
Random walks avoiding their convex hull
with a finite memory

Francis Comets∗ Mikhail V. Menshikov† Andrew R. Wade†

18th November 2019

Abstract

Fix integers d ≥ 2 and k ≥ d− 1. Consider a random walk X0, X1, . . . in Rd in
which, given X0, X1, . . . , Xn (n ≥ k), the next step Xn+1 is uniformly distributed
on the unit ball centred at Xn, but conditioned that the line segment from Xn

to Xn+1 intersects the convex hull of {0, Xn−k, . . . , Xn} only at Xn. For k = ∞
this is a version of the model introduced by Angel et al., which is conjectured to
be ballistic, i.e., to have a limiting speed and a limiting direction. We establish
ballisticity for the finite-k model, and comment on some open problems. In the
case where d = 2 and k = 1, we obtain the limiting speed explicitly: it is 8/(9π2).

Key words: Random walk; convex hull; rancher; self-avoiding; ballistic; speed.

AMS Subject Classification: 60K35 (Primary) 60G50, 52A22, 60F15 (Secondary).

1 Introduction and main results

Random walks in Euclidean space whose evolution depends not just upon their most
recent state but upon their previous history have recently attracted much interest. Such
non-Markov processes arise naturally in systems where there is learning, resource deple-
tion, or physical interaction. For example, a roaming animal performing a random walk
may tend to avoid previously visited regions to access new resources [25, §4]. Another
major motivation is to provide models in polymer science, where linear chain molecules
naturally appear both in collapsed and extended phases [2].

A broad class of models is provided by random walks (or diffusions) that interact
with the occupation measure of their past trajectory. This interaction can be local, such
for reinforced [21] or excited random walks [5], in which the walker’s motion is biased
by its occupation measure in the immediate vicinity, or global, such as for processes
with self-interaction mediated via some global functional of the past trajectory, such as
a centre of mass or other occupation statistic [4, 9, 18, 20, 26–28]. In either case, the self-
interaction can be attractive, corresponding to the collapsed polymer phase, or repulsive,
corresponding to the extended phase. An important distinction exists between dynamic

∗NYU Shanghai and Université Paris Diderot, Mathématiques, case 7012, 75205 Paris Cedex 13,
France; comets@lpsm.paris
†Department of Mathematical Sciences, Durham University, South Road, Durham DH1 3LE, UK;

{mikhail.menshikov,andrew.wade}@durham.ac.uk

1

mailto:comets@lpsm.paris
mailto:mikhail.menshikov@durham.ac.uk
mailto:andrew.wade@durham.ac.uk

models, that are genuine stochastic processes, and static models, such as the self-avoiding
walk [16], which is the extreme case in which repulsion is total.

Locally self-repelling walks in continuous space also appear in queueing theory, as
models of customer-server systems with greedy strategies: customers arrive randomly
in time and space and the server moves toward the closest customer between services.
Questions of interest include stability when the space is the circle [24], and transience and
rate of escape on the line [12, 23]. Analogues in discrete space are considered in [10, 14],
where it is shown that in different regimes the server’s trajectories mimic either the
self-avoiding or correlated random walk [8].

The inspiration for the work in the present paper originates with a model of Angel et
al. in which the random walk is forbidden from entering the convex hull of its previous
trajectory [1, 29]. This model, known as the rancher process, is believed to be ballistic
(see below), but no proof of this exists at the moment. A lattice-based model which
shares some common features with the rancher process is the prudent random walk [4] in
which the walker avoids travelling in a direction towards a previously visited site. It is
worth noting that the scaling limits of the prudent walk in its kinetic version [4] and its
static (uniform) version [7, 22] are quite different. In this paper we consider a variant of
the rancher model in continuous space for which we can establish ballisticity.

Let us describe our model, a version of the rancher problem which retains memory
only of a fixed number of its recent locations together with its initial point (the origin).
Fix d ≥ 2 (the ambient dimension) and k ∈ N (the length of the memory of the walk)
with k ≥ d − 1 (this condition rules out degenerate cases, as we explain below). Our
object of interest is the stochastic process X = (X0, X1, X2, . . .) in Rd where, roughly
speaking, given X0, . . . , Xn, the next position Xn+1 is uniformly distributed on the unit
ball centred at Xn but conditioned so that the line segment from Xn to Xn+1 does not
intersect the convex hull of {0, Xn−k, Xn−k+1, . . . , Xn} at any point other than Xn (which
is necessarily on the boundary of the hull).

To give the formal definition, we write ConvX for the convex hull of a subset X ⊆ Rd,
that is, the smallest convex set containing X . Let B(x; r) denote the closed Euclidean
d-ball centred at x ∈ Rd with radius r > 0, and for x, y ∈ Rd let (x, y] := {λx+ (1− λ)y :
λ ∈ (0, 1]}, which for x 6= y is the line segment from x ∈ Rd to y ∈ Rd excluding x. The
set of admissible states from x ∈ Rd with history X ⊆ Rd is

A(X ;x) := cl
{
y ∈ B(x; 1) : (x, y] ∩ Conv(X ∪ {0, x}) = ∅

}
; (1)

where taking the closure (‘cl’) is convenient for some measurability statements.
Let Vold denote Lebesgue measure on Rd, and set Xn,k := {Xj : max(1, n− k) ≤ j ≤

n− 1}. We define the law of X by taking X0 = 0 and declaring that, for n ∈ Z+,

P(Xn+1 ∈ A | X0, X1, . . . , Xn) =

∫
A

p(y | Xn,k;Xn)dy, (2)

for all Borel sets A ⊆ Rd, where p is the transition density defined for y ∈ Rd by

p(y | X ;x) =
1

VoldA(X ;x)
1A(X ;x)(y) (3)

if VoldA(X ;x) > 0; i.e., given X0, . . . , Xn, the next step Xn+1 is uniform on A(Xn,k;Xn).
We call X the random walk with memory k. The definition is analogous to the ones
in [1, 29] for the ‘infinite memory’ case. See Figure 1 for an illustration in d = 2.

2

Lemma 2.1 below shows that we only need to define p(y | X ;x) when VoldA(X ;x) > 0;
hence the process X0, X1, . . . is well defined.

Note that we do not allow k ≤ d−2. Indeed, in that case Conv(Xn,k∪{0, Xn}) has at
most d vertices, so it is contained in a (d−1)-dimensional hyperplane, and A(Xn,k;Xn) is,
up to a set of measure zero, the whole of B(Xn; 1): the random walk has no interaction
with its history, and has independent jumps.

−20 −10 0 10 20

−
20

−
10

0
10

20

Index

N
U

LL

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−200 −100 0 100 200

−
20

0
−

10
0

0
10

0
20

0

Index

N
U

LL

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●●

●

●

●●

●

●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ● ●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ● ●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

● ●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

● ● ● ●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●●

●

●●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●●
●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●

● ●

● ●

●

● ●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

● ●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

● ●

●

●●

●

● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●●

●

●

●● ●

●

● ●●

●

●

●

● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

● ●

● ●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●● ●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

● ●● ●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

● ●

●

●

●

●

●●

●

●

●●

● ●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

● ●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

● ●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

Figure 1: Simulation of the d = 2, k = 1 process for 50 steps (left) and 1000 steps
(right). The trajectory is in blue, the convex hull in red, and the black arc describes the
disk sector on which the next position is distributed.

The main aim of this paper is to prove that this random walk is ballistic, i.e., it has a
positive asymptotic speed and a limiting direction. Here is the theorem. Write ‖ · ‖ for
the Euclidean norm on Rd and set Sd−1 := {u ∈ Rd : ‖u‖ = 1}.

Theorem 1.1. There exist a positive constant vd,k and a uniformly distributed ` ∈ Sd−1

such that

lim
n→∞

Xn

n
= vd,k`, a.s., and hence lim

n→∞

E ‖Xn‖
n

= vd,k.

Note that including the origin in the definition of the convex hull to be avoided at each
step is crucial; if the process instead just avoids the convex hull generated by its most
recent k steps, then it will be diffusive, like the Gillis–Domb–Fisher ‘correlated random
walk’ [8] that is repelled by its immediate past but effectively has zero drift over long
time scales. Another model whose dynamics, like ours, are influenced by both its very
distant and very recent past was considered recently by Gut and Stadtmüller [13] and is
a variant of the ‘elephant random walk’ [3,6]. For their model on Z, Gut and Stadtmüller
obtain a ballisticty result reminiscent of Theorem 1.1: see Theorem 10.1 of [13].

The constants vd,k in Theorem 1.1 are characterized in (37) below, but seem hard to
evaluate in general. It is obvious that vd,k ≤ 1, and we show (cf. Corollary 2.8) that
vd,k > 0. It is likely that one can show that vd,k ≥ v > 0 for all d, k, perhaps by adapting
the arguments of [29]; this fact would also follow from Conjecture 1.3 below. We can
compute vd,k explicitly in one particular case.

Theorem 1.2. If d = 2 and k = 1, then

v2,1 =
8

9π2
≈ 0.09006327.

3

Simulations suggest the following.

Conjecture 1.3. We have vd,k ≤ vd,k+1 for all k ≥ d− 1.

It is natural to seek a coupling to establish Conjecture 1.3. There is an obvious
coupling of one step of the k and k + 1 processes started from a common configuration,
but extending this to a process coupling seems difficult.

The inspiration for considering our model comes from the case of infinite memory,
when the walk avoids its entire convex hull Conv{X0, X1, . . . , Xn}. This ‘k = ∞’ walk
is a variant of the model introduced by Angel et al. in [1], in which the increments are
uniform on the unit sphere (rather than the unit ball) excluding the convex hull; for
the d = 2 case of that model, Zerner [29] showed that lim infn→∞ n

−1‖Xn‖ > 0 a.s.
Just as for the model in [1], one conjectures that the k = ∞ walk that avoids its entire
convex hull is ballistic (cf. Conjectures 1 and 5 in [1]); in particular, one expects that
limn→∞ n

−1‖Xn‖ = vd,∞ exists. Our Conjecture 1.3 would imply that limk→∞ vd,k exists.
It is then tempting to propose the following.

Conjecture 1.4. We have limk→∞ vd,k = vd,∞.

Simulations are reasonably consistent with Conjecture 1.4, but not entirely convincing.
Another open problem concerns the second-order behaviour of Xn in the finite-memory
model: we expect that n−1/2(Xn − vd,knX̂n) converges to a non-degenerate normal dis-
tribution; this is to be contrasted with the conjectured n3/4-order fluctuations (in d = 2)
for the k =∞ model [1]. It is also open to prove ballisticity for the version of the finite-
memory model (X ′n, say) in which the increments are supported on a sphere rather than
a ball: our proof (particularly the renewal construction in Section 3) uses the fact that
the increments have a density in Rd. In the case d = 2, k = 1 of this variant of the model,
the argument of Section 6 goes through with minor modifications to show that

lim
n→∞

n−1 E ‖X ′n‖ =
4

3π2
≈ 0.13509491.

The plan of the paper is as follows. In Section 2 we collect some initial observations,
which include a description of the process via a (k+ 1)-component Markov chain and the
fact that there is a uniformly positive radial drift for the process over a finite number
of steps, which entails a lim inf-speed bound. The core of our proof of ballisticity is a
renewal structure described in Section 3, which identifies events that occur frequently
and between any two of which the process has uniformly positive radial drift and has
symmetric transverse increments. This is essentially already enough to prove a limiting
direction, but to identify a limiting speed it is necessary to show that the radial drift
between renewals has a limit, and that the expected time between renewals also has a
limit. We establish these limiting statements via a coupling argument to a variant of
the process which is spatially homogeneous. The homogeneous process is introduced in
Section 4, and the coupling argument is presented in Section 5. This completes the proof
of Theorem 1.1. The proof of Theorem 1.2 proceeds via an essentially self-contained ar-
gument in Section 6, which shows that n−1 E ‖Xn‖ has the specified limit. The argument
goes by showing that the global speed is asymptotically equal to the local drift, and the
local drift is evaluated as an average with respect to the limit distribution of the interior
angle of the convex hull; the limit distribution of the angle is identified in Lemma 6.3 as
the limit of the stochastic recursive sequence

θn+1 =
∣∣(2π − θn)Un+1 − π

∣∣
4

taking values in [0, π], where U1, U2, . . . are i.i.d. uniform. The technical results required
to deduce limiting speed and direction from statements about increments are collected in
the Appendix.

2 Preliminaries

For any finite non-empty X ⊆ Rd and any x ∈ Rd, let

Cone(x;X) := Conv{x+ α(y − x) : α ≥ 0, y ∈ X}.

Excluding the degenerate case Cone(x; {x}) = {x}, Cone(x;X) is the convex hull of
finitely many closed rays emanating from x, and, if x is not in the interior of ConvX ,
then Cone(x;X) is the smallest closed convex cone with vertex x containing the set X
(equivalently, ConvX). It is not hard to see that (1) is equivalent to

A(X ;x) = cl
(
B(x; 1) \ Cone(x;X ∪ {0, x})

)
, (4)

which is a form that will be useful later on.
Our first result of this section shows that our process is well defined. Here and

subsequently, νd := VoldB(0; 1) is the volume of the unit-radius d-ball.

Lemma 2.1. The process X0, X1, X2, . . . is well defined, and for all n ∈ Z+, a.s.,

νd
2
≤ VoldA(Xn,k;Xn) ≤ νd. (5)

Proof. The proof goes by induction. Starting from X0 = 0 we have that A(X0,k;X0) =
A(∅; 0) = B(0; 1) by (1) or (4). Hence VoldA(∅; 0) = νd, so (5) holds with n = 0. For the
inductive step, suppose that the law of X0, X1, . . . , Xm is well defined, and that (5) holds
for all 0 ≤ n ≤ m. Then the transition density p(y | Xn,k;Xn) at (3) is well-defined for n =
m, and so we can generate Xm+1 according to (2). Thus X0, X1, . . . , Xm+1 is well defined:
see Figure 2 for an example. Moreover, the upper bound on VoldA(Xm+1,k;Xm+1) is
trivial. Also, by construction, Xm+1 is not in the interior of the previous convex hull
Conv(Xm,k ∪ {0, Xm}), and so Xm+1 is extremal for Conv(Xm+1,k ∪ {0, Xm+1}). Hence
there exists a tangent hyperplane at Xm+1 to the convex hull, and the opposite half of
the ball B(Xm+1; 1) is contained in A(Xm+1,k;Xm+1). Hence the latter set has volume at
least νd/2, and so (5) holds for n = m+ 1. This completes the inductive step.

For m ∈ Z+ define
Ym := (Xmk, Xmk+1, . . . , X(m+1)k).

Let x0, . . . , xk ∈ Rd. A sequence (y1, . . . , yk) of points in Rd is called an admissible path
from history x0, x1, . . . , xk if y1 ∈ A(x0, . . . , xk−1;xk), y2 ∈ A(x1, . . . , xk−1, xk; y1), y3 ∈
A(x2, . . . , xk, y1; y2), and so on, up to yk ∈ A(xk, y1 . . . , yk−2; yk−1). Let P(x0, x1, . . . , xk)
denote the set of all admissible paths from history x0, x1, . . . , xk. To describe the initial
steps of the process, we say y1, . . . , yk ∈ Rd is an admissible initial path if y1 ∈ A(∅; 0),
y2 ∈ A(∅; y1), y3 ∈ A(y1; y2), and so on, up to yk ∈ A(y1, . . . , yk−2; yk−1). Let P0 denote
the set of all admissible initial paths.

The P(x0, x1, . . . , xk) are Borel (in fact, closed) subsets of (Rd)k. To see this, take
(y1,n, . . . , yk,n) ∈ P(x0, x1, . . . , xk) with (y1,n, . . . , yk,n) → (y1, . . . , yk) as n → ∞. Since

5

0

Xm−1

Xm−2

Xm

Xm+1

Xm−3 0

Xm−1

Xm−2

Xm

Xm+1

Xm−3

Figure 2: An illustration of the proof of Lemma 2.1 with d = k = 2. Left: the new point
Xm+1 sits outside Conv(Xm,k ∪ {0, Xm}). Right: Indicated is half of the disc B(Xm+1; 1)
which falls outside the updated convex hull Conv(Xm+1,k ∪ {0, Xm+1}), giving a lower
bound on the area of A(Xm+1,k;Xm+1).

A(x0, . . . , xk−1;xk) is closed, y1 ∈ A(x0, . . . , xk−1;xk). Moreover, as a function taking val-
ues in the non-empty compact subsets of Rd endowed with the Hausdorff metric (denoted
ρH), y1 7→ A(x1, . . . , xk−1, xk; y1) is continuous, and so limn→∞A(x1, . . . , xk−1, xk; y1,n) =
A(x1, . . . , xk−1, xk; y1). Given ε > 0, we can (and do) choose n sufficiently large so that
‖y2,n − y2‖ < ε and ρH(A(x1, . . . , xk−1, xk; y1,n),A(x1, . . . , xk−1, xk; y1)) < ε. Then since
y2,n ∈ A(x1, . . . , xk−1, xk; y1,n), there exists zn ∈ A(x1, . . . , xk−1, xk; y1) with ‖y2,n−zn‖ <
ε, so that ‖zn − y2‖ < 2ε. Hence y2 = limn→∞ zn ∈ A(x1, . . . , xk−1, xk; y1), since the
latter set is closed. Continuing this argument shows that (y1, . . . , yk) ∈ P(x0, x1, . . . , xk),
so the latter set is closed. Similarly, P0 is a closed subset of (Rd)k.

Lemma 2.2. The process Y = (Y0, Y1, Y2, . . .) is a Markov process on (Rd)k+1 with trans-
ition function defined for all Borel sets B ⊆ (Rd)k by

P(Ym+1 ∈ {xk}×B | Ym = (x0, . . . , xk)) =

∫
B∩P(x0,...,xk)

f(y1, . . . , yk | x0, . . . , xk)dy1 · · · dyk,

where for all (y1, . . . , yk) ∈ P(x0, . . . , xk), with p(· | ·) given by (3),

f(y1, . . . , yk | x0, x1, . . . , xk) = p(y1 | x0, x1, . . . , xk−1;xk)

× p(y2 | x1, . . . , xk; y1)

× p(y3 | x2, . . . , xk, y1; y2)

× · · · × p(yk | xk, y0, . . . , yk−2; yk−1), (6)

and elsewhere we set f = 0. Moreover, the initial distribution is

P(Y0 ∈ {0} ×B) =

∫
B∩P0

f0(y1, . . . , yk)dy1 · · · dyk,

where for all (y1, . . . , yk) ∈ P0,

f0(y1, . . . , yk) = p(y1 | ∅; 0)p(y2 | ∅; y1)p(y3 | y1; y2) · · · p(yk | y1, . . . , yk−2; yk−1).

Proof. It suffices to suppose that B =
∏k

i=1 Bi for Bi Borel sets in Rd. By (2) and (3),

P(X(m+1)k+1 ∈ B1 | Ym = (x0, . . . , xk)) =

∫
B1∩A(x0,...,xk−1;xk)

p(y1 | x0, x1, . . . , xk−1;xk)dy1,

6

which gives the result if k = 1. Otherwise,

P((X(m+1)k+1, X(m+1)k+2) ∈ B1 ×B2 | Ym = (x0, . . . , xk))

=

∫
B1∩A(x0,...,xk−1;xk)

P(X(m+1)k+2 ∈ B2 | Xmk+1 = x1, . . . , X(m+1)k = xk, X(m+1)k+1 = y1)

× p(y1 | x0, x1, . . . , xk−1;xk)dy1

=

∫
B1∩A(x0,...,xk−1;xk)

∫
B2∩A(x1,...,xk;y1)

p(y2 | x1, . . . , xk; y1)p(y1 | x0, . . . , xk−1;xk)dy2dy1,

which gives the result if k = 2. Iterating this argument gives the transition function for
general k. A similar argument gives the law of Y0.

For n ∈ Z+ define the σ-algebra Fn := σ(X0, X1, . . . , Xn). For x ∈ Rd \ {0}, define
x̂ := x/‖x‖. For convenience, set 0̂ := 0. We write ‘ · ’ for the scalar product on Rd. The
following important result says that the radial component of the drift of the process is
always non-negative.

Proposition 2.3. We have that, for all n ∈ Z+,

E[(Xn+1 −Xn) · X̂n | Fn] ≥ 0, a.s.

Proof. Given that 0̂ = 0, it suffices to suppose that n ≥ 1, in which case Xn 6= 0, a.s. On
the event {Xn = x}, for x 6= 0, by (2) and (3) we can write

E[(Xn+1 −Xn) · X̂n | Fn] =
1

Vold(A(Xn,k;x))

∫
A(Xn,k;x)

(y − x) · x̂dy

=
1

Vold(A(Xn,k;x))

∫
A′(Xn,k;x)

(y − x) · x̂dy,

where the open set

A′(X ;x) = int (B(x; 1) \ Cone(x;X ∪ {0, x})) , (7)

differs from A(X ;x) as given by (4) by a set of measure zero (‘int’ stands for ‘interior’).
For x 6= 0, define Sx : z 7→ z − 2

(
(z − x) · x̂

)
x̂, the orthogonal transformation of Rd

induced by reflection in the hyperplane at x orthogonal to x̂. We claim that

y ∈ A′(Xn,k;x) and (y − x) · x̂ < 0 imply that Sx(y) ∈ A′(Xn,k;x). (8)

Write A+ = {y ∈ A′(Xn,k;x) : (y−x)·x̂ > 0} and A− = {y ∈ A′(Xn,k;x) : (y−x)·x̂ < 0}.
Then by (8) and the fact that (Sx(z)− x) · x̂ = −(z − x) · x̂, we have Sx(A−) ⊆ A+ and,
using also the fact that Sx is a measure-preserving bijection,∫

Sx(A−)

(y − x) · x̂dy =

∫
A−

(Sx(z)− x) · x̂dz = −
∫
A−

(z − x) · x̂dz. (9)

Hence, partitioning A+ into Sx(A−) and A+ \ Sx(A−), we get∫
A′(Xn,k;x)

(y − x) · x̂dy =

∫
A−

(y − x) · x̂dy +

∫
Sx(A−)

(y − x) · x̂dy

7

+

∫
A+\Sx(A−)

(y − x) · x̂dy

=

∫
A+\Sx(A−)

(y − x) · x̂dy, (10)

using (9). Moreover, the integrand in the final integral in (10) is positive, by definition
of A+. Thus we conclude that the final integral in (10) is non-negative.

It remains to prove the claim (8). To do so, we use a finite-dimensional version of
Hahn–Banach theorem: for all y ∈ A′(Xn,k;x), there exists a hyperplane H separating
{y} and Cone(x;Xn,k ∪ {0, x}) such that y /∈ H and

H
⋂

Cone(x;Xn,k ∪ {0, x}) = {x};

here it is important that we used A′ defined at (7). Consider the unit vector h perpen-
dicular to H and such that h · x̂ > 0, and denote by H+, H− the half-spaces

H± = {z ∈ Rd : ±(z − x) · h > 0}.

Then, for y ∈ A′(Xn,k;x) and (y − x) · x̂ < 0, we have y ∈ H+ and Sx(y) ∈ H+ though
Cone(Xn,k ∪ {0, x}) ⊆ clH−. Since also Sx(y) ∈ intB(x; 1), we have from (7) that
Sx(y) ∈ A′(Xn,k;x). Thus we have proved (8).

We would like to improve Proposition 2.3 to show that the radial drift is uniformly
positive. However, it is not hard to see that there are configurations for which this is not
true if we compute the drift in a single step. Thus we are led to consider multiple steps.
In order to control the possible configurations of the walk’s history, we can demand that
the walk first makes a chain of jumps away from the convex hull, and then makes another
chain of jumps in the radial direction. These two constructions will be central to our
renewal structure that we describe in the next section, and they are the focus of the next
two results.

For x ∈ Rd, δ ∈ (0, 1/8), and any unit vector u ∈ Sd−1, define

Πu(x) :=
k∏
i=1

B
(
x+ i

2
u; δ
)
⊆ (Rd)k. (11)

Given Fn, consider a tangent hyperplane at Xn to Conv(Xn,k ∪{0, Xn}), and let h be the
perpendicular unit vector to this hyperplane, pointing opposite to the convex hull. We
show that from any configuration, the walk will follow the chain laid out by Πh(Xn) with
uniformly positive probability.

Lemma 2.4. We have that

P((Xn+1, . . . , Xn+k) ∈ Πh(Xn) | Fn) ≥ δdk, a.s.

Proof. Suppose that Xn = x; note that x · h ≥ 0. Let xi = x+ i
2
h for 0 ≤ i ≤ k. Define

the events Ai = {Xn+i ∈ B(xi; δ)}. It is easy to see that B(x1; δ) ⊆ A(Xn,k;Xn). Hence,
by (2) and (3),

P(A1 | Fn) =
VoldB(x1; δ)

VoldA(Xn,k;Xn)
≥ δd, (12)

8

by Lemma 2.1. If k = 1, this completes the proof. In general, we claim that

P(Ai+1 | Fn+i) ≥ δd, on ∩ij=1 Ai. (13)

Then, for instance,

P(A1 ∩ A2 | Fn) = E[P(A2 | Fn+1)1(A1) | Fn] ≥ δ2d, a.s.,

by (12) and (13). Iterating this argument proves the statement in the lemma.
It remains to prove the claim (13). For 1 ≤ i ≤ k, consider the hyperplane Hi = {y ∈

Rd : (y − xi) · h = 0}. Any z ∈ Conv(Xn,k ∪ {0, Xn}) has (z − xi) · h ≤ −i/2 < −δ, and,
for j < i, (xj − xi) · h ≤ −1/2 < −δ, while (xi+1 − xi) · h = 1/2 > δ. Hence xi lies on
Hi, and the hyperplane separates Conv(Xn,k ∪ {0, Xn}) and all the B(xj; δ), j < i, from
B(xi+1; δ). Thus, B(xi+1; δ) ⊆ A(Xn+i,k;Xn+i) on ∩ij=1Ai. The claim (13) follows.

With the notation at (11), define Π(x) := Πx̂(x) =
∏k

i=1B(x+ i
2
x̂; δ). The key to our

renewal structure is the following definition:

G :=
{

(x0, . . . , xk) ∈ (Rd)k+1 : xk 6= 0, and Π(xk) ⊆ P(x0, . . . , xk)
}
. (14)

For n ≥ k, let Gn ∈ Fn denote the event Gn := {(Xn−k, . . . , Xn) ∈ G}; if Gn occurs, we
say that X has good geometry at time n.

Roughly speaking, the process has good geometry if the configuration is such that, in
the next k steps, all trajectories through the sequence of balls laid out by Π are admissible.
More precisely, the next result shows that, if the process has good geometry, then the
law of the next k steps has a uniform component on the balls laid out by Π.

Lemma 2.5. For all n ≥ k and all Borel B ⊆ (Rd)k, on the event Gn,

P((Xn+1, . . . , Xn+k) ∈ B | Fn) ≥ δdk
VoldkB

(VoldB(0; δ))k
1{B ⊆ Π(Xn)}.

Proof. For n ≥ k suppose that B ⊆ Π(Xn), where B =
∏k

i=1 Bi for Bi Borel subsets
of Rd. On the event Gn, we have that Π(Xn) ⊆ P(Xn−k, . . . , Xn). In particular, B1 ⊆
B(Xn + 1

2
X̂n; δ) ⊆ A(Xn,k;Xn), so that, by (2) and (3) we have, on Gn ∩ {B ⊆ Π(Xn)},

P(Xn+1 ∈ B1 | Fn) =
VoldB1

VoldA(Xn,k;Xn)
≥ VoldB1

VoldB(0; 1)
,

by Lemma 2.1. Hence

P(Xn+1 ∈ B1 | Fn) ≥ δd
VoldB1

VoldB(0; δ)
.

If k = 1 this ends the proof. Otherwise, on Gn ∩ {B ⊆ Π(Xn)} ∩ {Xn+1 ∈ B1}, we have
that B2 ⊆ B(Xn + 2

2
X̂n; δ) ⊆ A(Xn+1,k;Xn+1), so that

P(Xn+2 ∈ B2 | Fn+1) =
VoldB2

VoldA(Xn+1,k;Xn+1)
≥ δd

VoldB2

VoldB(0; δ)
,

as before. Hence, on Gn ∩ {B ⊆ Π(Xn)},

P((Xn+1, Xn+2) ∈ B1 ×B2 | Fn) ≥ E[P(Xn+2 ∈ B2 | Fn+1)1{Xn+1 ∈ B1} | Fn]

≥ δ2dVol2d(B1 ×B2)

(VoldB(0; δ))2
.

Iterating this argument gives the result.

9

Recall the definition of h from just before Lemma 2.4. The connection between the
last two lemmas is the following.

Lemma 2.6. We have that (Xn+1, . . . , Xn+k) ∈ Πh(Xn) implies Gn+k.

Proof. Suppose that (Xn+1, . . . , Xn+k) ∈ Πh(Xn). Let x = Xn+k. Let (y1, . . . , yk) ∈ Π(x).
We must show that (y1, . . . , yk) ∈ P(Xn, . . . , Xn+k). For convenience, set xi = x+ i

2
x̂ for

0 ≤ i ≤ k, and set zi = Xn+k−i for 1 ≤ i ≤ k.
It is not hard to see that y1 ∈ A(zk, . . . , z1;x). We have ‖yi − xi‖ ≤ δ for 1 ≤ i ≤ k,

and ‖zi − z′i‖ ≤ 2δ where z′i = x − i
2
h. For 1 ≤ i ≤ k − 1, consider the hyperplane

Hi = {y ∈ Rd : (y − yi) · x̂ = 0}. Then (x− xi) · x̂ = − i
2

so (x− yi) · x̂ < 0. For all j we
have (z′j−xi) · x̂ ≤ − i

2
≤ −4δ, so (zj−yi) · x̂ < 0. Also, for j < i we have (xj−yi) · x̂ < 0,

while (xi+1 − yi) · x̂ > 0. Thus Hi contains yi and separates x, z1, . . . , zk and any yj,
j < i, from yi+1. In particular, for i = 1, this shows that y2 ∈ A(zk−1, . . . , z1, x; y1), and
so on.

Now we can state our result on positive radial drift over a number of steps.

Proposition 2.7. Suppose that d ≥ 2 and k ≥ d − 1. Then there exists a constant cd,k
with 0 < cd,k ≤ 2k + d+ 1 such that, for all n ∈ Z+,

E[‖Xn+2k+d+1‖ − ‖Xn‖ | Fn] ≥ cd,k, a.s. (15)

Proof. We will show that there exist constants a, p > 0 (depending on d and k) and an
event A ∈ Fn+2k+d, such that

P(A | Fn) ≥ p, a.s., and (16)

E[(Xn+2k+d+1 −Xn+2k+d) · X̂n+2k+d | Fn+2k+d] ≥ a, on A. (17)

Note that for all x,∆ ∈ Rd, ‖x+ ∆‖ ≥ (x+ ∆) · x̂, so ‖x+ ∆‖ − ‖x‖ ≥ ∆ · x̂. Hence, by
Proposition 2.3,

E[‖Xn+2k+d+1‖ − ‖Xn‖ | Fn]

= E
[2k+d∑

i=0

E[‖Xn+i+1‖ − ‖Xn+i‖ | Fn+i]

∣∣∣∣ Fn]

≥ E
[2k+d∑

i=0

E[(Xn+i+1 −Xn+i) · X̂n+i | Fn+i]

∣∣∣∣ Fn]
≥ E

[
E[(Xn+2k+d+1 −Xn+2k+d) · X̂n+2k+d | Fn+2k+d]1(A)

∣∣ Fn],
which is bounded below by ap, by the claims (16) and (17). This gives (15) with cd,k = ap.
The rest of the proof establishes (16) and (17).

We describe the event A, which will comprise three successive events. Given Fn, let h
be the perpendicular unit vector to a tangent hyperplane at Xn to Conv(Xn,k ∪{0, Xn}),
pointing opposite to the convex hull. Define the events A1 = {(Xn+1, . . . , Xn+k) ∈
Πh(Xn)} and A2 = {(Xn+k+1, . . . , Xn+2k) ∈ Π(Xn+k)}. Then by Lemmas 2.4, 2.5,
and 2.6, we have that P(A1 ∩ A2 | Fn) ≥ δ2kd, a.s.

Suppose that A1∩A2 occurs and consider the situation at time n+2k. Let xi = Xn+k+i

for 0 ≤ i ≤ k, and let x′i = x0 + i
2
x̂0. On A2, we have ‖xi − x′i‖ ≤ δ. Set e1 = x̂0, and let

{e1, e2, . . . , ed} be an orthonormal basis for Rd containing e1.

10

Next set fi =
∑i

j=1 ej and let yi = xk + 1
2
fi for 0 ≤ i ≤ d. The idea is that,

with positive probability, the process will follow close to the path y0, y1, . . . , yd, at which
point it will have strictly positive drift after producing a convex hull which contains,
approximately, a simplex. Set zi = Xn+2k+i for 0 ≤ i ≤ d. Define the events

Ei := {Xn+2k+i ∈ B(yi; δ)} (1 ≤ i ≤ d), and A3 := ∩di=1Ei.

Then, on Ei, ‖zi − yi‖ ≤ δ. Suppose that δ > 0 is small enough so that 8δ
√
d < 1.

Define hyperplanes Hi = {y ∈ Rd : (y−zi) · f̂i+1 = 0}. First note that z0 = xk and, for
0 ≤ j < k, (xj − xk) · e1 ≤ j−k

2
+ 2δ < −δ, while (y1− xk) · e1 = 1

2
> δ, so the hyperplane

H0 contains xk and separates 0, x0, x1, . . . , xk−1 from B(y1; δ). So, on A1 ∩ A2, we have
P(E1 | Fn) ≥ δd. Now suppose that 1 ≤ i ≤ d−1 and that ∩ij=1Ej occurs. For 0 ≤ j ≤ k,

given A2 ∩ Ei, we have, noting that fi · fj = i ∧ j and ‖fi‖ ≤
√
d,

(xj − zi) · f̂i+1 ≤ (x′j − yi) · f̂i+1 + 2δ

≤ (x′j − x′k) · f̂i+1 −
1

2
fi · f̂i+1 + 3δ

≤ j − k
2

ei · f̂i+1 −
i

2
√
d

+ 3δ

≤ −δ,

provided that 8δ
√
d < 1. Similarly, for 1 ≤ j < i, given E1 ∩ · · · ∩ Ei,

(zj − zi) · f̂i+1 ≤ (yj − yi) · f̂i+1 + 2δ ≤ − 1

2
√
d

+ 2δ ≤ −δ.

On the other hand,

(yi+1 − zi) · f̂i+1 ≥
1

2
ei+1 · f̂i+1 − δ > δ.

Thus the hyperplane Hi contains zi and separates 0, x0, x1, . . . , xk and z1, . . . , zi−1 from
B(yi+1; δ). Hence, on A1 ∩ A2 ∩ (∩ij=1Ei), we have that P(Ei+1 | Fn+2k+i) ≥ δd. Setting

A := A1 ∩ A2 ∩ A3, it follows that P(A | Fn) ≥ δ2kd+d2 =: p as required for (16).
It remains to prove (17), i.e., to show that on A there is a uniformly positive radial

drift. As above, let x′i = x0 + i
2
x̂0 where x0 = Xn+k. Also let y′i = x′k + 1

2
fi. Define the

simplex ∆′ to be the convex polytope with vertices x′k, y
′
1, . . . , y

′
d. Define the barycentre

of the vertices w := 1
d+1

(x′k +
∑d

i=1 y
′
i) = x′k +

∑d
i=1

d−i+1
2d+2

ei. Note that y′d = (‖x0‖ +
k
2
)e1 + 1

2

∑d
j=1 ej, and so

(w − y′d) · y′d = −
d∑
i=1

i

2d+ 2
ei · y′d = − 1

2d+ 2

(
‖x0‖+

k

2
+
d(d+ 1)

4

)
.

Since ‖y′d‖ ≤ ‖x0‖+ k
2

+ d
2
≤ ‖x0‖+ k

2
+ d(d+1)

4
, it follows that

(w − y′d) · ŷ′d ≤ −
1

2d+ 2
.

Let ∆ denote the ‘approximate simplex’ with vertices Xn+2k, . . . , Xn+2k+d. Then on A we
have that ‖Xn+2k − x′k‖ ≤ δ while ‖Xn+2k+i − y′i‖ ≤ 2δ for 1 ≤ i ≤ d. Now (w − y′d) · ŷ′d

11

is continuous as a function of x′k and y′1, . . . , y
′
d away from y′d = 0, so in particular we can

choose δ > 0 small enough so that

(z −Xn+2k+d) · X̂n+2k+d ≤ −δ for all z ∈ B(w′; δ), (18)

where w′ is the barycentre of the vertices of ∆.
We claim that for δ small enough, B(w′; δ) is in the interior of ∆. Indeed, w′ is in

the interior of ∆ unless it degenerates to a polytope of lower dimension. But Vold ∆
is a continuous function of its vertices, and the volume is strictly positive when δ = 0
(since then ∆ is a genuine simplex), so we can find δ > 0 small enough so that the
claim holds. Hence, for small enough δ, B(w′; δ) ⊆ Conv(Xn+2k, . . . , Xn+2k+d) and hence
B(w′; δ) ⊆ Conv(Xn+2k+d,k ∪ {0, Xn+2k+d}).

Setting x = Xn+2k+d and using analogous notation to the proof of Proposition 2.3, we
have that Sx(B(w′; δ)) ⊆ A+ \ Sx(A−). Hence from (10), on A,

E[(Xn+2k+d+1 −Xn+2k+d) · x̂ | Fn+2k+d] ≥
1

νd

∫
Sx(B(w′;δ))

(y − x) · x̂dy ≥ 1

νd
δd+1,

by (18). This gives (17) with a = δd+1/νd, and completes the proof.

Having established a strictly positive radial drift, we can deduce that the process has
a positive ‘lim inf’ speed. This is the next result.

Corollary 2.8. Suppose that d ≥ 2 and k ≥ d − 1. There exist constants ρ := ρd,k > 0
and nd,k ∈ N, depending only on d and k, such that

P(‖Xn‖ ≤ ρn) ≤ e−ρn, for all n ≥ nd,k. (19)

Moreover, lim infn→∞ n
−1‖Xn‖ ≥ ρ, a.s.

Proof. Define the process Zm = ‖Xm(2k+d+1)‖ − cd,km. Then, since d ≤ k + 1,

|Zm+1 − Zm| ≤ |‖X(m+1)(2k+d+1)‖ − ‖Xm(2k+d+1)‖|+ cd,k ≤ 4k + 2d+ 2 ≤ 10k, a.s.

Also, writing F ′m = Fm(2k+d+1), we have

E[Zm+1 − Zm | F ′m] = E[‖X(m+1)(2k+d+1)‖ − ‖Xm(2k+d+1)‖ | Fm(2k+d+1)]− cd,k ≥ 0, a.s.,

by (15). Hence Zm is a submartingale with uniformly bounded increments, and we can
apply the one-sided Azuma–Hoeffding inequality (see Theorem 2.4.14 in [17]) to obtain

P
(
Zm − Z0 ≤ −

cd,k
2
m
∣∣∣ F ′0) ≤ exp

(
−
c2
d,km

2

800mk2

)
.

Hence, since Z0 = ‖X0‖ = 0, for some ρ > 0 depending on d and k, for all m ∈ Z+,

P
(
‖Xm(2k+d+1)‖ ≤

cd,k
2
m
)
≤ e−ρm. (20)

Let m =
⌊

n
2k+d+1

⌋
. Since n− 2k − d− 1 ≤ m(2k + d+ 1) ≤ n, it follows that

P
(
‖Xn‖ ≤

cd,k
11k

n
)

= P
(
‖Xm(2k+d+1)‖ ≤ ‖Xn‖+ 2k + d+ 1, ‖Xn‖ ≤

cd,k
11k

n
)

≤ P
(
‖Xm(2k+d+1)‖ ≤

cd,k
2
m
)
,

for all n sufficiently large. Then (20) yields (19). Finally, it follows from (19) and the
Borel–Cantelli lemma that lim infn→∞ n

−1‖Xn‖ ≥ ρ, a.s.

12

3 Renewal structure

Our strategy for establishing ballisticity is to show that, up to smaller order terms,
there is a limiting positive radial drift and the transverse fluctuations are not too big
(cf. Lemma A.1 below). As in Proposition 2.7, it is clear that this property cannot be
the case at every step of the walk. Our strategy is to find an embedded process which
has these properties at random times. We call these random times ‘renewals’. They
are such that process executes a chain of approximately radial jumps (cf. Lemma 2.5).
Such times exhibit a symmetry which entails a positive radial drift, and these times
occur rather frequently, as we show in Lemma 3.3 below. With Corollary 2.8, this is
already essentially enough to establish a limiting direction. To establish a limiting speed,
it is required in addition that the radial drift at these renewal times, and the expected
time between renewals, have limits; these quantities are not constant because the special
rôle played by the origin means the process lacks homogeneity. We address this with a
coupling to a homogeneous modification of the process, which, roughly speaking, sends
the origin away to infinity, as described in Section 4.

From this point on, we fix the constant δ ∈ (0, 1/8). Recall the definition of Π(x) =
Πx̂(x) from (11) and of f from (6). First we state a consequence of Lemma 2.5.

Corollary 3.1. Let n ≥ k. Set α := δdk. For all (y1, . . . , yk), on the event Gn,

f(y1, . . . , yk | Xn−k, . . . , Xn) ≥
α1Π(Xn)(y1, . . . , yk)

(VoldB(0; δ))k
.

Proof. Similarly to Lemma 2.2, on the event Gn ∩ {B ⊆ Π(Xn)},

P((Xn+1, . . . , Xn+k) ∈ B | Xn−k, . . . , Xn) =

∫
B

f(y1, . . . , yk | Xn−k, . . . , Xn)dy1 · · · dyk.

Combined with Lemma 2.5, this means that, on Gn,∫
B

f(y1, . . . , yk | Xn−k, . . . , Xn)dy1 · · · dyk ≥ α
VoldkB

(VoldB(0; δ))k
1{B ⊆ Π(Xn)},

which gives the result.

Now we construct a version of Y which exhibits the required renewal structure, by
introducing an additional source of randomness via a sequence V1, V2, . . . of i.i.d. Bernoulli
random variables with P(Vi = 1) = α = 1 − P(Vi = 0), where α ∈ (0, 1) is the constant
in Corollary 3.1. For now we call this new process Y ′ = (Y ′0 , Y

′
1 , . . .) with Y ′m ∈ (Rd)k+1;

we will soon show that Y ′ has the same law as Y . The process Y ′ will be adapted
to the filtration F ′0,F ′1, . . . defined by F ′m := σ(Y ′0 , V1, Y

′
1 , . . . , Vm, Y

′
m). At the same

time as constructing the process, we generate a sequence of renewal times as we shall
describe. Roughly speaking, m is a renewal time if X has good geometry at time mk and
Vm+1 = 1; it allows a construction of the process such that its future evolution after a
renewal depends only on the current location Xmk, and not on the past. Define the event
G′m := {Y ′m ∈ G}.

To start with, we take Y ′0 to be distributed exactly as Y0, as described in Lemma 2.2.
Given Y ′0 , Y

′
1 , . . . , Y

′
m, suppose also that we have generated renewal times τ1 < τ2 < . . . <

τJ(m). Then we generate Y ′m+1 as follows.

13

1. If G′m does not occur, then generate Y ′m+1 from Y ′m using the transition function de-
scribed in Lemma 2.2.

2. If G′m does occur, then do the following.

(a) If Vm+1 = 1, then declare that τJ(m)+1 = m is the next renewal time, and set
Y ′m+1 = (Y ′m,k+1, Zm+1), where Y ′m,i is the ith component of Y ′m and the vector

Zm+1 ∈ (Rd)k is uniformly distributed on Π(Y ′m,k+1).

(b) If Vm+1 = 0, then set Y ′m+1 = (Y ′m,k+1, Zm+1), where now Zm+1 is generated

according to the density f̂(y1, . . . , yk | Y ′m) on P(Y ′m) given by

f̂(y1, . . . , yk | Y ′m) :=
1

1− α

[
f(y1, . . . , yk | Y ′m)−

α1Π(Y ′m,k+1)(y1, . . . , yk)

(VoldB(0; δ))k

]
, (21)

where f(· | ·) is defined at (6) and α ∈ (0, 1) is the constant in Corollary 3.1.

By Corollary 3.1, f̂ as defined at (21) is non-negative on G′m, and since, by Lemma 2.2,∫
P(Ym)

f(y1, . . . , yk | Ym)dy1 · · · dyk = P(Ym+1 ∈ {Ym,k+1} × P(Ym)) = 1,

where Ym,i is the ith component of Ym, we have that, on G′m,∫
P(Y ′m)

f̂(y1, . . . , yk | Y ′m)dy1 · · · dyk = 1,

so f̂ is indeed a probability kernel.

Lemma 3.2. The process Y ′ has the same law as the process Y described at Lemma 2.2.

Proof. By construction, Y ′0 has the same law as Y0. Also by construction, we have that
for Borel B ⊆ (Rd)k,

P(Y ′m+1 ∈ {xk} ×B | Y ′m = (x0, . . . , xk))

=

∫
B∩P(x0,...,xk)

f(y1, . . . , yk | x0, . . . , xk)dy1 · · · dyk, (22)

on the complement of G′m. It remains to show that (22) also holds on G′m. For Borel
B ⊆ (Rd)k, we have

P(Y ′m+1 ∈ {Y ′m,k+1} ×B | F ′m)

= P(Y ′m+1 ∈ {Y ′m,k+1} ×B, Vm+1 = 1 | F ′m) + P(Y ′m+1 ∈ {Y ′m,k+1} ×B, Vm+1 = 0 | F ′m)

= α
Voldk(B ∩ Π(Y ′m,k+1))

Voldk Π(Y ′m,k+1)
+ (1− α)

∫
B∩P(Y ′m)

f̂(y1, . . . , yk | Y ′m)dy1 · · · dyk

=

∫
B∩P(Y ′m)

f(y1, . . . , yk | Y ′m)dy1 · · · dyk,

by equation (21). This completes the proof.

14

Since from Y we can recover X, in view of Lemma 3.2, we will from now on work on an
enlarged probability space and assume that the process Y (and hence X) is constructed
as Y ′, along with its renewal times. We finish this section by showing that the renewal
times must occur rather frequently.

Lemma 3.3. With α ∈ (0, 1) the constant appearing in Corollary 3.1, we have

P(Gn+k | Fn) ≥ α, a.s., for all n ∈ Z+. (23)

Moreover, with c > 0 given by e−c = 1− α2, we have

P(τn+1 − τn ≥ 2r | F ′τn+1) ≤ e−cr, a.s., for all r ≥ 0 and all n ∈ N. (24)

Proof. The statement (23) follows from Lemmas 2.4 and 2.6. To prove (24), first note
that τn + j is a stopping time for F ′0,F ′1, . . . for all j ≥ 1. Also, constructing X and Y
as described above, we have G′m = G(m+1)k. Let Am = G′m ∩ {Vm+1 = 1} ∈ F ′m+1. Then
by (23) we have that, for all m ∈ Z+,

P(Am+1 | F ′m) ≥ αP(G(m+2)k | F(m+1)k) ≥ α2, a.s. (25)

Hence for r ≥ 1,

P(τn+1 − τn ≥ r + 2 | F ′τn+1) ≤ E
[
P(Ac

τn+2+r | F ′τn+1+r)1{τn+1 − τn ≥ r}
∣∣ F ′τn+1

]
.

≤ (1− α2)P(τn+1 − τn ≥ r | F ′τn+1),

by (25). Then (24) follows.

Thus Lemma 3.3 shows that the sequence τ1, τ2, . . . does not terminate, and its incre-
ments have exponentially bounded tails. Consider the sequence Yτn . This is a Markov
chain, but its law is not translation invariant, due to the rôle of the origin. The next sec-
tion introduces a related process, whose increment law is translation invariant, and which
therefore has i.i.d. increments. In particular, it has a well-defined radial drift which en-
tails ballisticity, and, crucially, it is close enough in behaviour to Yτn to be able to deduce
our theorems.

4 A homogeneous process

For any fixed vector ` ∈ Sd−1 we construct a homogeneous process in the direction `.
Loosely speaking, it amounts to replacing the origin by a point at infinity in the direction
−`. Let us give a precise definition.

For X ⊆ Rd, we consider a semi-infinite cylinder with direction −`,

Conv`(X) := {z − r` : z ∈ ConvX , r ≥ 0} . (26)

The set of `-admissible states from x ∈ Rd with history X ⊆ Rd is

A`(X ;x) := cl
{
y ∈ B(x; 1) : (x, y] ∩ Conv`(X ∪ {x}) = ∅

}
(27)

= cl
(
B(x; 1) \ Cone(x; Conv`(X ∪ {x}))

)
. (28)

We start with an observation relating the admissible states.

15

Lemma 4.1. Suppose that x 6= 0 and X ⊂ Rd. Then it holds that

A`(X ;x) = A(X ;x), for ` = x̂. (29)

Proof. When ` = x̂, the origin belongs to Conv`(X ∪ {x}), which is a convex set. Then
Conv(X ∪ {0, x}) ⊆ Conv`(X ∪ {x}) and so comparison of (1) with (27) shows that
A`(X ;x) ⊆ A(X ;x).

Conversely, consider the convex cone C = Cone(x;X ∪ {0, x}); the cone C has vertex
x and contains 0, so that the translate C−λx (λ ≥ 0) is contained in C. That is, for any
z ∈ Conv(X ∪{x}) we have z−λx ∈ C. In other words, C is a convex cone that contains
the cylinder Conv`(X ∪ {x}), and hence Cone(x; Conv`(X ∪ {x})) ⊆ C. Comparison
of (4) and (28) shows that A(X ;x) ⊆ A`(X ;x), and the lemma is proved.

We define the process X` := (X`
0, X

`
1, . . .) analogously to X. Specifically, we set

X `
n,k := {X`

j : max(1, n− k) ≤ j ≤ n− 1}, take X`
0 = 0, and suppose that, for n ∈ Z+,

P(X`
n+1 ∈ A | X`

0, X
`
1, . . . , X

`
n) =

∫
A

p`(y | X `
n,k;X

`
n)dy,

for all Borel sets A ⊆ Rd, where

p`(y | X ;x) =
1

VoldA`(X ;x)
1A`(X ;x)(y) (30)

if VoldA`(X ;x) > 0. This process is well defined, as shown by the following analogue of
Lemma 2.1; the proof is similar.

Lemma 4.2. The process X`
0, X

`
1, X

`
2, . . . is well defined, and for all n ∈ Z+,

νd
2
≤ VoldA`(X `

n,k;X
`
n) ≤ νd.

A sequence y1, . . . , yk ∈ Rd is called an `-admissible path from history x0, x1, . . . , xk
if y1 ∈ A`(x0, . . . , xk−1;xk), y2 ∈ A`(x1, . . . , xk−1, xk; y1), y3 ∈ A`(x2, . . . , xk, y1; y2), and
so on, up to yk ∈ A`(xk, y1 . . . , yk−2; yk−1). Let P`(x0, x1, . . . , xk) denote the set of all
`-admissible paths from history x0, x1, . . . , xk.

Let F `n := σ(X`
0, . . . , X

`
n). For δ ∈ (0, 1/8) and x ∈ Rd, recall from (11) that Π`(x) =∏k

i=1B(x+ i
2
`; δ). Also, define

G` :=
{

(x0, . . . , xk) ∈ (Rd)k+1 : xk 6= 0, and Π`(xk) ⊆ P`(x0, . . . , xk)
}
.

For n ≥ k, let G`
n ∈ F `n denote the event G`

n := {(X`
n−k, . . . , X

`
n) ∈ G`}; if G`

n occurs, we
say that X` has good geometry at time n.

The following analogue of Lemma 2.5 is proved in the same way.

Lemma 4.3. Let α ∈ (0, 1) be the constant appearing in Corollary 3.1. Then for all
n ≥ k and all Borel B ⊆ (Rd)k, on the event G`

n,

P((X`
n+1, . . . , X

`
n+k) ∈ B | F `n) ≥ α

VoldkB

(VoldB(0; δ))k
1{B ⊆ Π`(Xn)}.

16

For m ∈ Z+ define
Y `
m := (X`

mk, X
`
mk+1, . . . , X

`
(m+1)k).

Now Y ` = (Y `
0 , Y

`
1 , . . .) is a Markov chain and satisfies a version of Lemma 2.2. Moreover,

we may assume that Y ` is constructed along with its renewal times τ `1 , τ
`
2 , . . ., analogously

to the construction of Y ′ described in Section 3, with Π` replacing Π, f ` replacing f , and
f̂ ` replacing f̂ , where f ` is defined by the analogue of (6) with p` instead of p, and

f̂ `(y1, . . . , yk | x0, . . . , xk) =
1

1− α

[
f `(y1, . . . , yk | x0, . . . , xk)−

α1Π`(xk)(y1, . . . , yk)

(VoldB(0; δ))k

]
.

Let Y `
m,i denote the ith component of Y `

m, and set W `
n := Y `

τ`n,k+1
= X`

kτ`n+k
.

Proposition 4.4. The sequence (W `
n;n ≥ 1) is a homogeneous random walk, that is,

(W `
n+1 −W `

n;n ≥ 1) is an i.i.d. sequence. Moreover, E ‖W `
n+1 −W `

n‖ <∞ and

E
[
W `
n+1 −W `

n

]
= ud,k`,

for a constant ud,k which does not depend on `. Finally, the inter-renewal times (τ `n+1 −
τ `n;n ≥ 1) are i.i.d. with E[τ `n+1 − τ `n] = λd,k for a constant λd,k ∈ (0,∞) depending only
on d and k, and such that, with c > 0 the constant from Lemma 3.3,

P(τ `n+1 − τ `n ≥ 2r) ≤ e−cr, for all r ≥ 0. (31)

Proof. By the renewal construction and the fact that for the `-process the transition
function is translation invariant,

(Y `
τ`j +1 −W

`
j , Y

`
τ`j +2 −W

`
j , . . . , Y

`
τ`j+1
−W `

j) is an i.i.d. sequence over j ≥ 1,

where e.g. Y `
τ`j+1
−W `

j is the vector with components Y `
τ`j+1,i

−W `
j . Thus W `

j+1 −W `
j is

also i.i.d. Similarly, τ `n+1− τ `n are i.i.d., so that E[τ `n+1− τ `n] = λd,k does not depend on n,
and essentially the same argument as Lemma 3.3 gives the exponential bound (31).

Next observe that
E
∥∥W `

2 −W `
1

∥∥ ≤ k E[τ `2 − τ `1] <∞.

The distribution of W `
2 −W `

1 is symmetric with respect to `, i.e., invariant under any
orthogonal transformation of Rd that leaves ` fixed. Hence E[W `

2 −W `
1] = ud,k` for some

ud,k ∈ R, which does not depend on `.

5 Coupling the processes

In this section we describe a coupling construction used to approximate the process Ym
between times τn and τn+1 by the process Y `

m, where ` is fixed as ` = Ŷτn,k+1. We simultan-
eously construct the processes Y and Y `, and their subsequent renewal times, essentially
via the constructions described in Sections 3 and 4, but with ‘maximal’ exploitation of
common randomness.

Our primary process we again denote by Y , where Yn ∈ (Rd)k+1, and we denote
Ym = (Xmk, . . . , X(m+1)k) in components, so the process Y yields the process X. Let
Ym,i denote the ith component of Ym, so Ym,i = Xmk+i−1. Given F ′τn+1 (recall that
τn + 1 is a stopping time), we will generate Yτn+2, . . . , Yτn+1+1, and, at the same time,

17

generate Y `
τn+2, . . . , Y

`
τn+1+1, where we couple the two processes and their renewal times

in a maximal way (see below for formalities) starting at Y `
τn = Yτn and using the same

underlying sequence V1, V2, We stress that ` = Ŷτn,k+1 is kept fixed.
Before describing the coupling formally, we recall the following fact (see e.g. [15,

p. 19]): If X and Y are random variables on Rp then there exists a maximal coupling,
i.e., a law on (X, Y) such that 2P(X 6= Y) = ‖P(X ∈ ·) − P(Y ∈ ·)‖TV, where
‖ · ‖TV denotes total variation distance, which for measures µ1 and µ2 on Rp is defined
by ‖µ1− µ2‖TV := supB |µ1(B)− µ2(B)| where the supremum is over Borel sets B ⊆ Rp.

Here is the coupling construction. As before, let V1, V2, . . . be a sequence of
i.i.d. Bernoulli random variables with P(Vi = 1) = α = 1− P(Vi = 0), where α ∈ (0, 1) is
the constant in Corollary 3.1. The joint construction of (Ym, Y

`
m) will be adapted to the

filtration F ′τn+1,F ′τn+2, . . . (thus we enlarge the previous filtration as necessary). Recall
that Gm = {Ym ∈ G} and G`

m = {Y `
m ∈ G`}.

We begin by taking Y `
τn = Yτn . Let m ≥ τn. If Ym 6= Y `

m, we generate Ym+1, Ym+2, . . .
and Y `

m+1, Y
`
m+2, . . ., and any associated renewal times, independently using the construc-

tions described previously in Sections 3 and 4. If Ym = Y `
m, then we generate Ym+1 and

Y `
m+1 as follows.

1. On the event Gc
m∩(G`

m)c, when neither process exhibits good geometry, generate Ym+1

and Y `
m+1 via the maximal coupling of the corresponding marginal transition laws from

Ym = Y `
m.

2. On the event Gm ∩G`
m, when both processes exhibit good geometry, then:

(a) If Vm+1 = 1, declare that a renewal occurs for both processes (τn+1 = τ `n+1 =
m) and set Ym+1 = (Ym,k+1, Zk+1) and Y `

m+1 = (Ym,k+1, Z
`
k+1) where Zk+1 and

Z`
k+1 are generated via a maximal coupling of the uniform laws on Π(Ym,k+1)

and Π`(Ym,k+1), respectively. Generate the subsequent trajectories of Y and Y `

independently.

(b) If Vm+1 = 0, set Ym+1 = (Ym,k+1, Zk+1) and Y `
m+1 = (Ym,k+1, Z

`
k+1) where now

Zk+1 and Z`
k+1 are generated via a maximal coupling of the laws corresponding

to the densities f̂(· | Ym) and f̂ `(· | Ym).

3. On the event Gm4G`
m (where ‘4’ denotes the symmetric difference), generate

Ym+1, Ym+2, . . . and Y `
m+1, Y

`
m+2, . . ., and any associated renewal times, independently.

This construction gives (Ym, Y
`
m) for m ≥ τn with the correct marginal distributions.

Let En denote the event that the coupling ‘succeeds’ between times τn and τn+1, i.e.,

En :=
{
Y `
m = Ym for all m ∈ {τn + 1, . . . , τn+1}, and τ `n+1 = τn+1

}
. (32)

The effectiveness of the coupling is based on the following result, whose proof we defer
to the end of this section. Write log2 n := (log n)2.

Proposition 5.1. Let En be as defined at (32). There exists a constant C ∈ R+ such
that a.s., for all but finitely many n ∈ N,

P(En | F ′τn+1) ≥ 1− C log2 n

n
.

18

The fact that the coupling succeeds with high probability leads to the following key
result, which quantifies how well the homogeneous process approximates the real process
between renewal times.

Corollary 5.2. Let Wn := Yτn+1,k+1. Then the following hold.

(i) Let λd,k be the constant appearing in Proposition 4.4. Then, for all γ ∈ (0, 1),

lim
n→∞

nγ
∣∣E[τn+1 − τn | F ′τn+1]− λd,k

∣∣ = 0, a.s.

(ii) For all p > 0, there is a constant B ∈ R+ (depending on p, d, and k) such that

E[‖Wn+1 −Wn‖p | F ′τn+1] ≤ B, a.s., for all n ∈ N.

(iii) Let ud,k be the constant appearing in Proposition 4.4. Then, for all γ ∈ (0, 1),

lim
n→∞

nγ
∥∥∥E[Wn+1 −Wn | F ′τn+1]− ud,kŴn

∥∥∥ = 0, a.s.

Proof. For part (i), with En as defined at (32), we have that

E[τn+1 − τn | F ′τn+1] = E[(τn+1 − τn)1(En) | F ′τn+1] + E[(τn+1 − τn)1(Ec
n) | F ′τn+1].

Then, the (conditional) Hölder inequality implies that for all p, q > 1 with p−1 + q−1 = 1,∣∣E[(τn+1 − τn)1(Ec
n) | F ′τn+1]

∣∣ ≤ (E[(τn+1 − τn)p | F ′τn+1]
)1/p (P(Ec

n | F ′τn+1)
)1/q

≤ Cp

(
log2 n

n

)1/q

, a.s., (33)

for some constant Cp and all but finitely many n, by (24) and Proposition 5.1. In
particular, given γ ∈ (0, 1), we may choose q close enough to 1 (and hence p sufficiently
large) so that this last bound is o(n−γ). On the other hand, on the event En we have
τn+1 − τn = τ `n+1 − τ `n where ` = Ŷτn,k+1, so

E[(τn+1 − τn)1(En) | F ′τn+1] = E[τ `n+1 − τ `n | F ′τn+1]− E[(τ `n+1 − τ `n)1(Ec
n) | F ′τn+1],

where, similarly to above, nγ|E[(τ `n+1 − τ `n)1(Ec
n) | F ′τn+1]| → 0, a.s. Moreover, by

Proposition 4.4, E[τ `n+1 − τ `n | F ′τn+1] = λd,k. This establishes part (i).
To prove part (ii), observe first that, for all n ∈ N,

‖Wn+1 −Wn‖ ≤ k(τn+1 − τn), a.s. (34)

Then the statement in part (ii) follows directly from (24). For part (iii), we have that

E[Wn+1 −Wn | F ′τn+1] = E[(Wn+1 −Wn)1(En) | F ′τn+1] + E[(Wn+1 −Wn)1(Ec
n) | F ′τn+1].

Then (34) and an argument similar to (33) shows that

nγ‖E[(Wn+1 −Wn)1(Ec
n) | F ′τn+1]‖ → 0, a.s.,

19

for all γ ∈ (0, 1). On the other hand, on the event En we have Wn+1−Wn = W `
n+1−W `

n

where ` = Ŷτn,k+1, so

E[(Wn+1 −Wn)1(En) | F ′τn+1] = E[W `
n+1 −W `

n | F ′τn+1]− E[(W `
n+1 −W `

n)1(Ec
n) | F ′τn+1],

where, again similarly to (33), we have that nγ‖E[(W `
n+1 − W `

n)1(Ec
n) | F ′τn+1]‖ → 0,

a.s. Moreover, by Proposition 4.4, E[W `
n+1 − W `

n | F ′τn+1] = ud,kŶτn,k+1. To compare

Ŷτn,k+1 = X̂τnk+k to Ŵn = Ŷτn+1,k+1 = X̂τnk+2k, note that ‖Xτnk+k − Xτnk+2k‖ ≤ k. For
x, y ∈ Rd with x 6= 0 and x+ y 6= 0, we have

x+ y

‖x+ y‖
− x

‖x‖
=

y

‖x+ y‖
+
x(‖x‖ − ‖x+ y‖)
‖x‖‖x+ y‖

. (35)

Applying (35), we see that ‖Ŷτn,k+1 − Ŵn‖ ≤ 2k/‖Wn‖. Since τn ≥ n a.s., we have
from the final statement in Corollary 2.8 that lim infn→∞ n

−1‖Wn‖ > 0. Part (iii) now
follows.

We can now complete the proof of Theorem 1.1. We use two results from the Ap-
pendix: Lemma A.3 which gives a law of large numbers for a process on R+ under a drift
and variance condition, and Lemma A.1 which implies ballisticity for a process on Rd

given suitable radial drift asymptotics and a lim inf speed bound.

Proof of Theorem 1.1. By Corollary 5.2(i) and (24), we may apply Lemma A.3 with
ζn = τn + 1 to obtain limn→∞ n

−1τn = λd,k, a.s. Moreover, by Corollary 5.2(ii) and (iii),
we may apply Lemma A.1 to the process Wn to obtain n−1Wn → ud,k` for some random
` ∈ Sd−1.

Let Jn = max{j ∈ N : kτj+2k ≤ n}, so that kτJn +2k ≤ n < kτJn+1 +2k. Then by an
inversion of the fact that τn/n → λd,k, we obtain n−1Jn → (kλd,k)

−1, a.s. In particular,
Jn →∞, a.s. Then, since WJn = YτJn+1,k+1 = XkτJn+2k, we have∥∥∥∥Xn

n
− WJn

Jn
· Jn
n

∥∥∥∥ ≤ 1

n
max

kτJn+2k≤m<kτJn+1+2k
‖Xm −XkτJn+2k‖ ≤

1

n

(
τJn+1 − τJn

)
. (36)

From (24) and the Borel–Cantelli lemma we have that there exists b < ∞ such that
τn+1− τn ≤ b log n, for all but finitely many n, a.s., and since Jn = O(n) this implies that
τJn+1 − τJn ≤ 2b log n for all but finitely many n, a.s. Thus (36) yields

lim
n→∞

n−1Xn =
ud,k
kλd,k

`, a.s., (37)

which is the required a.s. convergence result when we set vd,k :=
ud,k
kλd,k

. The bounded

convergence theorem yields n−1 E ‖Xn‖ → vd,k, and the fact that vd,k > 0 follows from
Corollary 2.8. Finally, note that the law of X is invariant under orthogonal transforma-
tions of Rd: for any orthogonal matrix U , the sequence UX0, UX1, UX2, . . . has the same

law as the original X0, X1, X2, . . ., and so the ` in (37) satisfies U`
d
= `, and the fact that

` is uniform on the sphere follows from uniqueness of Haar measure.

It remains to prove Proposition 5.1. To establish this result we need the following
observations. We denote by Unifd(A) the uniform law on measurable A ⊆ Rd with
VoldA ∈ (0,∞).

20

Lemma 5.3. There exists a constant C ∈ R+ such that, for any x 6= 0,

‖Unifdk(Π(x))− Unifdk(Π
`(x))‖TV ≤ C‖`− x̂‖. (38)

There exists a constant C ∈ R+ such that for all ` ∈ Sd−1 and all x0, . . . , xk,

‖f(· | x0, . . . , xk)− f `(· | x0, . . . , xk)‖TV ≤ C‖`− x̂k‖+ C‖xk‖−1; (39)

‖f̂(· | x0, . . . , xk)− f̂ `(· | x0, . . . , xk)‖TV ≤ C‖`− x̂k‖+ C‖xk‖−1. (40)

Moreover, there exists C ∈ R+ such that for all ` ∈ Sd−1 and all x0, . . . , xk,

|P(Ym+1 ∈ G | Ym = (x0, . . . , xk))− P(Y `
m+1 ∈ G` | Y `

m = (x0, . . . , xk))|
≤ C

(
‖`− x̂k‖+ ‖xk‖−1

)
. (41)

Proof. First it is straightforward to show that for measurable A1, A2 ⊆ Rd,

‖Unifd(A1)− Unifd(A2)‖TV ≤
2 Vold(A14A2)

Vold(A1) ∧ Vold(A2)
. (42)

In particular, the bound (38) follows from (42) and the fact that Voldk(Π
x̂(x)4Π`(x)) ≤

C‖` − x̂‖, since the centres of B(x + i
2
x̂; δ) and B(x + i

2
`; δ) are at distance at most

k
2
‖`− x̂‖.

Next we claim that there exists a constant C ∈ R+ such that for all ` ∈ Sd−1, all
x ∈ Rd \B(0; k+ 1) and all X ⊂ B(x; k) of cardinality k such that A(X ;x) and A`(X ;x)
have volume not smaller than 1

2
νd,

‖p(· | X ;x)− p`(· | X ;x)‖TV ≤ C‖`− x̂‖. (43)

By Lemma 4.1, p(· | X ;x) = p`(· | X ;x) for ` = x̂, so (43) is equivalent to

‖px̂(· | X ;x)− p`(· | X ;x)‖TV ≤ C‖`− x̂‖.

Moreover, it follows from (42) that there exists a constant C such that for all A1, A2 ⊆
B(0; 1) with volume not smaller than 1

2
νd,

‖Unifd(A1)− Unifd(A2)‖TV ≤ C Vold(A14A2). (44)

It remains to estimate the volume of A`(X ;x)4Ax̂(X ;x). Taking a parametrization of
the segment from x̂ to `, say `(λ) = x̂+ λ(`− x̂), λ ∈ [0, 1], we can control the derivative
of the volume by the surface measure of the boundary of the admissible set,∣∣∣∣ d

dλ
Vold

(
A`(λ)(X ;x)4Ax̂(X ;x)

)∣∣∣∣ ≤ Surf
(
∂A`(λ)(X ;x)

)
× ‖`− x̂‖. (45)

But the set Cone(x; Conv`(X ∪ {x})) in (27) has a finite number of hyperplanar faces,
uniformly bounded for a fixed k. Since A`(λ)(X ;x) has diameter less than 1, we conclude
that the surface term is bounded, and further, that (43) holds.

We claim that (39) follows from (43). Indeed, fix x0, . . . , xk and let Z = (Z1, . . . , Zk)
be a random vector in (Rd)k with

P(Z1, . . . , Zk ∈ B) =

∫
B

f(y1, . . . , yk | x0, . . . , xk)dy1 · · · dyk,

21

and let Z` = (Z`
1, . . . , Z

`
k) have the same distribution but with f ` instead of f . To

estimate ‖Z − Z`‖TV we couple Z and Z` component by component. Then (43) shows
that we can couple Z1 and Z`

1 such that P(Z1 6= Z`
1) ≤ C‖`− x̂k‖. Given Z1 = Z`

1 = y1,
the conditional densities of Z2 and Z`

2 are p(· | x1, . . . , xk; y1) and p`(· | x1, . . . , xk; y1),
respectively, so by (43) we may again couple so that P(Z2 6= Z`

2 | Z1 = Z`
1) ≤ C‖`− ŷ1‖ ≤

C‖` − x̂k‖ + C‖xk‖−1. Iterating this argument yields a coupling of Z and Z` that fails
with probability at most C‖`− x̂k‖+ C‖xk‖−1, which implies the total variation bound
in (39).

Next, we claim that (40) follows from (38) and (39). Indeed, by the definitions of f̂
and f̂ `,∣∣∣∣∫

B

f̂(y1, . . . , yk | x0, . . . , xk)dy1 · · · dyk −
∫
B

f̂ `(y1, . . . , yk | x0, . . . , xk)dy1 · · · dyk
∣∣∣∣

≤ 1

1− α

∣∣∣∣∫
B

f(y1, . . . , yk | x0, . . . , xk)dy1 · · · dyk −
∫
B

f `(y1, . . . , yk | x0, . . . , xk)dy1 · · · dyk
∣∣∣∣

+
1

α
‖Unifdk(Π(xk))− Unifdk(Π

`(xk))‖TV,

which gives the result.
We now turn to the proof of (41). It is sufficient to consider the case ‖xk‖ ≥ 2k. We

decompose

T = |P(Ym+1 ∈ G | Ym = (x0, . . . , xk))− P(Y `
m+1 ∈ G` | Y `

m = (x0, . . . , xk))|
≤ |P(Ym+1 ∈ G | Ym = (x0, . . . , xk))− P(Y `

m+1 ∈ G | Y `
m = (x0, . . . , xk))|

+ |P(Y `
m+1 ∈ G | Y `

m = (x0, . . . , xk))− P(Y `
m+1 ∈ G` | Y `

m = (x0, . . . , xk))|
=: T1 + T2.

Here T1 ≤ C‖`− x̂k‖+ C‖xk‖−1 by (39). For the other term we see from (44) that

T2 ≤ C Voldk
(
(G4G`)(xk)

)
,

where we have used the notation

H(x) = {(y1, . . . , yk) : (x, y1, . . . , yk) ∈ H}, for H ⊂ Rd(k+1), x ∈ Rd.

It remains to prove that

Voldk
(
(G4G`)(xk)

)
≤ C(‖`− x̂k‖+ ‖xk‖−1), (46)

for some constant C. For k = 1 we simply use (45) to conclude (46). For general k, we
observe that the set G`(xk) has a smooth boundary with bounded surface measure in Rkd.
Then

Voldk
(
(G4G`)(xk)

)
≤ C sup{‖`− ŷi‖ : (y1, . . . , yk) ∈ G(xk)},

which yields (46). This ends the proof.

Proof of Proposition 5.1. For r ∈ N define the event

Fn,r :=
τn+r⋂

m=τn+1

(
{Y `

m = Ym} ∩ (Gm4G`
m)c
)
.

22

Note that Fn,τn+1−τn ⊆ En. Then, for rn := dA log ne where A > 0,

P(Ec
n | F ′τn+1) ≤ P(Ec

n, τn+1 − τn ≤ rn | F ′τn+1) + P(τn+1 − τn > rn | F ′τn+1)

≤ P(F c
n,rn | F

′
τn+1) + P(τn+1 − τn > rn | F ′τn+1).

By (24), we may (and do) choose A sufficiently large so that P(τn+1− τn > rn | F ′τn+1) ≤
C/n, a.s. The result now follows from the claim that there is a constant C ∈ R+ such
that, for all n ∈ N and all r ∈ N,

P(F c
n,r | F ′τn+1) ≤ Cr2

‖Yτn+1,k+1‖
, a.s., (47)

and the fact that, by Corollary 2.8, ‖Yτn+1,k+1‖ = ‖X(τn+2)k‖ > cτn a.s. for some c > 0
and all but finitely many n, with the simple bound τn ≥ n a.s. It thus remains to prove
the claim (47). Since Fn,r+1 ⊆ Fn,r for r ∈ N, we have

P(F c
n,r+1 | F ′τn+1) ≤ P(F c

n,r+1 ∩ Fn,r | F ′τn+1) + P(F c
n,r | F ′τn+1)

= E
[
P(F c

n,r+1 | F ′τn+r)1(Fn,r)
∣∣ F ′τn+1

]
+ P(F c

n,r | F ′τn+1),

so to verify (47) it suffices to prove that, for all n ∈ N and all r ∈ N,

P(F c
n,r+1 | F ′τn+r) ≤

Cr

‖Yτn+1,k+1‖
on Fn,r. (48)

To this end, note that, on Fn,r,

P(F c
n,r+1 | F ′τn+r) ≤ P(Yτn+r+1 6= Y `

τn+r+1 | F ′τn+r) + P(Gτn+r+14G`
τn+r+1 | F ′τn+r).

On Fn,r we have that either (i) Gc
τn+r ∩ (G`

τn+r)
c occurs, in which case

P(Yτn+r+1 6= Y `
τn+r+1 | F ′τn+r) ≤ ‖f(· | Yτn+r)− f `(· | Yτn+r)‖TV

≤ C‖`− Ŷτn+r,k+1‖+ C‖Yτn+r,k+1‖−1,

by (39), or (ii) Gτn+r ∩G`
τn+r occurs, in which case

P(Yτn+r+1 6= Y `
τn+r+1 | F ′τn+r) ≤ α‖Unifdk(Π(Yτn,k+1))− Unifdk(Π

`(Yτn,k+1))‖TV

+ (1− α)‖f̂(· | Yτn+r)− f̂ `(· | Yτn+r)‖TV

≤ C‖`− Ŷτn+r,k+1‖+ C‖Yτn+r,k+1‖−1,

by (38) and (40). Moreover, on Fn,r, by (41),

P(Gτn+r+14G`
τn+r+1 | F ′τn+r) ≤ C‖`− Ŷτn+r,k+1‖+ C‖Yτn+r,k+1‖−1.

Since ` = Ŷτn+1,k+1 and ‖Yτn+r,k+1−Yτn+1,k+1‖ ≤ rk, we thus obtain (48). This completes
the proof.

6 The planar case with unit memory

This section is devoted to the proof of Theorem 1.2, and so we take d = 2 and k = 1
throughout this section. For n ∈ N, denote by θn ∈ [0, π] the magnitude of the interior
angle of Conv{0, Xn−1, Xn} at Xn: see Figure 3.

First we express the ‘local drift’ in terms of θn.

23

0

Xn

Xn−1

θn

φ

0 αn+1

Xn

Xn−1

Xn+1

θn

θn+1
φn+1

Figure 3: The definition of θn (left) and the construction of θn+1 (right). In the right-hand
diagram, the double-ruled angle is 2π − θn − φn+1.

Lemma 6.1. Let d = 2 and k = 1. Then for n ∈ N,

E[(Xn+1 −Xn) · X̂n] = E
[

2 sin θn
6π − 3θn

]
.

Proof. Suppose that n ∈ N; note that Xn 6= 0 a.s. Given Xn and Xn−1, let (r, φ) be polar
coordinates with origin (r = 0) at Xn, φ = 0 in the direction X̂n, and oriented so that
Xn−1 is at angle φ = θn − π relative to Xn. See the left-hand part of Figure 3.

The area of the disk sector on which Xn+1 is uniformly distributed is π − (θn/2), so

E[(Xn+1 −Xn) · X̂n | Xn, Xn−1] =
2

2π − θn

∫ 1

0

∫ π

θn−π
(r cosφ)dφ rdr

=
2 sin θn

6π − 3θn
,

which gives the result.

Lemma 6.2. Let d = 2 and k = 1. Then for n ∈ N,

θn+1 = |(2π − θn)Un+1 − π| − αn+1,

where U1, U2, . . . are i.i.d. U [0, 1] random variables, and αn → 0 a.s. as n→∞.

Proof. Let n ∈ N. Given Xn and Xn−1, once more use the polar coordinates described in
the proof of Lemma 6.1. The angle φ of Xn+1 in these coordinates is θn+φn+1−π, where
φn+1, the angle between vectors XnXn−1 and XnXn+1 measured outside the convex hull,
is uniformly distributed on [0, 2π− θn]; say φn+1 = (1−Un+1)(2π− θn) for Un+1 ∼ U [0, 1]
independent of Xn, Xn−1. See the right-hand part of Figure 3. The angle at Xn+1 in the
triangle T with vertices 0, Xn, Xn+1 is θn+1; denote the angle at 0 in T by αn+1. The
angle at Xn in T is either θn+φn+1 (if θn+φn+1 ≤ π) or 2π−θn−φn+1 (if θn+φn+1 > π).
In the first case

θn+1 = π − θn − φn+1 − αn+1,

and in the second case

θn+1 = π − (2π − θn − φn+1)− αn+1 = θn + φn+1 − π − αn+1.

24

Combining these we get

θn+1 = |θn + φn+1 − π| − αn+1 = |(2π − θn)Un+1 − π| − αn+1.

Since ‖Xn+1 −Xn‖ ≤ 1, it is not hard to see that 0 ≤ αn+1 ≤ C(1 + ‖Xn‖)−1, and this
tends to 0 since ‖Xn‖ → ∞ by Corollary 2.8.

Lemma 6.3. We have that θn
d−→ θ as n → ∞ where θ ∈ [0, π] has the distribution

uniquely determined by the distributional fixed-point equation

θ
d
= |(2π − θ)U − π|, θ ∈ R, (49)

where U ∼ U [0, 1] is independent of the θ on the right. Moreover, the random variable θ
has probability density given by

f(t) =
2

3π2
(2π − t), for t ∈ [0, π]. (50)

Remark 6.4. It is not hard to check that (50) provides a solution to (49): see the proof
below, which also establishes uniqueness. To come up with (50) in the first place, one can
deduce that the density f of θ solving (49) satisfies the differential equation (π+t)f ′(t) =
−f(π − t) for all t ∈ (0, π) (by differentiating (54) below), and we observed that a linear
f solves this.

Proof of Lemma 6.3. Define

T (x, u) := |(2π − x)u− π|.

Then the fixed-point equation (49) reads T (θ, U)
d
= θ, while Lemma 6.2 shows that

θn+1 = T (θn, Un+1)− αn+1.
Let θ satisfy (49). Then clearly θ ≥ 0, a.s. Moreover, for any t ≥ 0,

P(θ > t) = P(T (θ, U) > t) = P((2π − θ)U > π + t) + P((2π − θ)U < π − t). (51)

In particular, taking t = rπ for r ∈ N, using the fact that θ ≥ 0 and U ∈ [0, 1],

P(θ > rπ) ≤ P(2πU > (1 + r)π) + P(θ ≥ 2π, (θ − 2π)U > (r − 1)π)

≤ 0 + P(θ > (r + 1)π),

so that P(θ > rπ) = P(θ > (r + 1)π) and hence P(θ > π) = limr→∞ P(θ > rπ) = 0. Thus
any (finite) solution θ to (49) has θ ∈ [0, π], a.s.

Define a Markov transition operator Q on state-space [0, π] by Q(x,A) = P(T (x, U) ∈
A) where U ∼ U [0, 1], x ∈ [0, π] and measurable A ⊆ [0, π]. Then (49) is equivalent to the
statement that EQ(θ, A) = P(θ ∈ A) for all measurable A ⊆ [0, π], i.e., the distributional
solutions to (49) are precisely the invariant measures of Q. Note also that

Q(x, dy) ≥ P(π − (2π − x)U ∈ dy) ≥ 1

2π
dy, for all x, y ∈ (0, π),

so that for any measurable A ⊆ [0, π], infxQ(x,A) ≥ 1
2
g(A) where g is uniform measure

on [0, π]. This is a version of the Doeblin condition, and it ensures (see e.g. [19, The-
orem 16.0.2, p. 394]) that Q is uniformly ergodic: there is a unique invariant measure µ

25

such that supx∈[0,π] ‖Qm(x, ·)−µ(·)‖TV → 0 as m→∞. In particular (49) has a unique
distributional solution. Moreover, if P [0, π] denotes the set of probability measures on
[0, π], then

lim
m→∞

sup
ν∈P[0,π]

‖νQm − µ‖TV = 0. (52)

Let νn denote the law of θn. If (ψk, ψk+1, . . .) is the Markov chain started from ψk = θk
and with evolution ψk+m+1 = T (ψk+m, Uk+m+1), then (ψk, ψk+1, . . .) lives on the same
probability space as (θk, θk+1, . . .), and ψk+m has law νkQ

m. Let ρ denote the Lévy–
Prokhorov metric on distributions. Then

ρ(νk+m, µ) ≤ ρ(νk+m, νkQ
m) + ρ(νkQ

m, µ). (53)

Here by (52) we can choose m sufficiently large so that ρ(νkQ
m, µ) ≤ ‖νkQm − µ‖TV ≤ ε

for all k. On the other hand, we see that |T (x, u)− T (y, u)| ≤ |x− y|, so

|ψk+`+1− θk+`+1| ≤ |T (ψk+`, Uk+`+1)−T (θk+`, Uk+`+1)−αk+`+1| ≤ |ψk+`− θk+`|+αk+`+1,

which shows that |ψk+m − θk+m| ≤
∑k+m

j=k αj. Thus, since αj → 0, for any m we have
limk→∞ |ψk+m − θk+m| = 0, a.s., and so ρ(νk+m, νkQ

m) → 0 as k → ∞. Thus in (53) we
may take both m and k large to see that limn→∞ ρ(νn, µ) = 0. Thus θn converges in law
to µ, the unique distributional solution to (49).

It remains to identify the law µ. To this end, we check that if θ has density f as given
by (50), then

P(T (θ, U) ≤ t) = E
[

2t

2π − θ
1{θ ≤ π − t}

]
+ E

[
π + t− θ
2π − θ

1{θ > π − t}
]

= 2t

∫ π−t

0

f(y)

2π − y
dy +

∫ π

π−t

(π + t− y)f(y)

2π − y
dy (54)

=
4t(π − t)

3π2
+

2

3π2

∫ π

π−t
(π + t− y)dy

=
4t(π − t)

3π2
+
t2

π2
=
t(4π − t)

3π2
,

which is
∫ t

0
f(s)ds. Hence f provides a solution to the distributional equation (49).

Finally, we can complete the proof of Theorem 1.2.

Proof of Theorem 1.2. By Lemmas 6.1 and 6.3 and the bounded convergence theorem,

lim
n→∞

E[(Xn+1 −Xn) · X̂n] = E
[

2 sin θ

6π − 3θ

]
,

where θ has the density given by (50). Then we compute

E
[

2 sin θ

6π − 3θ

]
=

4

9π2

∫ π

0

sin tdt =
8

9π2
.

Comparison of Theorem 1.1 and Lemma A.5 shows that this quantity is indeed v2,1, which
ends the proof of Theorem 1.2.

26

A Auxiliary results: speeds and directions

The next result, which will be our tool for establishing ballisticity, is an important in-
gredient in the proof of Theorem 1.1.

Lemma A.1. Let d ∈ N. Let ξ0, ξ1, ξ2, . . . be a stochastic process in Rd adapted to a
filtration F0,F1,F2, Let ∆n := ξn+1 − ξn. Suppose that lim infn→∞ n

−1‖ξn‖ ≥ c a.s.,
for some constant c > 0, and that for some B <∞, ε > 0, and v ∈ (0,∞) we have

E[‖∆n‖2 | Fn] ≤ B, a.s., for all n ∈ Z+; (55)

lim
n→∞

nε
∥∥∥E[∆n | Fn]− vξ̂n

∥∥∥ = 0, a.s. (56)

Then limn→∞ n
−1ξn = v` a.s. for some random ` ∈ Sd−1.

The proof of this result will go by establishing in turn a limiting speed (Lemma A.3)
and a limiting direction (Lemma A.4). First we need a couple of elementary bounds.

Lemma A.2. For all x, y ∈ Rd,

|‖x+ y‖ − ‖x‖ − x̂ · y| ≤ 2‖y‖2

‖x‖
. (57)

Moreover, for all x, y ∈ Rd with x 6= 0 and x+ y 6= 0,∥∥∥∥ x+ y

‖x+ y‖
− x

‖x‖
− y − x̂(x̂ · y)

‖x‖

∥∥∥∥ ≤ 3‖y‖2

‖x‖‖x+ y‖
. (58)

Proof. First we prove (57). It suffices to suppose that x 6= 0. We have

‖x+ y‖ − ‖x‖ =
‖x+ y‖2 − ‖x‖2

‖x+ y‖+ ‖x‖
=

2x · y + ‖y‖2

‖x+ y‖+ ‖x‖
.

Hence ∣∣∣∣‖x+ y‖ − ‖x‖ − 2x · y
‖x+ y‖+ ‖x‖

∣∣∣∣ ≤ ‖y‖2

‖x‖
. (59)

Moreover, ∣∣∣∣ 1

‖x+ y‖+ ‖x‖
− 1

2‖x‖

∣∣∣∣ ≤ |‖x+ y‖ − ‖x‖|
2‖x‖2

≤ ‖y‖
2‖x‖2

. (60)

By the triangle inequality, |‖x+ y‖ − ‖x‖ − x̂ · y| is bounded above by∣∣∣∣‖x+ y‖ − ‖x‖ − 2x · y
‖x+ y‖+ ‖x‖

∣∣∣∣+ 2‖x · y‖
∣∣∣∣ 1

‖x+ y‖+ ‖x‖
− 1

2‖x‖

∣∣∣∣ ,
and then combining (59) and (60), we obtain (57).

For (58), suppose that x 6= 0 and x+ y 6= 0. Then, by (35) and (57),∥∥∥∥ x+ y

‖x+ y‖
− x

‖x‖
− y − x̂(x̂ · y)

‖x+ y‖

∥∥∥∥ =
|‖x+ y‖ − ‖x‖ − x̂ · y|

‖x+ y‖
≤ 2‖y‖2

‖x‖‖x+ y‖
.

Now we use the fact that ‖y − x̂(x̂ · y)‖ ≤ ‖y‖ and∣∣∣∣ 1

‖x+ y‖
− 1

‖x‖

∣∣∣∣ =
|‖x+ y‖ − ‖x‖|
‖x‖‖x+ y‖

≤ ‖y‖
‖x‖‖x+ y‖

to get (58).

27

Lemma A.3. Let ζ0, ζ1, ζ2, . . . be a stochastic process on R+ adapted to a filtration
F0,F1,F2, Suppose that there exist B <∞ and v ∈ R such that

E[(ζn+1 − ζn)2 | Fn] ≤ B, a.s.; (61)

lim
n→∞

|E[ζn+1 − ζn | Fn]− v| = 0, a.s. (62)

Then limn→∞ n
−1ζn = v, a.s.

Proof. As in the Doob decomposition, let A0 := 0 and An :=
∑n−1

m=0 E[ζm+1 − ζm | Fm]
for n ∈ N, so that Mn := ζn − An is a martingale with M0 = ζ0. Moreover,

E[M2
n+1 −M2

n | Fn] = E[(Mn+1 −Mn)2 | Fn]

≤ E[(ζn+1 − ζn)2 | Fn] ≤ B, a.s.,

by (61). It follows that, for any ε > 0, |Mn| ≤ n(1/2)+ε for all but finitely many n, a.s.:
to see this one may apply e.g. Theorem 2.8.1 of [17] (take f(y) = y2 and a(y) = y1+ε in
that result). Hence, a.s., limn→∞ n

−1ζn = limn→∞ n
−1An = v, by (62).

Lemma A.4. Let d ∈ N. Let ξ0, ξ1, ξ2, . . . ∈ Rd be adapted to a filtration F0,F1,F2,
Let ∆n := ξn+1 − ξn. Suppose that for some B < ∞, (55) holds. Let ∆⊥n := ∆n −
ξ̂n(∆n · ξ̂n). Suppose also that

∑∞
n=1 n

−1‖E[∆⊥n | Fn]‖ < ∞ a.s., and, for some c > 0,

lim infn→∞ n
−1‖ξn‖ ≥ c a.s. Then limn→∞ ξ̂n = ` a.s. for some random ` ∈ Sd−1.

Proof. First note that, by Markov’s inequality and (55), for any q > 0,

E[‖ξ̂n+1 − ξ̂n‖q1{‖∆n‖ > 1
2
‖ξn‖} | Fn] ≤ 2qP(‖∆n‖2 > 1

4
‖ξn‖2 | Fn)

≤ 22+qB‖ξn‖−2, a.s. (63)

On the other hand, we apply (58) with x = ξn and y = ∆n to get, on {ξn 6= 0},∥∥∥∥ξ̂n+1 − ξ̂n −
∆⊥n
‖ξn‖

∥∥∥∥1{‖∆n‖ ≤ 1
2
‖ξn‖} ≤

6‖∆n‖2

‖ξn‖2
.

Noting that E[‖∆⊥n ‖1{‖∆n‖ > 1
2
‖ξn‖} | Fn] ≤ 2‖ξn‖−1 E[‖∆n‖2 | Fn], by (55) we get∥∥∥∥E[ξ̂n+1 − ξ̂n | Fn]− E[∆⊥n | Fn]

‖ξn‖

∥∥∥∥ ≤ 16B‖ξn‖−2, on {ξn 6= 0}, (64)

using the q = 1 case of (63). It follows from (35) that ‖ξ̂n+1 − ξ̂n‖ ≤ 2 ‖∆n‖
‖ξn+∆n‖ , so

E[‖ξ̂n+1 − ξ̂n‖21{‖∆n‖ ≤ 1
2
‖ξn‖} | Fn] ≤ 16B‖ξn‖−2, a.s.

Together with the q = 2 case of (63), this implies

E[‖ξ̂n+1 − ξ̂n‖2 | Fn] ≤ 32B‖ξn‖−2, a.s.

Define An :=
∑n−1

m=0 E[ξ̂m+1− ξ̂m | Fm], so that Mn := ξ̂n−An is a martingale in Rd. Now

E[‖Mn+1 −Mn‖2 | Fn] ≤ E[‖ξ̂n+1 − ξ̂n‖2 | Fn] ≤ 32B‖ξn‖−2.

But ‖ξn‖ > (c/2)n for all but finitely many n, so we get
∑∞

n=0 E[‖Mn+1−Mn‖2 | Fn] <∞,
a.s. It follows that Mn → M∞ a.s. for some M∞ ∈ Rd, by e.g. the d-dimensional version
of Theorem 5.4.9 of [11]. Hence for ξ̂n to converge a.s., it is sufficient that limn→∞An
exists a.s., and, by (64), sufficient for this is that

∑∞
n=1 n

−1‖E[∆⊥n | Fn]‖ <∞ a.s. Also,

since ‖ξn‖ → ∞, the limit of ξ̂n is non-zero.

28

Now we can complete the proof of Lemma A.1.

Proof of Lemma A.1. Taking x = ξn and y = ∆n in (57), taking conditional expectations,
and using (55), we obtain∣∣∣E[‖ξn+1‖ − ‖ξn‖ | Fn]− ξ̂n · E[∆n | Fn]

∣∣∣ ≤ 2B‖ξn‖−1.

Then by assumption (56) and the fact that ‖ξn‖ > (c/2)n for all but finitely many n,

lim
n→∞

nε |E[‖ξn+1‖ − ‖ξn‖ | Fn]− v| = 0, a.s.

So we can apply Lemma A.3 with ζn = ‖ξn‖ to deduce that limn→∞ n
−1‖ξn‖ = v, a.s.

Moreover, it also follows from (56) that nε‖E[∆⊥n | Fn]‖ → 0, a.s. Hence the conditions of
Lemma A.4 are also satisfied, and we conclude that limn→∞ ξ̂n = ` a.s., for some ` ∈ Sd−1.
Then limn→∞ n

−1ξn = limn→∞ n
−1‖ξn‖ξ̂n = v`, a.s.

The next result, which shows how local speed translates to global speed, is an import-
ant ingredient in the proof of Theorem 1.2.

Lemma A.5. Let d ∈ N. Let ξ0, ξ1, ξ2, . . . be a stochastic process in Rd with ξ0 = 0, such
that, for some constant B <∞,

P(‖ξn+1 − ξn‖ ≤ B) = 1, for all n ∈ Z+,

and suppose that ‖ξn‖ → ∞, a.s. Then

lim
n→∞

∣∣∣∣∣ 1n E ‖ξn‖ −
1

n

n−1∑
m=0

E[(ξm+1 − ξm) · ξ̂m]

∣∣∣∣∣ = 0.

In particular, if limn→∞ E[(ξn+1 − ξn) · ξ̂n] = v ∈ [0,∞] then n−1 E ‖ξn‖ → v as well.

Proof. Let ∆n := ξn+1 − ξn. We have from (57) that for any y with ‖y‖ ≤ B,

|‖x+ y‖ − ‖x‖ − x̂ · y| ≤ C(1 + ‖x‖)−1. (65)

It follows from an application of (65) with x = ξm and y = ∆m that

E ‖ξn‖ =
n−1∑
m=0

E[‖ξm + ∆m‖ − ‖ξm‖] =
n−1∑
m=0

E[ξ̂m ·∆m] +
n−1∑
m=0

E ζm,

where |ζm| ≤ C(1 + ‖ξm‖)−1. Since ‖ξm‖ → ∞ a.s., the bounded convergence theorem
implies that E ζm → 0, and the claimed result follows.

Acknowledgements

F.C. and M.M. acknowledge the support of the project SWIWS (ANR-17-CE40-0032).
The authors are grateful to two anonymous referees for their comments and suggestions.

29

References

[1] O. Angel, I. Benjamini, and B. Viràg, Random walks that avoid their past convex
hull. Electron. Commun. Probab. 8 (2003) 6–16.

[2] M.N. Barber and B.W. Ninham, Random and Restricted Walks: Theory and Applic-
ations. Gordon and Breach, New York, 1970.

[3] E. Baur and J. Bertoin, Elephant random walks and their connection to Pólya-type
urns. Phys. Rev. E 94 (2016) 052134.

[4] V. Beffara, S. Friedli, and Y. Velenik, Scaling limit of the prudent walk. Electron.
Commun. Probab. 15 (2010) 44–58.

[5] I. Benjamini and D.B. Wilson, Excited random walk. Electron. Commun. Probab. 8
(2003) 86–92.

[6] B. Bercu, A martingale approach for the elephant random walk. J. Phys. A: Math.
Theor. 81 (2018) 015201.

[7] M. Bousquet-Mélou, Families of prudent self-avoiding walks. J. Combin. Theory Ser.
A 117 (2010) 313–344.

[8] A. Chen and E. Renshaw, The Gillis–Domb–Fisher correlated random walk. J. Appl.
Probab. 29 (1992) 792–813.

[9] F. Comets, M.V. Menshikov, S. Volkov, and A.R. Wade, Random walk with bary-
centric self-interaction. J. Stat. Phys. 143 (2011) 855–888.

[10] J.R. Cruise and A.R. Wade, The critical greedy server on the integers is recurrent.
Ann. Appl. Probab. 29 (2019) 1233–1261.

[11] R. Durrett, Probability: Theory and Examples. 4th ed., Cambridge University Press,
Cambridge, 2010.

[12] S. Foss, L. Rolla, and V. Sidoravicius, Greedy walk on the real line. Ann. Probab.
43 (2015) 1399–1418.

[13] A. Gut and U. Stadtmüller, Variations of the elephant random walk. Preprint (2018),
arXiv:1812.01915.

[14] I.A. Kurkova and M.V. Menshikov, Greedy algorithm, Z1 case. Markov Process.
Related Fields 3 (1997) 243–259.

[15] T. Lindvall, Lectures on the Coupling Method. John Wiley & Sons, Inc., New York,
1992.

[16] N. Madras and G. Slade, The Self-Avoiding Walk. Modern Birkhäuser Classics, re-
print of the 1993 original, 2013.

[17] M. Menshikov, S. Popov, and A. Wade, Non-homogeneous Random Walks. Cam-
bridge University Press, Cambridge, 2016.

30

https://arxiv.org/abs/1812.01915

[18] T. Mountford and P. Tarrès, An asymptotic result for Brownian polymers. Ann.
Inst. H. Poincaré Probab. Statist. 44 (2008) 29–46.

[19] S.P. Meyn and R.L. Tweedie, Markov Chains and Stochastic Stability. 2nd ed., Cam-
bridge University Press, Cambridge, 2009.

[20] J.R. Norris, L.C.G. Rogers, and D. Williams, Self-avoiding random walk: A
Brownian motion model with local time drift. Probab. Theory Related Fields 74
(1987) 271–287.

[21] R. Pemantle, A survey of random processes with reinforcement. Probab. Surv. 4
(2007) 1–79.

[22] N. Pétrélis, R. Sun, and N. Torri, Scaling limit of the uniform prudent walk. Electron.
J. Probab. 22 (2017) paper no. 66, 19 pp.

[23] L. Rolla and V. Sidoravicius, Stability of the greedy algorithm on the circle. Comm.
Pure Appl. Math. 70 (2017) 1961–1986.

[24] L. Rolla, V. Sidoravicius, and L. Tournier, Greedy clearing of persistent Poissonian
dust. Stochastic Process. Appl. 124 (2014) 3496–3506.

[25] P.E. Smouse, S. Focardi, P.R. Moorcroft, J.G. Kie, J.D. Forester and J.M. Morales,
Stochastic modelling of animal movement. Phil. Trans. Roy. Soc. Ser. B Biol. Sci.
365 (2010) 2201–2211.

[26] B. Tóth, The “true” self-avoiding walk with bond repulsion on Z: Limit theorems.
Ann. Probab. 23 (1995) 1523–1556.

[27] B. Tóth, Self-interacting random motions—a survey. In: Random Walks (Budapest,
1998) Bolyai Soc. Math. Stud. 9 (1999) 349–384.

[28] B. Tóth and W. Werner, The true self-repelling motion. Probab. Theory Related
Fields 111 (1998) 375–452.

[29] M. Zerner, On the speed of a planar random walk avoiding its past convex hull. Ann.
Inst. H. Poincaré Probab. Statist. 41 (2005) 887–900.

31

	Introduction and main results
	Preliminaries
	Renewal structure
	A homogeneous process
	Coupling the processes
	The planar case with unit memory
	Auxiliary results: speeds and directions

