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Abstract: Dynamically charging electric vehicles (EVs) have the potential to significantly reduce range anxiety and decrease the
size of battery required for acceptable range. However, with the main driver for progressing EV technology being the reduction
of carbon emissions, consideration of how a dynamic charging system would impact these emissions is required. This study
presents a demand-side management method for allocating resources to charge EVs dynamically considering the integration of
local renewable generation. A multi-objective optimisation problem is formulated to consider individual users, an energy retailer
and a regulator as players with conflicting interests. A 19% reduction in the energy drawn from the power grid is observed over
the course of a 24 h period when compared with a first-come-first-served allocation method. This results in a greater reduction in
CO2 emissions of 22% by considering the power grid's make-up at each time interval. Furthermore, a 42% reduction in CO2
emissions is achieved compared to a system without local renewable energy integration. By varying the weights assigned to the
players’ goals, the method can reduce overall demand at peak times and produce a smoother demand profile. System fairness
is shown to improve with an average Gini coefficient reduction of 4.32%.

1 Introduction
Electric vehicles (EVs) are becoming increasingly prevalent in
transportation. In the UK, the adoption rate has been staggering,
with there being 20 times more registered EVs in 2017 than in
2012 [1]. The move away from conventional fossil-fuelled vehicles
is accelerating as advances in related technologies are making EVs
financially viable [2]. It is expected that this trend will continue
and this will certainly impose extreme strains on existing power
infrastructure. In the National Grid's Future Energy Scenarios
report [3], it was recognised that UK peak energy demand could
grow by 50% purely from increased EV penetration by 2045 –
compounded by the homogeneity of the population's charging
habits. Moreover, with advancements in driverless car technology,
it is expected that the number of cars on the road will increase as
the mode of transport becomes more attractive and, through ride-
sharing options, each car spends more time on the road [4, 5].
There exist, however, a number of obstacles that may hinder the
success of EVs. Due to limited battery capacities and the sporadic
availability of charging stations along transport routes, drivers are
experiencing significant range anxiety issues [6]. For EV
producers, this remains an extremely challenging element of design
as large battery packs, as are required for acceptable range,
continue to dominate both the cost and mass of vehicles [7]. Note
that for the entirety of this paper, the term EV will be used to
encapsulate both battery-only and hybrid EVs.

A promising solution to the problems facing EVs is to
implement dynamic on-road charging. Wireless power transfer
(WPT) can be achieved using primary coils beneath the road
surface and secondary coils inside the vehicles themselves.
Through applying power to the primary coils when the EVs are
positioned above, WPT can be achieved with an overall transfer
efficiency in the range of 60–75% [8]. Such a system could
significantly reduce range anxiety issues as users would be able to
charge EVs whilst travelling and, in addition, could help to reduce
the effects of concurrent EV charging routines.

The WPT technology also has the potential to significantly
reduce battery size, as the capacity required to travel along routes
with dynamic charging availability would materially decrease and,
as such, so would the price of the EVs [9]. Moreover, in the USA

whilst 85.3% of roads are classified as ‘small local’, 85.0% of all
miles driven are on primary or secondary roads with a split of 69.7
and 15.4%, respectively [10]. This suggests that it is possible to
impact a large number of users by targeting specific frequently
used roads.

There are currently a number of commercial systems using
WPT technology such as the online EV system in use in several
cities across South Korea [11]. Though such projects have been
proven to be largely successful for small-scale public transport
systems, this concept comes with a number of challenges to
overcome when considering a larger, more volatile system of
individual EVs. Since the amount of energy that the power grid can
supply at any one time is not unbounded and nor indeed is the
energy that can be drawn from a given transformer, careful
consideration of how to distribute the available energy to the
participating EVs is required. This paper outlines a demand-side
management (DSM) technique for the allocation of resources that
takes into account individual EV requirements and offsets peak
demand by modelling the make-up of the electricity supply
throughout the day and its effect on system utility.

The remainder of this paper is organised as follows. Section 2
presents an overview of the literature relevant to WPT and DSM as
they apply to EVs. In Section 3, a general overview of the system
is described and assumptions are stated. Formulation of a multi-
objective optimisation problem is given in Section 4 and numerical
results are discussed in Section 5. Finally, conclusions are drawn
and opportunities for future work are identified in Section 6.

2 Literature review
This section presents an overview of relevant literature. Section 2.1
interrogates system hardware and communication infrastructure
requirements, Section 2.2 discusses DSM as it is applied to EV
charging and Section 2.3 highlights gaps in the research and the
contributions made by this paper.

2.1 Wireless charging of EVs

The functionality of a dynamic road system (DRS) will ultimately
be shaped by hardware limitations. WPT typically exhibits highly
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fluctuating transfer efficiencies based on coil alignment. This could
pose a serious problem when there is relative movement between
primary and secondary coils as in the case of the DRS. However,
progress has been made in this area and, with the arrangement
discussed in [12], high transfer efficiencies have been
demonstrated over a range of different alignment positions.
Furthermore, with the advent of autonomous driving technology,
lane alignment will cease to be an issue with localisation
accuracies of under 3 cm expected [13]. The ultra-low
communication latency requirements of a DRS were outlined in
[14] and the need for vehicle authentication and accurate
positioning was described. More recently, dedicated short-range
communication systems have been shown to offer a latency in such
a system of under 6 ms with the use of detection sensors before
each charging pad [15]. This method was explored further in [16],
where a novel method of exchanging cryptocurrency with each
charging pad to circumvent authentication issues and reduce the
frequency of information exchange between EVs and the road was
described.

2.2 Demand-side management

DSM can be used to ensure equilibrium between demand and
supply in power systems. The application of DSM in static EV
charging is a mature area of study. However, when applying DSM
to dynamic charging, the approach must be updated to factor in the
operational requirements of the DRS [17]. When charging
dynamically, charging sessions last only a few milliseconds [18]
and, therefore, the charging service must be applied without delay.
By contrast, in the static case, users can tolerate significant delay
when starting to charge. As a result, the computational complexity
of the DSM optimisation must be materially reduced to be
effective. In addition, the length of time that a given EV can charge
is unknown, as opposed to a generally known period in the static
case [19]. As a consequence, DSM methods which aim to optimise
over long time periods would be ineffective. Furthermore, due to
the much shorter overall charging period, the charging rates applied
to the EVs must be higher. This results in a significant strain on the
power grid. Therefore, the development of a dynamic WPT
specific DSM method is necessary to address the unique
characteristics present in the dynamic charging environment.

Scheduling the charging of EVs fleet to provide ancillary
services has been an active area of research [20–28]. However,
these almost entirely focus on the static charging case, where
multiple EVs can be scheduled over a long charging period. Work
done in extending this to the dynamic case, where charging periods
are much shorter, is limited.

DSM methods can largely be split into two categories:
centralised and decentralised. In the former, an aggregator typically
acts as an energy manager between utility companies and
consumers. As such, the aggregator collects constraints from
participants, performs optimisation tasks and broadcasts the
resulting decisions of the players [29]. In the decentralised case,
however, each participant optimises locally.

A centralised algorithm was presented in [21] with the aim of
reducing peak demand. Here the author noted that the time slot
allocation method proposed may be extended to the dynamic case
simply by optimising for smaller time slots. However, this system
organises EVs into charging slots based on their calculated priority.
In a system where EVs can spend only a short period of time on the
road and total power transfer is significantly limited, this method
would leave many users dissatisfied.

Game theoretic approaches, both centralised and decentralised,
were discussed in [22–27], where each EV is modelled as a player
in a game with the objective of maximising their utility subject to a
number of constraints and the current price of electricity. Non-
cooperative games are presented in [22–25], and compared with
optimal control theories in [30]. In non-cooperative games, the
players’ utility functions are modelled differently. In [23], EV
utility was modelled as a non-decreasing concave function to
include the battery state-of-charge, electricity price and charging
decisions of other participating EVs. In the decentralised algorithm
outlined, the sharing of charging information between road users is

required. This could pose serious security concerns and, as such,
this approach should be avoided where possible. A Stackelberg
game was considered in [26, 27], where the electricity provider
acts as the game leader. Here, the power grid sets the price to
maximise profits, given that it knows how each player will react to
a change in price, which is then broadcast to the other players.

A method for defining an objective function of the carbon
burdens associated with electricity generation as a function of the
various fuel types being used was outlined in [31] and in [32], the
potential to supplement the DRS with local renewable generation
was identified. To maximise the benefits of all participants in
above EVs charging, a multiobjective problem (MOP) should be
formulated. To solve MOP, various heuristic approaches were
studied in the literature [33–37]. For example, applying NGSA-II
algorithm [33] and artificial immune algorithm [37] could lead to a
Pareto optimal set for a MOP.

2.3 Research gaps and contributions

Much of the research carried out to date relating to EV resource
allocation has been focused on static demand scheduling with the
objective of smoothing the demand curve or minimising cost. It is
recognised, therefore, that there is a need to develop a DSM model
for dynamic charging scenarios for the future low-carbon transport
system. This paper builds on the objective functions outlined in
[26] in formulating a centralised multi-objective optimisation
problem for the DRS. Emphasis throughout is on the modelling of
a workable system and not on the application of the optimisation
techniques themselves. The key contributions made by this paper
are as follows:

• A DSM method is proposed for managing the operation of a
DRS. In doing so, individual charging rates are allocated based
on each user's need to charge. Given the short charging time,
limitations on transfer rate and the uncertainty of how long each
EV will remain on the road, this approach distributes resources
between users more fairly when compared to a charge
scheduling approach.

• A regulator is introduced to the system model. This player acts
so as to reduce the amount of power drawn from the grid when
generation is strained and, as such, means the DRS can act as a
variable load. This feature is a significant benefit when
considering the strain on future power grid infrastructure as a
result of widespread EV charging and indeed, on the resultant
CO2 emissions.

• Local renewable energy generation is built into the system
model and the associated reductions in CO2 emissions are
presented. Furthermore, it is demonstrated that significant
reductions in carbon emissions can be observed with a relatively
small installed local generation capacity.

3 System model
The implementation of DRSs across the UK was investigated in a
Highways England feasibility study [8]. Here, it is recognised that
the most appropriate method would be to have a dedicated charging
lane along a motorway. In this case, charging pads 40 m in length
are embedded in the road surface with 5 m spacings between
sections, and each section is connected to a road-side unit (RSU)
which controls the road. An overview of the system is given Fig. 1.

It can be seen that, in front of each pad, there is a sensor to
recognise the approaching car. This may be used to track the
positions of vehicles on the road and facilitate vehicle
authentication or cryptocurrency exchanges as mentioned in
Section 2.2. Given that each pad may only charge a single vehicle
at a time, a minimum spacing between each EV of 40 m is
required. A constant speed of 70 mph, the UK motorway speed
limit, is defined such that the spacings between cars remain
constant. Since there is a maximum of one car to a pad, this allows
the RSU to apply different charging rates to each car on the road.

The DRS may be supplied by the grid and also by local
renewable generation such as solar or wind. In an instance where

IET Smart Grid, 2019, Vol. 2 Iss. 2, pp. 250-259
This is an open access article published by the IET under the Creative Commons Attribution -NonCommercial License
(http://creativecommons.org/licenses/by-nc/3.0/)

251



local generation exceeds the consumption of the road, this may also
be sold back to the grid. The system is represented such that the
RSU aggregates information from three players. The electricity
retailer wants to maximise profits made from selling electricity to
EVs. A regulator is defined that can act so as to reduce the
electricity received from the grid when the generation system is
strained. Finally, each EV's willingness to charge is dependent on
the price of electricity and other factors such as state of charge.

In the system considered, the RSU performs the optimisation
and operates the road. As such, the method can be considered a
centralised scheme. Here, the RSU aggregates the requirements of
the system stakeholders. Accordingly, this requires EVs to send
relevant parameters to the RSU when approaching the road and
whenever these parameters change. A centralised system best
applies to the DRS as it eliminates the need for correspondence
between individual EVs. In the DRS, and particularly because the
frequency of users passing through the system is high, such
communication could cause significant security concerns.
Furthermore, as far as the system can be characterised as a single
strictly convex function to be optimised, the necessary computing
power for centralised optimisation should not be excessive.

Given the unique nature of dynamic charging, the optimisation
of charging schedules typically used in the static case is not
applicable for resource allocation. This paper, therefore, outlines a
real-time DSM method whereby users are allocated charging rates
in accordance with their willingness to charge. With a continues
scale of possible charging rates that are readily variable, this
approach is better suited to the DRS.

For the system described, optimisation is required at a high rate.
Namely, charging rates must be computed every time the system
changes due to a new car entering the road, a car leaving the road,
updated local generation information or changes to the grid make-
up. It is recognised that this optimisation rate, coupled with the
high switching frequency required to provide high-speed EVs with
unique charging rates, would come at a significant cost to the
implementation of the system. However, this paper is concerned
with developing an effective method of meeting the needs of all
parties for a future DRS and, as such, the cost of implementation is
not considered.

4 Methodology
All of the parties involved have their own objectives and
corresponding constraints. Since the players’ objectives are
conflicting, they are modelled here separately and combined in a
multi-objective optimisation problem in Section 4.4. The model
described uses a real-time optimisation approach and, as such,
optimises for the current system state, as opposed to optimising
over a given time period. Accordingly, real-time pricing is used in
every time step.

4.1 Retailer modelling

The retailer in the DRS sells electricity to participating EVs. The
objective, therefore, is formulated to maximise its profits. The
utility function of the retailer is given by

L(X, P, p) = p ∑
n = 1

N
(xn + Pn), (1)

where X := [x1, x2, …, xN], and P := [P1, P2, …, PN], are vectors of
the electricity demanded by each EV from the grid and from
renewables, respectively, in a given time step, p is the price per unit
energy, N is the number of EVs currently on the road and n is the
EV index. The demand from renewables

Pn = min Pt
N , Tn

(max), C
N (2)

where Pt is the total power available from renewables, Tn
(max) is the

maximum transfer rate of the EV and C is the transformer capacity.
In this manner, as far as system constraints allow, each vehicle is
allocated an equal share of the available renewable supply
automatically with the DSM techniques only applying to the
energy supplied from the grid, X. Since the retailer sells electricity
from both sources, this is reflected in the utility function

L(Y, p) = p ∑
n = 1

N
yn, (3)

where yn = xn + Pn is the total energy transfer rate of EV n and
Y := [y1, y2, …, yN].

4.2 Regulator modelling

The equivalent production of CO2 for every unit of energy
produced by the grid was quantified in [31], where the electricity
grid carbon factor (EGCF) is defined as

EGCF =
∑m = 1

M CmEm

∑m = 1
M Em

, (4)

where M is the total number of fuel types, Cm is the CO2 intensity
of fuel m and Em is the generated energy corresponding to m.
Approximate values of CO2 intensity for fuel sources that make up
the vast majority of power grid generation are given in Table 1. To
formulate the regulator's utility, a normalised carbon factor, f, is
defined as a measure of how carbon-heavy the grid electricity is at
a given instant

f = EGCF
EGCFnom

, (5)

where EGCFnom is some nominal value. Since the objective of
greater EV penetration, and hence the implementation of DRSs,
could broadly be considered to be lowering the carbon footprint of
the transportation sector, the regulator modelling should account
for this. The goal of the regulator, which could be a government
body such as the Department for Energy and Climate Change
(DECC), is to limit the use of high carbon factor electricity.
Accordingly, the regulator's utility function is given by

R(X, f ) = ∑
n = 1

N
xn

2(1 − f ), if f > 1

0, otherwise .
(6)

It can be seen that, for f > 1, the utility of the regulator is
negative and decreases quadratically with system demand.
Defining the regulator utility as non-positive makes sense in the
scenario considered since a body such as the DECC would not
benefit from any level of power usage but could be negatively
affected by increased demand and high carbon factor, f.

The regulator will, therefore, lower the overall electricity
transferred when, for instance, coal makes up a significant
proportion of the generation. It follows from (5) and (6) that the

Fig. 1  Overview of the DRS showing the EV users, energy retailer,
regulator and RSU aggregator. Directions of arrows indicate the possible
flows of energy
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choice of ECGFnom will define the level of CO2 production at
which the regulator begins to influence demand. For this paper,
ECGFnom is taken as the average of the daily EGCF values but it is
recognised that this could be changed to represent a different
critical value.

4.3 Customer modelling

The utility of each EV, based on that proposed in [26], is a non-
decreasing quadratic function

un(yn, p) =
yn(bn − p) − 1

2 snyn
2, if Tn

(min) ≤ yn < yn*

yn*(bn − p) − 1
2 snyn

*2, if yn* ≤ yn < Tn
(max)

0, otherwise

, (7)

where yn* is the maximum value of the quadratic function, bn is the
available battery capacity, sn is the satisfaction parameter and Tn

(min)

and Tn
(max) are the minimum and maximum charging rates of the nth

EV, respectively. Modifications have been made to the definitions
of the terms as proposed in [26]. The parameter, bn, was originally
defined as the total battery size but this change has been made to
put greater emphasis on each user's potential to charge rather than
their total battery size. The satisfaction parameter, sn, is a measure
of how much an EV will benefit from consuming an additional unit
of energy. Where this had previously not explicitly been defined,
here it is formulated as

sn = νn + μn
2 , (8)

where μn ∈ [1, 2] is a user-defined parameter that can be varied by
the driver to further describe their willingness to charge which
could conceivably be varied while driving. Clearly, selecting a low
value increases one's willingness to charge which may result in
accepting electricity at a high tariff. Additionally

νn = 1 + min dn

dn
(max) , 1 , (9)

where dn is the distance a user is away from their destination and
dn

(max) is the maximum distance that user can travel on its current
charge level. This parameter is designed to reflect how different
users’ utilities depend on their travel plans. It follows that, for a
user that has a short distance to travel, they will have less need to
charge than those with far to travel. Constraining νn ∈ [1, 2]
prevents users with a large distance to travel from dominating the
system demand.

The assumption of non-decreasing EV utility is reasonable here
since no user's utility would be expected to decrease for higher
transfer rates. Fig. 2 shows this in graphical form for a random set
of four EVs. It can be seen that there are minimum and maximum
transfer rates between which EVs can benefit, as defined by
hardware constraints, and a flat profile may be observed at high
transfer rates. Since the power available from local renewable
generation is distributed equally amongst participating EVs, the
optimisation problem is on the sections of curve after Pn for the nth
EV. Nonetheless, each user does not distinguish between types of
generation and, as such, utilities reflect this. 

The objectives of the participating EVs can be aggregated to
form a single function to be optimised:

U(Y, p) = ∑
n = 1

N
un(yn, p) . (10)

4.4 Multi-objective optimisation problem

The overall function to be maximised is given by

F(X, P, p, f ) = αL(Y, p)
Lmax

+ β R(X, f )
Rmax

+ γ U(Y, p)
Umax

, (11)

where Lmax, Rmax and Umax are the maximum possible values of the
respective utility functions and are used to normalise the outputs.
The variables α, β and γ represent weights to be given to each
player in the optimisation problem such that α + β + γ = 1.

Each of the players’ interests is conflicting. Clearly, EV users’
and the retailer's utilities will both increase with higher charging
rates. However, the converse is true for the regulator, whose utility
decreases quadratically with charging rate. Moreover, since the
overall power drawn by the DRS is bounded by the transformer
capacity, individual EVs can also be said to have conflicting
interests; for a given EV to receive a higher rate when the
transformer capacity is reached, other EVs in the system must
reduce their demand to accommodate.

It follows that the greater the weight given to a player's utility,
the greater effect their goals have on the optimised solution. In this
system, the regulator, who may be the DECC, sets these weights. It
is assumed, therefore, that this regulator will not act selfishly but
rather to increase system performance in a pre-determined manner.

There are a number of potential approaches for optimising the
weights in order to equilibrate the conflicting interests such as
NGSA-II [33] or various heuristic approaches utilised in [34–36].
However, this is not the focus of this study. Instead, the primary
objective is the development and simulation of a workable DSM
method for the future DRS and, as such, this it is left for future
work. For the entirety of this report, specific configurations are
used to demonstrate the action of the system, but these do not
necessarily represent optimal solutions. Importantly, player weights
would not need to be optimised frequently and it is envisioned that
these could be set in intervals. For example, peak, off-peak and
super off-peak configurations. In doing so, the computational
complexity and, hence, the fast operation of the system would not
be compromised.

Since L, R and U are convex functions within the prescribed
limits, the weighted sum of these functions, F, is also convex. The
optimisation problem can be expressed as

Table 1 CO2 intensities of fuel sources that make up the
majority of UK power grid generation [31, 38]
Fuel type CO2 intensity, Cm, gCO2eq/kWh
coal 800
oil 650
open cycle gas 526
combined cycle gas 427
biomass 100
wind 57
solar PV 50
nuclear 23
hydro 7
 

Fig. 2  Non-decreasing utility functions given by (7) for four EVs
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max
X, p

F(X, P, p, f )

subject to ∑
n = 1

N
yn ≤ C

Tn
(min) ≤ yn ≤ Tn

(max) or yn = 0, ∀ n ∈ N
pmin ≤ p ≤ pmax

(12)

where N := [1, 2, …, N], C is the transformer capacity and pmin and
pmax are the limits on the price that can be charged for a unit of
electricity as defined by the electricity provider's costs and
government policy, respectively.

In order to realise the system described, interaction between the
RSU and the players is required. Specifically, each EV must send
the following parameters when entering the road: bn, sn, Tn

(min) and
Tn

(max). In addition, for long stretches of road in which EVs can
expect to obtain a significant amount of charge, bn and sn would
also need to be updated. The retailer must update pmin and pmax
when these change but here these limits are assumed constant.
Finally, the regulator is required to update the carbon factor, f, as
the grid conditions vary. Notably, the RSU is not required to send
any information back to the players but must track the positions of
the EVs and apply appropriate charging rates.

4.5 Schematic overview

The multi-objective optimisation problem outlined in Section 4.4
must be solved when a system parameter changes. The outputs of
the optimisation problem are the individual charging rates assigned
to each EV within the system, and the price of electricity. As such,
the formulation of the optimisation problem, outlined in Sections
4.1–4.4 defines the action of the DSM method; the system demand
is modified in accordance with user need-to-charge, the carbon
factor of the generation system and the bounds on the minimum
and maximum possible electricity price. A schematic overview of
the process is given in Fig. 3. Diamonds are used to represent
questions about the state of the system, blue and red arrows
indicate positive and negative responses, respectively, and
rectangular boxes indicate an action the system must take. 

4.6 Performance metrics

To assess the performance of the DSM method, it will be compared
to a first-come-first-served (FCFS) allocation whereby, as far as
possible, EVs receive their maximum possible charging rate,
allocated according to their order of arrival to the road. EVs at the
front of the queue receive their maximum charging rate and, when
this is no longer possible, the next EV receives the remaining
capacity and all those following receive no charge. Furthermore,
this method is considered in the case where all of the supply is
from the grid, and with renewable integration, separately. The
performance of the DSM method will ultimately be assessed by its
ability to:

(1) Control the demand profile: The UK, and indeed global,
demand cycle consists of low demand late at night and early in the
morning and much greater demand during the middle of the day –
typically containing two distinct peaks. Such a profile is
problematic for generation infrastructure since this requires a large
installed capacity to accommodate the peaks and an ability to
quickly respond to the behaviour of the loads. This leaves much of
the capacity unused for large portions of the day and load
variability significantly limits the generation techniques that can be
used. Flexible loads that can alter their consumption inline with
generation, therefore, have the potential to significantly reduce this
problem in manufacturing a flatter, more manageable, demand
profile. As such, the proposed system should demonstrate the
ability to act as a flexible load. That is, reducing consumption
when generation is strained and conversely, allowing increased
transfer during off-peak times.
(2) Reduce CO2 production: Road transport makes up ∼20% of EU
carbon emissions [39]. This will undoubtedly reduce with

increased penetration of EVs. However, in this future scenario,
emissions associated with an individual EV's usage will be defined
considerably by the generation make-up at time of charging. By
introducing flexible loads such as the proposed DRS, significant
reductions in associated emissions are expected. In order to realise
ambitious carbon emission reduction targets, the ability of DSM
methods to contribute to these reductions will undoubtedly make
the implementation of such systems appealing for government
investment. Performance with respect to CO2 emissions is,
therefore, interrogated.
(3) Fairly distribute resources: The expected benefits with respect
to (1) and (2) should not come at the expense of system fairness.
That is, the disparity in user experience should be kept to a
minimum. The following is introduced as a measure of how
satisfied a given user is

rn =
∑t = 0

T xn
(t)

bn
, (13)

where t is the time step and T is the total time that the nth EV is on
the DRS. Simply, the total charge received as a proportion of the
available battery capacity when entering the road.

To characterise inequalities in user experience, the Gini coefficient
is used. Originally used as a measure of income inequality, it can
be described as the half of the average absolute difference of all
pairs of items in the set scaled by the average or, simply [40]

G =
∑i = 1

N ∑ j = 1
N ri − r j

2N∑i = 1
N ri

. (14)

Clearly, if ri = r ∀i ∈ N, then G = 0, representing complete
equality, and if the set only contains a single non-zero value, then
G = 1, representing complete inequality.

5 Results and discussion
This section contains analysis of the performance of the proposed
system. The parameters used for simulation are given in Section
5.1, the effects of the DSM method on the demand profile, CO2
production and fairness are discussed in Sections 5.2–5.4,
respectively.

5.1 Simulation setup

Historical data was used to simulate the system over a 24 h period
where wind speeds, traffic flow rates and grid make-up exhibit
significant variation. Wind speed data was taken from The
University of Edinburgh School of Geoscience at 1 min intervals

Fig. 3  Schematic overview of the DSM method
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throughout the day for a randomly selected day in September 2016
[41]. By incorporating real and fine-grained wind speed data, the
true intermittency and volatility of the renewable resource can be
simulated. The implicit assumption, therefore, is that this day is
indicative of typical conditions. In conjunction, a single 1 MW
Vergnet wind turbine's wind–power characteristics curve is used to
estimate the energy generated from the wind [42]. A linear
relationship between wind speed and power output has been
assumed between cut-in and cut-out wind speeds.

Traffic flow rates are taken from the M6, recorded by Highways
England at 15 min intervals with the assumption that a third of the
traffic flow through the road is over a single lane, in this case the
charging lane [43], and a one mile stretch of road is simulated. The
composition of the grid's generated electricity was taken from
GridWatch at 15 min intervals [44].

The transformer capacity, C = 1000 kW, is chosen arbitrarily
such that it constrains the system at several points during the day.
By doing so, the performance of the system when the capacity limit
is reached can be investigated. Limits on the price of electricity

have been set at £0.10 ≤ p ≤ £0.30. This will account for the
minimum price necessary for the retailer to cover its costs while
capping the upper amount to ensure an unreasonable price is not
charged to users. The values chosen are relative to a typical
average electricity cost in the UK of 0.12 £/kWh [45], whilst
recognising that due to the value of the service to users, a higher
rate can reasonably be expected. A constant velocity of 70 mph has
been assumed for each vehicle in line with UK motorway speed
limits.

Minimum charging rates for each EV have been chosen
randomly with a uniform distribution between 2 and 5 kW to
recognise that different EV manufacturers will have different lower
charging limits. Maximum charging rates vary considerably
between EV models. Typical low power cars such as Volkswagen
and Nissan models have 50 kW maximum charging rates [46]
while higher power Telsa models can charge at up to 140 kW in the
static case [47]. For the purpose of simulation, charging rates have
been modelled as a normal distribution around 75 kW with a
standard deviation of 20 kW, capped at 100 kW in line with the
findings of the Highways England Feasibility study for dynamic
charging [8].

Typical battery sizes for EVs range from 30 to 100 kWh [46].
For simulation, a normal distribution with a mean of 50 kWh and
standard deviation 20 kWh has been assigned to the available
capacity when entering the road.

A summary of simulation parameters is presented in Table 2.
N(μ, σ) is used to denote a normal distribution with mean, μ, and
standard deviation, σ, and U(a, b) is used to denote a uniform
distribution between a and b. 

The profiles of the carbon factor, f, as defined in Section 4, and
the traffic flow rate are shown in Fig. 4. It can be seen that times of
heavy traffic coincide with times of day where the generation is
producing high levels of CO2 – compounding the effect of
consuming grid-generated electricity at peak times. This
coincidence is due to heavy electricity usage when people wake up
and when they return home, which naturally occurs at the times
people travel to and from work. 

The DSM method is used with player weights of α = 0.1,
β = 0.0075 and γ = 0.8925 throughout this section except when
varying the weights is explicitly stated. These are chosen as a good
balance that demonstrates the beneficial operation of the method.
The simulation is carried out using MATLAB, with the fmincon
function used to solve the quadratic optimisation problem in (11) at
each iteration. In doing so, the interior-point method is utilised
[48]. As the problem in question is a convex optimisation problem,
as discussed in Section 4.4, this convex solver is appropriate.
Moreover, by classifying the problem as such, the computational
cost is significantly reduced as local optima are, by definition,
global optima. When simulating the 24 h period, the optimisation
step takes <0.1 s throughout the entire simulation using a laptop
version of MATLAB. As such, it is deemed that the computational
cost of the method is small and entirely appropriate for the DRS.

5.2 Demand profile

The total demand over the 24 h period is shown in Fig. 5 for the
proposed DSM method and the FCFS method. The energy supplied
to the DRS by local renewable generation is also shown where
random variation can be observed. Note that local generation
exceeds DRS consumption at various points during off-peak times,
and this may be sold back to the grid but is not depicted here.
Fig. 6 presents the average EV demand and renewable energy
supplied in this period for the DSM method. 

From Fig. 5, it can be seen that, during times of day
corresponding to both low traffic flow and low carbon factor, in the
periods 0:00–6:00 and 21:00–24:00 as depicted in Fig. 4, there is
no difference between the FCFS and DSM methods. This is
because each EV is receiving its maximum possible transfer rate
whilst on the road. The graphs diverge from ∼6:00 to 20:00. For
the FCFS method, the transformer capacity is reached at two
distinct sections of the day. In the DSM method, lower peaks are
observed at these times as a result of taking into account the
negative impact of high carbon factor on the overall system utility.

Table 2 Simulation parameters
Parameter Value
transformer capacity, kW C = 1000
maximum electricity price, £ pmax = 0.30
minimum electricity price, £ pmin = 0.10
car speed, m/s v = 31.3
maximum charging rate, kW 40 ≤ Tn

(max) ∼ N(75, 20) ≤ 100
minimum charging rate, kW 2 ≤ Tn

(min) ∼ U(2, 5) ≤ 5
available battery capacity, kWh 3 ≤ bn ∼ N(50, 20) ≤ 100
satisfaction parameter 1 ≤ sn ∼ N(1.5, 0.2) ≤ 2

 

Fig. 4  Carbon factor and traffic flow rate profiles
 

Fig. 5  24 h demand profile for FCFS and DSM methods and the energy
supplied from local renewable generation
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Since the optimisation variable is the energy demanded from
the grid, the peak between 7:00 and 10:00 is distinctly lower than
the peak later in the day as renewable generation is also lower.
Accordingly, the average EV demand during these times shows
noticeable drops, as seen in Fig. 6, where it is clear that the average
demand follows renewable generation – offset by the optimised
grid demand.

It is noted that the volatility of the local generation, and hence
the demand profile of the DSM method, is over exaggerated. This
is because a direct link between wind speed and turbine power
output is used where in reality the output would be somewhat
smoother due to system inertia. For the DSM method, the average
price observed throughout the day was found to be
p = 0.1044 £/kWh.

Varying the weights assigned to each player's utility function, α,
β and γ from (11), alters the profile observed with the DSM
method. Fig. 7 displays the resultant daily demand profile at
various combinations of α, β and γ. Each scenario is labelled with a
number for ease of referencing. 

Scenario 2 shows the effect of optimising for the EV users’
utilities exclusively. That is, each EV receives its optimum charge
rate as per the utility function and the average price is
p = 0.1000 £/kWh – the minimum constraint. Since no additional
benefit is gained for higher transfer rates, each EV receives rate,
yn*, the rate corresponding to the maximum of the quadratic
function, un(yn, p). Scenario 2 shows the effect of introducing the
retailer to the system. Here, each EV receives its maximum transfer
rate as far as the transformer capacity allows since, for any given
EV, once their maximum charge rate is reached then

un(p) = yn*(bn − p) − 1
2 syn

*2, (15)

and the corresponding retailer utility is

Ln(yn, p) = ynp, (16)

so increasing demand at constant price can only increase system
utility. Increasing α, therefore, has the effect of pushing the curve
up as far as yn ≠ Tn

(max) ∀n ∈ N. Scenario 3 shows the effect of
increasing the weight on the regulator's utility where an average
price of p = 0.1045 £/kWh is observed. Overall demand is
decreased, particularly during peak times. This follows from the
regulator's utility function. Since, R ∝ f X2, it has the greatest effect
around the peaks where f is at daily maxima and so indeed is total
demand.

In summary, by appropriately weighting the goals of the
stakeholders, the profile can be varied considerably. This feature
means that the operation of the system can easily be altered for
optimum performance in different situations and, practically, these
would be set by the regulator.

Substituting (3), (6) and (10) into (11), setting the constants
Lmax, Rmax and Umax to 1, and making use of xn = yn − Pn, the partial
derivatives of the system utility for a single user can be calculated

∂Fn
∂yn

= αp + 2β( f − 1)(Pn − yn) + γ(bn − p − yns), (17)

∂Fn
∂p = yn(α − γ) . (18)

From this, the effect of the weights on the marginal utility gain
with respect to each variable can be seen. From (17), increasing the
proportion of renewables supplied, Pn, with constant demand, yn,
increases overall utility given that f > 1. Increasing α adds utility
at constant price, and, since yn ≥ Pn, increasing β always decreases
utility. From (18), increasing price at constant demand can only be
beneficial if α > γ and, therefore, the optimised price for the cases
shown is close to the minimum constraint.

5.3 CO2 production

The hourly CO2 production of the DSM method, alongside FCFS
with renewable integration and FCFS grid-only systems are given
in Fig. 8. 

During the middle part of the day, when the applications of the
two methods diverge, the hourly CO2 production is materially
decreased – particularly around the two peak regions. From 0:00 to
6:00, and 21:00 to 24:00, f < 1 and therefore the regulator does
not act on the system and the FCFS and DSM methods have
comparable carbon emissions. In the interval 6:00–21:00, the
carbon factor, f > 1. As such, the regulator influences the demand
during this period. Separation between DSM and FCFS methods is
greater around the two peaks where both the carbon factor and

Fig. 6  Average EV demand and renewable energy supplied over 24 h
 

Fig. 7  24 h demand for the DSM method with various α, β and γ values
 

Fig. 8  Hourly CO2 production profiles for three considered cases
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system demand are high – in accordance with the regulator's utility
function.

The difference between the FCFS system with and without
renewables is simply offset by the energy generated locally. From
the FCFS, grid-only, curve it can be seen that the CO2 production
follows the demand curve very closely as the load is inflexible.

Over the whole day, the CO2 production for the three
considered cases were 2.54 × 103, 3.25 × 103 and 4.35 × 103 kgCO2
equivalent, respectively. There is a 21.8% reduction in CO2
production over the whole day as a result of applying the proposed

DSM method over a FCFS system and a 41.6% decrease when
compared to a FCFS, grid-only system.

Fig. 9 displays CO2 emissions with the DSM method where the
theoretical power output of the wind turbine has been increased
from its normal level to double that in ten increments, at every time
step. As such, this provides some insight into the effect of adding
more local generation capacity in the same wind conditions. 

Notably, for small increases in the amount of renewable energy
supplied, significant reduction in emissions occurs and, conversely,
as renewables approach 100%, the marginal gains diminish. That
is, each additional increase in the local energy generated has
decreasing effect in reducing emissions. This can be seen here as
the lines representing each incremental increase become closer
together.

In addition, the difference in emissions between successive
increments is larger around the peaks. This follows as greater gains
can be expected when the average renewable power and
consumption become closer together. At the off-peak times, the
average renewables available quickly becomes greater than average
consumption but, due to variability in the local generation, grid
electricity is still required to supplement demand. This follows as
increasing installed capacity does not reduce the volatility of the
supplied power.

The benefits, then, are clear with respect to carbon emissions as
it is shown that the DSM method can significantly reduce
emissions and, furthermore, small amounts of local generation can
produce significant benefits. This makes the system particularly
attractive to authorities responsible for UK road infrastructure with
ambitious CO2 reduction targets.

5.4 Fairness

The relative satisfaction of each EV, r, as defined in (13), is the
ratio of the amount of charge received whilst on the road to the
available battery capacity when entering the road. The distribution
of relative satisfaction for the DSM and FCFS methods are shown
in Fig. 10 for the period 6:00–20:00. Outside of this interval the
fairness achieved is the same for both methods as each EV receives
its maximum charging rate when few EVs are on the road. The
achieved values of relative satisfaction were distributed into 500
equal bins and the frequency of values in each bin is plotted. In
addition, the data was fitted to a ‘generalised extreme value’
distribution which is plotted on top of the raw values. For clear
viewing, values corresponding to r > 0.075 have not been included
in the figure as these are near zero. The hourly average Gini
coefficient, as defined in (14), for the relative satisfaction metric is
plotted for the DSM and FCFS allocation methods in Fig. 11 for
the same period. 

From Fig. 10, it can be seen that the expected value of r is
marginally lower for the DSM method as expected since the overall
demand of the system is materially reduced with
rDSM = 0.0251 ± 0.0338 as opposed to rFCFS = 0.0295 ± 0.0397,
within a single standard deviation. The spread of values for the
random allocation method is greater than that of the DSM method.
This means that more EVs are receiving a proportionally large or
small amount of charge and the disparity between user experience
is greater. For this reason, it can be seen that the probability
distribution follows the FCFS data points less closely since the
distribution is skewed by non-zero frequencies at high values of r.

From Fig. 11 it can be seen that, during peak hours, when DSM
significantly reduces the overall power transfer, system fairness is
not adversely effected. In fact, it is improved with an average
reduction of 4.32% in the Gini coefficient in this period.

In summary, the changes made to the daily demand profile and
CO2 emissions caused by the DSM method do not negatively
impact user experience to a considerable extent.

6 Conclusion
The proposed DSM method produces a number of benefits for the
future DRS. By modelling a regulator in the multi-objective
optimisation problem, the system acts to reduce the power drawn
from the grid when carbon emissions per unit energy are high.

Fig. 9  Hourly CO2 production profile with incremental 10% increases in
the power supplied by local renewable energy generation

 

Fig. 10  Distribution of user relative satisfaction
 

Fig. 11  Gini coefficient for DSM and FCFS methods
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Since this typically occurs during peak times, demand reduces
during these intervals which produces a smoother, more
manageable daily profile. In this way, the DRS acts as a variable
load to the power grid. When compared to a FCFS allocation
method, with integrated renewables and without, the DSM method
reduced CO2 emissions by 22 and 42%, respectively. Furthermore,
the described benefits do not significantly impact the relative
satisfaction of the users and system fairness is shown to improve
by 4.32%.

7 Limitations and future work
While the described system has a number of benefits, it is
recognised that there are limitations to the proposed scheme.
Specifically, in modelling a DSM method for application in
dynamic charging, focus is on demonstrating how such a system
can operate under varying conditions. In doing so, the approach to
balancing the objectives of the regulator, retailer and EV users has
not been explored. In addition, a simplistic approach has been
taken with regard to setting the electricity price which results in
near constant price during the simulated period. Therefore, it is
suggested this work be extended to incorporate a robust time-of-
use pricing scheme and a framework for setting weights assigned
to players’ goals such that all parties are satisfied. Finally, it is
advised that the capabilities of hardware necessary to realise such a
system be interrogated. That is, the controllers required to provide
each EV with a unique charging rate and the low latency vehicle
sensor and communication infrastructure necessary to realise the
proposed system.
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