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We present and discuss the “Tetrad Model”, a large color/flavor embedding of the Standard model which
has an interacting ultraviolet fixed point. It is shown that its extended-Pati-Salam symmetry is broken
radiatively via the Coleman-Weinberg mechanism, while the remaining electroweak symmetry is broken
when mass-squared terms run negative. In the IR the theory yields just the Standard Model, augmented by
the fact that the Higgs fields carry the same generation indices as the matter fields. It is also shown that the
Higgs mass-squareds develop a hierarchical structure in the IR, from a UV theory that is asymptotically
flavor symmetric, opening up an interesting direction for explaining the emergence of the observed flavor
structure.
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I. INTRODUCTION AND OVERVIEW OF
EMBEDDING

A recent series of papers [1,2] suggested a framework for
embedding the Standard Model (SM) in an asymptotically
safe ultraviolet (UV) completion [3]. (For some related
discussions of asymptotic safety applications see [4–22].
For recent reviews see [22–24].) The framework is partially
perturbative based on the weak ultraviolet (UV) fixed
points of [12,16,17] (hereafter LS). These are the UV
counterparts of the better known Caswell-Banks-Zaks
infrared (IR) fixed points, in a large color and flavor
Veneziano limit. By suitable adjustment of the numbers
of colors and flavors, a UV fixed point can be achieved that
is arbitrarily weakly coupled. Coupled with the “large
flavor” fixed points of [25–30] operating for the electro-
weak gauge couplings, one finds an asymptotically safe
extension of the Pati-Salam (PS) theory, that has a UV fixed
point with a gauge group SUðNCÞ × SUð2ÞL × SUð2ÞR and
a natural breaking down to the SM gauge group in the IR
driven partially by radiative symmetry breaking. The main
observation of [2] was that the two kinds of fixed points
(Veneziano and large Nf) do not interfere with each other.

Despite this attractive framework for embedding the
Standard Model, the theories presented in [1,2] did not
provide a mechanism for fully removing the extraneous
degrees of freedom (d.o.f.) in the IR to leave purely the SM.
In particular in this simplest realization, there remain in the
low energy theory a large multiplicity of electroweak
SUð2Þ doublets that are unmatched and hence massless.
In this paper we provide a complete phenomenological

framework, by an enhancement that yields a theory flowing
from an asymptotically safe fixed point in the UV to
precisely the SM, augmented only by additional Higgses.
In particular there are no other light superfluous states
remaining in the theory. The additional Higgses are
furnished with the same generation numbers as the matter
fields, so their vacuum expectation values (VEVs) may
therefore ultimately be able to explain flavor hierarchies
(although we do not attempt this in the present paper).
Moreover symmetry breaking can be entirely radiative. It

can happen in two ways (or by a combination of them). One
possibility is the traditional radiative symmetry breaking
mechanism of Coleman and Weinberg [31–33]. This can
be shown to occur analytically driven by a single quartic
coupling running negative andgenerating aminimumaccord-
ing to thepattern discussed in [32]. This canbe responsible for
the bulk of the breaking of the extended PS gauge group. At
the same time the PS breaking generates a positive mass-
squared for the Higgs at the high scale due to a portallike
coupling between the electroweak Higgs and the PS Higgs.
This can run negative in the IRdue to largeYukawa couplings
from its initially positive boundary value at the PS-scale.
The alternative possibility is that radiative symmetry break-
ing is instead dominated by the dimensionful couplings
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(i.e., mass-squared terms) and the PS breaking minimum is
generated radiatively when they run negative due to the large
Yukawa couplings that have to be present in the LS gauge-
Yukawa theories. This was the mechanism discussed in [1],
which is essentially the asymptotically safe version of the
radiative symmetry breaking in the supersymmetric Standard
Model [34]. Thus one appears to have the freedom to turn on
asmuchor as little of the classically dimensionful operators as
desired in the symmetry breaking.
In order to present our model we will also advocate in

this paper the use of “quiver” diagrams. Such diagrams can
greatly alleviate the generic problem that the UV of
asymptotically safe models is complicated because they
necessarily have to include extra d.o.f., and as a conse-
quence the structure is often hard to appreciate (or present),
even though it may in reality be relatively simple. Although
(depending on the model in question) it may only
be possible to represent part of the gauge groups in
quiver diagrams (if some of the states do not easily fall
into bifundamentals), their use can greatly ease the con-
struction of phenomenologies within an asymptotically
safe framework.

II. THE “TETRAD” MODEL (TM)

A. Structure in the UV

We begin by recapping the LS fixed point of [16], whose
field content is shown in Table I, where midalphabet latin
indices i; j; k… are used to label flavor, while early-
alphabet latin indices a; b; c… label color. The particle
content is represented as in a conventional quiver diagram,
in Fig. 1. As usual, the circular nodes represent the SUðNCÞ
gauge factor, which is crucial in establishing the LS
fixed point. The square nodes represent the flavor groups,
SUðNFÞL ⊗ SUðNFÞR, which will become partially
gauged in order to accommodate the electroweak gauge
factors of the SM. In [1,2] the LS model was augmented by
colored scalars in order to break the gauge group down to
the SM. However as mentioned in the Introduction, there
remain in such models light doublets which are charged
under the electroweak SM gauge groups.
Let us now proceed directly to the phenomenologically

viable augmented model that we will propose in this paper.
As we shall see the model leaves no light states, other than
those appearing directly in the SM, beyond an enhanced
Higgs sector (with the Higgs fields carrying the same

generation indices as the matter fields). In this section we
will lay out the spectrum and pattern of VEVs that need to
be achieved in order to realise the StandardModel in the IR,
and then in the following section we consider the dynamics
that achieves them. The augmented model is shown in
Table II and its corresponding quiver diagram in Fig. 2. It
contains four elements; hence we refer to it as the Tetrad
Model (TMTM). As in [2] it is an extension of the PS model
to a larger unified group. Note that the PS gauge unification
to SUð2ÞR is adopted to take advantage of the SUð2Þ large-
flavor fixed points, introduced in [25,26].Wewill use aWeyl
notation and display the left and right fermions explicitly.
We use the following nomenclature for the spectrum:
Fermions will be denoted with Q and q’s, while scalars
will be denoted with S̃ and H’s.1 The flavor indices i ¼
1.::NF have three generations of components gauged under
electroweak SUð2ÞL and SUð2ÞR. However we have to
gauge the right-handed component of the electroweak gauge
group in the correct way to yield the SM spectrum. Indeed
the “squarks” S̃ have their own SUðNSÞ flavor symmetry,
and the first two flavors also have to be charged under
SUð2ÞR in order to give the correct PS breaking. The
simplest solution is then to identify SUð2ÞR¼½SUð2Þr⊗
SUð2ÞS�diag. This leads to hyperchargeY ¼ ð2Tð3Þ

R þ B − LÞ
and charge Qe:m:¼1

2
ð2Tð3Þ

R þ2Tð3Þ
L þB−LÞ, where Tð3Þ

L=R ¼
diagð1

2
;− 1

2
Þ and B − L is the diagð1

3
; 1
3
; 1
3
;−1; 0; 0…; 0Þ

generator of SUðNCÞ. As we shall see, for the LS gauge-
Yukawa fixed point to be weakly coupled we require
NF≈21

4
NC.

The necessity of the additional fermionic fields
q; q̃ can be deduced from the requirement that they are
able to remove the unwanted light fermionic d.o.f.
while maintaining the chiral symmetry. The allowed

TABLE I. Fields in the arbitrarily weakly coupled asymptotic
safe fixed point of [16].

SUðNCÞ SUðNFÞL SUðNFÞR Spin

Qai □ □ 1 1=2
Q̃ia

□̃ 1 □̃ 1=2
Hi

j 1 □̃ □ 0

FIG. 1. Quiver diagram of the fixed point theory of [16]. Solid
lines represent fermions; dashed lines represent bosons.

1The S̃ scalars were referred to as Q̃ in [2], but in the present
context this would cause confusion.
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couplings one can consider for the generation of the UV-
fixed point are

LUVFP ⊃ LKE þ
yffiffiffi
2

p Tr½ðQHÞ · Q̃� þ ỹffiffiffi
2

p Tr½qH†q̃�

−
Ỹffiffiffi
2

p Tr½ðS̃ ·QÞq̃� − Yffiffiffi
2

p Tr½ðQ̃ · S̃†Þq�

− u1Tr½H†H�2 − u2Tr½H†HH†H�
− v1Tr½H†H�Tr½S̃† · S̃� − w1Tr½S̃† · S̃�2
− w2Tr½S̃† · S̃S̃† · S̃�; ð1Þ

where the trace is over the flavor indices and the dot refers
to color contraction. As we shall see the Y and Ỹ Yukawa
couplings are responsible for giving masses to the
unwanted d.o.f. in the IR once S̃ gets a VEV. They are
written above somewhat schematically as clearly they

cannot couple all the flavor components in the same
way due to the SUð2ÞR gauge invariance. They will be
treated explicitly below.
As in [2] we will not consider the flavor breaking

coupling (schematically)

LSUðNFÞ ¼ −v2Tr½H†HS̃† · S̃�: ð2Þ

This coupling can be fixed to be precisely zero, where it
will remain along the flow. (It can of course be forbidden on
grounds of preservation of flavor symmetry which we will
associate with the classically relevant operators only.) As
we shall see the flavor conserving portal coupling v1 can
generate a mass-squared for the electroweak Higgses, and
we keep it in the analysis.
We can in addition include the aforementioned dimen-

sionful “soft-terms”. Unlike the classically dimensionless
couplings these will be allowed to explicitly violate the
flavor symmetry. They can be written most generally in the
form

LSoft ¼ −m2
h0
Tr½H†H� −

XN2
F−1

a¼1

Δ2
aTr½HTa�Tr½H†Ta�; ð3Þ

where Ta are the generators of the SUðNFÞdiag flavor group.
Being classically relevant, the soft terms cannot disrupt the
UV fixed point, but can serve to generate symmetry
breaking themselves, and also remove any Goldstone
modes associated with the spontaneously broken global
flavor symmetries.

B. Structure in the IR—emergence
of the SM from the TM

Next let us confirm that the SM emerges in the IR from
the Tetrad Model. It is useful for this purpose to explicitly
write the particle content in terms of SM quantum numbers
in order to discuss the couplings and determine the required
values for NF, NS: the explicit representations are (c.f. the
usual PS model in e.g., [35])

TABLE II. Fields in the asymptotically safe “Tetrad” Model, where NS ¼ NC − 2 and NF ≈ 21
4
NC. The top 2ng ¼ 6 components of

flavor SUðNFÞ correspond to SUð2Þmultiplets, where ng is the generation number. The gauging for the usual Pati-Salam SUð2ÞR group
is identified as SUð2ÞR ¼ ½SUð2Þr ⊗ SUð2ÞS�diag.

SUðNCÞ SUðNFÞL ⊃ SUð2ÞL ⊗ SUðngÞL SUðNFÞR ⊃ SUð2Þr ⊗ SUðngÞr SUðNSÞ ¼ SUðNC − 4ÞS ⊕ SUð2ÞS Spin

Qai □ □ ⊃ ð□;□Þ 1 1 1=2
Q̃ia

□̃ 1 □̃ ⊃ ð□̃; □̃Þ 1 1=2
Hi

j 1 □̃ ⊃ ð□̃; □̃Þ □ ⊃ ð□;□Þ 1 0

S̃a;l¼1.:NS
□̃ 1 1 □̃ ¼ □̃NC−4 ⊕ □̃2

0

q̃il 1 □̃ ⊃ ð□̃; □̃Þ 1 □ ¼ □NC−4 ⊕ □2 1=2
qlj 1 1 □ ⊃ ð□;□Þ □̃ ¼ □̃NC−4 ⊕ □̃2

1=2

FIG. 2. The “Tetrad” quiver that gives the Standard Model in
the IR. Note that is not possible to illustrate the gauging of the
electroweak symmetries on such a diagram. On the right, the
gauging is on the SUð2ÞR ¼ ½SUð2Þr ⊗ SUð2ÞS�diag factor, with
the top 2ng indices of SUðNFÞL;R flavor transforming as doublets
under SUðngÞ ⊗ SUð2ÞL;R.
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Q ¼

0
BBBBBBBBBBBBBBB@

q1 l1 � � �
� Ψ1

2

Ψ−1
2

�
� � �

q2 l2 � � �
� Ψ1

2

Ψ−1
2

�
� � �

q3 l3 � � �
� Ψ1

2

Ψ−1
2

�
� � �

..

. ..
. . .

.

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{NC 1
CCCCCCCCCCCCCCCA

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

NF; Q̃ ¼

0
BBBBBBBBBBBBBBB@

�
uc

dc

� �
νce

ec

�
� � �

� Ψ̃−1
2

Ψ̃1
2

�
� � �

�
sc

cc

� �
νcμ

μc

�
� � �

� Ψ̃−1
2

Ψ̃1
2

�
� � �

�
bc

tc

� �
νcτ

τc

�
� � �

� Ψ̃−1
2

Ψ̃1
2

�
� � �

..

. ..
. . .

.

1
CCCCCCCCCCCCCCCA

; ð4Þ

q ¼

0
BBBBBBBBBBBBBBB@

�
ψ0 ψ1

ψ−1 ψ0

�� ψ 1
2

ψ−1
2

�
…

� ψ 1
2

ψ−1
2

�
�

ψ0 ψ1

ψ−1 ψ0

�� ψ 1
2

ψ−1
2

�
…

� ψ 1
2

ψ−1
2

�
�

ψ0 ψ1

ψ−1 ψ0

�� ψ 1
2

ψ−1
2

�
…

� ψ 1
2

ψ−1
2

�

..

. ..
. ..

.

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{NS¼NC−2 1
CCCCCCCCCCCCCCCA

; q̃ ¼

0
BBBBBBBBBBBBBBB@

�
ψ̃0 ψ̃−1

ψ̃1 ψ̃0

�� ψ̃−1
2

ψ̃ 1
2

�
…

� ψ̃−1
2

ψ̃ 1
2

�
�
ψ̃0 ψ̃−1

ψ̃1 ψ̃0

�� ψ̃−1
2

ψ̃ 1
2

�
…

� ψ̃−1
2

ψ̃ 1
2

�
�
ψ̃0 ψ̃−1

ψ̃1 ψ̃0

�� ψ̃−1
2

ψ̃ 1
2

�
…

� ψ̃−1
2

ψ̃ 1
2

�

..

. ..
. ..

.

1
CCCCCCCCCCCCCCCA

; ð5Þ

S̃ ¼
�
SPS
Φ0

�
¼

0
BBBBBBBBBBBB@

�
d̃c

ũc

� �
ẽc

ν̃c

� � ϕ̃−1
2

ϕ̃1
2

�
� � �

� ϕ̃−1
2

ϕ̃1
2

�

T̃−1
6

ϕ̃1
2

ϕ̃0 … ϕ̃0

..

. ..
. ..

. ..
.

T̃−1
6

ϕ̃1
2

ϕ̃0 … ϕ̃0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{NC 1
CCCCCCCCCCCCA

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

NS ¼ NC − 2; ð6Þ

H ¼

0
BBBBBBBBBBBBB@

�
h0u h−d
hþu h0d

�
11

�
h0u h−d
hþu h0d

�
12

�
h0u h−d
hþu h0d

�
13

� � �
�
h0u h−d
hþu h0d

�
21

�
h0u h−d
hþu h0d

�
22

�
h0u h−d
hþu h0d

�
23

� � �
�
h0u h−d
hþu h0d

�
31

�
h0u h−d
hþu h0d

�
32

�
h0u h−d
hþu h0d

�
33

� � �

..

. ..
. ..

.
H0

1
CCCCCCCCCCCCCA

; ð7Þ

where H0 is an ðNF − 6Þ × ðNF − 6Þ scalar which is un-
charged under the SMgaugegroups, and the sufficies denote
Qe:m:. The assignment of the remaining fields is obvious.
First note that the top 2ng (where ng ¼ 3 is the number of

generations, but it is often useful to leave it generic) entries of
flavor are charged under the SUð2Þ gauge groups. Therefore,

given the couplings and matter content, there are ng gen-
erations of SM Higgs doublets in the top 2ng × 2ng compo-
nents of H. Assuming that ng ¼ 3, this corresponds to 18
separate Higgs SUð2ÞL doublets. Clearly one ultimately
requires these to be lifted in a hierarchical way so that there
is one dominant lighter Higgs which gets a VEV, which will
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be a mixture of the 18 original ones. In contrast with [2] we
will assume that the scalars S̃ are gauged only under color
except for the first two flavors which are charged under the
gauged SUð2ÞR. (The latter choice is flexible.)
We repeat that we are assuming flavor degeneracy in all the

couplings of (1). One could instead for example take the y
Yukawacouplings to breakSUðNFÞL × SUðNFÞR symmetry,
but this would require a reanalysis of the UV fixed point
behavior of the theory so we instead adopt the philosophy of
[2]. As there is a pair of Higgs multiplets for each generation,
this is indeed an attractive possibility for introducing SM-
flavor structure.Moreover as shown in [2] and expanded upon
below, the flavor universal part of such operators flows to
relatively smaller absolute values, “exposing” flavor hierar-
chies during the flow, so that they become dominant in the IR.
There are two elements to the gauge symmetry breaking.

First there are VEVs for S̃. We must choose NS ¼ NC − 2,
so that they can be rearranged by suitable color and
SUðNSÞ flavor rotations into the form

hS̃i ¼ Ṽ

0
BBBBB@

0 0 0 0 � � � 0

..

. ..
. ..

.
1 ..

.

..

. ..
. ..

. . .
. ..

.

0 0 0 0 � � � 1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{NC 1
CCCCCA

9>>>>>=
>>>>>;
NS ¼ NC − 2; ð8Þ

with the VEV ϕ̃0 in (6) being of the form hϕ̃0i ¼ ṼINC−4
,

where Ṽ is a constant. The SUð2ÞR orientation simply
determines the direction corresponding to the massless

right-handed “sneutrino”, so one may always choose a
basis in which the ν̃c andNC − 4 of the ϕ̃0’s on the diagonal
get a VEV. (Obviously the case NC ¼ 4 is the standard,
nonasymptotically free, Pati-Salam model.)
At this stage the gauge symmetry is broken to the

Standard Model as

SUðNCÞ×SUð2ÞL×SUð2ÞR→SUð3Þc×SUð2ÞL×Uð1ÞY:
ð9Þ

Given that the gauge symmetry can be broken as required,
one can focus on the excess states that need to be made
massive in order to end up with the Standard Model in the
IR. In particular there are of course (by design) very many
SUð2ÞL and SUð2ÞR doublets that should be removed at
low scales. The second component of symmetry breaking
that accomplishes this is that the block H0 of the Higgs
multiplets also acquire VEV along the diagonal,

hH0i ¼ V0INF−6: ð10Þ
Thanks to the y coupling, this gives the NF − 6 generations
of complete nondoublet SUðNCÞ multiplets masses yV0ffiffi

2
p ,

leaving untouched ngðNC − 4Þ of the SUð2ÞL doublets in
the QL, and SUð2ÞR doublets in the QR. Indeed in these
remaining ng generations of SUðNCÞ-colored multiplets,
only the first SUð4Þ components are to be identified as
matter fields, as in (4). The remaining states get masses Ỹ Ṽffiffi

2
p

and YṼffiffi
2

p from the Ỹ and Y couplings respectively to which we

now return, writing them with explicit indices,

LUVFP ⊃ −
Ỹffiffiffi
2

p QS̃ q̃−
Yffiffiffi
2

p S̃†Q̃q;

⊃ −
Ỹffiffiffi
2

p ðQaα
k S̃jaq̃kαjÞ −

Yffiffiffi
2

p ðQ̃aα
k S�ja qkαjÞ;

≡ −
Ỹffiffiffi
2

p ðΨ1
2

Ψ−1
2
Þâkϕ̃j

0;â

� ψ̃−1
2

ψ̃ 1
2

�k

j

−
Yffiffiffi
2

p ð Ψ̃−1
2

Ψ̃1
2
Þâ
k
ϕ̃�j
0;â

� ψ 1
2

ψ−1
2

�k

j

;

¼ −
Ỹ Ṽffiffiffi
2

p ðΨ1
2

Ψ−1
2
Þjk
� ψ̃−1

2

ψ̃ 1
2

�k

j

−
YṼffiffiffi
2

p ð Ψ̃−1
2

Ψ̃1
2
Þj
k

� ψ 1
2

ψ−1
2

�k

j

; ð11Þ

where a ¼ 1…NC are color indices, â ¼ 5…NC are the
NC − 4 color indices beyond the PS d.o.f., j ¼ 1…NC − 4
are the NC − 4 flavor indices of S̃ that are not charged
under SUð2ÞR, the indices α ¼ 1, 2 are the SUð2ÞL=R
indices, and k ¼ 1…ng are generation indices. Note that
as promised chiral symmetry dictates the choice
NS ¼ NC − 2, because NS flavor is locked to SUðNCÞ

color by the VEVof S̃. This leaves the first two columns of
q and q̃ which obtain their masses independently from only
the y, ỹ terms in (1).
It is easy to check that with this choice of colors and

flavors, and these VEVs, the remaining content in the IR is
that of the SM with Higgses carrying SUðngÞ generation
indices for the left- and right-handed fields.
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III. FLOW FROM THE UV FIXED POINTS
AND SYMMETRY BREAKING

A. The Tetrad Model contains the Coleman
Weinberg mechanism

Next let us turn to the dynamics, first illustrating the
appearance of traditional radiative symmetry breaking. As
there are many couplings involved, it is useful to break
down the evolution under renormalization group (RG) flow
into self-contained units. Indeed the crucial aspect of the
flow from the UV fixed point is that it is actually controlled
by two fixed points of the gauge and Yukawa couplings,
which form a closed system by themselves.
It will be convenient to define rescaled couplings as

follows:

αg ¼
NCg2

ð4πÞ2 ; αy ¼
NCy2

ð4πÞ2 ; αỹ ¼
NCỹ2

ð4πÞ2 ;

αY ¼ NCY2

ð4πÞ2 ; αỸ ¼ NCỸ2

ð4πÞ2 ;

αu1 ¼
N2

Fu1
ð4πÞ2 ; αu2 ¼

NFu2
ð4πÞ2 ; αv1 ¼

N2
Cv1

ð4πÞ2 ;

αw1
¼ N2

Cw1

ð4πÞ2 ; αw2
¼ NCw2

ð4πÞ2 : ð12Þ

To determine their fixed points, we require their RG
equations to order α3 ≡ ϵα2 in βg and order α2 ≡ ϵα in
βy;Y;Ỹ : defining ϵ ¼ −11=2þ xF þ xq=4 ¼ xF − 21=4 and
ϒ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αyαỹαYαỸ
p , and taking ng ¼ 3, the beta functions are

found to be

βg ¼ α2g

�
4

3
ϵþ

�
26

3
xF − 20

�
αg − x2Fαy − xFαY − xFαỸ

�
;

βy ¼ 4ϒþ αyðð1þ xFÞαy þ αỹ þ αỸ þ αY − 6αgÞ;
βỹ ¼ 4ϒþ αỹðð1þ xFÞαỹ þ αy þ αỸ þ αYÞ;

βY ¼ 2xFϒþ αY

�
2ð1þ xFÞαY

þ xF

�
1

2
αy þ

1

2
αỹ þ 2αỸ

�
− 3αg

�
;

βỸ ¼ 2xFϒþ αỸ

�
2ð1þ xFÞαỸ

þ xF

�
1

2
αy þ

1

2
αỹ þ 2αY

�
− 3αg

�
: ð13Þ

Since it is positive, the equation for βỹ ¼ 0 can only be
consistently met with αỹ ¼ ϒ ¼ 0. Moreover if any of the
other couplings are nonzero, it flows to zero in the IR, so
along the RG trajectory from any eligible fixed point it
must remain zero. There are also by inspection no positive
solutions with αy ¼ 0. In addition the last two equations

allow a fixed point if αY ¼ αỸ or one or both couplings
vanish. Hence one finds the possible flows shown in
Table III (where α�g is the fixed point value of the gauge
coupling, taking xF → 21=4).
Note that we do not require all the couplings to be

nonzero in order to have a nontrivial UV fixed point, but we
definitely need to reproduce the gauge-Yukawa behavior of
[16] that was observed in [2], while at the same time having
negative beta functions for the couplings that are required
to be nonzero in the IR, for phenomenological reasons.
Therefore we can reject the Gaussian fixed point A. The
second of these options, fixed point B, was the LS fixed
point that was utilized in [2], and leads to

B∶
βY
αY

¼ βỸ
αỸ

≈ −
3

1þ xF
αg → −

12

25
αg < 0; ð14Þ

so that both the Y and Ỹ couplings flow away from fixed
point B in the IR. Hence this fixed point is an interesting
Gaussian option for the Y and Ỹ couplings. In order to
assess the other possible fixed points, note that

βY − βỸ
αY − αỸ

¼ 2ð1þ xFÞðαY þ αỸÞ > 0: ð15Þ

Hence αY − αỸ shrinks in the IR, so if the flow begins in the
UV at C or D, it will be attracted to fixed point E. We
conclude that from the perspective of the couplings
g; y; ỹ; Y; Ỹ, any of B,C,D,E are suitable for an asympoti-
cally safe fixed point but, as it flows to the IR, the system is
attracted to the trajectory emerging from fixed point E,
driven by the Yukawa couplings Y; Ỹ. A numerical evo-
lution showing this crossover for the Yukawa and gauge
couplings is shown in Fig. 3.
Next we turn to the scalar couplings. Their beta functions

are given by

TABLE III. The collection of UV fixed points for the gauge
and Yukawa couplings: schematically the flow is from
A → B → C;D → E. Fixed points C,D,E are pseudofixed points
in the sense that the quartic scalar coupings do not have a fixed
point there. The only true nontrivial fixed point is the LS fixed
point of B.

Label α�g αỹ=αg αy=αg αY=αg αỸ=αg

A 0 0 0 0 0
B 25

18
ϵ 0 6

1þxF
→24

25
0 0

C 302
225

ϵ 0 6ð3þ4xFÞ
4þ7xFþ4x2F

→144
151

6
4þ7xFþ4x2F

→ 6
151

0

D 302
225

ϵ 0 6ð3þ4xFÞ
4þ7xFþ4x2F

→144
151

0 6
4þ7xFþ4x2F

→ 6
151

E 277
207

ϵ 0 6ð1þ4xFÞ
2þ5xFþ4x2F

→264
277

3
2þ5xFþ4x2F

→ 6
277

3
2þ5xFþ4x2F

→ 6
277
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βu1 ¼ 4αu1 ½8αu1 þ 8αu2 þ ðαy þ αỹÞ� þ 32α2v1x
2
F þ 6α2u2 ;

βu2 ¼ 2αu2 ½4αu2 þ ðαy þ αỹÞ� −
1

2
xFðα2y þ α2ỹÞ;

βw1
¼ 4αw1

½8αw1
þ 24αw2

þ 2xFðαY þ αỸÞ − 3αg�

þ 32α2v1x
2
F þ 48α2w2

þ 3

8
α2g;

βw2
¼ 2αw2

½12αw2
þ 2xFðαY þ αỸÞ − 3αg�

−
1

2
xFðα2Y þ α2

Ỹ
Þ þ 3

16
α2g;

βv1 ¼ 2αv1 ½16αu1 þ 8αu2 þ 16αw1
þ 24αw2

þ ðαy þ αỹÞ þ 2xFðαY þ αỸÞ − 3αg�

−
1

2
ðαy þ αỹÞðαY þ αỸÞ −ϒ: ð16Þ

Analysis of these renormalization group equations shows
that there is only a real solution for a fixed point when
αY ¼ αỸ ¼ 0, corresponding to fixed point B, namely the
original LS fixed point studied in [2]. Along the trajectory
from B, the couplings assume the following values (with
actually two stable branches for w1):

αu1 ¼
−6

ffiffiffiffiffi
22

p þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
19þ 6

ffiffiffiffiffi
22

pp
100

αg;

αu2 ¼
3

25
ð

ffiffiffiffiffi
22

p
− 1Þαg;

αw1
¼

3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4 ffiffiffi

2
p

− 5Þ
q
16

ffiffiffi
2

p αg;

αw2
¼ 1

16
ð2 −

ffiffiffi
2

p
Þαg;

αv1 ¼ 0: ð17Þ

It is important for later reference that, as discussed in
[16,17], the negative value of αu1 at the minimum does not
induce instability in H because it is offset by the much
larger positive value of αu2 .
Once the Yukawa flow in Fig. 3 begins, the scalar

couplings also begin to flow: indeed Fig. 3 is somewhat
idealized in the sense that the quartic couplings now rapidly
induce radiative symmetry breaking. In order to show this
analytically, one may use the relations between the
Yukawas and gauge couplings corresponding to trajectory
E which yields an effective set of beta functions,

βu1 ¼ 32α2u1 þ 6α2u2 þ 32αu1αu2 þ
1056

277
αu1αg;

βu2 ¼ 8α2u2 þ
528

277
αu2αg −

182952

76729
α2g;

βw1
¼ 32α2w1

þ 48α2w2
þ 96αw1

αw2
−
2820

277
αw1

αg þ
3

8
α2g;

βw2
¼ 24α2w2

−
1410

277
αw2

αg þ
227163

1227664
α2g;

βv1 ¼ 16αv1

�
2αu1 þ αu2 þ 2αw1

þ 3αw2
−

441

2216
αg

�

−
1584

76729
α2g: ð18Þ

These show that, once the system is kicked onto the E
trajectory, the quartic couplings u2 and w2 flow to “qua-
sifixed points”, that is trajectories that are determined
entirely by the slowly varying value of αg. Indeed αg is
parametrically slowly flowing compared to the quartics
(because its beta function is order ϵ2), so we may
approximate it as constant, with the quartic couplings
starting close to the boundary values in (17). Solving for

0.00257
0.04

0.03

0.02

0.01

0.00256

0.00255

0.00243 0.00244 0.00245 0.00246 0.00247 5000 10 000 15 000 20 000

FIG. 3. The flow in gauge and Yukawa coupling-space from the true fixed point B on to the trajectory emanating from the pseudofixed
E, as specified in Table III. During the flow the system crosses over from the (red-dashed) trajectory emanating from B, onto the blue-
dotted trajectory emanating from E, inducing nonzero αY , αỸ . This evolution (which ignores the accompanying flow of the quartic
couplings) is idealized: the system radiatively develops a minimum before reaching trajectory E.
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αu2 and αw2
we see that they can both asymptote (as tanh

functions) to positive “quasifixed” IR values given by2

αu2
αg

≈ −
33

277

�
1þ

ffiffiffiffiffi
22

p
tanh

�
264

ffiffiffiffiffi
22

p

277

Δt
αg

��

→
33

277
ð

ffiffiffiffiffi
22

p
− 1Þ;

αw2

αg
≈

1

4432

�
470 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
69458

p
tanh

�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
34729

p

277
ffiffiffi
2

p Δt
αg

��

→
1

4432
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
69458

p
þ 470Þ: ð19Þ

While the first quasifixed value for u2 is very close to its
starting point in (17), the quasifixed value for w2 is much
larger. (We should repeat that the analysis is approximate
because the Yukawa couplings have not yet reached their
new trajectory; in a full numerical evolution the running of
the quartics will be delayed because the Yukawas have not
yet reached trajectory E, but it is expected to be qualita-
tively the same.) This evolution is shown numerically in the
left panel of Fig. 4. In the right panel we show the effect on
the remaining couplings u1, w1, v1. Because w2 appears
only in the renormalization group equation for w1, the two
couplings u1 and v1 are changed only very slightly, with v1
becoming slightly positive. Importantly no instability can
be induced radiatively for H at this stage, because (as was
the case above on trajectory B) the negative contribution of
u1 to the potential is still offset by the positive contribution
of u2. On the other hand w2 runs more positive in the IR,

and as can be seen from (18), this is a positive contribution
to βw1

, adding to several other positive contribution to βw1
.

The net result is that w1 runs negative (regardless of w2 in
fact) and inevitably at some point overcomes the positive
approximately constant contribution to the potential from
the w2 term itself, forming a radiative minimum as in Fig. 5
(as per [32]).
Thus (extended) PS breaking is induced radiatively in the

TM, and at this scale a small positive mass-squared is
generated via the v1 “portal” coupling. It is natural for
the latter to then be driven negative itself below the PS
breaking scale, due to the coupling of H to the
NF − ngNS ≈ 9

4
NC pairs of Q; Q̃ fields that remain light

because (by chiral symmetry) they cannot receive a mass
from the Y; Ỹ couplings. This flow would be similar to that
of the other mass-squared operators above the scale of PS
breaking which we discuss in the following section: a more
complete analysis of the running of the “portal” Higgs

–200 –100 100

0.4

0.2

–0.2

–0.05

0.05

5 10 15

–0.10

–0.4

–0.6

200

FIG. 4. The flow for the quartic couplings once the theory leaves trajectory B (at t ¼ 0). On the left, αu2 in red/dashed and αw2
in blue/

solid both flow to new fixed points (beginning from positive values at t ¼ 0). The αw2
quasifixed point is much larger, which among

other contributions induces αw1
in blue/solid (on the right) to run negative and form a minimum radiatively for S̃. Meanwhile αu1 in red/

dashed on the right is only moderately changed, not enough to destabilize H, while αv1 in red/dotted runs slightly positive, inducing a
small positive mass-squared for the Higgs at the PS breaking scale. This example has ϵ ¼ 0.01.

13.5 14.0 14.5 15.0

6. × 10–27

4. × 10–27

2. × 10–27

–2. × 10–27

–4. × 10–27

–6. × 10–27

FIG. 5. The radiatively induced minimum in the effective
potential for S̃.

2A more sophisticated treatment is possible, and other flows
are possible, but this prescription is sufficient for a qualitative
understanding.
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mass-squared below the PS scale will be undertaken in a
later phenomenological study.

B. The behavior of the relevant couplings—emergent
flavor hierarchies from flavor symmetric fixed points

We now turn to the behavior of classically relevant
operators. These are allowed in the model as they are
unable to disrupt the UV fixed point. (In any asymptotically
safe theory such classically relevant operators are simply
part of the collection of nonpredictive parameters in the
theory.) They renormalize multiplicatively and can them-
selves initiate radiative symmetry breaking, as described in
[1]. As in the minimal supersymmetric SM, one can begin
with a set of entirely positive mass-squareds in the UVand
have them run negative due to the large Yukawa couplings
in the model.
In this section we shall perform a more complete analysis

of the flow of these operators to show how one should
incorporate their flavor dependence. In particular we are
interested in the possible generation of flavor/generation
hierarchies in H, which in any viable model will be
required to satisfy phenomenological constraints.
Rather than write the explicit flavor dependence as in (3),

we wish to consider smaller flavor structures that are closed
under RG flow. To see how to do this, as a warm-up
consider the completely SUðNFÞ symmetric terms in [2],
which were mass-squareds of the form

M2
HijH�

kl
¼ m2

0δjlδik þ 2Δ2
X
a

Ta
jiT

a
kl

¼ m2
0δjlδik þ Δ2

�
δjlδik −

1

NF
δjiδkl

�
: ð20Þ

Defining real and imaginary parts, Hij ¼ 1ffiffi
2

p ðhij þ ipijÞ,
and3 ha þ ipa ¼

ffiffiffi
2

p
Ta
ijðhij þ ipijÞ, the corresponding

operators can be written as

m2
0H

†H ¼ m2
0

2
Trðh2 þ p2Þ;

X
a

Δ2

2
ðh2a þ p2

aÞ ¼
X
a

2Δ2TrðTaHÞTrðTaH†Þ

¼ Δ2

2

�
Trðh2 þ p2Þ − ðTrhÞ2 þ ðTrpÞ2

NF

�
:

ð21Þ

It is now clear that one can proceed to break flavor in a
way that commutes with the RG equations, by arranging
the flavor breaking in SUðnÞ subgroups, where the SUðnÞ

generators are in the n × n upper-left n × n block of the
parent SUðNFÞ, where 1 < n ≤ NF. This gives degenerate
masses for the generators of each nested SUðnÞ flavor
subgroup, where we envisage an explicit breaking

SUðNFÞ ⊃ SUðNF − 1Þ… ⊃ SUðnÞ…

Sowithout loss of generality we can express the new Cartan
generators introduced for each SUðnÞ as

Tðn2−1Þ
ij ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nðn − 1Þp

0
BBBBBBBBBB@

1

. .
.

1

1 − n

0

. .
.

1
CCCCCCCCCCA
;

ð22Þ

with the non-Cartan generators being defined accordingly
in the obvious way. Defining the trace over the SUðnÞ block
of the generators as

TrnðOijÞ ¼
Xn
i¼1

Oii; ð23Þ

the flavor breaking generalization of (21) becomes

Vð2Þ ¼ m2
0

2
TrNF

ðh2 þ p2Þ þ
XNF−1

n¼1

m2
n

2

�ðTrnhÞ2 þ ðTrnpÞ2
n

�

þ
XNF

n¼2

Δ2
n

2

�
Trnðh2 þ p2Þ − ðTrnhÞ2 þ ðTrnpÞ2

n

�
:

ð24Þ

These operators form a system closed under RG flow, and
we may now determine their coefficients in 16π2∂tV,
relevant for solving the Callan-Symanzik equation: these
are shown in Table IV. One can now solve the RG equations
along trajectory B for these parameters to see how they
evolve before their flow is cut off by the radiative symmetry
breaking (regardless of how it arises): as for any relevant
parameter the flow will be expressed in terms of a set of
RG-invariants. In this case, defining fy ¼ αy=αg ≈ 0.46,
fu1 ¼ αu1=αg ≈ −0.30, fu2 ¼ αu2=αg ≈ 0.44, and

3Note that ha and pa are not simply related to hij and pij. That
is, while pa is the coefficient of the anti-Hermitian parts ofH, pij
is the coefficient of the imaginary parts of H.
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f ¼ 2fy þ 4fu1

�
1þ 1

N2
F

�
þ 8fu2 ≈ 3.22;

fΔ ¼ 2fy þ
4

N2
F
fu1 ≈ 0.92;

fn ¼ 8fu2
n
NF

ð1 − δnNF
Þ; ð25Þ

the RG-invariants are found to be

m̃2� ¼ m̃2ð0ÞðΩ̃ð0ÞÞ−f; ð26Þ

σ2n� ¼ ½m2
nð0Þ þ ðn2 − 1ÞΔ2

nð0Þ�ðΩ̃ð0ÞÞ−ðfΔþfnÞ; ð27Þ

ρ2n� ¼ ½Δ2
nð0Þ −m2

nð0Þ�ðΩ̃ð0ÞÞ−fΔ ; ð28Þ

where

Ω̃ðtÞ ¼
�
α�g
αg

− 1

�
−3=4ϵ

: ð29Þ

In terms of these we find the following solutions for the
operators in (24):

m2
0 ¼

�
Ω̃ðtÞ
Ω̃ð0Þ

�f

m̃2� −
1

N2
F

XNF

n

σ2n�
1þ 2

fu2
fu1

ð1 − n=NFÞ
Ω̃fΔþfn ;

Δ2
n ¼

1

n2
ðρ2n�Ω̃fΔ þ σ2n�Ω̃fΔþfnÞ;

m2
n ¼

1

n2
ðρ2n�ð1 − n2ÞΩ̃fΔ þ σ2n�Ω̃fΔþfnÞ: ð30Þ

This is the desired form, since it assumes nothing about the
“starting values”, which are simply values chosen at an
arbitrary point in renormalization time, and it properly
encapsulates all the nonpredictive parameters in the theory.
The entire flow is determined by these parameters and Ω̃ðtÞ,
which just determines where one is in renormalization time.
The interesting feature of these solutions is that Ω̃ → 0 in

the IR. Simple flavor hierarchies can therefore be generated
much like the mechanism for radiative symmetry breaking
in [1]. That is the exponent f is much larger than fn or fΔ.

Thereforem2
0 runs to zero in the IR much more quickly than

Δ2
n orm2

n. Meanwhile in the deep IR one can see from these
solutions and the corresponding operators in Table IV, that
hierarchies are naturally driven into the trace components in
the potential which becomes dominant,

V →
X
n>1

Δ2
n½Trnðh2 þ p2Þ − nððTrnhÞ2 þ ðTrnpÞ2Þ�: ð31Þ

This supports the intriguing possibility that flavor hierar-
chies originate within the VEVs of the Higgs sector, which
would themselves become correspondingly hierarchical.

IV. CONCLUSIONS

In this paper we have presented a model, the Tetrad
Model (TM), which is asymptotically safe, and which
descends directly to the Standard Model via radiative
symmetry breaking. In terms of a convenient “quiverlike”
interpretation, the model contains 4-units, with matter and
electroweak Higgs fields falling into an extended Pati-
Salam GUT structure, based on the gauge group
SUðNCÞ × SUð2ÞL × SUð2ÞR, and a fourth unit that pro-
vides the PS breaking. (The electroweak gauging of a
subgroup of the flavor symmetry can not be shown on the
quiver, but nevertheless the language is useful for under-
standing the overall structure of the gauge-Yukawa UV
fixed point.) At low energies the model is able to yield the
Standard Model enhanced only in the Higgs fields, which
carry the same generation indices as the matter fields.
Remarkably radiative symmetry breaking (i.e., the

Coleman-Weinberg mechanism) operates in the model with
no further adjustment. The (extended) PS Higgs naturally
develops a VEV radiatively while the electroweak Higgs
gains a positive “boundary value” mass-squared at the PS
scale, due to a portal coupling that runs from zero at the UV
fixed point. This mass-squared can itself then be driven
negative in the IR. It was also found that it is natural to
generate hierarchies among the electroweak Higgs VEVs
due to the enhancement of mass-squared hierarchies as the
theory runs to the IR.
How close to the Standard Model does the final result

come? And what remains to be done? The appearance of

TABLE IV. The relevant quadratic operators and their beta function coefficients in terms of the quartic u1;2
couplings.

Coupling Operator Coefficient in 16π2∂tV

m2
0 TrNF

ðh2 þ p2Þ m2
0f2u1½N2

F þ 1� þ 4u2NFg þ Δ2
NF
ð2u1 þ 4u2

NF
ÞðN2

F − 1Þ
þPNF−1

n 2u1ðm2
n þ Δ2

nðn2 − 1ÞÞ
Δ2

NF TrNF
ðh2 þ p2Þ − ðTrNF

hÞ2þðTrNF
pÞ2

NF

2u1Δ2
NF

Δ2
n Trnðh2 þ p2Þ − ðTrnhÞ2þðTrnpÞ2

n
2u1Δ2

n þ 4u2
n ðm2

n þ Δ2
nðn2 − 1ÞÞ

m2
n

ðTrnhÞ2þðTrnpÞ2
n

2u1m2
n þ 4u2

n ðm2
n þ Δ2

nðn2 − 1ÞÞ

ABEL, MØLGAARD, and SANNINO PHYS. REV. D 99, 035030 (2019)

035030-10



the Coleman-Weinberg mechanism for the breaking of the
enhanced PS GUT symmetry is certainly a welcome first
step on the road towards the pure SM. It removes all signs
of gauge symmetry enhancement above the PS scale. In
order to induce reasonable mass-squared operators for the
electroweak sector, this scale is most naturally around
100 TeV. What then remains below the PS scale is an
electroweak sector augmented by NF vectorlike pairs of
Higgsinolike (the q; q̃ states) doublets (with charges 0;�1).
These states get masses from the electroweak Higgses so by
measuring them we can learn about the enhanced Higgs
sector. The main phenomenological question then lies in
this latter point, namely which electroweak Higgses get
VEVs and masses. As we saw the Higgses carry the same
generation indices that matter does. Therefore, as usual for
multi-Higgs models, while we have an attractive mecha-
nism for generating hierarchies, one must be careful to
avoid flavor constraints. The nonflavored block (i.e., H0)
can be safely given VEVs and mass-squareds, removing
both H0 itself from the spectrum and most of the vectorlike
states. This leaves a 3 × 3 set of light Higgs doublets that
must be handled more carefully. Since we may give these
fields mass-squareds arbitrarily (they are after all relevant
operators and hence free parameters of the model), the real
question is then how to generate the VEVs dynamically
without violating constraints, in particular tree-level flavor
changing neutral currents. Studies with multi-Higgs models
are summarized in Ref. [36]: generally the picture is
acceptable if there is a dominant source of electroweak

breaking, that dominantly couples to the matter fields. The
simplest way to achieve this seems to be to use the mass-
squared parameters to lift the masses of all but one Higgs
which dominantly couples to the third generation. Then
lighter masses are generated through mixings. Intriguingly
the structure of the low-energy theory can be similar to the
minimal model of fermion masses found in [37], with the
colored q; q̃ states providing the required massive vector-
like quarks, with masses of order the PS-scale. The flavor
hierarchies would then naturally be related to the weak/PS
hierarchy. It would be interesting to carry out a compre-
hensive study of this sector.
Finally we should remark that throughout we have been

presenting the analysis in terms of the Veneziano limit in
which the number of colors and flavors is arbitrarily large
and the coupling at the UV fixed point arbitrarily weak. In
practice one expects there to be a phase diagram for the UV
behavior with more strongly coupled asymptotically safe
behavior being exhibited with reasonable numbers of
colors and flavors inside a conformal window, along the
lines laid out in Ref. [38].
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