj = x′j.

Effort independence demands the success of a player relative to the success of an-
other player (i.e., their ratio) to be independent of the efforts of all other players.
Note that, for effort independence to have bite, we should have at least three play-
ers. Analogous versions of this axiom, broadly known as independence of irrelevant
alternatives, are common in contest theory and probabilistic choice (see Jia et al.,
2013 for a review).18 We are now ready to state our characterization result.

Theorem 1 A success function satisfies A1-A4, either A5 or A5’, and A6 if it takes
the form (3), and only if it takes such form given n ≥ 3.

Our characterization is tight as all our axioms are independent, which is easily

15While Point (i) is at the core of the idea of weak exhaustivity, Point (ii) can be seen as a
useful simplification that allows to quantify the likelihood of a draw in our contest model by the
elasticity parameter k. We wish to remark that Point (ii) can (and should) be tested empirically in
applications, analogously to the well-known tests for the constant elasticity of production/utility
functions.

16In the example in Introduction, a team’s success in a soccer match depends on its share of
ball possession time. Similarly, success in military conflict can be related to the share of a given
territory that is under control, in litigation to the share of attention of the jury, and in political
lobbying to the share of ‘controlled’ parliament members. In all these examples there is a symbiotic
relation between the success of a contestant and her share of the relevant strategic resources.

17Weak exhaustivity implies that, if
∑
i∈N pi (x) ≤ 1, the function r is concave. Then, axioms

probability and weak exhaustivity jointly demand r to be concave. Note that function r coincides
with the inverse of Γ within the general class of success functions (2).

18A generalized version of this axiom can be found in Vesperoni (2016), where it is argued that
effort independence is related to independence of irrelevant alternatives in Luce (1959) and it is
implied by the combination of two axioms in Skaperdas (1996), known as sub-contest independence
and sub-contest consistency. Note that all analogous versions of this axiom in the literature require
at least three players to have bite.
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Figure 2. In this example, n = 3 and r(z) =
√
z. In each row, the pie chart on the left

represents the distribution of resources across the three players while the plot on the right depicts
the corresponding mapping r, where the two rows correspond to the different effort profiles x
(top row) and x′ (bottom row). In each plot on the right, the dashed line represents value of the
probability of a draw (on the horizontal axis), the three solid lines correspond to the success of
each player, while the two dotted curves respectively depict the mapping r and the 45◦ line.

verified as they concern very different aspects of the model. One can show that
axioms A1-A4 plus Point (i) of weak exhaustivity are enough to characterize the
general form (2),19 while Point (ii) of weak exhaustivity and effort independence
jointly pin down form (3) from (2). In Theorem 1, the case n = 2 is special as the
‘only if’ part of the result does not hold since effort independence has no bite. For
the two-player case, one can show that a success function satisfies all our axioms if
and only if it takes the form pi (x) = (si (x))k , where k ≥ 1 and si is any function
that satisfies our general restrictions on the ghost success function.20 An example
of a success function that belongs to this class but not to (3) is the one with ghost
success function

si (x) =


exp [xi/

∑
h∈N xh]∑

j∈Ax

exp [xj/
∑
h∈N xh]

if i ∈ Ax,

1/n if Ax = ∅,
0 if i /∈ Ax and Ax 6= ∅.

19Except for twice-differentiability and strict concavity of si, which are not imposed by any
axiom.

20Except for twice-differentiability and strict concavity, which are not imposed by any axiom.

12



Clearly, this specification violates effort independence for any n ≥ 3 but not for
n = 2.

Before concluding this section, we briefly discuss our axioms in relation to the lit-
erature. Probability, anonymity and strict monotonicity are always satisfied by the
success functions in Skaperdas (1996), Blavatskyy (2010) and Jia (2012), and perfect
discrimination at zero is so whenever these success functions are well-defined when
all players are inactive. The success functions in Skaperdas (1996) trivially satisfy
weak exhaustivity (in either form) letting r(z) = z for all z > 0, while the ones in
Blavatskyy (2010) and Jia (2012) always violate it. Finally, effort independence is
fulfilled by the success functions in Skaperdas (1996) and Blavatskyy (2010), while
the ones in Jia (2012) always violate it.

5 Equilibrium

In this section we study the existence, uniqueness, and the properties of a symmetric
equilibrium in the game of contest using our class of success functions (3). In
line with the literature, in what follows we assume f to be twice-differentiable,
concave, and to satisfy limx→0 f(x) = 0 and limx→+∞ f(x) = +∞. To illustrate our
results, we invoke f (x) = xα with α ∈ (0, 1] (i.e., the impact function à la Tullock,
1980), whenever stated. While our existence result and major equilibrium properties
concern the general case with any number of players, we generally emphasize the two-
player contest as we find interesting dynamics and most applications in the literature
are concerned with this case. This may seem problematic at first as the ‘only if’
part of Theorem 1 holds only for n ≥ 3; however, to circumvent this problem, we
may always interpret the two-player case as n ≥ 3 where n− 2 players are inactive,
which is the standard (implicit) solution in the literature as most axiomatizations
of success functions require n ≥ 3 while many contest games using these success
functions focus on n = 2. Finally, while all our theorems and propositions focus
on the form (3), we also argue that crucial results extend to many other success
functions within the general class (2).

5.1 Existence and uniqueness of the equilibrium

Our theorem below provides a sufficient condition for the existence of an interior
equilibrium, showing that there are no other symmetric equilibria and defining the
corresponding effort level.

Theorem 2 Let g := f/f ′ and let g−1 denote the corresponding inverse function.21

A symmetric equilibrium x∗d = (x∗d, . . . , x
∗
d) ∈ X exists if (and only if, when f is

21It is straightforward that g is invertible as it is strictly monotonic under our restrictions on f .
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linear)

δ > max

{
g−1

(
k (n− 1)/nk+1

)
nk − 1

n (nk−1 − 1)
, 1− k + 1

n (k − 1)

}
, (4)

it is the only symmetric equilibrium, and x∗d is implicitly defined by

g(x∗d) = k (n− 1)/nk+1. (5)

Equation (5) uniquely determines the equilibrium effort x∗d. Moreover, as g is an
increasing function by construction, x∗d decreases in n, it is non-monotonic and
strictly concave in k, and it is independent of δ. If we let f (x) = xα, g becomes
linear and (5) simplifies to

x∗d = αk (n− 1)/nk+1, (6)

giving an explicit solution for the equilibrium effort. Second, condition (4) defines a
lower bound for the value of the draw-prize that guarantees the existence of the single
symmetric equilibrium.22 This lower bound is imposed by the positivity and the
local concavity of the equilibrium payoff of each player, corresponding respectively
to the first and the second entries in the right-hand side of (4), which we show to
be sufficient for global optimality in the proof of Theorem 2.

Letting aside the exact value of the lower bound of δ, one important message of
Theorem 2 is that, although equilibrium efforts are independent of the draw-prize,
its value can be fundamental for the existence of the equilibrium. On the one hand,
one can show that the existence of the equilibrium requires a positive draw-prize if
the number of players is sufficiently large. On the other hand, for a broad set of
configurations condition (4) holds even if δ = 0, e.g., for the two-player case with
k ≤ 2.23 As this case will be of special interest for the comparative statics in the
next section, we state it formally in the corollary below.

Corollary 1 Given n = 2 and k ≤ 2, the symmetric equilibrium x∗d exists for all
δ ∈ [0, 1].

With some caution, we now argue that the main results in Theorem 2 apply to a
broader set of success functions that fall into the general class (2). With pi (x) =
Γ(si(x)), the first and second order conditions of i’s payoff maximization are

∂si(x
∗
d)/∂xi = 1/Γ′(1/n) and

Γ′(1/n)∂2si(x
∗
d)/∂x

2
i + [1− δn/(n− 1)]Γ′′(1/n) (∂si(x

∗
d)/∂xi)

2 < 0,

respectively. It is easy to verify that the second order condition always holds for δ
sufficiently close to 1, and a higher n is likely to demand a higher δ for this condition

22Note that the term g−1
(
k (n− 1)/nk+1

)
in the first entry of (4) equals x∗d by (5).

23More generally, assuming f (x) = xα condition (4) holds for all δ ∈ [0, 1] if one of the following
conditions is true: k ∈ (1, (n+ 1)/(n− 1)] given α ∈ (0, n/(n+ 1)]; k ∈ (1, n/α(n− 1)] given
α ∈ (n/(n+ 1), 1].
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to hold since the term n/(n − 1) decreases in n. The first order condition leads to
a single symmetric equilibrium if the term ∂si(x

∗
d)/∂xi is decreasing in x∗d, which is

guaranteed by the cross derivatives of si satisfying

∂2si(x
∗
d)/∂xj∂xi ≤ 0 for all j ∈ N\{i}. (7)

This is a natural property shared by many (exhaustive) success functions requiring
that, at any symmetric effort profile, if a single player marginally increases her effort
no other player has an incentive to escalate (while instead she may either back down
or keep her effort constant). Finally, the first order condition clearly demonstrates
that the level of equilibrium effort x∗d is independent of the value of the draw-prize
as δ does not appear in either side of the equation.

Going back to the specific form (3), we conclude this subsection by presenting our
results for the uniqueness of the equilibrium below. While Theorem 2 rules out
symmetric equilibria other than x∗d, the following result additionally rules out asym-
metric equilibria.

Proposition 1 The symmetric equilibrium x∗d is the unique equilibrium for:

(i) n = 2 and k < 2;

(ii) n = 2 and k = 2 if δ 6= 0 or f ′′ 6= 0;

(iii) n ≥ 2 if k ≤ 1− f ′′f/f ′2.

Proposition 1 identifies sufficient conditions for the uniqueness of the equilibrium
identified in Theorem 2, ruling out the possibility of asymmetric equilibria. In Points
(i) and (ii), it shows that the symmetric equilibrium is almost always unique for the
two-player case with k ≤ 2 (our case of interest in Corollary 1), while in Point (iii),
it further identifies a condition that applies to any number of players and coincides
with k ≤ 1/α when f(xi) = xαi .

5.2 Properties of the symmetric equilibrium

In this subsection we exclusively focus on parameter configurations such that con-
dition (4) holds for all δ ∈ [0, 1], so that the existence of the symmetric equilibrium
is guaranteed for any draw-prize. We are particularly interested in the comparison
between the equilibrium efforts in a contest with draw (k > 1) and in a contest
without draw (k = 1) with the same impact function f (i.e., the corresponding
benchmark defined in Section 3). In what follows, we denote by x∗c the equilibrium
effort for the contest without draw while we associate x∗d with any value k > 1 of
the elasticity parameter unless further restrictions on k are explicitly stated.

Proposition 2 The symmetric equilibrium x∗d satisfies x∗d > x∗c (x∗d = x∗c) if and
only if n = 2 and k < 2 (k = 2), and the combination of n and k that maximizes x∗d
is n = 2 and k = 1/ ln 2 ' 1.44.
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At first, Proposition 2 seems counterintuitive: the contest with draw results in
greater equilibrium effort even when the draw-prize is null as long as n = 2 and k
is sufficiently small. Note that when δ = 0 the increase in equilibrium effort cannot
be explained by the additional incentive created by the draw-prize as the payoff
function of a player for the contest without draw is greater than for the contest with
draw for any vector of efforts (by first-order stochastic dominance of the winning
probability). Hence, in equilibrium, contestants exert more effort but earn less in
expected terms (in Proposition 3, we show that this is a consequence of ‘increased
competition’). Our result is restricted to n = 2 (note the ‘only if’ statement in
Proposition 2) as the growing number of players inflates the equilibrium probability
of a draw, hampering the marginal return of effort in the symmetric equilibrium.
In addition, Proposition 2 identifies the effort maximizing number of players and
elasticity parameter for the contest with draw, which are n = 2 and k ' 1.44.24

We now argue that Proposition 2 applies to the broader set of success functions that
fall into the general class (2) with Γ(si(x)) = si(x)k and si(x) satisfying condition
(7). Note that the left-hand side of the first order condition ∂si(x

∗
d)/∂xi = 1/Γ′(1/n)

decreases in x∗d by (7) and the concavity of si in xi. Under our restrictions, the right-
hand side takes value nk−1/k for the contest with draw and 1 for the benchmark.
Then, x∗d > x∗c if and only if nk−1/k < 1, and our results in Proposition 2 easily
follow.

Our next proposition demonstrates how the contest with draw yields greater equi-
librium effort than the benchmark when n = 2 and k ≤ 2. This is case in Corollary
1 which is of particular interest as, according to Proposition 2, it leads to an equi-
librium effort which is higher than (equal to) the one with the benchmark if k < 2
(k = 2). Let us denote the best-response effort of player i ∈ N to the rival’s effort
xj by x∗ic (xj) for the contest without draw (k = 1), and by x∗id (xj) for the contest
with draw (k > 1).

Proposition 3 Given n = 2 and k ≤ 2, the best-response effort of player i ∈ N
satisfies x∗id (xj) > x∗ic (xj) for all xj < x∗d.

Proposition 3 clarifies the result obtained in Proposition 2, and Figure 3 below vi-
sualizes the argument. Roughly speaking, as long as the rival’s effort is less than
the equilibrium value, the best-response to that effort is larger when a draw is pos-
sible. Intuitively, the marginal return of effort is greater as, besides increasing the
probability of winning, higher effort also decreases the chance of a draw when the
rival’s effort is smaller (as the efforts further diverge), which is always the case in the
considered domain.25 While the first effect is present in the contest without draw,
the second is clearly absent. Moreover, the first effect is stronger in the contest
with draw as the convex transformation of the success function implies increasing

24It is worth mentioning that the estimated values of k in Yildizparlak (2018) are close to 1.44
in all prominent European soccer leagues.

25In the proof of Proposition 3, we show that the best-response is above the rival’s effort if and
only if the rival’s effort is below the equilibrium value, that is, x∗id (xj) > xj if and only if xj < x∗d.
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returns in effort on the probability of winning the contest. We have already es-
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Figure 3. Best-response function of i ∈ N (n = 2, δ = 0, and f linear) corresponding to
the cases: ( , k = 2); ( , k = 1.4); ( , k = 1). The intersection of each best-response
function with the 45◦ line ( ) corresponds to the respective equilibrium effort. As we can see,
the equilibrium effort for k = 1.4 is the greatest among these, while the ones for k = 1 and k = 2
are equal to each other.

tablished that equilibrium efforts are independent of the draw-prize in Theorem 2.
This fundamental property of our model is illustrated in Figure 4 and the intu-
ition is straightforward. We mentioned that with our class of success functions the
probability of a draw is maximized at any symmetric effort profile. Then, as the
equilibrium effort profile is symmetric, a player’s effort has zero marginal impact
on the probability of a draw at the equilibrium level, which implies that the value
of the draw-prize does not affect the equilibrium effort. Having established this,
we now show that in an extension of our basic model, where we introduce upper
bounds to effort, a greater draw-prize has an adverse impact on aggregate effort in
a two-player contest. Denoting by x̂i > 0 the upper bound to the effort of player
i ∈ N , we say that player i is constrained if x∗d exceeds this upper bound.

Proposition 4 Let n = 2, k ≤ 2 and a single player be constrained. Under the
restrictions that guarantee uniqueness of an equilibrium in Points (i) and (ii) of
Proposition 1, the aggregate equilibrium effort decreases (increases) with a marginal
increase (decrease) in the draw-prize.

Even though Proposition 4 may seem counterintuitive at first, it has a straightfor-
ward explanation: a larger draw-prize results in seeking a draw, which is most likely
at symmetric effort profiles. In the initial equilibrium with the smaller draw-prize,
the unconstrained player exerts higher effort than the constrained player. Then, in
the new equilibrium induced by the marginal increase in the draw-prize, the uncon-
strained player profits from decreasing the effort gap by reducing her effort compared
to the previous equilibrium. On the other hand, the constrained player would like
to decrease the effort gap by increasing her effort too, but the constraint renders
it impossible and consequently aggregate effort declines. The case for the marginal
decrease in the draw-prize is similarly explained. This basic mechanism is illustrated
in Figure 4, which shows that for any rival effort xj < (>)x∗d the best-response effort
x∗id(xj) decreases (increases) in δ.26 There is a pertinent application of Proposition 4
to the regulation/design of soccer matches: until the 1980s points in soccer matches

26This is shown formally by equation (27) in the proof of Proposition 3.
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Figure 4. Best-response function of i ∈ N (n = 2, k = 1.4, and f linear) corresponding to the
cases: ( , δ = 0.2); ( , δ = 0.5); ( , δ = 0.8). The intersection of each best-response
function with the 45◦ line ( ) corresponds to the respective equilibrium effort, which as we can
see is independent of δ.

were allocated applying the ‘two points for a win’ policy, i.e., the winner of a match
obtained two points, the loser obtained nothing, and a draw meant one point for
each team. However, through the 1980s this rule has been slowly replaced by the
‘three points for a win’, which increases the win-points to three while keeping the
points of the remaining outcomes constant. It has been argued that the motiva-
tion for the change was to increase physical competition between teams in soccer
matches (see, e.g., Murray and Ingle, 2001; Wilson, 2007). Modeling a soccer match
as a two-player contest with draw, we can interpret the policy change as a decrease
in the draw-prize δ from 1/2 to 1/3, everything else equal.27 Then, Proposition 4
predicts this change of rule to induce greater aggregate effort as long as teams are
asymmetrically constrained, which seems reasonable given the great inequality in
the distribution of talent across teams (see Yildizparlak, 2018).

5.3 Properties of equilibrium rent dissipation

The results we derived so far suggest that, under certain conditions, a contest de-
signer may harvest greater effort by introducing the possibility of a draw in an
exhaustive contest. Besides maximizing aggregate effort (which in sports may be
interpreted as the entertainment value of a match, in R&D as the total research time
put into the project , and so on), a contest designer may be interested in maximizing
rent dissipation, which measures aggregate effort as a fraction of the value of the
contested prizes that she delivers to the contestants in the occurrence of a victory
or a draw. Intuitively, rent dissipation can be interpreted as the rate of return of
the contest designer, i.e., the revenues (given by the contestants’ aggregate effort)
divided by the costs (given by the awarded prizes).28 Note that, in our setup, the
value of the awarded prizes depends on the occurrence of the draw, as it is 1 if there
is a winner and nδ if there is a draw. An obvious way to tackle this issue is to define

27Note that points in soccer have relative value only, as all that matters is to accumulate larger
points than the opponents. Then, it is legitimate to normalize the value of victory to 1.

28Analogous results can be obtained by employing alternative objectives of the designer such as
profit (i.e., revenues minus costs).
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the value of the prize in expected terms. Given any x ∈ X, we define the rate of
(expected) rent dissipation by

R (x) :=

∑
i∈N xi

1 + pd(x)(nδ − 1)
,

which is aggregate effort divided by the expected value of the awarded prize given
the effort profile x. By (5), the equilibrium rate of rent dissipation for the con-
test without draw is R (x∗c) = nx∗c , while for the contest with draw it is R (x∗d) =
nx∗d/(1 + pd (x∗d) (nδ − 1)). Our next proposition compares the equilibrium rate of
rent dissipation for the two contests with any number of players. In order to accom-
modate for the cases where the prize has economic value (e.g., monetary rewards in
promotion contests, as opposed to scores or points in sports) we impose the feasi-
bility constraint δ ≤ 1/n, so that the aggregate prize allocated in case of a draw is
not larger than the win-prize.

Proposition 5 Let f (x) = xα with α ∈ (0, 1]. In a symmetric equilibrium, R (x∗d) ≥
R (x∗c) if and only if

δ ≤ min

{
k − 1

n (nk−1 − 1)
,

1

n

}
. (8)

Roughly speaking, Proposition 5 shows that the contest with draw can lead to higher
rent dissipation as long as the draw-prize is not too large (for obvious reasons), where
a higher k leads to more rent dissipation due to the increased chances of a draw and
the higher equilibrium efforts. On this point, it is noteworthy that if k is too large
condition (4) for the existence of the equilibrium may be violated, where the relevant
threshold decreases with the number of players n. Figure 5 visualizes the broad set of
parameter configurations that guarantee both existence and higher rent dissipation.
For instance, this is true given n = 2 for all k ≤ 2 and δ ∈ [0, 1/2]. All in all, we

δ

n
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0.4
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Figure 5. Parameter configurations for which rent dissipation is higher for the contest with
draw than without draw, given f (x) = xα with α = 1 (for α < 1 the corresponding parameter
configurations are supersets of these). Note that the horizontal axis starts at n = 2. The areas from
light-grey to black correspond to k = 1.2, k = 1.5, k = 1.8, and k = 2.3, respectively. The darker
colored sets are subsets of the lighter colored ones. The boundaries are dictated by condition (8)
and the existence condition (4).

conclude that Proposition 5 strengthens the general message that a contest designer
may gain from introducing the possibility of a draw in an exhaustive contest, which
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can be done in a simple and cost-effective way. Let us go back to the example of
the promotion contest discussed in Introduction. By Figure 5 we can argue that,
by changing the rules of the game so that the two candidates (n = 2) are required
to prevail in two tasks (k = 2) to be promoted and allocating a null draw-prize
otherwise (δ = 0), the contest designer extracts greater equilibrium rent dissipation
than in the case of a single task (k = 1).29

6 Extension to multiple draws

In this section we present an extension of our model to allow for multiple draws that
can occur across different subsets of the set of players. Generalizing our previous
setting, we consider a contest with n win-prizes and n draw-prizes where: (i) in
the occurrence of a win, one of the win-prizes is assigned to some player and this
player is excluded from receiving any other win-prize; (ii) in the occurrence of a
draw, one of the win-prizes is not delivered to any player, one of the draw-prizes is
delivered to each of the players involved in the draw, and some player is randomly
excluded from receiving any win-prize. Although these modeling choices are quite
general and arguably well-suited to represent a broad set of environments (see our
discussion later on), they are not completely innocent (in particular the random
exclusion condition) and our analysis is far from a general treatment of the subject
of multiple draws in multi-prize contests. The aim of this section is only to prove
the versatility of the weak exhaustivity approach developed in this paper, showing
that it can be applied to much more general settings still maintaining tractability
and intuition.

We formalize an outcome of our generalized contest as a mapping τ : N → {0, 1}×N
where, for each l ∈ N and i ∈ N , τ(l) = (1, i) indicates that win-prize l is assigned
to player i, while τ(l) = (0, i) indicates that there is a draw corresponding to win-
prize l and player i is excluded from receiving any win-prize. Denoting by T the set
of all possible outcomes, a success function p : T × X→ [0, 1] defines a probability
distribution over the set of possible outcomes for each effort profile, where p(τ,x)
indicates the probability of outcome τ ∈ T given the effort profile x ∈ X. Applying
the weak exhaustivity approach, in what follows we focus on a class of success
functions that extends our general form (2) to this broader set of contests. The
success functions within this class are particularly appealing as they generalize the
well-known multi-prize contest model by Clark and Riis (1996), thus being intuitively

29It is easy to verify that, if we introduce a budget constraint for the designer so that the sum of
the win-prize and the draw-prize is fixed while their values are free to choose, it is always optimal
for the maximization of equilibrium rent dissipation to allocate the whole budget to the win-prize
as long as the condition for the existence of the equilibrium holds. On the other hand, Figure
5 is suggestive of a trade-off between guaranteeing the existence of the equilibrium (high δ) and
maximizing equilibrium rent dissipation conditional on the existence of such equilibrium (low δ).
While this trade-off is absent for n = 2 and k ≤ 2, it always kicks in if n or k are large enough so
that the existence of the equilibrium requires a positive δ.
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interpretable in terms of allocation of prizes by a sequential procedure (we elaborate
on this later on).

Let the win-prizes be ranked from best (l = 1) to worst (l = n). For each l ∈ N and
τ ∈ T , denote by wl,τ ∈ N ∪ {0} the player that receives the win-prize ranked l in
outcome τ (where wl,τ = 0 indicates the occurrence of a draw for such win-prize),
and let Nl,τ ⊆ N be the set of players who in outcome τ do not receive win-prizes
ranked above l and are not excluded by draws corresponding to win-prizes ranked
above l.30 We denote by N the set of all such sets of players. In what follows, we
consider the broad class of success functions that take the form

p(τ,x) =
∏

l∈{l′: wl′,τ 6=0}
Γ
(
σwl,τ (Nl,τ ,x)

) ∏
l∈{l′: wl′,τ=0}

1

|Nl,τ |

1−
∑
j∈Nl,τ

Γ (σj(Nl,τ ,x))

 (9)

for some function Γ : [0, 1] → [0, 1] that is increasing, strictly convex and twice-
differentiable with Γ(0) = 0 and Γ(1) = 1, and some function σi : N × X → [0, 1]
which is twice-differentiable in each effort in the interior of X and it satisfies each of
the following properties:

∑
i∈Nl,τ σi(Nl,τ ,x) = 1 for each l ∈ N , τ ∈ T and x ∈ X; it

is anonymous (i.e., invariant to permutations of players’ identities), increasing, and
strictly concave in xi at each x ∈ X with i, j ∈ Nl,τ such that i 6= j and xi, xj > 0;
σi(Nl,τ ,x) = 0 if and only if either i /∈ Nl,τ or xj > xi = 0 with i, j ∈ Nl,τ . In line
with our interpretation of (2), we call Γ the transformation function and we refer
to σi as the extended ghost success function. For any given pair of functions Γ and
σi, the corresponding benchmark is the success function taking the form (9) with
Γ(σi) = σi and the same function σi, taking value

p(τ,x) =
∏
l∈N

σwl,τ (Nl,τ ,x) (10)

if wl,τ ∈ N and p(τ,x) = 0 if wl,τ = 0, as draws occur with zero probability in the
benchmark. Note that, if the extended ghost success function belongs to the class
axiomatized in Skaperdas (1996), i.e., σi(Nl,τ ,x) = f(xi)/

∑
j∈Nl,τ f(xj) for some

positive and increasing function f whenever i ∈ Nl,τ and xi > 0, (10) coincides with
the class of best-shot success functions for multi-prize contests introduced in Clark
and Riis (1996) and axiomatized in Lu and Wang (2015).

Let us briefly discuss the intuition behind our model. As pointed out in Clark and
Riis (1996), equation (10) can be interpreted as the outcome of a sequential pro-
cedure where prizes are allocated from best to worst to the winners of a sequence
of exhaustive stage-contests restricted to players that have not been awarded any
win-prize yet. Our class of success functions (9) is subject to the very same interpre-
tation while relaxing the exhaustivity restriction on the stage-contests, so that each
stage-contest can end up in a draw. Specifically, in our extension of the framework
we assume that players cannot participate to a stage-contest subsequent to l if they
have already received win-prizes ranked weakly above l, or if they have been already

30Note that |Nl,τ | = n+ 1− l and Nl+1,τ ⊂ Nl,τ for each τ ∈ T and l ∈ N .
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excluded by the occurrence of draws related to such win-prizes (where such exclu-
sion occurs randomly). To fully grasp the intuition of this sequential procedure,
note that with n = 3 we have the following three stages: (Stage 1) a single-winner
three-player contest with draw possibility that allocates the best win-prize to the
winner; (Stage 2) a single-winner two-player contest with draw possibility that allo-
cates the second best win-prize to the winner and it is restricted to the two players
that have neither won the first stage nor have been excluded by the occurrence of a
draw in the first stage; (Stage 3) the player that has neither won the first or second
stage nor has been excluded by the occurrence of a draw in the first or second stage
receives the worst win-prize.31 As mentioned in Introduction, an example of real-
life contest organized (roughly) along these lines is the political campaigning across
political parties for a runoff election such as the one to elect the president in many
countries.32

Letting vl ≥ 0 and δl ≥ 0 respectively denote the values of the win-prize and of
the draw-prize corresponding to l ∈ N , we can generalize our previous definition of
player i ∈ N ’s payoff as follows:

πi(x) =
∑
l∈N

∑
τ∈{τ ′: wl,τ ′=i}

p(τ,x)vl +
∑
l∈N

∑
τ∈{τ ′: i∈Nl,τ ′ ∧ wl,τ ′=0}

p(τ,x)δl − xi,

where our baseline setting corresponds to v1 = 1 ≥ δ1 ≥ vl = δl = 0 for all l ≥ 2.

Although a complete analysis of this model is beyond the scope of this paper, we
now show that all our core intuitions extend to this generalization. First, it is
straightforward that the existence of a symmetric interior equilibrium is guaranteed
under conditions analogous to the ones in Theorem 2 given v1 = 1 ≥ δ1 ≥ 0 as
long as vl, δl ' 0 for l ≥ 2. Second, assuming the existence of such equilibrium,
the corresponding equilibrium effort (denoted by x∗d, with some abuse of notation)
is determined by the first order condition

1 =
∑
l∈N

Γ′(1/(n+ 1− l))(vl − vn)∂σi(Mn+1−l,x
∗
d)/∂xi, (11)

where Mn+1−l is any set of n+ 1− l players that contains i and x∗d denotes the equi-
librium effort profile. Note that (11) is independent of δl for all l ∈ N , therefore x∗d is
independent of the values of the draw-prizes. Assuming that σn(Mn+1−l,x

∗
d) satisfies

condition (7) on the cross derivatives with respect to efforts, ∂σi(Mn+1−l,x
∗
d)/∂xi

decreases in x∗d and there is at most a single symmetric equilibrium.

31By the functional form (9), a draw occurs with zero probability if there is only one participant
in the stage-contest, therefore the last draw-prize δn is never allocated in our model.

32In this specific example a draw may occur in the first stage of the election if no candidate
achieves an absolute majority, but there is no draw possibility in the second stage as the president
is elected by absolute majority between the two candidates that accessed the second stage. To
allow for heterogeneity of the likelihood of a draw across different stages, one could generalize
equation (9) by allowing a different transformation function Γl for each l ∈ N .
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As in our previous analysis, we now impose some more restrictions to sharpen our
predictions on the comparative statics. Letting Γ(σi) = σki for some k > 1 and
σi(Mn+1−l,x) = f(xi)/

∑
j∈Mn+1−l

f(xj) if xi > 0 for some function f that is positive,

twice-differentiable, increasing and concave, by (11) we obtain

g(x∗d) = k
∑
l∈N

(n− l)(vl − vn)

(n+ 1− l)k+1
, (12)

where g = f/f ′ is the increasing function defined in Theorem 2. Note that x∗d is
decreasing in n and non-monotonic in k as in our previous analysis, and it is de-
creasing in vn and increasing in vl for all l 6= n. Moreover, if a contest designer
had a fixed budget of value 1 to be distributed across non-negative prizes to provide
incentives to maximize equilibrium effort, it is straightforward that she should al-
locate the whole budget to v1 since the series

{
(n− l)/(n+ 1− l)k+1

}n
l=1

decreases
in l and the level of equilibrium effort is independent of the draw-prizes (as long as
the conditions for the existence of the equilibrium are met). Note that, with this
prize configuration, the general model reduces to the one analyzed in the previous
sections and all our previous results equally apply.

7 Conclusion

In this paper we introduce and axiomatize a class of success functions for single-
winner contests with draw which generalizes the well-known exhaustive class of
success functions axiomatized in Skaperdas (1996). Our characterization is based
on five standard axioms plus a crucial one, weak exhaustivity, which requires win-
ning probabilities to be a convex transformation of an exhaustive success function.
Our approach differs fundamentally from the literature in the way we introduce the
possibility of a draw: while other models incorporate a draw in reference to a per-
formance gap, we do so by scaling down the winning probabilities of an exhaustive
contest. Our model is particularly suited to represent contests where winning re-
quires supremacy in multiple tasks, or where the success of a contestant is indirectly
determined by a distribution of scarce resources such as ball possession in soccer,
territory in warfare, audience’s attention in litigation or marketing, etc.

The analysis of a contest game using our class of success functions shows that, un-
der fairly general conditions, there is a unique symmetric interior equilibrium and
equilibrium efforts do not depend on the draw-prize, although the value of the draw-
prize can affect the existence of the equilibrium when the number of players is high.
Particularly for the two-player contest, equilibrium efforts can be greater compared
to the contest with no draw even when the draw-prize is null. We show that the
difference in effort between the two classes of contests results from higher compe-
tition instead of the addition of a draw-prize. We further show that if contestants
have asymmetric upper bounds to effort, larger draw-prizes can have adverse effects
on the aggregate effort. We argue this may explain a change of rule in soccer in the

23



1980s that reduced the points of a draw relative to the points of victory to foster com-
petition between teams. Although the introduction of a draw hampers equilibrium
efforts when there are more than two contestants in our model, we show that equilib-
rium rent dissipation is systematically higher in the contest with draw compared to
the benchmark case for a broad set of parameter configurations. Then, introducing
a draw associated with a relatively small or null prize may enable a contest designer
to achieve greater profit, which in practice can be achieved by requiring contestants
to prevail in two tasks to avoid the draw. This simple and cost-free change of rule
can be seen as complementary to the positive discrimination approach to contest
design, where rent dissipation is augmented by biasing the contest in favor of ex-ante
weaker players (see, e.g., Epstein et al., 2011; Franke, 2012; Mealem and Nitzan,
2016), or to ‘pure’ discrimination in environments where biasing the contest in favor
of certain participants can induce higher aggregate equilibrium effort even though
players are otherwise ex-ante symmetric (see Drugov and Ryvkin, 2017).

Finally, in an extension of our framework we show that our methodology can be
extended to multi-prize contests by introducing the possibility of multiple draws
across different subsets of the set of players. All our core intuitions on equilibrium
behavior extend to this broader class of contests with draws, where the extended
model coincides with our baseline model under the prize configuration that maxi-
mizes equilibrium efforts. This generalized framework presents broad opportunities
for future research in the narrow but growing literature on contests with draws. In
particular, one crucial question is how the existence of an equilibrium may be af-
fected by the multiple draw-prizes even though equilibrium efforts are independent
of them.

Appendix

In the proofs of Theorem 2 and Propositions 1 and 3, for brevity we suppress the
argument of f(xi) and denote by fi the impact function of player i ∈ N , also using
the simplified notation F =

∑
j∈N fj, F¬i =

∑
j∈N\{i} fj, and F̂¬i =

∑
j∈N\{i} f

k
j .

Proof of Theorem 1

It is straightforward that the form (3) satisfies all our axioms for any n ≥ 2. Let us
show that, if a success function satisfies the axioms, it must take the form (3) given
n ≥ 3. Let x ∈ X be any effort profile with Ax 6= ∅. By perfect discrimination at
zero, pi (x) > 0 if i ∈ Ax. By effort independence, pi(x)

pj(x)
= pi(x

′)
pj(x′)

for all i, j ∈ Ax and

x′ ∈ X such that xi = x′i and xj = x′j. Then, by anonymity

pi(x)
pj(x)

= φ (xi, xj) for some function φ : R++ → R++.

Let h ∈ Ax′\{i, j} for some x′ ∈ X such that xi = x′i and xj = x′j. (This requires
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n ≥ 3.) Then, we can write

φ (xi, xj) =
pi (x)

pj (x)
=

(
pi (x

′)

ph (x′)

)/(pj (x′)

ph (x′)

)
=
φ (xi, x

′
h)

φ (xj, x′h)
.

Note that φ (xi, x
′
h) /φ (xj, x

′
h) must be independent of x′h (as it is equal to φ (xi, xj)).

Then, defining ϕ (z) = φ (z, 1) for all z > 0, we obtain

pi (x)

pj (x)
=
ϕ (xi)

ϕ (xj)
. (13)

Let x ∈ X be such that Ax = {i} for some i ∈ N . By Point (ii) of weak exhaustivity
1 there is a continuous and increasing function r : R+ → R+ such that for all µ > 0

r (pi (x))

r (1)
=
r (pi (x)µ)

r (µ)
, hence r (pi (x)µ) r (1) = r (pi (x)) r (µ) .

By perfect discrimination at zero pi (x) > 0 as we assumed i ∈ Ax. Then, by
Theorem 3 at p. 41 of Aczél (1966) the function r must take the form

r (z) = αzβ for all z > 0 and some α > 0 and β > 0, (14)

and by continuity of r we must have r(0) = 0. Note that Point (ii) of weak ex-
haustivity 2 leads to the very same conclusion.33 Let x ∈ X be any effort profile.
Combining Point (i) of weak exhaustivity (in either form) with (14) and perfect
discrimination at zero we obtain∑

i∈Ax

pi (x)β = 1 if Ax 6= ∅ and
∑
i∈N

pi (x)β = 1 if Ax = ∅. (15)

By probability
∑

i∈N pi (x) ≤ 1, which implies β ∈ (0, 1]. Let i ∈ Ax be any active

player. Combining (15) with (13) we get
∑
j∈Ax

(
ϕ(xj)

ϕ(xi)

)β
= 1

pi(x)
β , thus

pi (x) = ϕ (xi)
/(∑

j∈Ax

ϕ (xj)
β

)1/β

, where β ∈ (0, 1] . (16)

It is easy to verify that, by strict monotonicity and (16), the function ϕ must be
increasing. Let k := 1/β and f (z) := ϕ (z)β. As β ∈ (0, 1] and ϕ is positive and
increasing, then k ≥ 1 and the function f is positive and increasing. Then, we have
shown that pi (x) must take the form (3) whenever player i is active, that is, for

33By Point (ii) of weak exhaustivity 2 there is a differentiable and increasing function r :
R+ → R+ such that r′(pi (x))pi (x) /r(pi (x)) = β for some β ∈ R. This can be rewritten as
r′(pi (x))/r(pi (x)) = β/pi (x), and integrating both sides we obtain ln(r(pi (x))) = β ln(pi (x))+ α̃

for some α̃ ∈ R. Then, applying an exponential transformation we have r(pi (x)) = αpi (x)
β

where
α = exp(α̃) > 0. Note that β > 0 as r must be increasing, and by differentiability of r we obtain
r(0) = 0.
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all x ∈ X with i ∈ Ax. To conclude our proof, it remains to be shown that this is
true also when i is inactive. Let x ∈ X be such that all players are inactive, so that
xj = 0 for all j ∈ N . As x = xρ for any permutation of players’ identities ρ, by
anonymity pj (x) = ph (x) for all j, h ∈ N . Then,

pi (x) = (1/n)k

by (15), which implies pi (x) takes the form (3) for this case. The only remaining
case is when player i is inactive and some other player is active. Let x ∈ X be such
that i /∈ Ax and Ax 6= ∅. Then, by perfect discrimination at zero pi (x) = 0, hence
pi (x) takes the form (3). �

Proof of Theorem 2

If the effort profile x∗d ∈ X is an interior equilibrium, the effort of each player i ∈ N
must satisfy the first order condition (FOC)

∂πi (x
∗
d)

∂xi
=

kf ′i
F k+1

[
(1− δ)fk−1i F¬i + δF̂¬i

]
− 1 = 0, (17)

which follows from (1). By symmetry of equilibrium efforts, xi = x∗d for all i ∈ N ,
we obtain

g (x∗d) = f (x∗d)/f
′ (x∗d) = k (n− 1)/nk+1. (18)

Recall that by assumption f(xi) is increasing and concave, limxi→0 f(xi) = 0, and
limxi→+∞ f(xi) = +∞. Then, as k (n− 1)/nk+1 > 0, there is a unique x∗d satisfying
(18). Hence, there is at most one symmetric interior equilibrium, and by definitions
(1) and (3), in such equilibrium pi (x

∗
d) = 1/nk, pd (x∗d) = 1− 1/nk−1, and

πi (x
∗
d) =

1 + δn
(
nk−1 − 1

)
nk

− g−1
(
k (n− 1)/nk+1

)
, (19)

where g−1 is the inverse function of g. It is easy to verify that the symmetric effort
profile where all players are inactive cannot be an equilibrium, as any player has
an incentive to deviate by exerting an arbitrarily small effort. So, we conclude that
there is at most one symmetric equilibrium and that this equilibrium must be in
the interior. Having established this, we now identify conditions for the existence
of such equilibrium, that is, for the effort level x∗d to be a global maximizer of the
payoff function of each player given that other players’ efforts are equal to x∗d.

34 For
any effort profile x ∈ X in the interior, the second derivative of the payoff function
of player i ∈ N is

∂2πi (x)

∂x2i
=

(1− δ)F¬i
F k+2

[
f ′′i f

k−1
i F + f

′2
i

(
fk−2i (k − 1)F¬i − 2fk−1i

)]
(20)

+
δF̂¬i
F k+2

[
f ′′i F − (k + 1) f

′2
i

]
,

34As the payoff function (1) is not necessarily concave globally, the FOC may not identify a
global maximizer even if the second order condition ∂2πi (x∗d)/∂x

2
i < 0 holds.
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which evaluated at the symmetric effort profile xj = x∗d for all j ∈ N renders the
second order condition (SOC)

nf ′′i +
f
′2
i

fi
[(1− δ) ((k − 1) (n− 1)− 2)− δ (k + 1)] < 0. (21)

Note that in equation (20):

- the terms (1− δ)F¬i/F k+2 and δF̂¬i/F
k+2 are positive and decrease at the same

rate in xi;

- the term f
′2
i

(
fk−2i (k − 1)F¬i − 2fk−1i

)
is negative for sufficiently large xi;

- the terms f ′′i f
k−1
i F and

[
f ′′i F − (k + 1) f

′2
i

]
are negative.

Given xj = x∗d for all j 6= i one can show that, on the interval of xi’s values where
i’s payoff is non-negative, if (20) changes sign it does so at most once (from positive
to negative), and the negativity of (20) at the point where the FOC is satisfied (i.e.,
the SOC) is necessary and sufficient for the global optimality of x∗d in the interior.35

In (21), the term nf ′′i is weakly negative while the term f
′2
i /fi is positive. Thus, a

sufficient (and necessary, if f is linear) condition for the SOC to hold is the negativity
of the term in squared parenthesis, which with some algebra reduces into

δ > 1− (k + 1)/n (k − 1). (22)

Last, for x∗d to be an equilibrium strategy we need πi (x
∗
id,x

∗
¬id) > πi (0,x

∗
¬id), where

x∗¬id denotes the profile of equilibrium efforts of all players but i. Then, using (19)
we get

δ >
g−1

(
k(n−1)
nk+1

)
nk − 1

n (nk−1 − 1)
, (23)

and the combination of (22) and (23) concludes our proof. �

Proof of Proposition 1

Points (i) and (ii): Let n = 2. It is easy to verify that there are no equilibria where
some players are inactive, as any inactive player has an incentive to deviate. So,
an equilibrium is necessarily in the interior. By the FOC in (17), in any interior
equilibrium we must have

f ′i
[
fk−1i fj + δfj

(
fk−1j − fk−1i

)]
= f ′j

[
fk−1j fi + δfi

(
fk−1i − fk−1j

)]
,

35For the values of xi such that i’s payoff is non-negative, it is easy to verify that there is a
threshold t ≥ 0 such that (20) is negative if and only if xi > t. Depending on the exact parameter
configuration and the third derivative of f , there can be an interval of values of xi in a neighborhood
of zero for which the payoff of a player is negative. On this interval, the second derivative (20)
evaluated at xj = x∗d for all j 6= i can change sign from negative to positive with increasing xi,
but this is irrelevant for our purposes as none of such xi’s values can be a global maximum since
xi = 0 delivers a higher payoff than any of them.
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which can be rewritten as

fifj
(
f ′if

k−2
i − f ′jfk−2j

)
= δ

(
fk−1i − fk−1j

)
(fi − fj) . (24)

Condition (24) holds if fi = fj since both sides of (24) are zero. For a contradiction,
suppose that fi > fj. If k < 2, the left-hand side of (24) is strictly negative as
f ′i ≤ f ′j by the concavity of f and fk−2i < fk−2j , whereas the right-hand side of it is
non-negative, leading to a contradiction.

If k = 2, both sides of (24) are zero also whenever δ = 0 and f ′′ = 0. So, there may
exist asymmetric equilibria if both these conditions hold. Let at least one of them
not to hold, so that given fi 6= fj both sides of (24) are never zero simultaneously.
Under this restriction, we want to show that there are no asymmetric equilibria as
fi 6= fj is incompatible with (24). Supposing fi > fj again, the right-hand side of
(24) is non-negative for all δ ∈ [0, 1], and the left-hand side is non-positive as we have
f ′i ≤ f ′j by the concavity of f , and fk−2i = fk−2j . As the sides of the equation (24)
cannot be simultaneously zero under our restrictions, we then have a contradiction.

As we have already proven x∗d to be the single symmetric equilibrium in Theorem
2, this concludes the proof of Points (i) and (ii).

Point (iii): Let i, j ∈ N be any pair of players, F¬{i,j} :=
∑

`6=i,j f`, and F̂¬{i,j} :=∑
6̀=i,j f

k
` . By the FOC in (17), in any interior equilibrium we must have

(1− δ)
[
F¬{i,j}

(
f ′if

k−1
i − f ′jfk−1j

)
+ fifj

(
f ′if

k−2
i − f ′jfk−2j

)]
= δ

[(
f ′jf

k
i − f ′ifkj

)
+ F̂¬{i,j}

(
f ′j − f ′i

)]
. (25)

Define ν(x) := f ′fk−1 and note that

ν ′(x) = f ′′fk−1 + (k − 1)f
′2fk−2 ≤ 0⇔ k ≤ 1− f ′′f/f ′2. (26)

The term
(
f ′if

k−2
i − f ′jfk−2j

)
in the square brackets on the left-hand side of (25)

equals ν(xi)/fi − ν(xj)/fj, where ν(xi)/fi is strictly decreasing if ν is weakly de-
creasing as

d[ν(xi)/fi]/dxi = [ν ′(xi)fi − ν(xi)f
′
i ] /f

2
i .

Suppose fi > fj and δ ∈ (0, 1). The right-hand side of (25) is strictly positive as
f is concave. However, if (26) holds, the left-hand side is strictly negative by the
same token. Given this, it is straightforward that (25) cannot hold also for fi > fj
and δ ∈ {0, 1}. Thus, the equilibrium is unique for any n given (26). �

Proof of Proposition 2

It is straightforward that (18) implies the necessary and sufficient condition

x∗d > (=)x∗c ⇔ k
1

k−1 > (=)n.
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Note that on the domain (1,+∞) the function k1/(k−1) is continuous, decreasing, and
satisfies limk→1 k

1/(k−1) = e ' 2.72 and limk→+∞ k
1/(k−1) = 1. Thus, the condition

above is violated for any n ≥ 3. Assuming n = 2, the unique elasticity parameter
satisfying k1/(k−1) = 2 is k = 2. Thus, x∗d > (=)x∗c whenever k < (=)2. We now
identify the effort maximizing n and k. As we already know that x∗d decreases in n,
we can set n = 2. By (5) we have

∂g(x∗d)/∂k = (1− k ln 2)/2k+1 = 0⇔ k = 1/ ln 2,

and it is easy to show that ∂2g(x∗d)/∂k
2 < 0. Then, as the function g is increasing

(since f is increasing and concave), the value k = 1/ ln 2 of the elasticity parameter
is the unique maximizer of the effort level in the considered equilibrium. �

Proof of Proposition 3

Let n = 2 and take any k ∈ (1, 2], δ ∈ [0, 1] and i ∈ N . Firstly, using implicit
differentiation of the FOC (17), we obtain

∂x∗id (xj)/∂δ = λ
(
fk−1j − fk−1i

)
/(−S),

where λ := kfjf
′
i/F

k+1 > 0 and S := ∂2πi (x)/∂x2i < 0. It follows that

∂x∗id (xj)/∂δ < 0⇔ x∗id (xj) > xj, (27)

i.e., the best-response function of i is a decreasing function of δ if and only if the
value of the best-response function evaluated at xj is greater than xj.

Secondly, we now show that x∗id (xj) > xj for all xj < x∗d, which combined with (27)
implies ∂x∗id (xj)/∂δ < 0 if xj < x∗d. Using implicit differentiation of FOC (17) once
more,

∂x∗id (xj)

∂xj
=

γ

−S
[
fk−1i (fi − kfj)− δ

(
fki + fkj − k

(
fk−1i fj + fif

k−1
j

))]
, (28)

where γ := kf ′if
′
j/F

k+2 > 0. In a symmetric equilibrium (28) reduces to

∂x∗id (xj)

∂xj

∣∣∣∣
xi=xj=x∗d

=
− (k − 1) (1− 2δ)

−2f ′′f/f ′2 + δ (k + 1) + (1− δ) (3− k)
. (29)

The denominator of (29) is positive as f is concave and k ∈ (1, 2]. Thus, expression
(29) is non-positive if δ ∈ [0, 1/2] and simple algebra shows that (29) is positive
but strictly less than 1 if δ ∈ (1/2, 1]. As we know from Theorem 2 that there
is a single symmetric equilibrium under our restrictions, these results imply that
x∗id (xj) crosses the 45◦ line only once, from above, and at xj = x∗d. Therefore,
x∗id (xj) > xj if xj < x∗d and we can conclude that

∂x∗id (xj)/∂δ < 0 if xj < x∗d. (30)
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Finally, we now prove our desired result x∗id (xj) > x∗ic (xj) given xj < x∗d. To do so
for any δ ∈ [0, 1], it is sufficient to show that the result holds for δ = 1, as we have
already shown in (30) that x∗id (xj) is decreasing in δ when xj < x∗d. Let pic := fi/F .
For δ = 1, the payoff function (1) for the contest with draw can be rewritten as
πid := pkic + pd − xi = 1− pkjc − xi, while the payoff function for the contest without
draw is πic := pic−xi = 1−pjc−xi. Combining the FOCs of these payoffs we obtain

kpk−1jc =
∂pjc (x∗ic (xj) , xj)/∂xi
∂pjc (x∗id (xj) , xj)/∂xi

.

As f is concave pjc is decreasing and convex in xi, kp
k−1
jc < 1⇔ x∗id (xj) > x∗ic (xj) .

Since xj < x∗d if and only if pjc < 1/2 (this is easily verified by the anonymity and
strict monotonicity properties of the success function, and by the fact that in the
benchmark winning probabilities sum up to 1), it follows that kpk−1jc < 1 for all
k ∈ (1, 2]. Thus, we have x∗id (xj) > x∗ic (xj) given xj < x∗d, which completes our
proof. �

Proof of Proposition 4

Suppose n = 2 and player i ∈ N is unconstrained, while player j 6= i is constrained.
Denote the constrained best-response of player j by

x̂∗jd (xi) :=

{
x∗jd (xi) if x∗jd (xi) < x̂j,

x̂j otherwise.

Since j is constrained, x̂j < x∗d. Then, as shown in the proof of Proposition 3,
we must have x∗id (x̂j) > x̂j, which implies x̂∗jd (x∗id (x̂j)) = x̂j. Suppose there is an
equilibrium x̂∗d := (x̂∗id, x̂

∗
jd) where x̂∗id := x∗id (x̂j) > x̂∗jd := x̂j. Then, given our

restrictions, by FOC (17) we must have ∂πi (x̂
∗
d)/∂xi = 0 and ∂πj (x̂∗d)/∂xj > 0

(note that i plays an unconstrained best-response while j’s constraint is binding),
which implies that x̂∗d is an equilibrium. Moreover, x̂∗d is the unique equilibrium as
there is no equilibrium within the set of effort profiles where j’s constraint is not
binding by Points (i) and (ii) of Proposition 1 given our restrictions. Using (27),
the unconstrained best-responses must satisfy

∂x∗id(x̂
∗
jd)/∂δ < 0 < ∂x∗jd(x̂

∗
id)/∂δ.

As x̂∗jd = x̂j for all δ ∈ [0, 1], the equilibrium effort of j is unaffected by the change
in δ. On the other hand, x̂∗id decreases in δ. Thus, the aggregate effort x̂∗id + x̂∗jd
always decreases (increases) due to an increase (decrease) in the draw prize. �

Proof of Proposition 5

For the contest without draw, the equilibrium rent dissipation is

R (x∗c) = nx∗c = α (n− 1) /n,
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which is obtained by evaluating (6) at k = 1. For the contest with draw, the expected
prize is

1 + pd (xd) (nδ − 1) =
1

nk−1
+ δn

nk−1 − 1

nk−1
,

using (1), and the aggregate equilibrium effort is nx∗d = αk (n− 1) /nk. Hence,

R (x∗d) =
αk (n− 1)

n [1 + δn (nk−1 − 1)]
.

Then, by straightforward algebra we get

R (x∗d) ≥ R (x∗c)⇔ δ ≤ k − 1

n (nk−1 − 1)
.

The second term in the curly brackets of (8) follows from the feasibility constraint
δ ≤ 1/n. �

References

Aczél, J., 1966. Lectures on functional equations and their applications. Academic
Press.

Blavatskyy, P., 2010. Contest success function with the possibility of a draw: ax-
iomatization. Journal of Mathematical Economics 46 (2), 267–276.

Bozbay, I., Vesperoni, A., 2018. A contest success function for networks. Journal of
Economic Behavior & Organization 150, 404–422.

Clark, D., Riis, C., 1996. A multi-winner nested rent-seeking contest. Public Choice
87 (1), 177–184.

Cohen, C., Sela, A., 2007. Contests with ties. BE Journal of Theoretical Economics
7 (1), 1935–1704.

Corchón, L., Dahm, M., 2010. Foundations for contest success functions. Economic
Theory 43 (1), 81–98.

Cubel, M., Sanchez-Pages, S., 2016. An axiomatization of difference-form contest
success functions. Journal of Economic Behavior & Organization 131, 92–105.

Deng, S., Wang, X., Wu, Z., 2018. Incentives in lottery contests with draws. Eco-
nomics Letters 163, 1–5.

Drugov, M., Ryvkin, D., 2017. Biased contests for symmetric players. Games and
Economic Behavior 103, 116–144.

Eden, M., 2006. Optimal ties in contests. Working paper.

31



Epstein, G., Mealem, Y., Nitzan, S., 2011. Political culture and discrimination in
contests. Journal of Public Economics 95 (1), 88–93.

Franke, J., 2012. Affirmative action in contest games. European Journal of Political
Economy 28 (1), 105–118.

Fu, Q., Lu, J., Wang, Z., 2014. Reverse nested lottery contests. Journal of Mathe-
matical Economics 50, 128–140.

Garfinkel, M., Skaperdas, S., 2007. Economics of conflict: an overview. Handbook
of Defense Economics 2, 649–709.

Gelder, A., Kovenock, D., Roberson, B., 2015a. All-pay auctions with ties. Working
paper.

Gelder, B., Kovenock, D., Sheremeta, R., 2015b. Behavior in all-pay auctions with
ties. Working paper.

Hirshleifer, J., 1989. Conflict and rent-seeking success functions: ratio vs. difference
models of relative success. Public Choice 63 (2), 101–112.

Hirshleifer, J., 1991. The paradox of power. Economics & Politics 3 (3), 177–200.
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